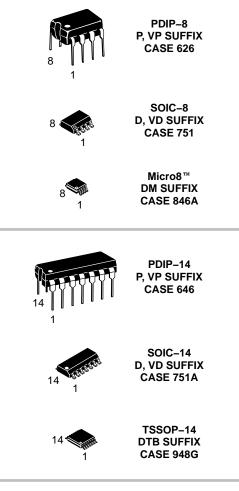
Low Voltage, Rail-to-Rail Operational Amplifiers

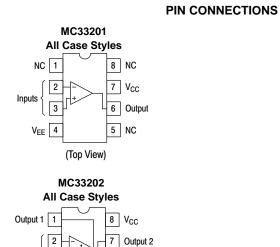
The MC33201/2/4 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages (\pm 0.9 V) yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.


Features

- Low Voltage, Single Supply Operation (+1.8 V and Ground to +12 V and Ground)
- Input Voltage Range Includes both Supply Rails
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-driven Input Signals
- High Output Current ($I_{SC} = 80 \text{ mA}, \text{Typ}$)
- Low Supply Current ($I_D = 0.9 \text{ mA}, \text{Typ}$)
- 600 Ω Output Drive Capability
- Extended Operating Temperature Ranges (-40° to +105°C and -55° to +125°C)
- Typical Gain Bandwidth Product = 2.2 MHz
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These are Pb–Free Devices

ON Semiconductor®

http://onsemi.com



ORDERING INFORMATION

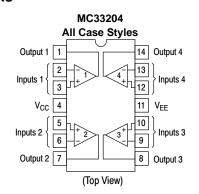
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

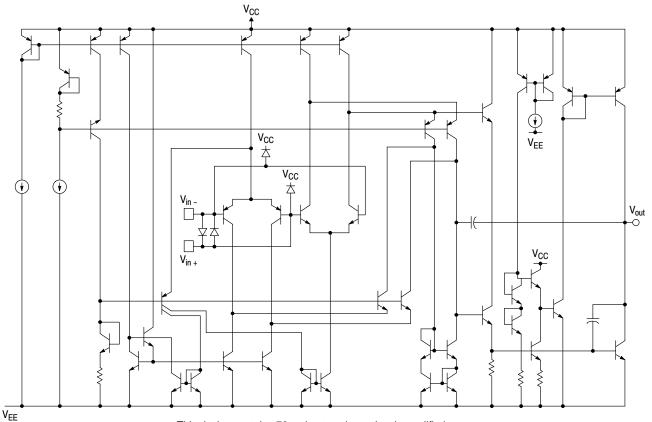
DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 11 of this data sheet.

6

5


(Top View)


Inputs 2

Inputs 1

3

V_{EE} 4

This device contains 70 active transistors (each amplifier).

Figure 1. Circuit Schematic (Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (V _{CC} to V _{EE})	VS	+13	V
Input Differential Voltage Range	V _{IDR}	Note 1	V
Common Mode Input Voltage Range (Note 2)	V _{CM}	V _{CC} + 0.5 V to V _{EE} – 0.5 V	V
Output Short Circuit Duration	ts	Note 3	sec
Maximum Junction Temperature	TJ	+150	°C
Storage Temperature	T _{stg}	– 65 to +150	°C
Maximum Power Dissipation	PD	Note 3	mW

DC ELECTRICAL CHARACTERISTICS (T_A = 25° C)

Characteristic	V _{CC} = 2.0 V	V _{CC} = 3.3 V	V _{CC} = 5.0 V	Unit
Input Offset Voltage				mV
V _{IO (max)} MC33201 MC33202, NCV33202 MC33204, NCV33204	± 8.0 ±10 ±12	± 8.0 ±10 ±12	± 6.0 ± 8.0 ±10	
Output Voltage Swing V_{OH} (R _L = 10 k Ω) V_{OL} (R _L = 10 k Ω)	1.9 0.10	3.15 0.15	4.85 0.15	V _{min} V _{max}
Power Supply Current per Amplifier (I _D)	1.125	1.125	1.125	mA

Specifications at V_{CC} = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. V_{EE} = GND.

DC ELECTRICAL CHARACTERISTICS (V_{CC} = + 5.0 V, V_{EE} = Ground, T_A = 25°C, unless otherwise noted.)

