MIDAS
Displays

Electra House, 32 Southtown Road Great Yarmouth, Norfolk NR31 0DU, England

Telephone +44 (0)1493 602602 Fax +44 (0)1493 665111
Email:sales@midasdisplays.com www.midasdisplays.com

Display Features	
Display Size	$1.54 "$
Resolution	152×152
Orientation	Square
Appearance	Black, White
Logic Voltage	3.3 V
Interface	SPI
Touchscreen	N / A
Module Size	$37.32 \times 31.80 \times 1.05 \mathrm{~mm}$
Operating Temperature	$0^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
Pinout	$24-$ Way FFC
Pitch	0.5 mm

* - For full design functionality, please use this specification in conjunction with the SSD1619A specification.(Provided Separately)

Display Accessories	
Part Number	Description

1. General Description

MDE0154A152152BW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 1.5 " active area contains 152×152 pixels, and has 1 -bit B / W full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC. SRAM.LUT, VCOM and border are supplied with each panel.

Features

- 152×152 pixels display
- White reflectance above 35%
- Contrast ratio above 10:1
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/built-in temperature sensor

Application

Electronic Shelf Label System

Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	$152(\mathrm{H}) \times 152(\mathrm{~V})$	Pixel	Dpi:142
Active Area	$27.00(\mathrm{H}) \times 27.00(\mathrm{~V})$	mm	
Pixel Pitch	0.177×0.177	mm	
Pixel Configuration	Square		
Outline Dimension	$37.32(\mathrm{H}) \times 31.80(\mathrm{~V}) \times 1.05(\mathrm{D})$	mm	
Weight	2.1 ± 0.2	g	

Input/Output Terminal

Pin \#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I2C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES \#	Reset	Note 6-3
11	D/C \#	Data /Command control pin	Note 6-2
12	CS \#	Chip Select input pin	Note 6-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Power Supply pin for Positive Gate driving voltage and VSH	
21	VGH	Positive Gate driving voltage	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS\#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS\# is pulled LOW.
Note 6-2: This pin (D/C\#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.
Note 6-3: This pin (RES\#) is reset signal input. The Reset is active low.
Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

MCU Interface

1. MCU interface selection

The EI154A152152WN can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

Table 7-1: MCU interface selection

BS1	MPU Interface
L	4-lines serial peripheral interface (SPI)
H	3-lines serial peripheral interface (SPI) - 9 bits SPI

2. MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C\# and CS\#, The control pins status in 4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure 4-wire SPI is shown in Figue 7-2

Table 7-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C\# pin	CS\# pin
Write command	\uparrow	Command bit	L	L
Write data	\uparrow	Data bit	H	L

Note:

(1) L is connected to V_{SS} and H is connected to $\mathrm{V}_{\text {DDIO }}$
(2) \uparrow stands for rising edge of signal

In the write mode, SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0. The level of $\mathrm{D} / \mathrm{C} \#$ should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C\# pin.

Figure 7-2: Write procedure in 4-wire SPI mode
In the Read mode:

1. After driving CS\# to low, MCU need to define the register to be read.
2. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, .. D0 with D/C\# keep low.
3. After SCL change to low for the last bit of register, $\mathrm{D} / \mathrm{C} \#$ need to drive to high.
4. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS\# need to drive to high to stop the read operation.

Figure 7-2: Read procedure in 4-wire SPI mode

3. MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS\#. The operation is similar to 4 -wire SPI while D/C\# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

Table 7-3 : Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C\# pin	CS\# pin
Write command	\uparrow	Command bit	Tie LOW	L
Write data	\uparrow	Data bit	Tie LOW	L

Note:

(1) L is connected to $\mathrm{V}_{\text {SS }}$ and H is connected to $\mathrm{V}_{\text {DDIO }}$
(2) \uparrow stands for rising edge of signal

