PNP General Purpose Transistor

The MMBT2907AM3T5G device is a spin-off of our popular SOT-23 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-723 surface mount package. This device is ideal for low-power surface mount applications where board space is at a premium.

Features

- Reduces Board Space
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

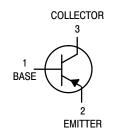
MAXIMUM RATINGS

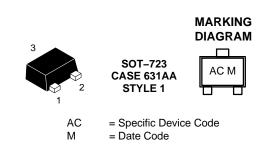
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-60	Vdc
Collector-Base Voltage	V _{CBO}	-60	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	۱ _C	-600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	265 2.1	mW mW/°C
Thermal Resistance, Junction–to–Ambient	$R_{\theta JA}$	470	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	640 5.1	mW mW/°C
Thermal Resistance, Junction–to–Ambient	$R_{ hetaJA}$	195	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.


2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2907AM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel
NSVMMBT2907AM3T5G	SOT-723 (Pb-Free)	8000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage (Note 3) $(I_C = -10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-60	_	Vdc
Collector – Base Breakdown Voltage $(I_C = -10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	-60	-	Vdc
Emitter – Base Breakdown Voltage $(I_E = -10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	-5.0	_	Vdc
Collector Cutoff Current ($V_{CE} = -30$ Vdc, $V_{EB(off)} = -0.5$ Vdc)	ICEX	_	-50	nAdc
Collector Cutoff Current ($V_{CB} = -50$ Vdc, $I_E = 0$) ($V_{CB} = -50$ Vdc, $I_E = 0$, $T_A = 125^{\circ}C$)	Ісво		-0.010 -10	μAdc
Base Cutoff Current ($V_{CE} = -30 \text{ Vdc}, V_{EB(off)} = -0.5 \text{ Vdc}$)	I _{BL}	_	-50	nAdc
ON CHARACTERISTICS	·	•		

DC Current Gain	h _{FE}			-
$(I_{C} = -0.1 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$		75	-	
$(I_{C} = -1.0 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$		100	-	
$(I_{C} = -10 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$		100	-	
$(I_{C} = -150 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$		100	300	
$(I_{C} = -500 \text{ mAdc}, V_{CE} = -10 \text{ Vdc})$ (Note 3)		50	-	
Collector – Emitter Saturation Voltage (Note 3)	V _{CE(sat)}			Vdc
$(I_{C} = -150 \text{ mAdc}, I_{B} = -15 \text{ mAdc})$ (Note 3)		-	-0.4	
$(I_{\rm C} = -500 \text{ mAdc}, I_{\rm B} = -50 \text{ mAdc})$		-	-1.6	
Base – Emitter Saturation Voltage (Note 3)	V _{BE(sat)}			Vdc
$(I_{C} = -150 \text{ mAdc}, I_{B} = -15 \text{ mAdc})$. ,	-	-1.3	
$(I_{\rm C} = -500 \text{ mAdc}, I_{\rm B} = -50 \text{ mAdc})$		-	-2.6	

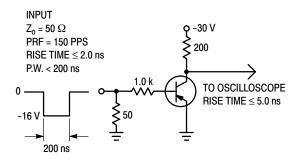
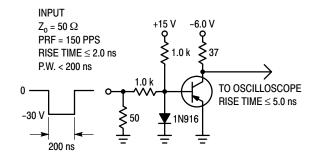
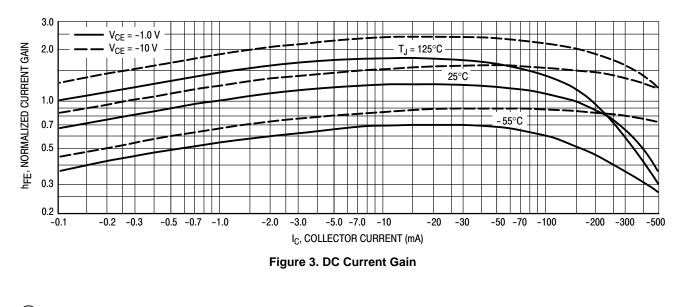
SMALL-SIGNAL CHARACTERISTICS

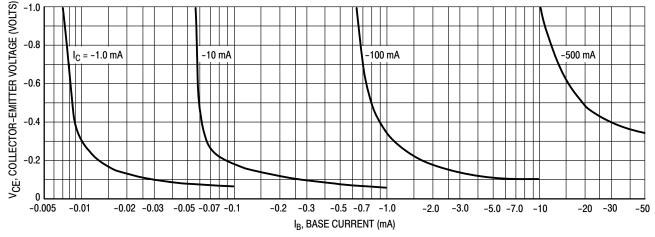
Current-Gain – Bandwidth Product (Notes 3, 4) ($I_C = -50 \text{ mAdc}, V_{CE} = -20 \text{ Vdc}, f = 100 \text{ MHz}$)	f _T	200	_	MHz
Output Capacitance (V _{CB} = -10 Vdc, I _E = 0, f = 1.0 MHz)	C _{obo}	-	8.0	pF
Input Capacitance ($V_{EB} = -2.0 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz}$)	C _{ibo}	I	30	