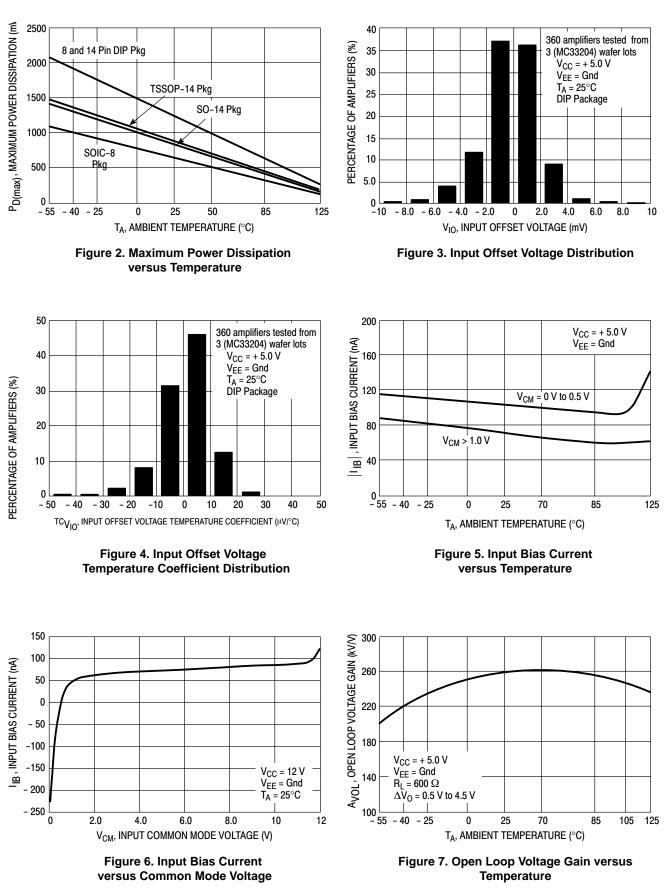
	Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Input Offset Voltage (V _{CM} 0	V to 0.5 V, V _{CM} 1.0 V to 5.0 V)	3	V _{IO}				mV
MC33201:	$T_A = +25^{\circ}C$			-	-	6.0	
MC33201:	$T_A = -40^\circ \text{ to } +105^\circ \text{C}$			-	-	9.0	
MC33201V:	$T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	-	13	
MC33202/NCV33202:				-	-	8.0	
MC33202/NCV33202:	$T_A = -40^\circ$ to +105°C			-	-	11	
MC33202V:	$T_{A} = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	_	14	
NCV33202V:	$T_A = -55^\circ$ to +125°C (Note 4)			-	_	14	
MC33204:	$T_A = +25^{\circ}C$			-	-	10	
MC33204:	$T_{A} = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			-	_	13	
MC33204V:	$T_A = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	-	17	
NCV33204:	$T_{A} = -55^{\circ} \text{ to } +125^{\circ}\text{C}$			-	-	17	
Input Offset Voltage Temper	rature Coefficient ($R_S = 50 \Omega$)	4	$\Delta V_{IO} / \Delta T$				μV/°C
$T_{A} = -40^{\circ} \text{ to } +105^{\circ}\text{C}$			10	-	2.0	_	•
$T_A = -55^\circ \text{ to } +125^\circ \text{C}$				-	2.0	-	
Input Bias Current (V _{CM} = 0	V to 0.5 V, V _{CM} = 1.0 V to 5.0 V)	5, 6	I _{IB}			1	nA
$T_A = +25^{\circ}C$				-	80	200	
$T_A = -40^\circ \text{ to } +105^\circ \text{C}$				-	100	250	
$T_A = -55^\circ$ to +125°C				-	-	500	

