## FEATURES

## $0.5 \Omega$ typical on resistance

$0.8 \Omega$ maximum on resistance at $125^{\circ} \mathrm{C}$
1.65 V to 3.6 V operation

Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Guaranteed leakage specifications up to $125^{\circ} \mathrm{C}$
High current carrying capability: $\mathbf{3 0 0} \mathrm{mA}$ continuous
Rail-to-rail switching operation
Fast switching times: <20 ns
Typical power consumption: <0.1 $\mu \mathrm{W}$

## APPLICATIONS

Cellular phones

## PDAs

MP3 players
Power routing
Battery-powered systems
PCMCIA cards
Modems
Audio and video signal routing

## Communication systems

## GENERAL DESCRIPTION

The ADG836L is a low voltage CMOS device containing two independently selectable single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of less than $0.8 \Omega$ over the full temperature range. The ADG836L is fully specified for $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, and 1.8 V supply operation.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG836L exhibits break-before-make switching action.

The ADG836L is available in a 10-lead package.

## FUNCTIONAL BLOCK DIAGRAM



Figure 1.

## PRODUCT HIGHLIGHTS

1. Less than $0.8 \Omega$ over full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. Single 1.65 V to 3.6 V operation.
3. Compatible with 1.8 V CMOS logic.
4. High current handling capability ( 300 mA continuous current at 3.3 V ).
5. Low THD + N ( $0.02 \%$ typical).
6. Small 10-lead MSOP package.

Rev. C

## ADG836L

## TABLE OF CONTENTS

Features ..... 1
Applications ..... 1
Functional Block Diagram .....  1
General Description .....  1
Product Highlights ..... 1
Revision History ..... 2
Specifications ..... 3
Absolute Maximum Ratings ..... 6
REVISION HISTORY
8/2020—Rev. B to Rev. C
Changes to Table 1 ..... 3
Changes to Table 2 ..... 4
Changes to Table 3 ..... 5
6/2016-Rev. A to Rev. B
Updated Format Universal
Change to On Resistance Match Between Channels ( $\Delta \mathrm{R}_{\mathrm{ON}}$ )
Parameter, Table 1

$\qquad$ ..... 3
Truth Table ..... 6
ESD Caution .....  6
Pin Configuration and Function Descriptions .....  7
Typical Performance Characteristics .....  8
Test Circuits ..... 11
Terminology ..... 13
Outline Dimensions ..... 14
Ordering Guide ..... 14
Changes to Table 6 .....  7
Added Terminology Section ..... 13
Updated Outline Dimensions ..... 14
Changes to Ordering Guide. ..... 14
5/2004—Rev. 0 to Rev. A
Updated Ordering Guide ..... 14

## SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 1.


[^0]
## ADG836L

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 2.