In the write operation, a 9-bit data will be shifted into the shift register on each clock rising edge. The bit shifting sequence is $\mathrm{D} / \mathrm{C} \#$ bit, D 7 bit, D 6 bit to D 0 bit. The first bit is $\mathrm{D} / \mathrm{C} \#$ bit which determines the following byte is command or data. When $\mathrm{D} / \mathrm{C} \#$ bit is 0 , the following byte is command. When $\mathrm{D} / \mathrm{C} \#$ bit is 1 , the following byte is data. shows the write procedure in 3-wire SPI

Figure 7-3: Write procedure in 3-wire SPI mode

In the Read mode:

1. After driving CS\# to low, MCU need to define the register to be read.
2. $\mathrm{D} / \mathrm{C} \#=0$ is shifted thru SDA with one rising edge of SCL
3. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, .. D0.
4. $\mathrm{D} / \mathrm{C} \#=1$ is shifted thru SDA with one rising edge of SCL
5. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS\# need to drive to high to stop the read operation.

Figure 7-3: Read procedure in 3-wire SPI mode

8. Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command $0 \times 1 \mathrm{~A}$ with the HEX temperature value to the module thru the SPI interface.
The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit $\mathrm{D} 11=0$, then

The temperature is positive and value $(\mathrm{DegC})=+($ Temperature value $) / 16$
2. If the Temperature value MSByte bit $\mathrm{D} 11=1$, then

The temperature is negative and value $(\mathrm{DegC})=\sim(2$'s complement of Temperature value) $/ 16$

12 -bit binary (2's complement)	Hexadecimal Value	Decimal Value	Value [DeqC]
$01111111 \quad 0000$	7 F0	2032	127
$011111110 \quad 1110$	7 EE	2030	126.875
$01111110 \quad 0010$	$7 E 2$	2018	126.125
$01111101 \quad 0000$	7 D0	2000	125
000110010000	190	400	25
000000000010	002	2	0.125
$00000000 \quad 0000$	000	0	0
$11111111 \quad 1110$	FFE	-2	-0.125
$11100111 \quad 0000$	E70	-400	-25
110010010010	C92	-878	-54.875
110010010000	C90	-880	-55

COMMAND TABLE

Reference Circuit

Figure. 10-1

Figure. 10-2

ABSOLUTE MAXIMUM RATING

Table 11-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
V_{CI}	Logic supply voltage	-0.5 to +6.0	V
$\mathrm{~T}_{\text {OPR }}$	Operation temperature range	0 to 50	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-25 to 60	${ }^{\circ} \mathrm{C}$

DC CHARACTERISTICS

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCI}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{OPR}}=25^{\circ} \mathrm{C}$.
Table 12-1: DC Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Typ.	Max.	Unit
VCI	VCI operation voltage	-	VCI	2.2	3.3	3.7	V
VIH	High level input voltage		SDA, SCL, CS\#, D/C\#, RES\#,	$\begin{gathered} \hline 0.8 \mathrm{VDD} \\ \mathrm{IO} \end{gathered}$	-	-	V
VIL	Low level input voltage	-		-	-	$\begin{gathered} \hline 0.2 \mathrm{VDDI} \\ \mathrm{O} \end{gathered}$	V
VOH	High level output voltage	$\mathrm{IOH}=-100 \mathrm{uA}$	BUSY	$\begin{gathered} 0.9 \mathrm{VDD} \\ \mathrm{IO} \end{gathered}$	-	-	V
VOL	Low level output voltage	$\mathrm{IOL}=100 \mathrm{uA}$		-	-	$\begin{gathered} \hline 0.1 \mathrm{VDDI} \\ \mathrm{O} \end{gathered}$	V
Iupdate	Module operating current	-	-	-	3	-	mA
Isleep	Deep sleep mode	$\mathrm{VCI}=3.3 \mathrm{~V}$	-	-	0.6	1	uA

- The Typical power consumption is measured using associated $25^{\circ} \mathrm{C}$ waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 12-1)
- The listed electrical/optical characteristics are only guaranteed under the controller \& waveform provided by Midas
- Vcom value will be OTP before in factory or present on the label sticker.

Note 12-1

The Typical power consumption

Serial Peripheral Interface Timing

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCI}=2.2 \mathrm{~V}$ to $3.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{OPR}}=25^{\circ} \mathrm{C}$
Write mode

Symbol	Parameter	Min	Typ	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	20			ns
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CS\# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40		ns	

Read mode

Symbol	Parameter	Min	Typ	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS\# has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 13-1 : Serial peripheral interface characteristics

Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	$25^{\circ} \mathrm{C}$	5.8	-	mAs	-
Deep sleep mode	-	$25^{\circ} \mathrm{C}$	0.6	-	uA	-

Typical Operating Sequence

1. Normal Operation Flow

2. Reference Program Code

Optical characteristics

1. Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

$$
\mathrm{T}=25^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	CONDITIO NS	MIN	TYPE	MAX	UNIT	Note
R	Reflectance	White	30	35	-	$\%$	Note $16-1$
Gn	2Grey Level	-	-	DS $+(\mathrm{WS}-\mathrm{DS}) \times \mathrm{n}(\mathrm{m}-1)$	-	L^{*}	-
CR	Contrast Ratio	indoor	-	10	-	-	-
Panel's life	-	$0^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$		5years or 1000000 times	-	-	Note $16-2$

WS: White state, DS : Dark state
m: 2
Note 16-1: Luminance meter : Eye - One Pro Spectrophotometer
Note 16-2: We guarantee display quality from $0^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$ generally, If operation ambient temperature from $0 \sim 50^{\circ} \mathrm{C}$, will Offer special waveform by APEX.

2. Definition of contrast ratio

The contrast ratio $(C R)$ is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)() :

R1: white reflectance
$\mathrm{CR}=\mathrm{R} 1 / \mathrm{Rd}$
Rd: dark reflectance

Detector

3. Reflection Ratio

The reflection ratio is expressed as :
$\mathrm{R}=$ Reflectance Factor white board $\quad \mathrm{x}\left(\mathrm{L}_{\text {center }} / \mathrm{L}_{\text {white board }}\right)$
$L_{\text {center }}$ is the luminance measured at center in a white area $(R=G=B=1)$. $L_{\text {white board }}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees .

HANDLINGSAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.
IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

(1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
(2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
(3) You should adopt radiation structure to satisfy the temperature specification.
(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification	The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	$\begin{gathered} \mathrm{T}=50^{\circ} \mathrm{C}, \quad \mathrm{RH}=35 \% \mathrm{RH}, \text { For } \\ 240 \mathrm{Hr} \end{gathered}$	IEC 60 068-2-2Bb	
2	Low-Temperature Operation	$\mathrm{T}=0^{\circ} \mathrm{C}$ for 240 hrs	IEC $60068-2-2 \mathrm{Ab}$	
3	High-Temperature Storage		IEC 60 068-2-2Bb	
4	Low-Temperature Storage	$\mathrm{T}=-25^{\circ} \mathrm{C} \text { for } 240 \mathrm{hrs}$ Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, HighHumidity Operation	$\begin{gathered} \mathrm{T}=40^{\circ} \mathrm{C}, \quad \mathrm{RH}=90 \% \mathrm{RH}, \text { For } \\ 168 \mathrm{Hr} \end{gathered}$	IEC 60 068-2-3CA	
6	High Temperature, HighHumidity Storage	$\mathrm{T}=60^{\circ} \mathrm{C}$, $\mathrm{RH}=80 \% \mathrm{RH}$, For 480 Hr Test in white pattern	IEC 60 068-2-3CA	
7	Temperature Cycle	$\begin{gathered} -25^{\circ} \mathrm{C}(30 \mathrm{~min}) \sim 70^{\circ} \mathrm{C}(30 \mathrm{~min}) \\ , 50 \text { Cycle } \end{gathered}$ Test in white pattern	IEC $60068-2-14 \mathrm{NB}$	
8	Package Vibration	1.04G,Frequency : 10~500Hz Direction : X,Y,Z Duration:1hours in each direction	Full packed for shipment	
9	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence: 1 corner, 3edges, 6face One drop for each.	Full packed for shipment	
10	UV exposure Resistance	$765 \mathrm{~W} / \mathrm{m}^{2}$ for $168 \mathrm{hrs}, 40^{\circ} \mathrm{C}$	IEC 60068-2-5 Sa	
11	Electrostatic discharge	$\begin{aligned} & \text { Machine model: } \\ & +/-250 \mathrm{~V}, 0 \Omega, 200 \mathrm{pF} \end{aligned}$	IEC61000-4-2	

Actual EMC level to be measured on customer application.
Note1: The protective film must be removed before temperature test.
Note2: Stay white pattern for storage and non-operation test.

Block Diagram

PartA/PartB specification

Point and line standard

Shipment Inspection Standard						
Equipment: Electrical test fixture, Point gauge						
Outline dimension	$\begin{aligned} & 37.32(\mathrm{H}) \times 31.8(\mathrm{~V}) \\ & \times 1.05(\mathrm{D}) \end{aligned}$	Unit: mm	Part-A	Active area	Part-B	Border area
Environment	Temperature	Humidity	Illuminance	Distance	Time	Angle
	$19^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$	$55 \% \pm 5 \% \mathrm{RH}$	800~1300Lux	300 mm	35 Sec	
Defet type	Inspection method	Standard		Part-A		Part-B
Spot	Electric Display	$\mathrm{D} \leqslant 0.25 \mathrm{~mm}$		Ignore		Ignore
		$0.25 \mathrm{~mm}<\mathrm{D} \leqslant 0.4 \mathrm{~mm}$		$\mathrm{N} \leqslant 4$		Ignore
		D $>0.4 \mathrm{~mm}$		Not Allow		Ignore
Display unwork	Electric Display	Not Allow		Not Allow		Ignore
Display error	Electric Display	Not Allow		Not Allow		Ignore
Scratch or line defect(include dirt)	Visual/Film card	$\mathrm{L} \leqslant 2 \mathrm{~mm}, \mathrm{~W} \leqslant 0.2 \mathrm{~mm}$		Ignore		Ignore
		$\begin{gathered} 2.0 \mathrm{~mm}<\mathrm{L} \leqslant 5.0 \mathrm{~mm}, \quad 0.2<\mathrm{W} \leqslant \\ 0.3 \mathrm{~mm}, \end{gathered}$		$\mathrm{N} \leqslant 2$		Ignore
		$\mathrm{L}>5 \mathrm{~mm}, \mathrm{~W}>0.3 \mathrm{~mm}$		Not Allow		Ignore
PS Bubble	Visual/Film card	$\mathrm{D} \leqslant 0.2 \mathrm{~mm}$		Ignore		Ignore
		$0.2 \mathrm{~mm} \leqslant \mathrm{D} \leqslant 0.35 \mathrm{~mm}$ \& $\mathrm{N} \leqslant 4$		$\mathrm{N} \leqslant 4$		Ignore
		D $>0.35 \mathrm{~mm}$		Not Allow		Ignore
Side Fragment	Visual/Film card	$\mathrm{X} \leqslant 5 \mathrm{~mm}, \mathrm{Y} \leqslant 0.5 \mathrm{~mm}$, Do not affect the electrode circuit , Ignore				
				1		
Remark	1.Cannot be defect \& failure cause by appearance defect;					
	2.Cannot be larger size cause by appearance defect;					
	L=long $\mathrm{W}=$ wide $\mathrm{D}=$ point size $\mathrm{N}=$ Defects NO					

Ime Defect

SpotDefect
L=long W=wide $D=$ point size