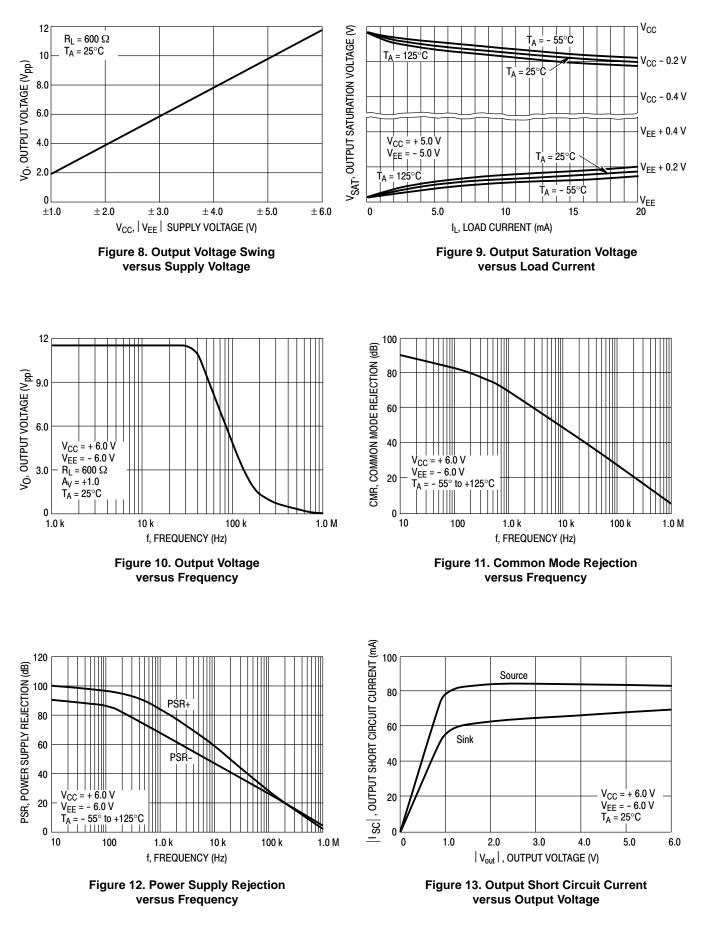
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

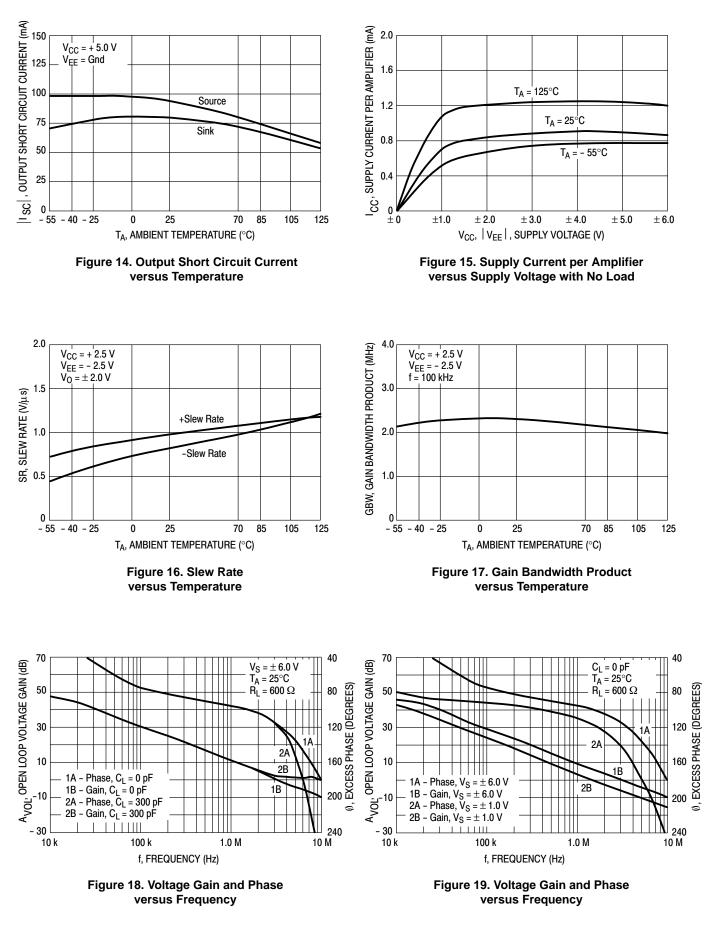
1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.