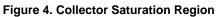
SWITCHING CHARACTERISTICS

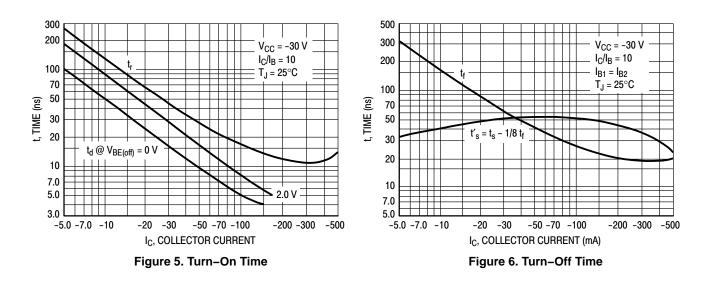
Turn–On Time		t _{on}	-	45	
Delay Time	$(V_{CC} = -30 \text{ Vdc}, I_C = -150 \text{ mAdc}, I_{B1} = -15 \text{ mAdc})$	t _d	-	10	
Rise Time		t _r	-	40	
Turn–Off Time		t _{off}	-	100	ns
Storage Time	$(V_{CC} = -6.0 \text{ Vdc}, I_C = -150 \text{ mAdc}, I_{B1} = I_{B2} = -15 \text{ mAdc})$	t _s	-	80	
Fall Time		t _f	-	30]

 $\begin{array}{ll} \mbox{3. Pulse Test: Pulse Width} \leq 300 \ \mu \mbox{s, Duty Cycle} \leq 2.0\%. \\ \mbox{4. } \ \mbox{f}_T \mbox{ is defined as the frequency at which } |h_{fe}| \ \mbox{extrapolates to unity.} \end{array}$


Figure 1. Delay and Rise Time Test Circuit





TYPICAL CHARACTERISTICS

 V_{CE} = 10 Vdc, T_A = 25°C

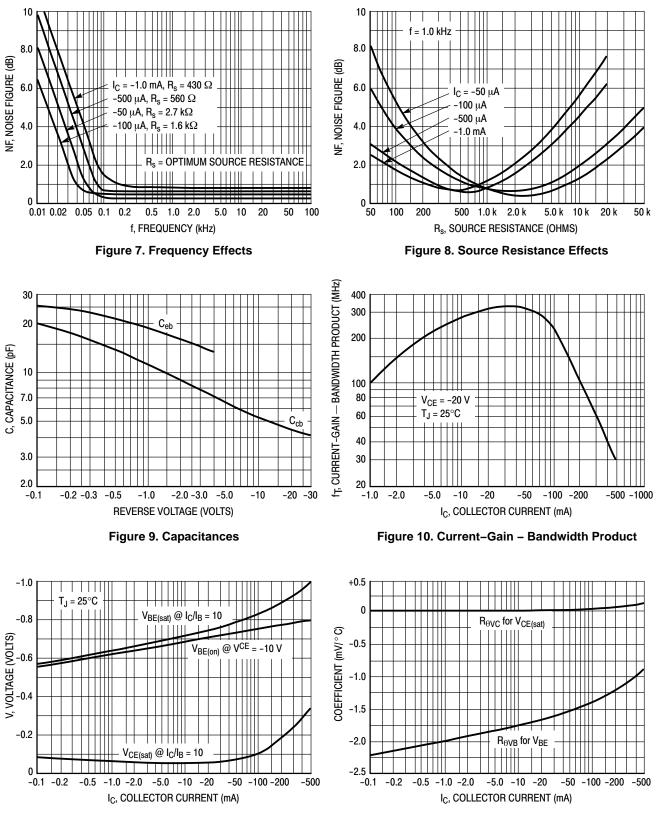
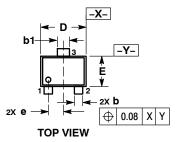
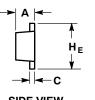
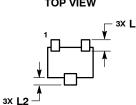


Figure 11. "On" Voltage


Figure 12. Temperature Coefficients

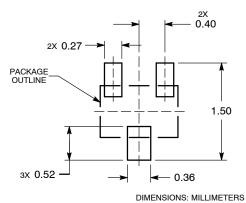

DUDSem

DATE 10 AUG 2009


SCALE 4:1

SOT-723 CASE 631AA **ISSUE D**

SIDE VIEW



BOTTOM VIEW

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
b	0.15	0.21	0.27	
b1	0.25	0.31	0.37	
С	0.07	0.12	0.17	
D	1.15	1.20	1.25	
Е	0.75	0.80	0.85	
e		0.40 BSC		
ΗE	1.15	1.20	1.25	
L	0.29 REF			
L2	0.15	0.20	0.25	

RECOMMENDED **SOLDERING FOOTPRINT***

Techniques Reference Manual, SOLDERRM/D.

*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code = Date Code Μ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
3. COLLECTOR	3. CATHODE	3. CATHODE	3. ANODE	3. DRAIN

DOCUMENT NUMBER:	98AON12989D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-723		PAGE 1 OF 1	
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	, LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular	

© Semiconductor Components Industries, LLC, 2023

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>