INCH-POUND
MIL-M-38510/108A
18 December 2003
SUPERSEDING
MIL-M-38510/108 (USAF)
9 April 1976

MILITARY SPECIFICATION

MICROCIRCUITS, LINEAR, TRANSISTOR ARRAYS, MONOLITHIC SILICON

This specification is approved for use by all Departments and Agencies of the Department of Defense.

Inactive for new design as of 10 July 1995

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon transistor arrays. Two product assurance classes and a choice of case outlines and lead finishes are provided and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3)
- 1.2 Part or Identifying Number (PIN). The PIN should be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	Two isolated NPN transistors and one NPN Darlington connected pair,
	general purpose.
02	Three isolated NPN transistors and one NPN differentially connected pair,
	general purpose.

- 1.2.2 <u>Device class</u>. The device class should be the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outline. The case outline should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
A <u>1</u> / C	GDFP5-F14 or CDFP6-F14 GDIP1-T14 or CDIP2-T14	14 14	Flat pack Dual-in-line
Ď	GDFP1-F14 or CDFP2-F14	14	Flat pack
M	MACY1-X12	12	Can

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

AMSC N/A FSC 5962

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited.

^{1/} Inactive package case outline.

1.3 Absolute maximum ratings. 1/

Collector – base voltage	40 V dc 2/
Collector – emitter voltage	
Collector – substrate voltage	60 V dc $\frac{3}{3}$ /
Emitter – base voltage	5 V dc 2/
Power dissipation	300 mW 2/
Collector current	50 mA <u>2</u> /
Storage temperature range	-65°C to +150°C
Junction temperature	
Lead temperature (soldering, 60 seconds)	+300°C

1.4 Recommended operating conditions.

Collector – base voltage	32 V dc <u>2</u> /
Collector – emitter voltage	12 V dc <u>2</u> /
Ambient operating temperature range	$-55^{\circ}C \le T_A \le +125^{\circ}C$

1.5 Power and thermal characteristics.

Case outline	Maximum allowable power dissipation	$\underline{\text{Maximum}} \; \theta_{\text{JC}}$	<u>Maximum</u> θ _{JA}
A, D, M	350 mW @ T _A = 125°C	60°C/W	140°C/W
С	$400 \text{ mW } @ T_A = 125^{\circ}\text{C}$	40°C/W	120°C/W

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

(Copies of these documents are available online at http://assist.daps.dla.mil;quicksearch/ or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this specification and the references cited herein the text of this document shall takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

^{1/} The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

^{2/} Rating applies to each transistor within the array.

^{3/} Does not apply to Q₅ of device type 02, refer to V_{CEO} rating.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. This slash sheet has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the Qualifying Activity.
- 3.3 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Circuit diagrams and terminal connections.</u> The logic diagram and terminal connections shall be as specified on figure 1.
- 3.3.2 <u>Schematic circuits</u>. The schematic circuits shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VA) upon request.
 - 3.3.4 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended ambient operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements</u>. Electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.7.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. For class Q product built in accordance with A.3.2.2 of MIL-PRF-38535 or other alternative approved by the Qualifying Activity, the "QD" certification mark shall be used in place of the "QML" or "Q" certification mark.
- 3.8 <u>Microcircuit group assignment</u>. The devices covered by this specification shall be in microcircuit group number 53 (see MIL-PRF-38535, appendix A).

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions	Temperature range	Device type	Lim	its <u>1</u> /	Unit
					Min	Max	
Breakdown voltage, collector to base	V _{(BR)CBO}	$I_C = 10 \mu A, I_E = 0$	-55°C ≤ T _A ≤ +125°C	01, 02	40		V
Breakdown voltage, collector to emitter	$V_{(BR)CEO}$	$I_{C} = 1 \text{ mA}, I_{B} = 0$	-55°C ≤ T _A ≤ +125°C	01, 02	15		V
Breakdown voltage, collector to substrate 2/	V _{(BR)CUO}	I _C = 10 μA	-55°C ≤ T _A ≤ +125°C	01, 02	60		V
Breakdown voltage, emitter to base <u>2</u> /	$V_{(BR)EBO}$	$I_E = 10 \mu A, I_C = 0$	-55°C ≤ T _A ≤ +125°C	01, 02	5.0		V
Collector to base	I _{CBO}	$V_{CB} = 35 \text{ V}, I_{E} = 0$	$-55^{\circ}C \le T_A \le +25^{\circ}C$	01, 02		10	nA
cutoff current			T _A = +125°C			0.2	μΑ
Collector to emitter	I _{CEO}	$V_{CE} = 10 \text{ V}, I_{B} = 0$	-55°C ≤ T _A ≤ +25°C	01, 02		10	nA
cutoff current			T _A = +125°C			1.0	μΑ
Collector to emitter	I _{CEO(D)}	$V_{CE} = 10 \text{ V}, I_{B} = 0$	$-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +25^{\circ}\text{C}$	01		20	nA
cutoff current (Darlington pair) 3/			T _A = +125°C			50	μΑ
Collector to substrate	I _{CUO}	V _{CU} = 40 V	-55°C ≤ T _A ≤ +25°C	01, 02		10	nA
cutoff current 2/			T _A = +125°C			200	
Emitter to base cutoff	I _{EBO}	$V_{EB} = 4 \text{ V}, I_{C} = 0$	-55°C ≤ T _A ≤ +25°C	01, 02		10	nA
current			T _A = +125°C			200	
Collector to emitter	V _{CE(sat)}	I _C = 10 mA, I _B = 1 mA	-55°C ≤ T _A ≤ +25°C	01, 02		0.400	V
voltage (saturated)			T _A = +125°C			0.600	
Base emitter voltage	V _{BE(sat)}	I _C = 10 mA, I _B = 1 mA	+25°C ≤ T _A ≤ +125°C	01, 02		1.0	V
(saturated)			T _A = -55°C			1.1	
Base emitter voltage	V _{BE}	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	T _A = +25°C	01, 02	0.600	0.800	V
(unsaturated)			T _A = +125°C		0.450	0.650	1
			T _A = -55°C		0.750	0.950	1
Base emitter voltage	V _{BE}	$V_{CE} = 3 \text{ V}, I_{E} = -10 \text{ mA}$	T _A = +25°C	01, 02		0.900	V
(unsaturated)			T _A = +125°C			0.750	
			T _A = -55°C			1.000	
Base emitter voltage	V _{BE(D)}	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	T _A = +25°C	01	1.100	1.500	V
(unsaturated), Darlington pair <u>3</u> /			T _A = +125°C		0.700	1.100	
- 59.511 Pair <u>0</u> /			T _A = -55°C	1	1.500	1.900	1
Base emitter voltage	V _{BE(D)}	$V_{CE} = 3 \text{ V}, I_{E} = -10 \text{ mA}$	T _A = +25°C	01		1.600	V
(unsaturated), Darlington pair <u>3</u> /			T _A = +125°C	1		1.200	1
Dannigton pan <u>o</u> r			T _A = -55°C	1		2.00	1
Input offset voltage,	V _{BEQ1} -	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	T _A = +25°C	01, 02		2.0	mV
differential pair 4/	V_{BEQ2}		-55°C ≤ T _A ≤ +125°C	1		3.0	1
Input offset voltage	V _{BEQA} -	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	T _A = +25°C	01, 02		2.0	mV
for pairs of isolated transistors 5/6/7/	V _{BEQB}		-55°C ≤ T _A ≤ +125°C	1		3.0	

See footnotes at end of table.

MIL-M-38510/108A

TABLE I. <u>Electrical performance characteristics</u> – Continued.

Test	Symbol	Conditions	Temperature range	Device type	Lim	its <u>1</u> /	Unit
				,,	Min	Max	1
Temperature	$\Delta V_{BE}/\Delta T$	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	-55°C ≤ T _A ≤ +25°C	01	-2.2	-1.5	mV/°C
coefficient of base emitter voltage				02	-2.2	-1.3	1
<u>5</u> / <u>8</u> /			+25°C ≤ T _A ≤ +125°C	01	-2.2	-1.5	1
				02	-2.2	-1.3	
Temperature	$\Delta V_{BE(D)}/\Delta T$	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	-55°C ≤ T _A ≤ +25°C	01	-5.0	-3.5	mV/°C
coefficient of base emitter voltage, Darlington pair 3/8/			+25°C ≤ T _A ≤ +125°C		-5.0	-3.5	
Temperature	(Δ V _{BEQA} -	$V_{CE} = 3 \text{ V}, I_{E} = -1 \text{ mA}$	-55°C ≤ T _A ≤ +25°C	01, 02		15	μV/°C
coefficient of input offset voltage <u>5</u> / <u>9</u> /	V _{BEQB})/∆T		$+25^{\circ}C \le T_A \le +125^{\circ}C$			15	
Static forward	h _{FE}	$V_{CE} = 3 \text{ V}, I_{C} = 10 \mu\text{A}$	$+25^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	01, 02	45		
current transfer ratio (beta)			T _A = -55°C		25		
Static forward	h _{FE}	$V_{CE} = 3 \text{ V}, I_{C} = 1 \text{ mA}$	$+25^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	01	70	300	
current transfer ratio (beta)			T _A = -55°C		40		
			+25°C ≤ T _A ≤ +125°C	02	70		1
			T _A = -55°C		40		1
Static forward	h _{FE}	$V_{CE} = 3 \text{ V}, I_{C} = 10 \text{ mA}$	+25°C ≤ T _A ≤ +125°C	01, 02	60		
current transfer ratio (beta)			T _A = -55°C		35		
Magnitude of static	h _{FEQA} /h _{FEQB}	$V_{CE} = 3 \text{ V}, I_{C} = 1 \text{ mA}$	T _A = +25°C	01, 02	0.9	1.1	
beta ratio for any two isolated transistors <u>5</u> / <u>6</u> / <u>7</u> /			-55°C ≤ T _A ≤ +125°C		0.85	1.15	
Static forward	h _{FE(D)}	$V_{CE} = 3 \text{ V}, I_{C} = 1 \text{ mA}$	$+25^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	01	4000		
current transfer ratio, Darlington pair <u>3</u> /			T _A = -55°C		2500		
Static forward	h _{FE(D)}	$V_{CE} = 3 \text{ V}, I_{C} = 100$	+25°C ≤ T _A ≤ +125°C	01	2500		
current transfer ratio, Darlington pair <u>3</u> /		μΑ	T _A = -55°C		1500		
Low frequency,	h _{fe}	V _{CE} = 3 V, I _C = 1 mA	T _A = -55°C	01, 02	35		1
small signal, forward current transfer ratio			+25°C ≤ T _A ≤ +125°C		60		
Gain-bandwidth product	f _t	See figure 4	T _A = +25°C	01, 02	300		MHz
Delay time	t _d	See figure 2	T _A = +25°C	01, 02		100	ns
			T _A = -55°C, +125°C			160	
Rise time	t _r	See figure 2	T _A = +25°C	01, 02		50	ns
			T _A = -55°C, +125°C			80	7
Storage time	t _s	See figure 2	T _A = +25°C	01, 02		200	ns
			T _A = -55°C, +125°C			300	1

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions	Temperature range	Device type	Lim	its <u>1</u> /	Unit
					Min	Max	
Fall time	t _f	See figure 2	T _A = +25°C	01, 02		80	ns
			T _A = -55°C, +125°C	•		125	
Channel separation	C.S.	See figure 3	T _A = +25°C	01, 02	80		dB

- 1/ Limits apply to each transistor within the array, unless otherwise specified.
- 2/ Does not apply to Q₅ of device type 02.
- $\underline{3}$ / Applies only to Darlington pair (Q₃, Q₄) of device type 01.
- 4/ Applies only to differential pair (Q₁, Q₂) of device type 02.
- $\overline{\underline{5}}$ / Does not apply to Darlington pair (Q_3 , Q_4) of device type 01.
- $\underline{6}$ / Does not apply to differential pair (Q₁, Q₂) of device type 02.
- \overline{Z} / Applies for pairs (Q₁, Q₂) of device type 01 and for pairs (Q₁, Q₃), (Q₁, Q₄), (Q₁, Q₅) of device type 02.
- 8/ (V_{BE} @ 125°C V_{BE} @ 25°C)/(125°C 25°C), (V_{BE} @ 25°C V_{BE} @ -55°C)/(25°C (-55°C))
- 9/ (|VBEQA VBEQB| @ 125°C |VBEQA VBEQB| @ 25°C |)/(125°C 25°C),
 - (|V_{BEQA} V_{BEQB}| @ 25°C |V_{BEQA} V_{BEQB}| @ -55°C |)/(25°C (-55°C))

TABLE II. Electrical test requirements.

		(() 1 111)
	Subgroups	(see table III)
MIL-PRF-38535	Class S	Class B
test requirements	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, (2, 3, 4)**	1*, (2, 3, 4)**
Group A test requirements	1,2,3,4,5,6	1, 2, 3, 4
	7,9,10,11	
Group B electrical test parameters when	1,2,3 and	
using the method 5005 QCI option	table IV delta	N/A
	limits	
Group C end-point electrical	1,2,3 and	1,2,3 and table
parameters	table IV delta	IV delta
	limits	limits
Group D end-point electrical	1,2,3	1,2,3
parameters		

^{*}PDA applies to subgroup 1

4. VERIFICATION.

4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as function as described herein.

^{**} $\Delta V_{BE}/\Delta T$ and $(\Delta | V_{BEQA} - V_{BEQB}|)/\Delta T$ test as specified in table III herein for group A, subgroups 2 and 3, and f_t tests as specified in table III herein for group A, subgroup 4, are not required for final electrical tests (for device 02 only) but shall be performed for group A sample testing.

- 4.2 <u>Screening</u>. Screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Burn-in test (method 1015 of MIL-STD-883) 1/.

Test condition		В	A <u>2</u> /		
Product assurance class	S	В	S	В	
T _A minimum	125°C	125°C	250°C	200°C	
t minimum	240 hours	168 hours	16 hours	16	
			or 200°C	hours	
			168 hours		

Notes:

- 1/ The vertical columns of this table establish alternate combinations of test conditions from which the manufacturer may choose any one for a given product assurance class, at their option, unless otherwise specified in the procurement documentation. The same condition shall be used for all devices in a given inspection lot and the same condition shall be used for both burn-in (when applicable), and operating life test for any given inspection lot. Alternate 2 for stabilization bake and high temperature storage tests shall be used only when test condition A has been selected, and alternate 1 shall be used when test condition B has been selected.
- When accelerated test condition A is used, the centrifuge test and hermeticity tests of method 5004 of MIL-STD-883 shall be performed, in that order, subsequent to the burn-in test and before the final electrical test of method 5004 of MIL-STD-883.
- c. Reverse bias burn-in (method 1015 of MIL-STD-883). This screen shall apply to class S only.

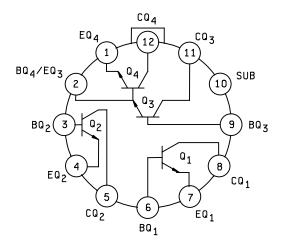
Test condition	Α
Product assurance class	S
T _A minimum	150°C
t minimum	72 hours

- d. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
- e. Additional screening for space level product shall be as specified in MIL-PRF-38535.
- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4.1 <u>Group A inspection</u>. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroup 8 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.

- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - c. Operating life test (method 1005 of MIL-STD-883) 1/.

Test condition	E	3	A <u>2</u> /		
Product assurance class	S	В	S	В	
T _A minimum	125°C	125°C	250°C	200°C	
t minimum	1000 hours	1000 hours	100 hours	100 hours	
			or 200°C		
			1000 hours		
Sample size series number	5	5	10	10	

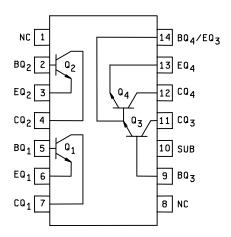
Note:


- 1/ The vertical columns of this table establish alternate combinations of test conditions from which the manufacturer may choose any one for a given product class, at their option, unless otherwise specified in the procurement documentation.
- 2/ See 4.2b.
- d. Steady state reverse bias (method 1005 of MIL-STD-883).

Test condition	Α
Product assurance class	S
T _A minimum	150°C
t minimum	72 hours
Sample size series number	5

- 4.4.4 <u>Group D inspection</u>. Group D inspection shall be in accordance with table V of MIL-PRF-38535. End point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified as follows.
- 4.5.1 <u>Voltage and current</u>. All voltage values given are referenced to the microcircuit ground terminals. Currents given are conventional current and positive when flowing into the referenced terminal.

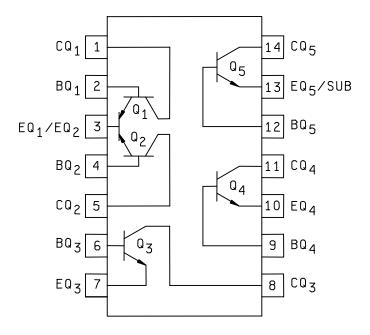
Device type 01


Case M

12 lead can (top view)

Device type 01

Cases A, C, D



14 lead flat pack or dual-in-line (top view)

Figure 1. Circuit diagrams and terminal connections.

Device type 02

Cases A, C, D

14 lead flat pack or dual-in-line (top view)

Figure 1. <u>Circuit diagrams and terminal connections</u> – Continued.

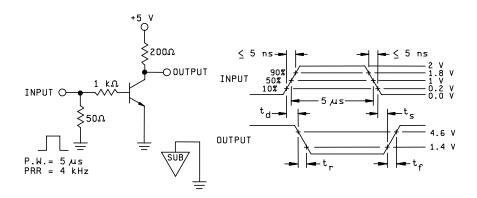
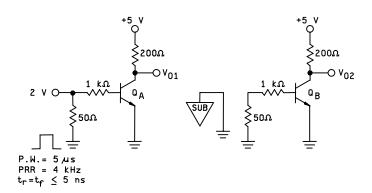
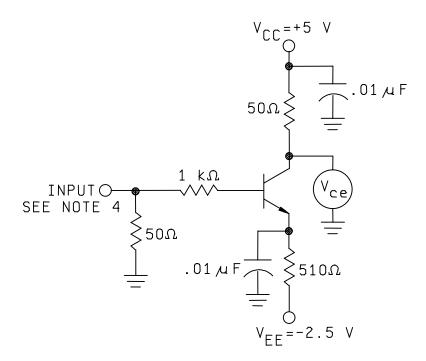



FIGURE 2. Switching time test circuit and waveforms.


Notes:

1.

Device type	QA	QB
01	Q1	Q2
02	Q3	Q4

- 2. Measure V_{01} , V_{02} , (volts peak) 3. Isolation = 20 log (V_{01}/V_{02})

FIGURE 3. Channel separation test circuit.

Notes:

- 1. The input shall be a 100 MHz signal containing only the fundamental frequency (THD \leq 0.5%).
- 2. Connect the substrate to -2.5 V.
- 3. With the device removed from the circuit, a shorting link is placed between the base and collector and the input signal adjusted for 1.0 mV rms on the high impedance voltmeter V_{ce} . The shorting link is then removed. The device is placed in the circuit and the reading on the voltmeter V_{ce} equal to the magnitude of h_{fe} .
- 4. $f_t = 100 \text{ MHz x h}_{fe}$

FIGURE 4. Gain-bandwidth product (f_t) test circuit.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

			1		ı		ı	ı				ı	1		1		1	1	
	Unit		> = =	3			3 3 3 3	u¥" "		n			> = = =		3 3	3 3	3 3	3 3	3 3
Limits	Max							10		20	," "	2 2 2 3	0.400	1.0	0.800	3 3	3 3	3 3	0.900
ij	Ξ		40	3	15	" "	2.0								009.0	3 3	3 3	3 3	
	Measured terminal		001 002 003	00 00 40	CQ1 CQ2 CQ3	CQ1 CQ2 CQ3 CQ4	EQ1 EQ2 EQ3 EQ4	CQ1 CQ2 CQ3 CQ4	CQ1 CQ2 CQ3 CQ4	CQ3, CQ4	CQ1 CQ2 CQ3 CQ4	E01 E03 E04	CQ1 CQ2 CQ3 CQ4	BQ1 BQ2 BQ3 BQ4	BQ1	BQ2	ВОЗ	BQ4	BQ1
14	2	BQ4/ EQ3			GND		10 µA GND	GND	GND			4.0 V GND	GND 1 mA	GND 1 mA			GND/ -1 mA	-B	
13	-	EQ4			GND		10 µA		GND	GND		4.0 V	GND	GND				GND/ -1 mA	
12	12	CQ4		10 мА	1 mA	10 µА		35 V	10 V	10 V	40 V		10 mA	10 mA				3 \	
11	7	CQ3	(All OF	1 mA	10 µА		35 V	10 V	10 V	40 V		10 mA	10 mA			3 <		
10	10	SUB	GND	з		3 3 3 3			, , ,		3 3 3 3	2 2 3 3	3 3 3 3	3 3 3 3	3 3	3 3	3 3	3 3	3 3
6	6	BQ3	2	250			GND	GND				GND	1 mA	1 mA			<u>в</u>		
80		NC																	
7	∞	CQJ	10 µA		1 mA	10 µA		35 V	10 V		40 V		10 mA	10 mA	3 \				3 V
9	7	EQ1			GND		10 µA		GND			4.0 V	GND	GND	GND/ -1 mA				GND/ -10 mA
2	9	BQ1	GND				GND	GND				GND	1 mA	1 mA	В				В
4	2	CQ2	10 µA		1 mA	10 µA		35 V	10 V		40 V		10 mA	10 mA		3 \			
8	4	EQ2			GND		10 µA		GND			4.0 V	GND	GND		GND/ -1 mA			
2	က	BQ2	GND				GND	GND				GND	1 mA	1 mA		<u>B</u>			
-		SC																	
Cases	Case	Test no.	← c	ე 4	8 7 8	9 10 12	61 15 16	17 18 19 20	21 23 24	25	26 27 28 29	30 32 33	34 35 36 37	38 39 41	42	43	44	45	46
	Symbol	1	V(вк)сво		(BR)CEO 2	(BR)CUO	(BR)EBO	CBO	СЕО	CEO(D)	cno	EBO	CE(SAT)	BE(SAT)	BE	I .	1	1	
	Subgroup		1 T _A =+25°C		>	> >	>	>	_	-	- –	_	_ :	>	>		>		

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

	Note							_	2	2	2	7	က	က	က	က	4	4	4	4	2	9	7
	Z		>	я	n	я	я	/m															
Limits	Max		0.900	3	3	1.500	1.600	2.0					300	3	3	3					1.1		
Ė	Min		0			1.100	-		45	3	3	ч	20	я	n	3	09	3	y	n	6.0	2500	4000
	Measured terminal		BQ2	BQ3	BQ4	BQ3 1	BQ3		BQ1	BQ2	ВОЗ	BQ4	BQ1	BQ2	ВОЗ	BQ4	BQ1	BQ2	ВОЗ	BQ4		BQ3 2	BQ3 4
		1				Δ	Δ		a a	Δ			<u>а</u>	a B			m —	Δ				m —	М
 4	2	BQ4/ EQ3		GND/ -10 mA	<u>8</u>						GND	<u>B</u>			GND	<u>B</u>			GND	<u>в</u>			
13	-	EQ4			GND/ -10 mA	GND/ -1 mA	GND/ -1 mA					GND				GND				GND			GND
15	12	CQ4			3 <	3 <	3 <					3 V/ 10 μA				3 V/ 1 mA				3 V/ 10 mA		3 V/ 100 μA	3 V/
-	11	ငတဒ		3 \		3 V	3 V				3 V/ 10 µA				3 V/ 1 mA				3 V/ 10 mA			CQ4	CQ4
10	10	SUB	GND	n	n	n	n				n		3	я	y		n	n	n			n	3
ത	6	BQ3		8		8	<u>8</u>		n	3	-B		ä		В		3		8		я	- B	В
∞		S																					
	∞	CQ1							3 V/ 10 µA				3 V/ 1 mA				3 V/ 10 mA						
9	7	EQ1							GND				GND				GND						
2	9	BQ1							<u>в</u>				<u>B</u>				В						
4	2	CQ2	3 <							3 V/ 10 µA				3 V/ 1 mA				3 V/ 10 mA					
ო	4		GND/ -10 mA							GND				GND				GND 1					
7	က	BQ2 E	в О ,							В				в				В					
	'	N									_												
Cases A,C,D	Case	Test no.	47			20	51	52	53												65	99	29
	Symbol		V _{BE}			V _{BE} 48)	V _{BE} (3)	VBEQ1 -VBEQ2	hre			54	55	56	22	28	29	09	61	62	hғεα1 /60 вεα2	h _{FE664}	h _{FE(D)}
	Subgroup		1 T _A =+25°C			-	-	-															

7. Calculate $h_{E(D)} = 1 \text{ mA/I}_B$

5. Calculate $h_{FE}(57)/h_{FE}(58)$ Calculate $h_{FE(D)} = 100 \, \mu A/l_B$

9

Calculate $h_{FE} = 1 \text{ mA/I}_B$ Calculate $h_{FE} = 10 \text{ mA/I}_B$

დ 4

1. Calculate $|V_{42} - V_{43}|$ 2. Calculate h_{FE} = 10 μ A/l_B

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

	Unit		Ψή	2	3	3	=	3	3	"	3	Α̈́	3	=	и	7
s																-
Limits	Max		0.2	я	3	я	1.0	3	я	n	20	200	3	3	n	_
	Min															
	Measured terminal		CQ1	CQ2	CQ3	CQ4	CQ1	CQ2	CQ3	CQ4	CQ3,CQ4	CQ1	CQ2	CQ3	CQ4	
4	2	BQ4/ EQ3				GND			GND							
13	1	EQ4								GND	GND					
12	12	CQ4				35 V				10 V	10 V				40 V	-
=======================================	11	CQ3			35 V				10 V		10 V			40 V		
10	10	SUB	GND	31	я	3	n	n	n n	я	n	n	3	я	u	
თ	6	ваз			GND											
ω		NC														
7	8	CQ1	35 V				10 V					40 V				
9	7	EQ1					GND									-
သ	9	BQ1	GND													=
4	5	CQ2		35 V				10 V					40 V			
က	4	EQ2						GND								=
7	က	BQ2														-
-		NC			GND											-
Cases A,C,D	Case	Test no.	89				72				92	2.2	78			
	Symbol	1	lcBo	1	1	69	0 <u>7</u> 20	7.1	1	73	lc∈∂(d)	l _c /d5	1	1	I	
	Subgroup		2 T _A = +125°C)			1				1					

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Г					ı	ı	ı	ı	1		ı	1		ı		ı	ı	ı	ı		
		Note																			
		Unit		υĄ	3	3	3	>	3	я	3	>	n	3	n	3	3	3	3	я	я
	Limits	Max		200	n	3	ä	0.600	ä	3	n	0.650	я	3	я	0.750	n	3	ä	1.100	1.200
		Min										0.450	n	n	n					0.700	
		Measured terminal		EQ1	EQ2	EQ3	EQ4	CQ1	CQ2	CQ3	CQ4	BQ1	BQ2	BQ3	BQ4	BQ1	BQ2	BQ3	BQ4	BQ3	ВОЗ
,	14		BQ4/ EQ3			4.0 V	GND			GND	1 mA			GND/ -1 mA	В			GND/ -10 mA	<u>B</u>		
	13	-	EQ4				4.0 V				GND				GND/ -1 mA				GND/ -10 mA	GND/ -1 mA	GND/ -10 mA
	12	12	CQ4								10 mA				3 V				3 \	3 <	3 \
;	11	11	CQ3							10 mA				3 \				3 \		3 \	3 V
	10	10	SUB		я	я		я	з	я		я	n	я		з	я	я		я	и
	ი	6	ВОЗ	í	D S S	GND		я		1 mA		з		<u>8</u>		я		<u>8</u>		<u>8</u>	8
(χo	-	NC																		
ı	,	8	CQ1					10 mA				3 V				3 V					
	9	7	EQ1	4.0 V				GND				GND/ -1 mA				GND/ -10 mA					
ı	5	9	BQ1	GND				1 mA				В				<u>в</u>					
,	4	2	CQ2						10 mA				3 V				3 <				
ć	e.	4	EQ2		4.0 V				GND				GND/ -1 mA				GND/ -10 mA				
ď	7	3	BQ2		GND				1 mA				В				ш				
,	1		SC											_				_			
	Cases A,C,D	Case	Test no.	81	82	83	84	82	98	87	88	68	06	91	95	93	94	92	96	26	86
		Symbol	1	Гево	1	1	1	Vce(sat)	1	1	1	BE		1		1	1	1	1	BE(D)	BE(D)
		Subgroup		2 T _A = +125°C								•		>						•	•

TABLE III. Group A inspection for device type 01 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

	Note		-	2	က	4	2	9	7	∞	ω	6							
	C		\ \ 	mV/°C	n	n	n	n	ην/°C				>	n	3	a a	>	3	-
Limits	Max		3.0	-1.5	з	я	я	-3.5	15.0	300	300	1.15	1.100				0.950	0.950	
	Σi			-2.2	3	з	з	-5.0	3	20	20	0.85					0.750	0.750	-
	Measured terminal									BQ1	BQ2		BQ1	BQ2	BQ3	BQ4	BQ1	BQ2	
41	2	BQ4/ EQ3													GND	1 mA			
13	-	EQ4														GND			00
12	12	CQ4														10 mA			× 10 ³ /10 E(107)
1		ငတဒ													10 mA				106)/h _F
10	10	SUB	GND	u	u	31	u	u	я	u	u	я	я	3	n	3	з	я	7. Calculate $(V_{99} - V_{52}) \times 10^3/100$ 8. hre = 1 mA/l _B 9. Calculate hre(106)/hre(107)
6	6	ВОЗ													1 mA				Calcul . hre = . Calcul
ω		N N																	
7	8	CQ1								3 V/ 1 mA			10 mA				3 V		Calculate ($V_{91} - V_{44}$) x $10^3/100$ Calculate ($V_{92} - V_{45}$) x $10^3/100$ Calculate ($V_{97} - V_{50}$) x $10^3/100$
9	7	EQ1								GND			GND				GND/ -1 mA		– V ₄₄) x – V ₄₅) x – V ₅₀) x
2	9	BQ1								В			1 mA				<u>a</u>		te (V ₉₂ - te (V ₉₇ - te (V ₉₇ -
4	5	CQ2									3 V/ 1 mA			10 mA				3 V	Calcula Calcula Calcula
ဧ	4	EQ2									GND			GND				GND/ -1 mA	4.rv. o.
2	က	BQ2									В			1 mA				ш	3 3/100 3/100
-		SC										_							/ ₉₀) × 10 / ₄₂) × 10 / ₄₃) × 10
Cases A,C,D	Case	Test no.	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	e (V ₈₉ – V e (V ₈₉ – V e (V ₉₀ – V
	Symbol	F	VBEQ1 - VBEQ2	ΔV _{BE} /ΔΤ				ΔV _{BE(D)} /ΔΤ	$(\Delta V_{BEQ1} - V_{BEQ2})/\Delta T$	FEQ1	FEQ2	FEQ1/ hFEQ2	V _{BE} (sat)	y y	23	33	BE	3	NOTES: 1. Calculate $(V_{89} - V_{90}) \times 10^3$ 2. Calculate $(V_{89} - V_{42}) \times 10^3/100$ 3. Calculate $(V_{90} - V_{43}) \times 10^3/100$
	Subgroup		2 T _A = +125°C		1			3	: :	:	1	ے	3 T _A = - b 5°C	<u>. </u>	1	1	ı	1	>

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

	Note										-	2	ო	4	2	9	7	ω	ω	6
	Unit		>	n	3	3	3	3	3	3	/m	mV/°C	3	3	n	n	μV/°C			
Limits	Max		0.950	0.950	1.000	3	3	я	1.900	2.000	3.0	-1.5	3	3	3	-3.5	15.0 µ			1.15
	Min		0.750 0	0.750 0	-				1.500	2		-2.2	3	3	n	-2.0	,	40	40	0.85
	Measured terminal		BQ3 0	BQ4 0	BQ1	BQ2	ВДЗ	BQ4	BQ3 1	BQ3								BQ1	BQ2	-
	Meas			M	M	M			Ä	M								BC	M	
14	2	BQ4/ EQ3	GND/ -1 mA	<u>a</u>			GND/ -10 mA	<u>a</u>												
13	-	EQ4		GND/ -1 mA				GND/ -10 mA	GND/ -1 mA	GND/ -10 mA										
12	12	CQ4		3 <				3 \	3 <	3 <										
11	11	CQ3	3 V				3 V		3 V	3 V										
10	10	SUB	GND	я	n	n	n	n	n	n	GND	n	я	я	n	31	n	n	n	n
о	6	воз	_8				<u>a</u>		_8	_8										
ω		S																		
7	8	CQ1			3 \													3 V/ 1 mA		
9	7	EQ1			GND/ -10 mA													GND		
2	9	BQ1			9 \. 8													8		
4	2	CQ2				3 \													3 V/ 1 mA	
က	4	EQ2				GND/ -10 mA													GND	
2	8	BQ2				а О Г													В В	
	•	NC NC																		
Cases A,C,D	Case M	Test no.	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132
	Symbol		V _{BE}	n					BE(D)	BE(D)	VBEQ1 - VBEQ2	$\Delta V_{BE}/\Delta T$				$\Delta V_{BE(D)}/\Delta T$	$(\Delta V_{BEQ1}-V_{BEQ2})/\Delta T$	FEQ1	FEQ2	FEQ1/ hFEQ2
	Subgroup		3 T _A = -55°C				4	я	3	ŋ	>	>			ä	: 3	3	1		ч

NOTES: ב ב

1. Calculate $(V_{113} - V_{114}) \times 10^3$ 2. Calculate $(V_{42} - V_{113}) \times 10^3/80$ 3. Calculate $(V_{43} - V_{114}) \times 10^3/80$

7 Calculate ($V_{52} - V_{123}$) x $10^3/80$ 8. h_{FE} = 1 mA/l_B 9. h_{FE}(130)/h_{FE}(131)

4. Calculate $(V_{44} - V_{115}) \times 10^3/80$ 5. Calculate $(V_{45} - V_{116}) \times 10^3/80$ 6. Calculate $(V_{50} - V_{121}) \times 10^3/80$

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

	Note		10	1	12	13	4	41	4	4	12	13	12	13
	N		`	`	`	`	MHz	3	,	3	,	`	`	`
ıts							Σ							
Limits	Max		_											
	Min		2500	1500	09	09	300	3	3	3	09	09	32	32
	Measured terminal		BQ3	BQ3	BQ1	BQ2	CQ1	CQ2	င်ဝိဒ	CQ4	BQ1	BQ2	BQ1	BQ2
4	2	BQ4/ EQ3												
13	1	EQ4	GND	GND										
12	12	CQ4	3 V/ 1 mA	3 V/ 100 μA										
=	11	CQ3	CQ4	CQ4										
10	10	SUB	GND	я	n	я					GND	я	я	я
6	6	ВОЗ	믝	8										
∞		NC												
7	80	CQ1			3 V/ 1 mA						3 V/ 1 mA		3 V/ 1 mA	
9	7	EQ1			GND						GND		GND	
2	9	BQ1			٩ı						٩		٩	
4	2	CQ2				3 V/ 1 mA						3 V/ 1 mA		3 V/ 1 mA
က	4	EQ2				GND						GND		GND
2	3	BQ2				qı						qı		qı
-	-	NC												
Cases A,C,D	Case M	Test no.	133	134	135	136	137	138	139	140	141	142	143	144
	Symbol		h _{FE(D)}	FE(D)	hre	Ħ	Ť.	T.	. t	Ť.	hfe	hfe	hfe	hfe
	Subgroup		3 T _A = -55°C	ı	4 T _A = 25°C	ح	ı	ح	ı	ı	5 T _A = +125°C	ı	6 T _A = -55°C	ı

NOTES:

10. $h_{FE(D)}=1$ mA/ $l_{B\Omega3}$ 11. $h_{FE(D)}=100$ μ A/ $l_{B\Omega3}$ 12. Adjust l_b until $l_c=1.1$ mA

13. $h_{fe} = 0.1 \text{ mA/Al}_b$ 14. f = 100 MHz, measure h_{fe} , $f_t = 100 \text{ h}_{fe}$ (see figure 4)

TABLE III. Group A inspection for device type 01 - Continued. Terminal conditions (pins not designated may be H ≥ 2.0 V, or L ≤ 0.8 V, or open)

	Note		-	2	я	n	я	я	я	я	я	з	3	3	33	n	з	я	3	ä	n	я	n	n	n	n	я
	Unit		дB	su	n	и	n	n	31	я	n	"	3	3	3	3	я	n	3	я	n n	з	я	з	3	3	я
Limits	Max			100	100	20	20	200	200	80	80	160	160	80	80	300	300	125	125	160	160	80	80	300	300	125	125
	Min		80																								
	Measured		C02	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2	CQ1	CQ2
14		BQ4/ EQ3																									
13	-	EQ4																									
12	12	CQ4																									
11	11	CQ3																									
10	10		GND	3	,,	n	n	n	n	n	,,	y	я	n	3	n	n	"	u	n	n	n	ņ	n	31	я	n
6	6	воз	O																								
80		NC NC																									
7	8	CQ1																									
9	2	EQ1 C																									
2	9	BQ1 E																									
4	2	со2																									
3	4	2 EQ2																									
2	3	BQ2																									
-	•	S																									
Cases A,C,D	Case	Test no.	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169
	Symbol		S.S.	ф	td	tr	t	ts	ts	tf	th	ţ	ţ	44	4.	ts	ts	th	朴	td	ţ	ئ ر	44	ts	ts	4	· tł
	Subgroup		7 T _A = +25°C	9 T _A = +25°C								10 T _A = +125°C		•						11 T _A = -55°C		•	•				

NOTES:

1. See figure 3. 2. See figure 2.

TABLE III. Group A inspection for device type 02. Terminal conditions (pins not designated may be H \geq 2.0 V, or L \leq 0.8 V, or open)

	Unit	>	я	я	ä	я	n	n	3	n	3	n	3	я	3	3	¥	33	я	u	пА	n	n	n	n	n	3	n	3	n
Limits	Мах																				10	n	"	n	n	n	"	n	n	n
_	Min	40	n	n	n	я	15	ä	я	3	3	09	ä	з	3	5.0	3	я	з	3										
	Measured terminal	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	EQ1	EQ2	EQ3	EQ4	EQ5	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5
4	CQ5					10 µA					1 mA														35 V					10 V
13	EQ5/ SUB	GND	"	3		3	3	3	3	3	3	3	3	3		3	3	3	3	10 µA	GND	з	n	n	3	я	n	3	3	77
12	BQ5					GND	×										n			GND					GND					
-	004 4				10 µA					1mA					10 µA									35 V					10 V	
10	EQ4									GND									10 µA										GND	
о	BQ4				GND														GND					GND						
∞	CQ3			10 µA					1 mA					10 µA									35 V					10 V		
7	EQ3								GND									10 µA										GND		
9	BQ3			GND														GND					GND							
2	CQ2		10 µA					1 mA					10 µA									35 V					10 V			
4	BQ2		GND														GND					GND								
ო	EQ1, 2						GND	GND								10 µA	10 µA									GND	GND			
0		GND																			GND									
-	CQ1	10 µA					1 mA					10 µA						GND			35 V					10 V				
Cases A,C,D	Test no.	-	2	ဧ	4	2	9	7	∞	6	10	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	29
Symbol		V _(ВR) сво	и				V(вк)сео		я		и	(BR)CUO				V(вк)ево		я		я	lcBo	и				Ісео		и		и
Subgroup		1 T _A = +25°C		<u> </u>	<u> </u>	<u> </u>		3	3	3		3		3	>		3	3	3	<u> </u>	я	3	<u> </u>	<u> </u>	<u> </u>	<u> </u>	3	3	u	

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Limits	Min Max Unit	10 nA	3	"	n n	3	3	n n	"	3	V 0.400 V	3	3	"	3	1.000 "	3	"	3	
	Measured M terminal	CQ1	CQ2	CQ3	CQ4	EQ1	EQ2	EQ3	EQ4	EQ5	CQ1	CQ2	CQ3	CQ4	CQ5	BQ1	BQ2	BQ3	BQ4	
41	CQ5														10 mA					
13	EQ5/ SUB	GND	u	3	31	"	n	31	3	4 V	GND	3	3	3	u	u	3	"	3	
12	BQ5									GND					1 mA					
7	CQ4				40 V									10 mA					10 mA	1
10	EQ4								4 \					GND					GND	1
6	BQ4								GND					1 mA					1 mA	1
∞	CQ3			40 V									10 mA					10 mA		
7	EQ3							4 V					GND					GND		
9	ВОЗ							GND					1 mA					1 mA		1
2	CQ2		40 V									10 mA					10 mA			
4	BQ2						GND					1 mA					1 mA			
က	EQ1, 2					4 V	4 V				GND	GND				GND	GND			1
7	BQ1					GND					1 mA					1 mA				Ì
~	CQ1	40 V									10 mA					10 mA				Ī
Cases A,C,D	Test no.	30	31	32	33	34	35	36	37	38	39	40	41	42		44	45	46	47	
Symbol		lcuo	я			Гево		3		з	CE(sat)	я				BE(sat)	з		.43	
Subgroup		1 T _A = +25°C	<u> </u>	<u>i</u>			<u> </u>	3	ä	<u> </u>	3	<u>i</u>	3	>	<u> </u>	<u>j</u>	3	3	>	

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Note												-	7	က	4	2	2	2	2	2	9
	Cuit	>	з	з	я	3	3	я	з	з	я	/m	з	з	я						
Limits	Max	0.800	я	3	и	я	0.900	и	я	я	3	2.0	3	3	3						
	Min	0.600	n	3	n	n										45	n	3	3	3	02
	Measured terminal	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	1	ı	ı	:	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1
41	CQ5					3 \					3 \									3 V/ 10 µA	
13	EQ5/ SUB	GND	я	з	"	GND/ -1 mA	GND	"	я	з	GND/ -10 mA	GND	я	з	я	u	u	з		я	n
12	BQ5					<u>8</u>					8									<u>a</u> "	
11	CQ4				3 V					3 \									3 V/ 10 µA		
10	EQ4				GND/ -1 mA					GND/ -10 mA									GND		
o	BQ4				8														<u>_e</u>		
80	CQ3			3 <					3 <									3 V/ 10 µA			
7	EQ3			GND/ -1 mA					GND/ -10 mA									GND			
9	BQ3			8					В									<u>a</u>			
2	CQ2		3 <					3 V									3 V/ 10 µA				
4	BQ2		В					В									В				
8	EQ1, 2	GND/ -1 mA	GND/ -1 mA				GND/ -10 mA	GND/ -10 mA								GND	GND				GND
2	BQ1	<u>8</u>					<u>8</u>									8					В
-	CQ1	3 V					3 V									3 V/ 10 µA					3 V/ 1 mA
Cases A,C,D	Test no.	49	20	51	52	53	54	25	56	22	28	29	09	61	62	63	64	65	99	29	89
Symbol		VBE	n									VBEQ1 - VBEQ2	весл — Vвесл	ВЕСЛ — VВЕСД4	веат — Vвеа5	#					
Subgroup		1 T _A = +25°C				ä	n	ä	3	3	ä	3	ä	≥	>	≥		۴	ä	3	и

NOTES:

1. Calculate $|V_{49} - V_{50}|$ 2. Calculate $|V_{49} - V_{51}|$ 3. Calculate $|V_{49} - V_{52}|$

4. Calculate $|V_{49} - V_{53}|$ 5. h_{FE} = 10 μ A/l_B 6. h_{FE} = 1 mA/l_B

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Note		-	-	-	-	7	7	7	7	2	က	4	2	9					
	Unit														hA	n	n	3	n
Limits	Max										1.1	n	я	n	200	n	n	n	n
	Min	20	n	3	u	09	3	n	09	09	6.0	n	n	n					
	Measured terminal	BQ2	ВОЗ	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	:	:	:	:	CQ1	CQ2	CQ3	CQ4	CQ5
4	CQ5				3 V/ 1 mA					3 V/ 10 mA									35 V
13	EQ5/ SUB	GND	я	я	я	я	я	я	я	я	я	3	я	з	я	я	з	ä	n
12	BQ5				<u>8</u>					<u>8</u>									GND
=	CQ4			3 V/ 1 mA					3 V/ 10 mA									35 V	
10	EQ4			GND					GND										
တ	BQ4			8					8									GND	
∞	CQ3		3 V/ 1 mA					3 V/ 10 mA									35 V		
7	EQ3		GND					GND											
9	ВДЗ		<u>8</u>					<u>8</u>									GND		
2		3 V/ 1 mA					3 V/ 10 mA									35 V			
4	BQ2	<u>8</u>					<u></u>									GND			
က	EQ1, 2	GND				GND	GND												
7	BQ1					<u>B</u>									GND				
-	CQ1					3 V/ 10 mA									35 V				
Cases A,C,D	Test no.	69	70	17	72	73	74	75	92	77	78	79	80	18	82	83	84	82	98
Symbol	I	hFE							я		FEQ1/NFEQ2	геа1/hгеаз	FEQ1/NFEQ4	FEQ1/NFEQ5	Ісво	я			
Subgroup		1 T _A = +25°C	l	l	3	3	3	3	3	3	l	2 £	= 4	= 2	2 T _A = +125°C	=	1	1	4

" NOTES: 1. hee = 1 mA/lB 2. hee = 10 mA/lB 3. hee(68)/he(69)

4.5. h FE(68)/hFE(71) 6. hFE(68)/hFE(72)

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Note																												
_	Onit	μA	n	n	n	n	31	n	n	n	ä	n	n	3	>	n n	n	n	ä	я	3	3	я	3	n	я	3	n
Limits	Max	1.0	n	n	n	n	200	n	n	n	я	y	n	3	0.600	y	я	n	3	0.650	3	3	n	n	0.750	я	n	n
7	Min																			0.450	3	3	3	3				
	Measured terminal	CQ1	CQ2	co3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	EQ1	EQ2	EQ3	EQ4	CQ1	CQ2	c03	CQ4	CQ5	BQ1 0	BQ2	ВОЗ	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4
	1																											
14	, CQ5	_				10 V													10 mA					38				
13	EQ5/ SUB	GND	ı	n	3	y	n	y	3	3	3	n	ı	n	"	ı	n	ı	3	n	3	n	n	GND/ -1 mA	GND	n	u	я
12	BQ5																		1 mA					<u>в</u>				
11	CQ4				10 V					40 V								10 mA					3 \					3 /
10	EQ4				GND									4 \				GND					GND/ -1 mA					GND/ -10 mA
6	BQ4													GND				1 mA					В					В
80	CQ3			10 V					40 V								10 mA					3 \					3 \	
7	EQ3			GND									V 4				GND					GND/ -1 mA					GND/ -10 mA	
9	воз												GND				1 mA					<u>B</u>					<u>в</u>	
2	CQ2		10 V					40 V								10 mA					3 \					3 \		
4	BQ2											GND				1 mA					В					В		
ဇ	EQ1, 2	GND	GND								4 V	4 V			GND	GND				GND/ -1 mA	GND/ -1 mA				GND/ -10 mA	GND/ -10 mA		
2	BQ1										GND				1 mA					В					В			
-	col	10 V					40 V								10 mA					3 \					3 V			
Cases A,C,D	Test no.	87	88	68	06	91	92	93	94	92	96	26	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113
Symbol		lceo					cno				EBO				V _{CE} (sat)	я				BE					"			
Subgroup		2 . = +125°C				3	3	я	я	_	3	3	3	-	×	3	ä			я	3	: >	>	3	n	3	я	

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Note			1	2	3	4	2	9	7	8	6	10	11	12	13	41	14	41	41	41	15	16	17	18	
	Unit	>	Λm	3	з	з	mV/°C	з	3	я	3	μV/°C	3	3	я										
Limits	Мах	0.750	3.0	n	n	u	-1.3	n	n	n	u	15.0	n	u	n						1.15	n	n	n	
	Min						-2.2	я	n	n	n					20	n	u	n	u	0.85	я	я	я	
	Measured	BQ5	:	:	:	-	:	:	:	:	:	1	:	:	:	BQ1	BQ2	ВОЗ	BQ4	BQ5	1	:	:	:	30) 31) 132)
4	CQ5	3 \																		3 V/ 1 mA)/hre(1)/hre(1 3)/hre(
13	EQ5/ SUB	GND/ -10 mA	GND	n	ä	я	3	u	n	3	n	u	ŋ	ŋ	y	u	n n	3	3	3	n	n	n	n n	^{-е} (128) ге(128
12	BQ5	B .																		В					Calculate h _{FE} (128)/h _{FE} (130) Calculate h _{FE} (128)/h _{FE} (131) Calculate h _{FE} (128)/h _{FE} (132)
-	CQ4																		3 V/ 1 mA						16. Calculate h _{FE} (128)/h _{FE} (130) 17. Calculate h _{FE} (128)/h _{FE} (131) 18. Calculate h _{FE} (128)/h _{FE} (132)
10	EQ4																		GND						_
_																			ල්						100 /100 /100 FE(129)
<u>ი</u>	BQ4																		В						- V ₆₀ / - V ₆₁ / - V ₆₂ /
∞	CQ3																	3 V/ 1 mA							e V ₁₁₆ :e V ₁₁₇ :e V ₁₁₈ mA/l _B
7	EQ3																	GND							Calculate $ V_{116} - V_{60} /100$. Calculate $ V_{117} - V_{61} /100$. Calculate $ V_{117} - V_{62} /100$. L. he = 1 mA/lB
9	ваз																	В							12. 0. 14. 14. 15. 0. 15
2	CQ2																3 V/ 1 mA								00 00 100
4	BQ2																8								Calculate $V_{106} - V_{50}/100$ Calculate $V_{107} - V_{51}/100$ Calculate $V_{107} - V_{52}/100$ Calculate $V_{108} - V_{52}/100$ Calculate $V_{109} - V_{59}/100$ Calculate $V_{115} - V_{59}/100$
	EQ1, 2 B															Q.	GND								V ₁₀₆ – V ₁₀₇ – V ₁₀₈ – V ₁₀₈ – V ₁₀₉ – V ₁₀₉ – V ₁₁₅
ო																GND	<u>σ</u>								lculate ilculate ilculate ilculate
7	BQ1															<u>в</u>									
-	CQ1															3 V/ 1 mA									
Cases A,C,D	Test no.	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	Calculate V ₁₀₅ - V ₁₀₆ Calculate V ₁₀₅ - V ₁₀₇ Calculate V ₁₀₅ - V ₁₀₇ Calculate V ₁₀₅ - V ₁₀₈ Calculate V ₁₀₅ - V ₁₀₈ Calculate V ₁₀₅ - V ₁₀₉
Symbol	1	VBE	VBEQ1 - VBEQ2	BEQ1 — VBEQ3	веал — Vвеа4	BEQ1 — VBEQ5	$\Delta V_{BE}/\Delta T$					$(\Delta V_{BEQ1} - V_{BEQ2})/\Delta T$	(A VBEQ1 - VBEQ3)/AT	$(\Delta V_{BEQ1} - V_{BEQ4})/\Delta T$	(A V _{BEQ1} - V _{BEQ5})/AT	#	я				hfea1/hfea2	FEQ1/hFEQ3	FEQ1/hFEQ4	FEQ1/hFEQ5	NOTES: 1. Calculat 2. Calcula 3. Calcula 3. Calcula 4. Calcula 5. Calcula
Subgroup		2 T _A =	+125°C			≥	≥	≥			3	3	3	3					ح		3	3	я	ح	د د -

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Note																	-	2	3	4	2	9	7	80	6	
	Unit	>	я	3	я	я	я	я	п	3	я	я	3	я	я	3	Λm	3	я	я	mV/°C	3	3	з		
Limits	Max	1.100	n	n	n	n	0.950	n	п	n n	n	1.000	n	n	n	n	3.0	n	n	n	-1.3	n	n	u	,	n
	Min						0.750	n	п	я	u										-2.2	n	я	я	n	
	Measured terminal	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	BQ1	BQ2	BQ3	BQ4	BQ5	1	:	:		-			:	-	
4	CQ5					10 mA					3 V					3 V										
13	EQ5/ SUB	GND	n	n	n	n	n	n			-1 mA	GND/GND	n			-10 mA	GND/GND	n	n	n	n	n	n	я	n	
72	BQ5					1 mA				*	<u>.</u> 8	GND			3	-B	GN9									3/80
-	CQ4				10 mA					3 <					3 \											Calculate $(V_{51} - V_{144}) \times 10^3/80$ Calculate $(V_{52} - V_{145}) \times 10^3/80$
9	EQ4				GND					-1 MA					-10 mA											$V_{51} - V_{.}$
თ	BQ4				1 mA						GND/					GND/										culate ('
xo	CQ3			10 mA					3 V					3 V												7. Cal
_	EQ3			GND					GND/ -1 mA					GND/ -10 mA												
ဖ	ВОЗ			1 mA					l _B .					В												Calculate $ V_{142} - V_{146} \times 10^3$ Calculate $(V_{49} - V_{145}) \times 10^3/80$
ري د	CQ2		10 mA	_				3 \					3 \													42 - V ₁₄ 9 - V ₁₄₂
4	BQ2 (1 mA 10					_8					_8													late V₁ late (V₄
m	01	GND	GND 1				ND/ MA	GND/ -1 mA				ND/ D mA	GND/ -10 mA													_
Ν	BQ1 E(1 mA					ы Б.	0 4				ы Э 1 -	. U Ę													4, 10
		10 mA 1					>					>														13 × 10 ³ 44 × 10 ³
	cQ1	10					3 V					3 V														42 - V ₁₄
Cases A,C,D	Test no.	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	Calculate $ V_{142} - V_{143} \times 10^3$ Calculate $ V_{142} - V_{144} \times 10^3$
Symbol		V _{BE} (sat)					VBE			3	3	u			3	я	веат — Vвеа2	веат — Vвеаз	BEQ1 — VBEQ4	веат — Vвеа5	ΔV _{BE} /ΔΤ					NOTES: 1. Cala 2. Cal
Subgroup		3 T _a = -55°C	<u> </u>	<u> </u>	<u> </u>	3	3	3	ä		3	3				3	3	≥	<u> </u>	<u> </u>	<u> </u> -≥ ≥	<u> </u>			3	ÖZ

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

						,											
Note		-	2	က	4	2	2	2	2	2	9	7	∞	6	10	10	10
	Unit	D∘//\π	n	ŋ	"												
Limits	Мах	15.0	n	n	n						1.15	n	n	n			
	Min					40	3	3	n	n	0.85	3	3	n	09	09	09
	Measured	;	:	1	1	BQ1	BQ2	ВОЗ	BQ4	BQ5	;	:	:	;	BQ1	BQ2	вдз
41	CQ5									3 V/ 1 mA							
13	EQ5/ SUB	GND	n	n	n	n	"	n	n	п	n	n	ŋ	n	n	n	n
12	BQ5									В							
11	CQ4								3 V/ 1 mA								
10	EQ4								GND								
6	BQ4								- B								
∞	CQ3							3 V/ 1 mA									3 V/ 1 mA
7	EQ3							GND									GND
9	ВОЗ							8									8
2	CQ2						3 V/ 1 mA									3 V/ 1 mA	
4	BQ2						8									l _B	
က	EQ1, 2					GND	GND								GND	GND	
2	BQ1					В									В		
-	co To					3 V/ 1 mA									3 V/ 1 mA		
Cases A,C,D	Test no.	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176
Symbol	ı	$(\Delta V_{BEQ1} - V_{BEQ2})/\Delta T$	(Δ V _{BEQ1} – V _{BEQ3})/ΔT	(Δ V _{BEQ1} – V _{BEQ4})/ΔT	(A Vbeq1 – Vbeq5)/AT	FE	я				hfea1/hfea2	ғеа1/ Л ғеаз	FEQ1/hFEQ4	FEQ1/hFEQ5	hfe	hfe	hfe
Subgroup		3 T _A = -55°C				1	1	1	د		з	ä	3	٩	4 T _A = +b5°C	٤	

NOTES:

1. Calculate $|V_{59} - V_{152}| \times 10^3/80$ 2. Calculate $|V_{60} - V_{153}| \times 10^3/80$ 3. Calculate $|V_{61} - V_{154}| \times 10^3/80$ 4. Calculate $|V_{62} - V_{155}| \times 10^3/80$ 5. hre = 1 mA/l_B 6. Calculate hre(165)/hre(166) 7. Calculate hre(165)/hre(168) 8. Calculate hre(165)/hre(168) 9. Calculate hre(165)/hre(169) 10. Adjust l_b until IC = 1.1 mA, hre = 0.1 mA/ Δ l_b

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Note		-	-	2	2	2	2	7	-	я	3	а	3	я	3	3	3	з	က
	Unit			MHz															ВВ
Limits	Мах																		
	Min	09	09	008	"	n	ŋ	n	09	n	ŋ	"	y	32	n	y	n	"	80
	Measured terminal	BQ4	BQ5	CQ1	C02	CO3	CQ4	CQ5	BQ1	BQ2	ваз	BQ4	BQ5	BQ1	BQ2	ВОЗ	BQ4	BQ5	CQ4
4	CQ5		3 V/ 1 mA										3 V/ 1 mA					3 V/ 1 mA	
13	EQ5/ SUB	GND	GND						GND	n	n	n	n	n	n	n	n	n	n
12	BQ5		q										q					qı	
11	CQ4	3 V/ 1 mA										3 V/ 1 mA					3 V/ 1 mA		
10	EQ4	GND										GND					GND		
6	BQ4	qı										q _l					qı		
∞	c03										3 V/ 1 mA					3 V/ 1 mA			
7	EQ3										GND					GND			
9	BQ3										qı					٩ı			
2	CQ2									3 V/ 1 mA					3 V/ 1 mA				
4	BQ2									q					q				
3	EQ1, 2								GND	GND				GND	GND				
2	BQ1								q					q					
-	CQ1								3 V/ 1 mA					3 V/ 1 mA					
Cases A,C,D	Test no.	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194
Symbol		hfe	hfe	ft	99				hfe	я		я		hfe			я		C.S.
Subgroup		4 T _A = +25°C						•	.5" T ^ =	+125°C	3			5" T _A = -55°C		u		n n	7" T _A = +25°C

. NOTES:

- 1. Adjust l_b until l_c = 1.1 mA, h_{fe} = 0.1 mA/ Δl_b 2. f = 100 MHz, measure h_{fe} , f_t = 100 h_{fe} (see figure 4) 3. See figure 3.

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Limits	CQ5 Measured Min Max Unit terminal	CQ1 100 ns 1	33 33 33	3 3 3	n n	n n	3	3	3	n	з	n	n	n	n	n	3	n	я	ä	n
Limits	Measured Min Max terminal	100				u	3														
	Measured Min terminal		я	n				n	3	u	а	n	ŋ	n	n	n	я	n	u	"	n
	Measured terminal	201			3	3	20	я	3	я	я	200	ä	я	я	я	80	з	я	з	u
		201																			
		0	CQ2	co3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5
_	~																				
13	EQ5/ SUB	GND	3	3	n	u	3	n	3	3	з	я	u	3	з	з	3	3	3	3	я
-	BQ5																				
	CQ4																				
	EQ4																				
6	BQ4																				
8	CQ3																				
7	EQ3																				
9	ВОЗ																				
2	CQ2																				
4	BQ2																				
	EQ1, 2																				
	BQ1																				
_	CQ1																				
Cases A,C,D	Test no.	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214
Symbol		td			3		tr			я		ts			я		τţ			я	
Subgroup		9 T₄ = +25°C		ļ.	:	:	:		:	<u> </u>	: 3	:	7	:	1	: :	:	3	:	1	: 3

NOTES: 1. See figure 2.

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

	Note		-	я	а	n	з	я	я	з	я	я	я	з	я	я	я	з	ä	я	ä	я
		Unit	su	n	n	n	n	n	n	я	n	n	n	n	n	n	n	n	n	n	n	n
	Limits	Max	160	3	3	n	n	80	з	3	3	3	300	n	3	3	з	125	4	3	4	3
		Min																				
		Measured terminal	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CO3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5
	4	CQ5																				
-	13	EQ5/ SUB	GND	n	3	n	ŋ	3	n	'n	n	3	я	ŋ	n	з	n	ŋ	ŋ	3	ŋ	3
	12	BQ5																				
	7	CQ4																				
-	9	EQ4																				
	<u></u>	BQ4																				
	∞	CQ3																				
=		EQ3 (
)	9	BQ3 E																				
,																						
	2	2 CQ2																				
-	4	2 BQ2																				
	ო	EQ1, 2																				
	7	BQ1																				
	-	CQ1																				
-	Cases A,C,D	Test no.	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234
ļ	Symbol	•	td	и		я		tr			я		ts			я		τf			n	
}	Subgroup		10 T _A =	+125°C	1	1	3		3	1	3	3	<u> </u>	3		3	3		3		3	3

NOTES: 1. See figure 2.

TABLE III. Group A inspection for device type 02 – Continued. Terminal conditions (pins not designated may be H \ge 2.0 V, or L \le 0.8 V, or open)

Note		_	я.	n	n	3	"	n	3	я	y	n	3	n	n	3	ä	3	n	3	3
	Unit	su	3	4	n	3	u	u	3	3	3	4	3	4	3	3	3	3	4	3	3
Limits	Max U	160	n	3	n	3	80	n	3	"	"	300	n	n	я	я	125	n	3	3	n n
Ė	Min	16	•	-	3	-	æ	3	3	3	3	33	3	-	-	3	12	-	-	-	3
			01			10		01	m	_	10		01			10	_	01			10
	Measured terminal	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5	CQ1	CQ2	CQ3	CQ4	CQ5
14	CQ5																				
13	EQ5/ SUB	GND	я	я	n	я	3	ä	3	3	3	я	з	я	я	я	я	я	я	я	3
72	BQ5																				
	CQ4																				
10	EQ4																				
<u>ი</u>	BQ4																				
∞	co3																				
_	EQ3																				
9	BQ3																				
2	CQ2																				
4	BQ2																				
3	EQ1, 2																				
2	BQ1																				
1	CQ1																				
Cases A,C,D	Test no.	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254
Symbol		td			ч		tr			3		t _S			я		4			я	
Subgroup		11 T _A = -55°C		ı	3	3	ı	3	1	3	3	1	з	ı	3	3	ı	3	ı	3	3

NOTES: 1. See figure 2

MIL-M-38510/108A

4.5.2 <u>Life test cooldown procedure</u>. When devices are measured at 25°C following application of the operating life or burn-in test condition, they shall be cooled to within 10°C of their power stable condition room temperature prior to removal of the bias.

Table IV. Groups B and C end point electrical parameters ($T_A = 25^{\circ}C$).

Test	Device typ	es 01 and 02
	Limit	Delta
V _{BE}	0.600 V min 0.800 V max	±0.010 V
$ V_{BEQA} - V_{BEQB} $	2.0 mV	
h _{FE}	70 min 300 max <u>1</u> /	±10%

1/ The 300 max limit applies to device type 01 only.

5. PACKAGING

5.1 <u>Packaging requirements</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. Complete part number (see 1.2).
 - c. Requirements for delivery of one copy of the quality conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to acquiring activity in addition to notification of the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of MIL-STD-883, method 5003), corrective action and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements should not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

- 6.4 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:.

V _{(BR)CUO} -	 - Breakdown voltage, collector to substrate
	Collector to substrate cutoff current
V _{CU}	 - Collector to substrate voltage (dc)

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device type	Generic-industry type
01	3018A
02	3045

6.8 <u>Changes from previous issue</u>. Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians:
Army – CR
Navy - EC
Air Force - 11
DLA – CC

Preparing activity: DLA - CC

Project 5962-1990

Review activities: Air Force - 19