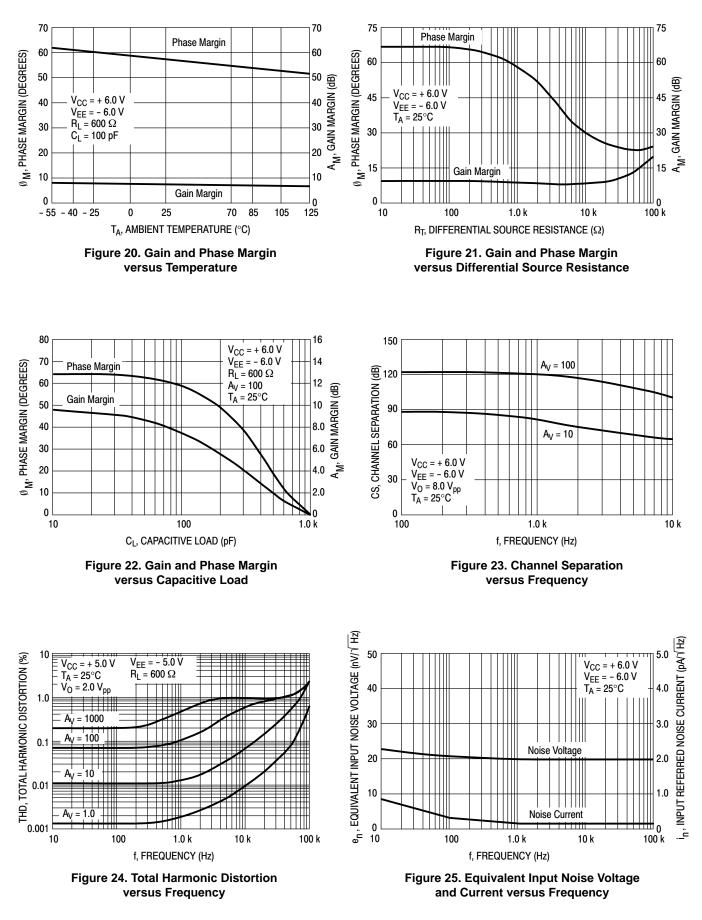
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV.

3. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded. (See Figure 2)


4. All NCV devices are qualified for Automotive use.


Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Input Offset Current (V _{CM} = 0 V to 0.5 V, V _{CM} = 1.0 V to 5.0 V) $T_A = + 25^{\circ}C$ $T_A = -40^{\circ}$ to +105°C $T_A = -55^{\circ}$ to +125°C	_	I _{IO}	- - -	5.0 10 -	50 100 200	nA
Common Mode Input Voltage Range	-	V _{ICR}	V_{EE}	-	V _{CC}	V
Large Signal Voltage Gain (V _{CC} = + 5.0 V, V _{EE} = – 5.0 V) R _L = 10 k Ω R _L = 600 Ω	7	A _{VOL}	50 25	300 250		kV/V
Output Voltage Swing (V _{ID} = \pm 0.2 V) R _L = 10 kΩ R _L = 10 kΩ R _L = 600 Ω R _L = 600 Ω	8, 9, 10	V _{OH} V _{OL} V _{OH} V _{OL}	4.85 - 4.75 -	4.95 0.05 4.85 0.15	_ 0.15 _ 0.25	V
Common Mode Rejection (V _{in} = 0 V to 5.0 V)	11	CMR	60	90	-	dB
Power Supply Rejection Ratio V _{CC} /V _{EE} = 5.0 V/GND to 3.0 V/GND	12	PSRR	500	25	-	μV/V
Output Short Circuit Current (Source and Sink)	13, 14	I _{SC}	50	80	-	mA
Power Supply Current per Amplifier (V _O = 0 V) $T_A = -40^{\circ}$ to +105°C $T_A = -55^{\circ}$ to +125°C	15	Ι _D		0.9 0.9	1.125 1.125	mA


DC ELECTRICAL CHARACTERISTICS (cont.) ($V_{CC} = +5.0 \text{ V}, V_{EE} = \text{Ground}, T_A = 25^{\circ}\text{C}$, unless otherwise noted.)