| Parameter | $+25^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |
| Analog Signal Range |  |  | 0 V to $\mathrm{V}_{\mathrm{DD}}$ | V |  |
| On Resistance (Ron) | 0.65 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$ |
|  | 0.84 | 0.92 | 1.0 | $\Omega$ max | See Figure 18 |
| On Resistance Match Between Channels ( $\Delta$ Ron) | 0.04 |  |  | $\Omega$ typ | $\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.7 \mathrm{~V}, \mathrm{Is}=10 \mathrm{~mA}$ |
|  |  |  |  |  |  |
|  | 0.1 | 0.1 | 0.105 | $\Omega$ max |  |
| On Resistance Flatness (Rflat (ON) | 0.16 |  |  | $\Omega \operatorname{typ}$ | $\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$ |
|  | 0.25 | 0.25 | 0.26 | $\Omega$ max |  |
| LEAKAGE CURRENTS Source Off Leakage Is (Off) |  |  |  |  | $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ |
|  | $\pm 0.2$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=0.6 \mathrm{~V} / 2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=2.4 \mathrm{~V} / 0.6 \mathrm{~V}$ |
|  | $\pm 0.4$ | $\pm 4$ | $\pm 45$ | nA max | See Figure 19 |
| Channel On Leakage Id, Is (On) | $\pm 0.2$ |  |  | nA typ | $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V}$ or 2.4 V (see Figure 20) |
|  | $\pm 0.6$ | $\pm 12$ | $\pm 90$ | nA max |  |
| DIGITAL INPUTS |  |  |  |  |  |
| Input High Voltage, $\mathrm{V}_{\text {INH }}$ |  |  | 1.7 | $\checkmark$ min |  |
| Input Low Voltage, VINL |  |  | 0.7 | $\checkmark$ max |  |
| Input Current | 0.005 |  |  |  |  |
| lind or $\mathrm{linh}^{\text {chen }}$ |  |  |  | $\mu \mathrm{A}$ typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
|  |  |  | $\pm 0.1$ | $\mu \mathrm{A}$ max |  |
| CIN, Digital Input Capacitance | 4 |  |  | pF typ |  |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ |  |  |  |  |  |
| ton | 23 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 29 | 30 | 31 | ns max | $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} / 0 \mathrm{~V}$ (see Figure 21) |
| toff | 5 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  | 7 | 8 | 9 | ns max | $\mathrm{V}_{5}=1.5 \mathrm{~V}$ (see Figure 21) |
| Break-Before-Make Time Delay ( tввм ) | 17 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
|  |  |  |  |  |  |
|  |  |  | 5 | $n s$ min | $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=1.5 \mathrm{~V}$ (see Figure 22) |
| Charge Injection | 30 |  |  | pC typ | $\mathrm{V}_{\mathrm{s}}=1.25 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (see Figure 23) |
| Off Isolation | -67 |  |  | dB typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz} \\ & \text { (see Figure 24) } \end{aligned}$ |
| Channel-to-Channel Crosstalk | -90 |  |  | dB typ | $S 1 A$ to $S 2 A / S 1 B$ to $S 2 B ; R_{L}=50 V, C_{L}=5 p F$, $\mathrm{f}=100 \mathrm{kHz}$ (see Figure 27) |
|  | -67 |  |  | dB typ | $\mathrm{S} 1 \mathrm{~A} \text { to } \mathrm{S} 1 \mathrm{~B} / \mathrm{S} 2 \mathrm{~A} \text { to } \mathrm{S} 2 \mathrm{~B} ; \mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, }$ $f=100 \mathrm{kHz} \text { (see Figure 26) }$ |
| Total Harmonic Distortion (THD + N) | 0.022 |  |  | \% | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \mathrm{p}-\mathrm{p} \end{aligned}$ |
| Insertion Loss | -0.06 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (see Figure 25) |
| -3 dB Bandwidth | 57 |  |  | MHz typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$ (see Figure 25) |
| $\mathrm{Cs}_{\text {( }}$ (Off) | 25 |  |  | pF typ |  |
| $\mathrm{C}_{\mathrm{D},} \mathrm{C}_{\mathrm{S}}(\mathrm{On})$ | 75 |  |  | pF typ |  |
| POWER REQUIREMENTS ldo | 0.003 |  |  |  | $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ |
|  |  |  |  | $\mu \mathrm{A}$ typ | Digital inputs $=0 \mathrm{~V}$ or 2.7 V |
|  |  | 1 | 4 | $\mu \mathrm{A}$ max |  |

[^1]$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V} \pm 1.95 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Table 3.

| Parameter | $+25^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | Unit | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH <br> Analog Signal Range On Resistance (Ron) <br> On Resistance Match Between Channels ( $\Delta$ Ron) | $\begin{aligned} & 1 \\ & 1.6 \\ & 2.7 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 2.4 \\ & 4.2 \end{aligned}$ | $\begin{aligned} & 0 \text { V to } V_{D D} \\ & 2.4 \\ & 4.2 \end{aligned}$ | V <br> $\Omega$ typ <br> $\Omega$ max <br> $\Omega$ typ <br> $\Omega$ typ | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$ <br> See Figure 18 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.7 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \end{aligned}$ |
| LEAKAGE CURRENTS <br> Source Off Leakage Is (Off) <br> Channel On Leakage Io, Is (On) | $\begin{aligned} & \pm 0.2 \\ & \pm 0.4 \\ & \pm 0.2 \\ & \pm 0.6 \end{aligned}$ | $\pm 4$ $\pm 10$ | $\pm 25$ $\pm 75$ | nA typ <br> nA max <br> nA typ <br> nA max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0.6 \mathrm{~V} / 1.65 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.65 \mathrm{~V} / 0.6 \mathrm{~V} \end{aligned}$ <br> See Figure 19 <br> $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.6 \mathrm{~V}$ or 1.65 V (see Figure 20) |
| DIGITAL INPUTS <br> Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ <br> Input Low Voltage, Vinl <br> Input Current <br> linl or linh <br> $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance | $\begin{aligned} & 0.005 \\ & 4 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.65 \mathrm{VDD} \\ & 0.35 \mathrm{VDD} \\ & \\ & \pm 0.1 \end{aligned}$ | $\vee$ min <br> V max <br> $\mu \mathrm{A}$ typ <br> $\mu \mathrm{A}$ max <br> pF typ | $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$ |
| DYNAMIC CHARACTERISTICS ${ }^{1}$ |  |  |  |  |  |
| ton <br> toff | $\begin{aligned} & 28 \\ & 37 \\ & 7 \\ & 9 \end{aligned}$ | 38 10 | 39 11 | ns typ <br> ns max <br> ns typ <br> ns max | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \Omega / 0 \mathrm{~V} \text { (see Figure 21) } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { (see Figure 21) } \end{aligned}$ |
| Break-before-Make Time Delay (tввм) | 21 |  |  | ns typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ |
| Charge Injection | 20 |  | 5 | ns min pC typ | $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=1 \mathrm{~V}$ (see Figure 22) $V_{S}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ (see Figure 23) |
| Off Isolation | -67 |  |  | dB typ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}, \\ & \text { (see Figure 24) } \end{aligned}$ |
| Channel-to-Channel Crosstalk | $\begin{aligned} & -90 \\ & -67 \end{aligned}$ |  |  | dB typ <br> dB typ | S1A to S2A/S1B to S2B; $R_{L}=50 \Omega$, $C_{L}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$ (see Figure 27) S1A to S1B/S2A to S2B; RL=50 $\Omega$, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$ (see Figure 26) |
| Total Harmonic Distortion (THD + N ) | 0.14 |  |  | $\%$ | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{s}}=1.2 \mathrm{~V} \text { p-p } \end{aligned}$ |
| Insertion Loss | -0.08 |  |  | dB typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (see Figure 25) |
| -3 dB Bandwidth | 57 |  |  | MHz typ | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ (see Figure 25) |
| $\mathrm{C}_{s}$ (OFF) | 25 |  |  | pF typ |  |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$ | 75 |  |  | pF typ |  |
| POWER REQUIREMENTS Ido | 0.003 | 1.0 | 4 | $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.95 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 1.95 \mathrm{~V} \end{aligned}$ |

[^2]
## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

| Parameter | Rating |
| :--- | :--- |
| V $_{\text {DD }}$ to GND | -0.3 V to +4.6 V |
| Analog Inputs $^{1}$ | -0.3 V to $\mathrm{VDD}+0.3 \mathrm{~V}$ |
| Digital Inputs $^{2}$ | -0.3 V to 4.6 V or 10 mA, |
|  | whichever occurs first |
| Peak Current, S or D |  |
| 3.3 V Operation | 500 mA |
| 2.5 V Operation | 460 mA |
| 1.8 V Operation | 420 mA (pulsed at 1 ms, |
| Continuous Current, Sxx or Dx | $10 \%$ duty cycle maximum) |
| 3.3 V Operation | 300 mA |
| 2.5 V Operation | 275 mA |
| 1.8 V Operation | 250 mA |
| Operating Temperature Range | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ |
| MSOP Package |  |
| $\theta_{\mathrm{JA}}$ Thermal Impedance | $206^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta_{\mathrm{Jc}}$ Thermal Impedance | $44^{\circ} \mathrm{C} / \mathrm{W}$ |
| IR Reflow, Peak Temperature $<20 \mathrm{sec}$ | $235^{\circ} \mathrm{C}$ |

${ }^{1}$ Overvoltages at INx, Sxx, or Dx are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## TRUTH TABLE

Table 5.

| Logic | Switch A | Switch B |
| :--- | :--- | :--- |
| 0 | Off | On |
| 1 | On | Off |

## ESD CAUTION

|  | ESD (electrostatic discharge) sensitive device. <br> Charged devices and circuit boards can discharge <br> without detection. Although this product features <br> patented or proprietary protection circuitry, damage <br> may occur on devices subjected to high energy ESD. <br> Therefore, proper ESD precautions should be taken to <br> avoid performance degradation or loss of functionality. |
| :--- | :--- |

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 2. Pin Configuration

Table 6. Pin Function Descriptions

| Pin No. | Mnemonic | Description |
| :--- | :--- | :--- |
| 1,5 | IN1, IN2 | Logic Control Inputs. |
| $2,4,7,9$ | S1A, S2A, S2B, S1B | Source Terminals. These pins may be an input or output. |
| 3 | GND | Ground (0 V) Reference. |
| 6,10 | D2, D1 | Drain Terminals. These pins may be an input or output. |
| 8 | VDD | Most Positive Power Supply Potential. |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V


Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$


Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=1.8 \mathrm{~V} \pm$ to 0.15 V


Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=3.3 \mathrm{~V}$


Figure 7. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=2.5 \mathrm{~V}$


Figure 8. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=1.8 \mathrm{~V}$


Figure 9. Leakage Current vs. Temperature, $V_{D D}=3.3 \mathrm{~V}$


Figure 10. Leakage Current vs. Temperature, $V_{D D}=2.5 \mathrm{~V}$


Figure 11. Leakage Current vs. Temperature, $V_{D D}=1.8 \mathrm{~V}$


Figure 12. Charge Injection (QiNs) vs. Source Voltage (Vs)


Figure 13. ton/toff Time vs. Temperature


Figure 14. Bandwidth


Figure 15. Off Isolation vs. Frequency


Figure 16. Crosstalk vs. Frequency


Figure 17. Total Harmonic Distortion + Noise $(T H D+N)$ vs. Frequency

## TEST CIRCUITS



Figure 18. On Resistance


Figure 21. Switching Times, ton, toff


Figure 22. Break-Before-Make Time Delay, $t_{B B M}$


Figure 23. Charge Injection

## ADG836L



OFF ISOLATION $=20$ LOG $\frac{v_{\text {OUT }}}{\text { VS }}$

Figure 24. Off Isolation



Figure 26. Channel-to-Channel Crosstalk (S1A to S1B)


CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{v}_{\text {OUT }}}{\mathrm{VS}}$
Figure 27. Channel-to-Channel Crosstalk (S1A to S2A)

## TERMINOLOGY

IDD
Positive supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on terminals, D and S .
Ron
Ohmic resistance between terminals, D and S.
$\mathbf{R}_{\text {flat (on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured
$\Delta \mathbf{R o N}_{\text {on }}$
On resistance match between any two channels.
$I_{s}$ (Off)
Source leakage current with the switch off.

## $\mathrm{I}_{\mathrm{D}}$ (Off)

Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
Channel leakage current with the switch on.
Vinl
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}\left(\mathbf{I}_{\text {INH }}\right)$
Input current of the digital input.
$\mathrm{C}_{\mathrm{s}}$ (Off)
Off switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{d}}$ (Off)
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}(\mathrm{On})$
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton
Delay time between the $50 \%$ and the $90 \%$ points of the digital input and switch on condition.
$t_{\text {off }}$
Delay time between the $50 \%$ and the $90 \%$ points of the digital input and switch off condition.
$\boldsymbol{t}_{\text {ввм }}$
On or off time measured between the $80 \%$ points of both switches when switching from one to another.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.

## Off Isolation

A measure of unwanted signal coupling through an off switch.

## Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
-3 dB Bandwidth
The frequency at which the output is attenuated by 3 dB .

## On Response

The frequency response of the on switch.

## Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitudes plus noise of a signal, to the fundamental.

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 28. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters
ORDERING GUIDE

| Model $^{1}$ | Temperature Range | Package Description | Package Option | Branding |
| :--- | :--- | :--- | :--- | :--- |
| ADG836LYRM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 10 -Lead Mini Small Outline Package [MSOP] | RM-10 | SQA |
| ADG836LYRMZ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 10 -Lead Mini Small Outline Package [MSOP] | RM-10 | S1D |
| ADG836LYRM-REEL7 | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | 10 -Lead Mini Small Outline Package [MSOP] | RM-10 | SQA |

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.


[^0]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