AC ELECTRICAL CHARACTERISTICS (V_{CC} = + 5.0 V, V_{EE} = Ground, T_A = 25°C, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Тур	Max	Unit
Slew Rate (V_S = \pm 2.5 V, V_O = – 2.0 V to + 2.0 V, R_L = 2.0 kΩ, A_V = +1.0)	16, 26	SR	0.5	1.0	_	V/µs
Gain Bandwidth Product (f = 100 kHz)	17	GBW	-	2.2	-	MHz
Gain Margin ($R_L = 600 \Omega$, $C_L = 0 pF$)	20, 21, 22	A _M	-	12	-	dB
Phase Margin ($R_L = 600 \Omega$, $C_L = 0 pF$)	20, 21, 22	Ø _M	-	65	_	Deg
Channel Separation (f = 1.0 Hz to 20 kHz, A_V = 100)	23	CS	-	90	-	dB
Power Bandwidth (V_O = 4.0 V_{pp}, R_L = 600 Ω , THD \leq 1 %)		BWP	-	28	-	kHz
Total Harmonic Distortion ($R_L = 600 \Omega$, $V_O = 1.0 V_{pp}$, $A_V = 1.0$) f = 1.0 kHz f = 10 kHz	24	THD	-	0.002 0.008	- -	%
Open Loop Output Impedance ($V_O = 0 V$, f = 2.0 MHz, $A_V = 10$)		z _o	_	100	-	Ω
Differential Input Resistance (V _{CM} = 0 V)		R _{in}	-	200	-	kΩ
Differential Input Capacitance (V _{CM} = 0 V)		C _{in}	-	8.0	-	pF
Equivalent Input Noise Voltage ($R_S = 100 \Omega$) f = 10 Hz f = 1.0 kHz	25	e _n		25 20		nV/ √Hz
Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz	25	i _n		0.8 0.2	-	pA/ √Hz

DETAILED OPERATING DESCRIPTION

General Information

The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of 2.0 V, 3.3 V and 5.0 V and ground.

Since the common mode input voltage range extends from V_{CC} to V_{EE} , it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.

Circuit Information

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN–PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than V_{EE} , the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross–coupling techniques have been used to keep this change to a minimum.

In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600 Ω loads. Because of this high output current capability, care should be taken not to exceed the 150°C maximum junction temperature.

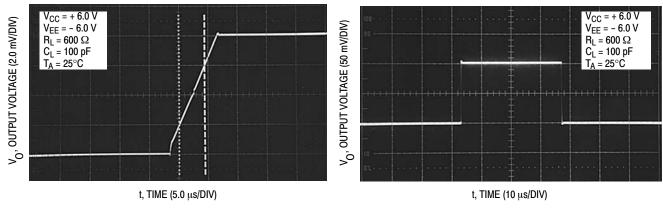
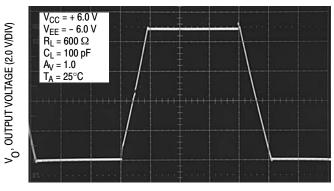



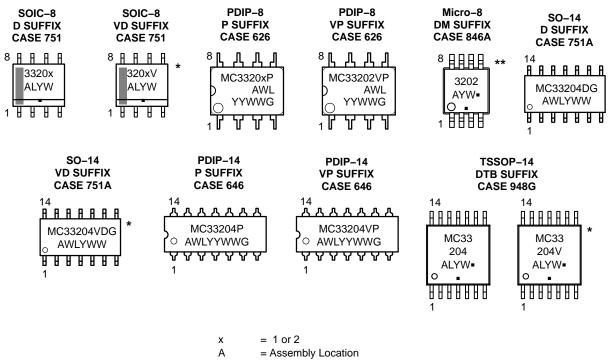
Figure 26. Noninverting Amplifier Slew Rate

Figure 27. Small Signal Transient Response

t, TIME (10 μs/DIV)

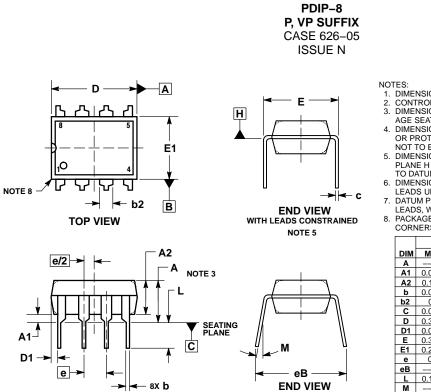
Figure 28. Large Signal Transient Response

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process.


ORDERING INFORMATION

Operational Amplifier Function	Device	Operating Temperature Range	Package	Shipping [†]
	MC33201DG		SOIC-8	98 Units / Rail
	MC33201DR2G		(Pb-Free)	2500 / Tape & Reel
Single	MC33201PG	T_{A} = -40° to +105°C	PDIP-8 (Pb-Free)	50 Units / Rail
Cirigic	MC33201VDR2G		SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC33201VDG	$T_A = -55^\circ$ to 125° C	SOIC-8 (Pb-Free)	98 Units / Rail
	MC33202DG		SOIC-8	98 Units / Rail
	MC33202DR2G	T _A = -40 ° to +105°C	(Pb-Free)	2500 / Tape & Reel
	MC33202DMR2G		Micro-8 (Pb-Free) PDIP-8 (Pb-Free)	
	NCV33202DMR2G*			4000 / Tape & Reel
Dual	MC33202PG			50 Units / Rail
2 4 4	MC33202VDG	− T _A = −55° to 125°C	SOIC-8 (Pb-Free)	98 Units / Rail
	MC33202VDR2G		SOIC-8 (Pb-Free)	
	NCV33202VDR2G*			2500 / Tape & Reel
	MC33202VPG		PDIP-8 (Pb-Free)	50 Units / Rail
	MC33204DG		SO-14	55 Units / Rail
	MC33204DR2G		(Pb-Free)	2500 Units / Tape & Reel
	MC33204DTBG	T _A = -40 ° to +105°C	TSSOP-14	96 Units / Rail
	MC33204DTBR2G		(Pb-Free)	2500 Units / Tape & Reel
	MC33204PG		PDIP-14 (Pb-Free)	25 Units / Rail
Quad	MC33204VDG		SO-14 (Pb-Free)	55 Units / Rail
	MC33204VDR2G	1	SO-14	
	NCV33204DR2G*	T _A = −55° to 125°C	(Pb-Free)	2500 Units / Tape & Reel
	NCV33204DTBR2G*		TSSOP-14 (Pb-Free)	2500 Units / Tape & Reel
	MC33204VPG		PDIP–14 (Pb–Free)	25 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

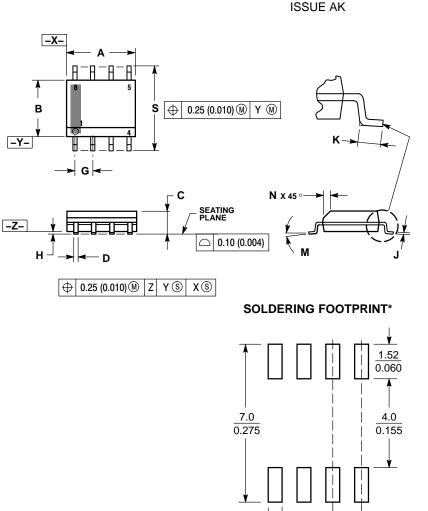

Capable.

MARKING DIAGRAMS

- WL, L = Wafer Lot
- YY, Y = Year
- WW, W = Work Week
- G = Pb–Free Package
- Pb–Free Package
- (Note: Microdot may be in either location)
- *This marking diagram applies to NCV3320xV
- **This marking diagram applies to NCV33202DMR2G

NOTE 6

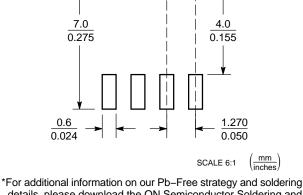
0.010 M C A M B M

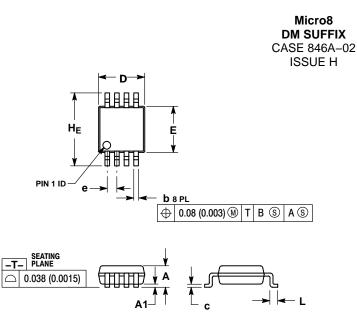

SIDE VIEW

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT DE SYCEED 4.01 MICH.
- NOT TO EXCEED 0.10 INCH. 5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS CONCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CONNECTION OF THE LEADS AND A CONTRACT OF THE DATE.
- CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060) TYP	1.52 TYP	
С	0.008	0.014	0.20	0.36
D	0.355	0.400	9.02	10.16
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54 BSC	
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
Μ		10°		10°

PACKAGE DIMENSIONS

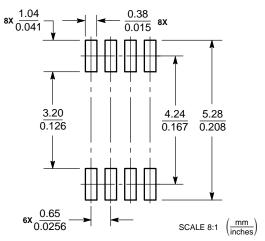

SOIC-8 NB CASE 751-07


NOTES:

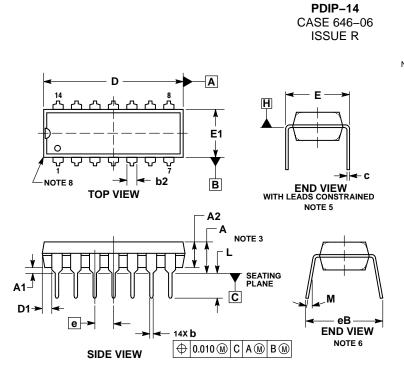
- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED EVEL
- PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR
- DIMENSION ALLOWABLE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
Κ	0.40	1.27	0.016	0.050
Μ	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
s	5.80	6.20	0.228	0.244

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

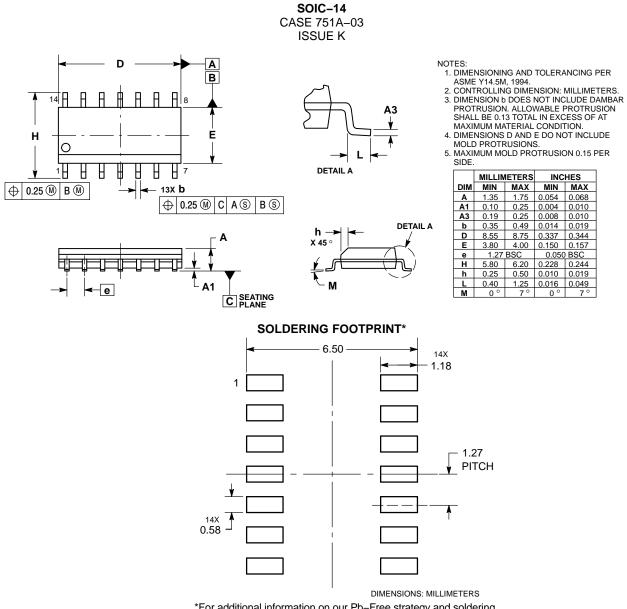


NOTES:

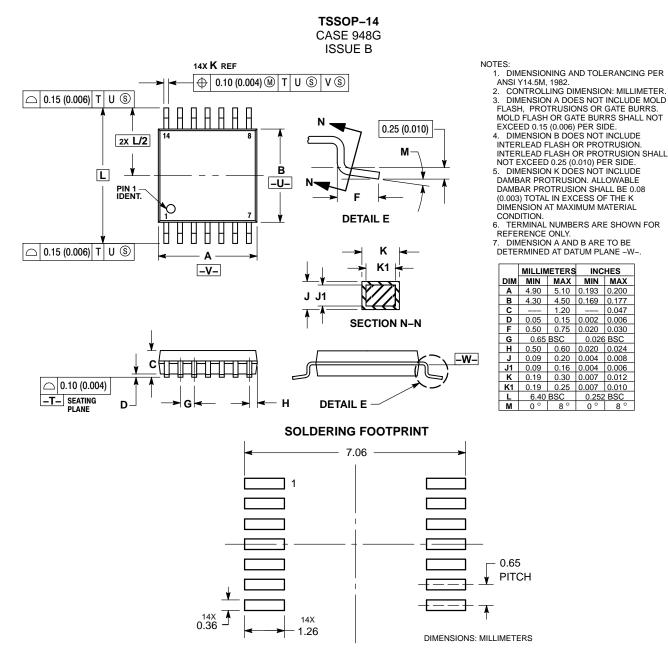

- I. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 JIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE
- DIMENSION A DOES NOT INCLUDE MOLD PLASH, PHOTHOSIONS ON GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846A-01 OBSOLETE, NEW STANDARD 846A-02.

	м	ILLIMETE	RS		INCHES	CHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.10			0.043	
A1	0.05	0.08	0.15	0.002	0.003	0.006	
b	0.25	0.33	0.40	0.010	0.013	0.016	
С	0.13	0.18	0.23	0.005	0.007	0.009	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	2.90	3.00	3.10	0.114	0.118	0.122	
е		0.65 BSC			0.026 BSC	;	
L	0.40	0.55	0.70	0.016	0.021	0.028	
HE	4.75	4.90	5.05	0.187	0.193	0.199	

SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:


- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
 DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM CO.
- TO DATUM C. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE 6.
- DIMENSION ESTS MEASURED AT THE LEAD THIS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE 7.
- 8. CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.52 TYP	
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54 BSC	
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
М		10°		10°

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

Micro8 is a trademark of International Rectifier.

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

INCHES

0.026 BSC

0.200

0.047

8 °

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative