厅SMC

Rotary Table/ Rack-and-Pinion Type

High Precision type and Clean series are added to size: $1,2,3,7$

Size: 1, 2, 3, 7, 10, 20, 30, 50, 70, 100, 200

Compact rotary table with Low Table Height

Easy mounting of work piece.

-Table I.D/O.D tolerances
Basic type: MSQB H9/h9
High precision type: MSQA H8/h8
-Positioning pin hole

- Hollow axis

Accommodates wiring and piping for equipment mounted on the table

Pivoting angle adjustment range: 0 to 190°

With internal

shock absorber
2 to 5 times more kneitic energy (compared with an adjustment bolt)

Easy mounting of body

- Reference dia: Boss, Hole -Positioning pin hole

Reference diameter

Reference diameter (hole)
-Mounting from 2 directions

1
High precision type

Movement in direction of table's

 radial thrust: 0.01 mm or lessBy using high precision bearing, the movement in the direction of table's radial thrust is reduced.

Piping from 2 directions (front and side) is possible

Small sizes 1, 2, 3, and 7

Small size and light weight

Full size (Picture of MSQB1A)

Mize	Model	A	B	C	m
$\mathbf{1}$	MSQB1A	50.5	28	25	16
$\mathbf{2}$	MSQB2A	56	30	28	18
$\mathbf{3}$	MSQB3A	60	34.5	30.5	20.5
$\mathbf{7}$	MSQB7A	73.5	41	34.5	23

Mass (g)
70
105
150
250

Easy centre alignment at mounting ${ }_{\text {Referencee dia (Hole) }}$

Wiring and piping can be selected according to mounting conditions
Example of auto switch and speed controller mounting

External shock absorber types

4 to 10 times more allowable kinetic energy

2 types of shock absorbers are available, for low energy and high energy. Allowable kinetic energy comparison (for size 30)

Total length shortened
 use there is no protrusion from adjustment
bolts or internal shock absorbers.

Table height is the same for both types with
adjustment bolts or internal shock absorbers.

Left / Right symmetric type

Effective Torque

Unit: $\mathrm{N} \cdot \mathrm{m}$										
Size	Operating pressure (MPa)									
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
1	0.017	0.035	0.052	0.070	0.087	0.10	0.12	-	-	-
2	0.035	0.071	0.11	0.14	0.18	0.21	0.25	-	-	-
3	0.058	0.12	0.17	0.23	0.29	0.35	0.41	-	-	-
7	0.11	0.22	0.33	0.45	0.56	0.67	0.78	-	-	-
10	0.18	0.36	0.53	0.71	0.89	1.07	1.25	1.42	1.60	1.78
20	0.37	0.73	1.10	1.47	1.84	2.20	2.57	2.93	3.29	3.66
30	0.55	1.09	1.64	2.18	2.73	3.19	3.82	4.37	4.91	5.45
50	0.9	1.85	2.78	3.71	4.64	5.57	6.50	7.43	8.35	9.28
70	1.36	2.72	4.07	5.43	6.79	8.15	9.50	10.9	12.2	13.6
100	2.03	4.05	6.08	8.11	10.1	12.2	14.2	16.2	18.2	20.3
200	3.96	7.92	11.9	15.8	19.8	23.8	27.7	31.7	35.6	39.6

Note) Effective torque values are representative values and not to be considered as guaranteed values. Use them as a guide.

Size: 1 to 7

Size: 10 to 50

Size: $\mathbf{7 0}$ to 200

Allowable Load

Do not allow the load and moment applied to the table to exceed the allowable values shown in the table below.
(Operation beyond the allowable values can cause adverse effects on service life, such as play in the table and loss of accuracy.)

Size	Allowable radial load (N)		Allowable thrust load (N)				Allowable moment ($\mathrm{N} \cdot \mathrm{m}$)	
			(a)		(b)			
	Basic type	High precision type						
1	31	31	41	41	41	41	0.56	0.84
2	32	32	45	45	45	45	0.82	1.2
3	33	33	48	48	48	48	1.1	1.6
7	54	54	71	71	71	71	1.5	2.2
10	78	86	74	74	78	107	2.4	2.9
20	147	166	137	137	137	197	4.0	4.8
30	196	233	197	197	363	398	5.3	6.4
50	314	378	296	296	451	517	9.7	12.0
70	333		296		476		12.0	
100	390	-	493	-	708	-	18.0	-
200	543		740		1009		25.0	

Load Types

-Static load:Ts

A load as represented by the clamp which requires pressing force only
During examination if it is decided to consider the mass of the clamp itself in the drawing below, it should be regarded as an inertial load.
(Example)

OResistance load:Tf

A load that is affected by external forces such as friction or gravity
Since the object is to move the load, and speed adjustment is necessary, allow an extra margin of 3 to 5 times in the effective torque.
*Actuator effective torque $\geq(3$ to 5$) \mathrm{Tf}$
During examination if it is decided to consider the mass of
the lever itself in the drawing below, it should be regarded as an inertial load.
(Example)
Mass m F
Movement TH m
Movement $[7 / 17$

Friction coefficient μ
$\mathrm{F}=\mu \mathrm{mg}$
Static torque calculation
$\mathrm{Tf}=\mathrm{F} \times \ell(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

OInertial load: Ta

A load that must be rotated by the actuator
Since the object is to rotate the inertial load, and speed adjustment is necessary, allow an extra margin of 10 times or more in the effective torque.
*Actuator effective torque $\geq \mathrm{S} \cdot \mathrm{Ta}$
(S is 10 times or more)

(1)Thin shaft

Position of rotational axis:
Perpendicular to the shaft
through one end
(2)Thin shaft

Position of rotational axis: Through the shaft's centre of gravity
(3) Thin rectangular plate (Rectangular parallelopiped)
Position of rotational axis: Through the plate's centre of gravity
(4)Thin rectangular plate
(Rectangular parallelopiped)
Position of rotational axis:
Perpendicular to the plate through one of its points (also the same in case of a thicker plate)

(7)Solid sphere

Position of rotational axis:
Diameter

$$
\mathrm{I}=\mathrm{m} \cdot \frac{2 \mathrm{r}^{2}}{5}
$$

(8)Thin round plate

Position of rotational axis: Diameter
Coll
(Rectangular parallelopiped)
Position of rotational axis:
Through the centre of gravity and perpendicular to the plate (also the same in case of a thicker plate)

$$
I=m \cdot \frac{r^{2}}{2}
$$

9Load at lever end

$I=m_{1} \cdot \frac{a_{1}{ }^{2}}{3}+m_{2} \cdot a_{2}{ }^{2}+K$
(Example) When shape of m_{2} is a sphere, refer to 7 , and $K=m_{2} \cdot \frac{2 \mathrm{r}^{2}}{5}$
(10Gear transmission

1. Find the inertial moment Is for the rotation of shaft (B).
2. Next, Iв is entered to find IA the inertial moment for the rotation of shaft (A) as

Kinetic Energy/Rotation Time

$$
\mathrm{I}_{\mathrm{A}}=\left(\frac{\mathrm{a}}{\mathrm{~b}}\right)^{2} \cdot \mathrm{I}_{\mathrm{B}}
$$

Even in cases where the torque required for rotation of the load is small, damage to internal parts may result from the inertial force of the load.
Select models giving consideration to the load's inertial moment and rotation time during operation.
(The inertial moment and rotation time charts can be used for your convenience in making model selections on page 4.)
(1)Allowable kinetic energy and rotation time adjustment range

From the table below, set the rotation time within the adjustment range for stable operation. Note that operation exceeding the rotation time adjustment range, may lead to sticking or stopping of operation.

Size	Allowable kinetic energy (mJ)				Rotation time adjustment range for stable operation $\mathrm{s} / 90^{\circ}$		
	With adjustment bolt	With internal shock absorber	With external shock absorber		With adjustment bolt	With internal shock absorber	With external shock absorber
			For low energy	For high energy			
1	1	-	-	-	0.2 to 0.7	-	-
2	1.5						
3	2						
7	6				0.2 to 1.0		
10	7	39	161	231		0.2 to 0.7	$0.2 \text { to } 1.0^{\text {Note) }}$
20	25	116	574	1060			
30	48	116	805	1210			
50	81	294	1310	1820			
70	240	1100	-	-	0.2 to 1.5	0.2 to 1.0	-
100	320	1600			0.2 to 2.0		
200	560	2900			0.2 to 2.5		

Note) Refer to the note regarding the rotation time adjustment range on page 20.

(2)Inertial moment calculation

Since the formula for inertial moment differ depending on the configuration of the load, refer to the inertial moment calculation

Model Selection Series MSQ

Kinetic Energy/Rotation Time

Model selection Select models by applying the inertial moment and rotation time which have been found to the charts below.

With adjustment bolt

With external shock absorber

With internal shock absorber

(1)<Viewing the charts>

Inertial moment $\cdots \cdots 0.015 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Rotation time …........ $0.45 \mathrm{~s} / 90^{\circ}$
MSQ $\square 20 \mathrm{~L}$ is selected for the above.
(2)<Example>

Load configuration: A cylinder of radius 0.5 m and mass 0.4 kg
Rotation time: $0.7 \mathrm{~s} / 90^{\circ}$
$\mathrm{I}=0.4 \times \frac{0.5^{2}}{2}=0.05 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
In the inertial moment and rotation time chart, find the intersection of the lines extended from the points corresponding to $0.05 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ on the vertical axis (inertial moment) and $0.7 \mathrm{~s} / 90^{\circ}$ on the horizontal axis (rotation time). Since the resulting intersection point lines within the MSQ $\square 20 \mathrm{~L}$ selection range, MSQ $\square 20 \mathrm{~L}$ can be selected.

Rotation Accuracy: Displacement Value at 180° (reference value)

Series MSQ

Table Displacement (reference values)

MSQ $\square 3$ A

MSQ \square 7A

MSQ $\square 30 \square$

MSQ $\square 50 \square$

Rotary Table Air Consumption

Air consumption is the volume of air which is expended by the rotary table's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost.
*The air consumption (Qcr) required for one reciprocation of the rotary table alone is shown in the table below, and can be used to simplify the calculation.

Formulae

$$
\begin{aligned}
& \text { QCR }=2 V \times\left(\frac{P+0.1}{0.1}\right) \times 10^{-3} \\
& Q_{C P}=2 \times a \times e \times \frac{P}{0.1} \times 10^{-6} \\
& Q_{c}=Q_{C R}+Q_{C P}
\end{aligned}
$$

QCR $=$	Air consumption of rotary table	$[\ell($ ANR $)]$
QCP $=$	Air consumption of tubing or piping	$[\ell($ ANR $)]$
$\mathrm{V}=$	Internal volume of rotary table	$\left[\mathrm{cm}^{3}\right]$
$\mathrm{P}=$	Operating pressure	$[\mathrm{MPa}]$
$\ell=$	Length of piping	$[\mathrm{mm}]$
$\mathrm{a}=$	Internal cross section of piping	$\left[\mathrm{mm}^{2}\right]$
Qc $=$	Air consumption required for one	$[\ell(\mathrm{ANR})]$

When selecting a compressor, it is necessary to choose one which has sufficient reserve for the total air consumption of all pneumatic actuators downstream. This is affected by factors such as leakage in pipping, consumption by drain valves and pilot valves, etc., and reduction of air volume due to drops in temperature.

Formula

Qc2 $=$ Qc $\times n \times$ Number of actuators \times Reserve factor
$\mathrm{Qc}_{2}=$ Compressor discharge flow rate $\quad[\ell / \mathrm{min}($ ANR $)]$ $\mathrm{n}=$ Actuator reciprocations per minute

Internal cross section of tubing and steel piping

Nominal size	O. D. (mm)	I. D. (mm)	Internal cross section $\mathrm{a}\left(\mathrm{mm}^{2}\right)$
T $\square \mathbf{0 4 2 5}$	4	2.5	4.9
T $\square \mathbf{0 6 0 4}$	6	4	12.6
TU 0805	8	5	19.6
T $\square \mathbf{0 8 0 6}$	8	6	28.3
$\mathbf{1 / 8 B}$	-	6.5	33.2
T $\square \mathbf{1 0 7 5}$	10	7.5	44.2
TU 1208	12	8	50.3
T $\square \mathbf{1 2 0 9}$	12	9	63.6
$\mathbf{1 / 4 B}$	-	9.2	66.5
TS 1612	16	12	113
3/8B	-	12.7	127
T $\square \mathbf{1 6 1 3}$	16	13	133
$\mathbf{1 / 2 B}$	-	16.1	204
3/4B	-	21.6	366
$\mathbf{1 B}$	-	27.6	598

Air Consumption

Rotary Table/Rack-and-Pinion Type Series MSQ

Size: 1, 2, 3, 7

How to Order

Applicable auto switches: Refer to pages 25 through 31 for detailed auto switch specifications.

$\stackrel{\stackrel{\circ}{2}}{\stackrel{\circ}{2}}$	Special function	Electricalentry		Wiring (Output)	Load voltage			Auto switch type Electrical entry direction		Lead wire length (m)*			Applicable load			
								0.5	3	5						
					DC		AC			Perpendicular	In-line					
		Grommet	Yes	3-wire (NPN)	24 V	12 V	-	F8N	M9N	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC		
	-			3-wire (PNP)				F8P	M9P	-	-	\bigcirc				
				2-wire				F8B	M9B	-	-	\bigcirc	-			
	Diagnostic indication (2-colour display			3-wire (NPN)				-	M9NW	\bigcirc	-	\bigcirc	IC circuit			
				3-wire (PNP)				-	M9PW	\bigcirc	-	\bigcirc				
				2-wire				-	M9BW	\bullet	-	\bigcirc	-			

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots \ldots \ldots$.........Nil (Example) M9N

$$
5 \mathrm{~m} \ldots \ldots \ldots \ldots \ldots . \mathrm{Z} \quad \text { (Example) M9NZ }
$$

* Solid state switches marked " O " are produced upon receipt of order.

Made to Order
 \rightarrow Contact SMC.

- -50 Without indicator light
- -61 Flexible lead wire
- Pre-wire connector

Specifications

High precision type

JIS symbol

Size	1	2	3	7
Fluid	Air (non-lube)			
Maximum operating pressure	0.7 MPa			
Minimum operating pressure	0.1 MPa			
Ambient and fluid temperature	0 to $60^{\circ} \mathrm{C}$ (with no freezing)			
Cushion	None		Rubber bumper	
Angle adjustment range	0 to 190°			
Maximum rotation	190°			
Cylinder bore size	$ø 6$	$\varnothing 8$	$\varnothing 10$	$\varnothing 12$
Port size	M3			M5

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (mJ)	Rotation time adjustment range for suitable operation $\left(\mathrm{s} / 90^{\circ}\right)$
$\mathbf{1}$	1	0
$\mathbf{2}$	1.5	
$\mathbf{3}$	2	
$\mathbf{7}$	6	0.2 to 1.0

Weight

Size	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{7}$
Basic type	75	105	150	250
High precision type	80	115	165	265

Note) Excluding the weight of auto switches

Clean Series

Prevents dispersion of the particles generated inside of the product into the clean room by sucking them out of the vacuum port on the body side.

How to Order

Dimensions

Clean series products do not have a hollow axis.

Basic type 11-MSQB \square A

High precision type 11-MSQA \square A

Specifications and allowable load

Particle generation grade	Grade $1^{\text {Note 1) }}$
Suction flow rate (example)	$1 \mathrm{e} / \mathrm{min}$ (ANR)

11-MSQA is identical to the high precision type and 11-MSQB is identical to the basic type.

Note) Please refer to "Pneumatic Clean Series" catalogue for further details.

Size	BK	PA
$\mathbf{1}$	5.3	M3
$\mathbf{2}$	7.5	M3
$\mathbf{3}$	9.5	M3
$\mathbf{7}$	7	M5

Dimensions other than above are identical to the basic type and the high precision type.

Series MSQ

Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.
- By adjusting the adjustment bolt, the rotation end can be set within the range shown in the drawing for the desired rotation angle.

With adjust bolt, internal shock absorber

Size	Adjustment angle per rotation of angle adjustment screw
$\mathbf{1}$	8.2°
$\mathbf{2}$	10.0°
$\mathbf{3}$	10.9°
$\mathbf{7}$	10.2°

Note) - The drawing shows the rotation range of the positioning pin hole.

- The pin hole position in the drawing shows the counter-clockwise rotation end when the adjustment bolts A and B are tightened equally and the rotation is adjusted 180°.

Rotation Range Example

- Various rotation ranges are possible as shown in the drawings below using adjustment bolts A and B. (The drawings also show the rotation ranges of the positioning pin hole.)

Construction

MSQA $\square A$
(High precision type)

Component parts

No.	Description	Material
$\mathbf{1}$	Body	Aluminium alloy
2	Cover	Aluminium alloy
3	Plate	Aluminium alloy
4	Seal	NBR
5	End cover	Aluminium alloy
6	Piston	Stainless steel
7	Pinion	Chrome molybdenum steel
8	Hexagon nut	Steel wire
9	Adjustment bolt	Steel wire
10	Cushion pad	Size: 3,7
11	Table	Rubber material
12	Bearing retainer	Aluminium alloy
13	Magnet	Aluminium alloy
14	Wear ring	Magnetic material

[^0] depending on the position of the connecting port.

Series MSQ

Dimensions/Size 1, 2, 3, 7
Basic type/MSQB \square A

High precision type/ MSQA $\square \mathbf{A}$

Size	BC	BD	BE	BG	BH	BI	BJ	D	DD	DE	DF	DG	FA	FB	FD	H	J	JA	JB	JC	JD	JE	JF	JG
1	4.5	32	17	11	8.2	30	4.5	27h9	27.5h9	14H9	3.5	4.5 H 9	4.8	2	3.7	9	3.3	6	3.5	M4	2.2	5.3	M4	4
2	5.5	34	18.5	12.6	9.2	35	4.5	29n9	29.5h9	14H9	3.8	5 H 9	5.3	2.5	4.2	10	3.3	6	3.5	M4	2.2	5.3	M4	4
3	5.5	38	23	15.5	10.5	40	4.5	33h9	$34 \mathrm{h9}$	17H9	5	6 H 9	5.3	2.5	4.2	10	4.2	7.5	4.5	M5	2.5	6	M4	4
7	5.5	45	30	18.4	12.2	50	5	39h9	40 h 9	20 H 9	6	7 H 9	6.5	2.5	4.5	11.5	4.2	7.5	4.5	M5	2.5	6	M5	5

(mm)

Size	JJ	JK	JU	P	Q	S	SD	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
1	M3	3.5	M3	M3	16	50.5	10.8	24.4	9.4	25	9.5	2H9	2	M3	4.8	20	22.5	2H9	2	11	2H9	2
2	M3	3.5	M4	M3	18	56	13.4	26.2	11.3	28	10	2H9	2	M3	5.3	21	24.5	2H9	2	11.5	2H9	2
3	M3	3.5	M5	M3	20.5	60	15.2	31	11.8	30.5	12	2H9	2	M3	5.3	25	27	2H9	2	13.5	2H9	2
7	M4	4.5	M6	M5	23	73.5	15.4	37.4	14.9	34.5	14	3H9	3	M4	6.5	29	32.5	3H9	3	15.5	3H9	3

Rotary Table/Rack-and-Pinion Type Series MSQ

Size: 10, 20, 30, 50, 70, 100, 200

How to Order

\section*{| Size |
| :---: |
| 10 |
| 20 |
| 30 |
| 50 |}

High Precision Type MSQ A 10 A - M9B
Basic Type \quad MSQ B 10 A - M9B

Size	
10	70
20	100
30	200
50	

A	With adjustment bolt
\mathbf{R}	With internal shock absorber

With internal shock absorber

$\mathbf{N i l}$	2 pcs.
\mathbf{S}	1 pc.
\mathbf{n}	n pcs.

Auto switch type
Nil \quad Without auto switch (built-in magnet)

* Refer to the table below for auto switch types.
* The auto switch is included in the package (unmounted)

Applicable auto switches/Refer to pages 25 through 31 for detailed auto switch specifications.

$\stackrel{\otimes}{\stackrel{\circ}{\gtrless}}$	Special function	Electrical entry		Wiring (Output)	Load voltage			Auto switch type		Lead wire length (m)*			Applicable load		
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
							Perpendicular	In-line							
		Grommet	No	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		100 V or less	A90V	A90	\bigcirc	\bigcirc	-	IC circuit	Relay, PLC
	-		Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	\bigcirc	-	-		
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	Relay, PLC	
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	-	\bigcirc	\bigcirc	IC circuit	Relay, PLC	
	-			3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	-		
	Diagnostic			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	\bigcirc	\bigcirc	\bigcirc	IC circuit		
	indication			3-wire (PNP)				M9PWV	M9PW	\bigcirc	\bigcirc	\bigcirc			
	(2-colour display)							M9BWV	M9BW	-	\bigcirc	\bigcirc			
	Improved water resistance (2-colour display)			2-wire		12 V		-	M9BA**	-	\bigcirc	\bigcirc	-		

** Though it is possible to mount water resistant auto switch, the rotary table itself is not water resistance type.

* Lead wire length symbols: $0.5 \mathrm{~m} \ldots \ldots \ldots \ldots . . \mathrm{Nil} \quad$ (Example) M9N

$$
\begin{array}{ll}
3 \mathrm{~m} \ldots \ldots \ldots \ldots \ldots \cdot \mathrm{~L} & \text { (Example) M9NL } \\
5 \mathrm{~m} \ldots \ldots \ldots \ldots \ldots \cdot \mathrm{Z} & \text { (Example) M9NZ }
\end{array}
$$

* Solid state switches marked "○" are produced upon receipt of order

Made to Order
 \rightarrow Contact SMC

- -50 Without indicator light
- -61 Flexible lead wire
- Pre-wire connector

Series MSQ

Specifications

High precision type/MSQA

JIS symbol

Size		10	20	30	50	70	100	200
Fluid		Air (non-lube)						
Maximum operating pressure	With adjustment bolt	1 MPa						
	With internal shock absorber	0.6 MPa Note 1)						
Minimum operating pressure	Basic type	0.1 MPa						
	High precision type	0.2 MPa	0.1 MPa			-		
Ambient and fluid temperature		0 to $60^{\circ} \mathrm{C}$ (with no freezing)						
Cushion	With adjustment bolt	Rubber bumper						
	With internal shock absorber	Shock absorber						
	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Shock absorber } \\ \text { model } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { RBA0805 } \\ -\times 692 \\ \hline \end{array}$	RBA1006-X692		$\begin{aligned} & \text { RBA1411 } \\ & -\times 692 \\ & \hline \end{aligned}$	RBA2015-X821		$\begin{array}{\|l} \hline \text { RBA2725 } \\ -\times 821 \\ \hline \end{array}$
Angle adjustment range		0 to 190° Note 2)						
Maximum rotation		190°						
Cylinder bore size		$\varnothing 15$	$\varnothing 18$	ø21	ø25	ø28	ø32	$\varnothing 40$
Port size	End ports	M5		Rc 1/8				
	Side ports	M5						

Note 1) The maximum operating pressure of the actuator is restricted by the maximum allowable thrust of the shock absorber.
Note 2) Be careful if the rotation angle of a type with internal shock absorber is set below the value in the table below, the piston stroke will be smaller than the shock absorber's effective stroke, resulting in decreased energy absorption ability.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Minimum rotation angle that will not allow decrease of energy absorption ability	52°	43°	40°	60°	71°	62°	82°

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (mJ)		Rotation time adjustment range for stable operation $\left(\mathrm{s} / 90^{\circ}\right)$	
	With adjustment bolt	With internal shock absorber	With adjustment bolt	With Note1) internal shock absorber
	7	39		
$\mathbf{2 0}$	25	116	0.2 to 1.0	0.2 to 0.7
$\mathbf{3 0}$	48	116		
$\mathbf{5 0}$	81	294		0.2 to 1.0
$\mathbf{7 0}$	240	1100	0.2 to 1.5	
$\mathbf{1 0 0}$	320	1600	0.2 to 2.0	0.2 to 2.5

Note 1) Be careful if a type with internal absorber is used below the minimum speed, the energy absorption ability will decrease drastically.

Weight

Size		$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Basic type	With adjustment bolt	530	990	1290	2080	2880	4090	7580
	With internal shock absorber	540	990	1290	2100	2890	4100	7650
High precision type	With adjustment bolt	560	1090	1410	2240			
	With internal shock absorber	570	1090	1410	2260			

Note) Values above do not include auto switch weights.

Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction where the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.
- By adjusting the adjustment bolt, the rotation end can be set within the ranges shown in the drawing for the desired rotation angle.
- The rotation angle can also be set on a type with internal absorber.

With adjust bolt, internal shock absorber

Size	Adjustment angle per rotation of angle adjustment screw
$\mathbf{1 0}$	10.2°
$\mathbf{2 0}$	7.2°
$\mathbf{3 0}$	6.5°
$\mathbf{5 0}$	8.2°
$\mathbf{7 0}$	7.0°
$\mathbf{1 0 0}$	6.1°
$\mathbf{2 0 0}$	4.9°

Note) - The drawing shows the rotation range of the positioning pin hole.

- The pin hole position in the drawing shows the counter-clockwise rotation end when the adjustment bolts A and B are tightened equally and the rotation is adjusted 180°.

Rotation Range Example

- Various rotation ranges are possible as shown in the drawings below using adjustment bolts A and B. (The drawings also show the rotation ranges of the positioning pin hole.)
- The rotation angle can also be set on a type with inertial absorber.

Series MSQ

Clean Series

Prevents dispersion of the particles generated inside of the product into the clean room by sucking them out of the vacuum port on the body side.

How to Order

Specifications and Allowable Load

Particle generation grade	Grade 1 Note 1)
Suction flow rate (example)	$1 \mathrm{e} / \mathrm{min}$ (ANR)

11-MSQA is identical to the high precision type and
11-MSQB is identical to the basic type.
Note) Please refer to "Pneumatic Clean Series" catalogue for further details.

Dimensions

Clean series products do not have a hollow axis.

Basic type

11-MSQB \square A 11-MSQB \square R

High precision type

11-MSQA \square A

11-MSQA \square R

Size	DA(h9)	$\mathbf{D B}(\mathrm{h} 9)$	$\mathbf{D C}(\mathrm{H} 9)$	$\mathbf{D D}(\mathrm{h} 9)$	HB	HC	HD
$\mathbf{1 0}$	46	45	20	35	20	5	59
$\mathbf{2 0}$	61	60	28	40	22	6	65
$\mathbf{3 0}$	67	65	32	48	22	6	68
$\mathbf{5 0}$	77	75	35	54	24	7	77

Dimensions other than above are identical to the basic type.

									(mm)
Size	DA(h8)	DB(h8)	DC(H8)	DD(h8)	HA	HB	HC	HD	HE
$\mathbf{1 0}$	46	45	20	35	15.5	24	5	63	9.5
$\mathbf{2 0}$	61	60	28	40	19.5	30	6	73	13.5
$\mathbf{3 0}$	67	65	32	48	19.5	30	6	76	13.5
$\mathbf{5 0}$	77	75	35	54	21.5	34	7	87	15.5

Dimensions other than above are identical to the high precision type

Construction

Parts list

No.	Description		Material
1	Body		Aluminium alloy
2	Cover		Aluminium alloy
3	Plate		Aluminium alloy
4	Seal		NBR
5	End cover		Aluminium alloy
6	Piston		Stainless steel
7	Pinion		Chrome molybdenum steel
8	Hexagon nut with flange	Size: 10 to 50	Steel wire
	Hexagon nut	Size: 70 to 200	
9	Adjustment bolt		Chrome molybdenum steel
10	Cushion pad		Rubber material
11	Seal retainer		Aluminium alloy
12	Gasket		NBR
13	Gasket		NBR
14	Table		Aluminium alloy
15	Bearing retainer		Aluminium alloy
16	Magnet		Magnetic material
17	Wear ring		Resin
18	Piston seal		NBR

No.	Description		Material
19	Deep groove ball bearing	Size: 10 to 50	Bearing steel
	Needle bearing	Size: 70 to 200	
20	Deep groove ball bearing	Basic type	Bearing steel
	Angular contact ball bearing	High precision type	
21	Round head philips screw No. 0		Steel wire
22	Round head philips screw	Size: 10	Stainless steel
	Low head cap screw	Size: 20 to 50	Chrome molybdenum steel
	Hexagon socket head set bolt	Size: 70 to 200	
23	Hexagon socket head set bolt		Stainless steel
24	Hexagon socket head set bolt	Size: 10 to 50	Stainless steel
		Size: 70 to 200	Carbon steel
25	CS type snap ring		Spring steel
26	Parallel pin	Size: 10 to 50	Carbon steel
	Parallel key	Size: 70 to 200	
27	Seal washer		NBR
28	Plug		Brass
29	O-ring	Size: 70 to 200 only	NBR
30	Steel balls	Size: 70 to 200 only	Stainless steel
31	Shock absorber		-

Replacement parts

Description	Kit no.							Note
	10	20	30	50	70	100	200	
Seal kit	KT-MSQ10	KT-MSQ20	KT-MSQ30	KT-MSQ50	KT-MSQ70	KT-MSQ100	KT-MSQ200	A set of above numbers (4), (12), (13), (17), (18) and (27)

Series MSQ

Dimensions/Size 10, 20, 30, 50

With internal shock absorber High precision type
MSQA $\square R$
MSQB $\square R$
MSQA \square A/With adjustment bolt
MSQA \square R/With internal shock absorber

(mm)	
Size	FU
$\mathbf{1 0}$	31.5
$\mathbf{2 0}$	34.7
$\mathbf{3 0}$	34.7
$\mathbf{5 0}$	51.7

Size	DH	DI	DJ	DK	DL	FE	HA	UV
$\mathbf{1 0}$	45 h 8	46 h 8	20 H 8	5	15 H 8	10	18.5	52.5
$\mathbf{2 0}$	60 h 8	61 h 8	28 H 8	9	17 H 8	15.5	26	63
$\mathbf{3 0}$	65 h 8	67 h 8	32 H 8	9	22 H 8	16.5	27	67
$\mathbf{5 0}$	75 h 8	77 h 8	35 H 8	10	26 H 8	17.5	30	76

Size	AA	A	AU	AV	AW	AX	AY	BA	BB	BC	BD	BE	CA	CB	D	DD	DE	DF	DG	FA	FB	FC	FD	H	J	JA	JB
10	55.4	50	8.6	20	15.5	12	4	9.5	34.5	27.8	60	27	4.5	28.5	45h9	46h9	20H9	6	15H9	8	4	3	4.5	13	6.8	11	6.5
20	70.8	65	10.6	27.5	16	14	5	12	46	30	76	34	6	30.5	60h9	61h9	28H9	9	17H9	10	6	2.5	6.5	17	8.6	14	8.5
30	75.4	70	10.6	29	18.5	14	5	12	50	32	84	37	6.5	33.5	65h9	67h9	32H9	12	22H9	10	4.5	3	6.5	17	8.6	14	8.5
50	85.4	80	14	38	22	19	6	15.5	63	37.5	100	50	10	37.5	75h9	77h9	35H9	14	26H9	12	5	3	7.5	20	10.5	18	10.5

Size	JC	JD	JJ	JU	P	Q	S	SD	SE	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
10	M8	12	M5	M8 x 1	M5	34	92	9	13	45	17.7	47	15	3H9	3.5	M5	8	32	27	3H9	3.5	19	3H9	3.5
20	M10	15	M6	M10 $\times 1$	M5	37	117	10	12	60	25	54	20.5	4H9	4.5	M6	10	43	36	4H9	4.5	24	4H9	4.5
30	M10	15	M6	M10 $\times 1$	Rc 1/8	40	127	11.5	14	65	25	57	23	4H9	4.5	M6	10	48	39	4H9	4.5	28	4H9	4.5
50	M12	18	M8	M14 $\times 1.5$	Rc $1 / 8$	46	152	14.5	15	75	31.4	66	26.5	5 H 9	5.5	M8	12	55	45	5H9	5.5	33	5H9	5.5

Basic type/MSQB $\square A$

With shock absorber

 MSQB $\square R$

\[

\]

Size	AA	AB	A	AV	AW	AX	AY	BA	BB	BC	BD	BE	CB	D	DD	DE	DF	DG	FA	FB	FC	FD	H	J	JA	JB
70	90	92	84	42	25.5	27	8	17	75	44.5	110	57	36	88h9	90h9	46H9	16	22H9	12.5	5	3.5	9	22	10.4	17.5	10.5
100	101	102	95	50	29.5	27	8	17	85	50.5	130	66	42	98h9	100h9	56H9	19	24H9	14.5	6	3.5	12	27	10.4	17.5	10.5
200	119	120	113	60	36.5	36	10	24	103	65.5	150	80	57	116h9	118h9	64H9	24	32H9	16.5	9	5.5	15	32	14.2	20	12.5

(mm)

Size	JC	JD	JJ	JK	JU	Q	S	SD	SF	SU	UU	WA	WB	WC	WD	WE	WF	XA	XB	XC	YA	YB	YC
70	M12	18	M8	10	M20 $\times 1.5$	53	170	18	79	34.2	75	32.5	5H9	5.5	M8	12.5	67	54	5H9	3.5	39	5H9	3.5
100	M12	18	M8	10	M20 $\times 1.5$	59	189	22	90	34.3	86	37.5	6H9	6.5	M10	14.5	77	59	6H9	4.5	49	6H9	4.5
200	M16	25	M12	13	M27 $\times 1.5$	74	240	29	108	40.2	106	44	8H9	8.5	M12	16.5	90	69	8H9	4.5	54	8H9	6.5

Rotary Table/Rack-and-Pinion Type Series MSQ

 With External Shock AbsorberSize: 10, 20, 30, 50

How to Order

Applicable auto switches/Refer to pages 25 through 31 for detailed auto switch specifications.

$\stackrel{\otimes}{\stackrel{\circ}{\star}}$	Special function	Electrical entry	Indicator light	Wiring (Output)	Load voltage			Auto switch type		Lead wire length (m)*			Applicable load		
					DC		AC			$\begin{gathered} 0.5 \\ \text { (Nil) } \end{gathered}$	$\begin{gathered} 3 \\ (\mathrm{~L}) \end{gathered}$	$\begin{gathered} 5 \\ (Z) \end{gathered}$			
							Perpendicular	In-line							
	-	Grommet	No	2-wire	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$		100 V or less	A90V	A90	-	\bigcirc	-	IC circuit	Relay, PLC
			Yes	3-wire (NPN equiv.)	-	5 V	-	A96V	A96	\bigcirc	\bigcirc	-	-		
				2-wire	24 V	12 V	100 V	A93V	A93	\bigcirc	\bigcirc	-	-	Relay, PLC	
		Grommet	Yes	3-wire (NPN)	24 V	$5 \mathrm{~V}, 12 \mathrm{~V}$	-	M9NV	M9N	\bigcirc	\bigcirc	\bigcirc	IC circuit	Relay, PLC	
	-			3-wire (PNP)				M9PV	M9P	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V		M9BV	M9B	\bigcirc	\bigcirc	\bigcirc	-		
	Diagnostic indication (2-colour display)			3-wire (NPN)		$5 \mathrm{~V}, 12 \mathrm{~V}$		M9NWV	M9NW	\bigcirc	\bigcirc	\bigcirc	IC circuit		
				3-wire (PNP)				M9PWV	M9PW	\bigcirc	\bigcirc	\bigcirc			
				2-wire		12 V		M9BWV	M9BW	\bigcirc	\bigcirc	\bigcirc	-		
	Improved water resistance (2-colour display)							-	M9BA**	-	\bigcirc	\bigcirc			

** Though it is possible to mount water resistant auto switch, the rotary table itself is not water resistance type.

* Lead wire length symbols: $0.5 \mathrm{~m} \cdot \ldots \ldots . . . \mathrm{Nil}$ (Example) M9N
$3 \mathrm{~m} \cdot \cdots \cdots \cdots \mathrm{~L}$ (Example) M9NL
$5 \mathrm{~m} \cdots \cdots \cdots \cdots \cdot$ Z (Example) M9NZ
*Solid state switches marked " O " are produced upon receipt of order.
Made to Order \rightarrow Contact SMC.
- -50 Without indicator light
- -61 Flexible lead wire
- Pre-wire connector

Specifications

Size		10	20	30	50
Fluid		Air (non-lube)			
Maximum operating pressure		1 MPa			
Minimum operating pressure		0.2 MPa			
Ambient and fluid temperature		0 to $60^{\circ} \mathrm{C}$ (with no freezing)			
Cushion		Shock absorber			
Shock absorber type	For low energy	RB0805	RB1006		RB1411
	For high energy	RB0806	RB1007		RB1412
Rotation		$90^{\circ}, 180^{\circ}$			
Angle adjusting range		Each rotation end $\pm 3^{\circ}$			
Cylinder bore size		$\varnothing 15$	$\varnothing 18$	ø21	ø25
Port size	End ports	M5		Rc 1/8	
	Side ports	M5			

Allowable Kinetic Energy and Rotation Time Adjustment Range

Size	Allowable kinetic energy (mJ)		Rotation time adjustment range for stable operation ($\mathrm{s} / 90^{\circ}$)
	Shock absorber for low energy	Shock absorber for high energy	0
$\mathbf{1 0}$	161	231	
$\mathbf{2 0}$	574	1060	
$\mathbf{3 0}$	805	1820	
$\mathbf{5 0}$	1310		

Note) Values above indicate the time between the start of rotation and the deceleration caused by the shock absorber. Although the time required by the rotary table to reach the rotation end after deceleration differs depending on the operating conditions (inertial moment of the load, rotation speed and operating pressure), approximately 0.2 to 2 seconds are required. The range of angles within which the shock absorber operates is between the rotation end and the values shown below.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
For low energy	7.1°	6.9°	6.2°	9.6°
For high energy	8.6°	8.0°	7.3°	10.5°

Weight

Size		$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$
Basic type	90° specification	630	1200	1520	2480
	180° specification	600	1140	1450	2370
High precision type	90° specification	700	1390	1750	2810
	180° specification	670	1340	1680	2690

[^1]
Series MSQ

Rotation Direction and Rotation Angle

- The rotary table turns in the clockwise direction where the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized. - By adjusting the shock absorber, the rotation end can be set within the ranges shown in the drawing.

Standard type

Position of bottom positioning pin hole

For 180°

For 90°

Symmetric type

For 180°

Position of bottom positioning pin hole

For 90°

Position of bottom positioning pin hole

With external shock absorber

Size	Adjustment angle per rotation of angle adjustment screw
$\mathbf{1 0}$	1.4°
$\mathbf{2 0}$	1.2°
$\mathbf{3 0}$	1.1°
$\mathbf{5 0}$	1.3°

Note) • The drawings show the rotation range for the top positioning pin hole of the table
The pin hole position in the drawing shows the counter-clockwise rotation end when the shock absorbers are tightened equally and the rotation is adjusted to 180° and 90°.

Construction

Component parts

No.	Description	Material
1	End cover	Aluminium alloy
2	Table	Aluminium alloy
3	Arm	Chrome molybdenum steel
4	Shock absorber holder	Aluminium alloy
5	Hexagon socket head set bolt	Stainless steel
6	Hexagon socket head set bolt	Stainless steel
7	Taper plug	Steel wire
8	Hexagon nut	Steel wire
9	Shock absorber	-

Replacement parts

Description	Kit no.				Note
	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	
Seal kit	P523010-6	P523020-6	P523030-6	P523040-6	Seal washer (27) is excluded from the kit contents described on page 16.

Series MSQ

Dimensions/With External Shock Absorber Size: 10, 20, 30, 50

Size	AA	A	BA	BB	BC	BD	CA	CB	D	DD	DE	DF	DG	EA	EB	EC	ED	EE	EF	FA	FB	FC	FD	GA	GB	GC	GD	GE	H
10	55.4	50	9.5	34.5	27.8	60	4.5	28.5	45	46	20H9	6	15H9	52.9	44.3	33.5	14	97.2	80	8	4	3	4.5	20	15.6	11	7.5	45.2	13
20	70.8	65	12	46	30	76	6	30.5	60	61	28H9	9	17H9	61.8	55.3	43	18	117.1	100	10	6	2.5	6.5	25	19.5	14	9.5	56.4	17
30	75.4	70	12	50	32	84	6.5	33.5	65	67	32H9	12	22H9	63.1	60.3	46	19.5	123.4	110	10	4.5	3	6.5	27	21.5	14	9.5	61.5	17
50	85.4	80	15.5	63	37.5	100	10	37.5	75	77	$35 \mathrm{H9}$	13	26 H 9	86.7	71.4	56	22	158.1	130	12	5	3	7.5	32	28	18	11.5	72.9	20

Size	J	JA	JB	JC	JD	K	NA	NB	NC	ND	P	Q	S	SD	SE	SF	UU	WA	WB	WC	WD	WE	WF	YA	YB	YC
10	6.8	11	6.5	M8	12	M8 $\times 1$	10	5.5	12.5	4	M5	34	92	9	13	45	47	15	3H9	3.5	M5	8	32	19	3H9	3.5
20	8.6	14	8.5	M10	15	M10 $\times 1$	14	8	16.5	4	M5	37	117	10	12	60	54	20.5	4H9	4.5	M6	10	43	24	4H9	4.5
30	8.6	14	8.5	M10	15	M10 $\times 1$	14	8	16.5	4	Rc 1/8	40	127	11.5	14	65	57	23	4H9	4.5	M6	10	48	28	4H9	4.5
50	10.5	18	10.5	M12	18	M14 $\times 1.5$	19	8.5	19.5	6	Rc $1 / 8$	46	152	14.5	15	75	66	26.5	5 H 9	5.5	M8	12	55	33	5H9	5.5

- Size: 1 to 7

When D-M9 and M9 are used

When D-F8 is used

Size	Rotation	Solid state switch								
		D-M9■W			D-M9 \square			D-F8 \square		
		A	Operating angle $\theta \mathrm{m}$	Hysteresis angle	A	Operating angle θ m	Hysteresis angle	B	Operating angle θ m	Hysteresis angle
1	190°	20.9	40°	10°	20.9	55°	10°	16.9	20°	10°
2	190°	22.8	35°	10°	22.8	45°	10°	18.8	20°	10°
3	190°	24.4	30°	10°	24.4	40°	10°	20.4	15°	10°
7	190°	28.7	25°	10°	28.7	40°	10°	24.7	15°	10°

Operating angle $\theta \mathrm{m}$: Value of the operating range Lm of a single auto switch converted to an axial rotation angle.
Hysteresis angle : Value of auto switch hysteresis converted to an angle.

- Size: 10 to 200

Size	Rotation	Reed switch				Solid state switch							
		D-A9■, D-A9 \square V				$\begin{gathered} \text { D-M9■W, } \\ \text { D-M9■WV, D-M9BAL } \end{gathered}$				D-M9 \square			
		A	B	Operating angle $\theta \mathrm{m}$	Hysteresis angle	A	B	Operating angle θ m	Hysteresis angle	A	B	Operating angle $\theta \mathrm{m}$	Hysteresis angle
10	190°	17	36	90°	10°	21	40	90°	10°	21	40	60°	10°
20	190°	23	50	80°	10°	27	54	80°	10°	27	54	50°	10°
30	190°	27	66	65°	10°	31	60	65°	10°	31	60	50°	10°
50	190°	33	68	50°	10°	37	72	50°	10°	37	72	40°	10°
70	190°	37	78	45°	10°	41	82	45°	10°	41	82	40°	10°
100	190°	44	91	40°	10°	48	95	40°	10°	48	95	30°	10°
200	190°	57	115	35°	10°	61	19	35°	10°	61	19	20°	10°

Operating angle $\theta \mathrm{m}$: Value of the operating range Lm of a single auto switch converted to an axial rotation angle.
Hysteresis angle : Value of auto switch hysteresis converted to an angle.

Series MSQ

Auto Switch Specifications

Auto Switch Common Specifications

Type	Reed switch	Solid state switch
Leakage current	None	3-wire: $100 \mu \mathrm{~A}$ or less, 2-wire: 0.8 mA or less
Operating time	1.2 ms	1 ms or less
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$	$1000 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$50 \mathrm{M} \Omega$ or more at 500 VDC (Between lead wire and case)	
Withstand voltage	1000 VAC for 1 min. (Between lead wire and case)	
(Between lead wire and case)		

Lead Wire Length

Lead wire length indication

(Example)

$\mathbf{N i l}$	0.5 m
\mathbf{L}	3 m
\mathbf{Z}	5 m

Note 1) Lead wire length Z: Auto switch applicable to 5 m length
Solid state switch: All types are produced upon receipt of order (standard procedure).
Note 2) For solid state switches with flexible lead wire specification, add "-61" at the end of the lead wire length.

Contact Protection Boxes/CD-P11, CD-P12

<Applicable switches>

D-A9/A9■V
The above auto switches do not have internal contact protection circuits.

1. The operating load is an induction load.
2. The length of wiring to the load is 5 m or more.
3. The load voltage is 100 VAC.

Use a contact protection box in any of the above situations.
The life of the contacts may otherwise be reduced. (They may stay ON all the time.)

Specifications

Part number	CD-P11		CD-P12
Load voltage	100 VAC	200 VAC	24 VDC
Maximum load current	25 mA	12.5 mA	50 mA

* Lead wire length - Switch connection side 0.5 m Load connection side 0.5 m

Internal circuits

CD-P11		oOUT Brown ○ OUT Blue
CD-P12		OOUT (+) Brown ○ OUT (-) Blue

Dimensions

Connection

To connect a switch to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch. Furthermore, the switch unit should be kept as close as possible to the contact protection box, with a lead wire length of no more than 1 meter between them.

Series MSQ

Auto Switch Connections and Examples

Basic Wiring

Solid state 3-wire, NPN

(Power supplies for switch and load are separate.)

Solid state 3-wire, PNP

<Solid state switch>

2-wire
<Reed switch>

Examples of Connection to PLC (Programmable Logic Controller)

Sink input specifications

2-wire

Source input specifications

3-wire, PNP

2-wire

Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifications.

Connection Examples for AND (Series) and OR (Parallel)

3-wire

AND connection for NPN output (using relays)

2-wire with 2 switch AND connection

When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

> Load voltage at $\mathrm{ON}=\begin{gathered}\text { Power supply } \\ \text { voltage }\end{gathered}-\begin{gathered}\text { Residual } \\ \text { voltage }\end{gathered} \times 2$ pcs. $=24 \mathrm{~V}-4 \mathrm{~V} \times 2$ pcs.

Example: Power supply is 24 VDC
Voltage drop in switch is 4 V

AND connection for NPN output (performed with switches only)

The indicator lights will light up when both switches are turned ON.

2-wire with 2 switch OR connection

<Solid state switch> <Reed switch>
When two switches Because there is no current are connected in leakage, the load voltage parallel, malfunction will not increase when turmay occur because ned OFF. However, depenthe load voltage will ding on the number of switincrease when in ches in the ON state, the inthe OFF state. dicator lights may sometimes get dark or not light up, because of dispersion and reduction of the current flowing to the switches.

OR connection for NPN output

$$
=1 \mathrm{~mA} \times 2 \mathrm{pcs} . \times 3 \mathrm{k} \Omega
$$

$$
=6 \mathrm{~V}
$$

Example: Load impedance is $3 \mathrm{k} \Omega$
Leakage current from switch is 1 mA

Reed Switches: Direct Mounting Type D-A90(V), D-A93(V), D-A96(V) C ϵ

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smcworld.com.

Electrical entry: In-line

\triangle Caution

Precautions

(1) When securing the switch, be sure to use the fixing screws attached to the auto switch body. The switch may be damaged if screws other than specified ones are used.

Auto Switch Internal Circuits

Note) (1)The operating load is the induction load. (2) The wiring length to the load is 5 m or more. (3) The load voltage is 100 VAC

Under any of the above conditions, the life time of the contact may be shortened. Please use a contact protection box. (Please refer to page 19 for more information on the contact protection box.)

PLC: Programable Logic Controller			
D-A90, D-A90V (without indicator light)			
Auto switch part no.	D-A90, D-A90V		
Applicable load	IC circuit, Relay, PLC		
Load voltage	$24 \mathrm{~V}_{D C}^{A C}$ or less	$48 \mathrm{~V}_{\mathrm{DC}}^{A C}$ or less	$100 \mathrm{~V}_{\text {DC }}^{\text {AC }}$ or less
Max. load current	50 mA	40 mA	20 mA
Contact protection circuit	None		
Internal resistance	1Ω or less (Includes the lead wire length of 3 m)		
D-A93, D-A93V, D-A96, D-A96V (with indicator light)			
Auto switch part no.	D-A93, D-A93V		D-A96, D-A96V
Applicable load	Relay, PLC		IC circuit
Load voltage	24 VDC	100 VAC	4 to 8 VDC
Load current range and Max. load current	5 to 40 mA	5 to 20 mA	20 mA
Contact protection circuit	None		
Internal voltage drop	$\begin{aligned} & \text { D-A93 - 2.4 V or less (to } 20 \mathrm{~mA} \text {)/3 } \mathrm{V} \text { or less (to } 40 \mathrm{~mA} \text {) } \\ & \text { D-A93V - 2.7 } \mathrm{V} \text { or less } \end{aligned}$		0.8 V or less
Indicator light	Red LED lights when ON		

- Lead wire

D-A90(V), D-A93(V) - Oil proof heavy duty vinyl cable, ø2.7, $0.18 \mathrm{~mm}^{2} \times 2$ cores (brown, blue), 0.5 m D-A96(V) ——Oil proof heavy duty vinyl cable, $\varnothing 2.7,0.15 \mathrm{~mm}^{2} \times 3$ cores (brown, black, blue), 0.5 m Note 1) Refer to page 25 for reed switch common specifications.
Note 2) Refer to page 25 lead wire length.

Weight

Model	D-A90	D-A90V	D-A93	D-A93V	D-A96	D-A96V
Lead wire length 0.5 m	6	6	6	6	8	8
Lead wire length 3 m	30	30	30	30	41	41

Dimensions

D-A90, D-A93, D-A96

D-A90V, D-A93V, D-A96V

Solid State Switches/Direct Mounting Type D-M9N, D-M9P, D-M9B (E

Auto Switch Specifications

■:
For details about certified products conforming to international standards, visit us at www.smoworld.com.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Lead-free
- Use of lead wire compliant with UL standards (style 2844)

©Caution

 Operating PrecautionsWhen the cable sheath is stripped, confirm the stripping direction.
The insulator may be split or damaged depending on the direction.

Auto Switch Internal Circuit

D-M9P

PLC: Programable Logic Controller
D-M9 \square (with indicator light)

Switch model	D-M9N	D-M9P	D-M9B
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, Relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 VDC)
Load current	40 mA or less		2.5 to 40 mA
Internal voltage drop	0.8 V or less		4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC		0.8 mA or less
Indicator light	Red LED lights when ON		
$\begin{array}{cc}\text { - Lead wire } \cdots \cdots . & \text { Oil proof heavy duty vinyl cable: } 2.7 \times 3.2 \text { ellipse } \\ \text { D-M9B } & 0.15 \mathrm{~mm}^{2} \times 2 \text { cores } \\ \text { D-M9N, D-M9P } & 0.15 \mathrm{~mm}^{2} \times 3 \text { cores }\end{array}$			

Note 1) Refer to page 25 for solid state auto switch common specifications.
Note 2) Refer to page 25 for lead wire length.

Weight

Unit: g

Auto switch model		D-M9N	D-M9P	D-M9B
Lead wire length (m)	0.5	8	8	7
	3	41	41	38
	5	68	68	63

Dimensions

D-M9 \square
D-M9B, N, P

D-M9N, P (3-wire)

D-M9B (2-wire)

Solid State Switches: Direct Mounting Type D-M9NV, D-M9PV, D-M9BV

Auto Switch Specifications

Refer to www.smcworld.com for details of products compatible with overseas standards.

Grommet

2-wire load current is reduced (2.5 to 40 mA). Lead-free

- Use of lead wire compliant with UL standards (style 2844)
- 1.5 times the flexibility compared with conventional products (comparison with other SMC products)

©Caution

Operating Precautions
When the cable sheath is stripped, confirm the stripping direction.
The insulator may be split or damaged depending on the direction.

Auto Switch Internal Circuit

D-M9P, D-M9PV

D-M9B, D-M9BV

2-color Display Solid State Switches/ Direct Mounting Type D-M9NW(V), D-M9PW(V), D-M9BW(V) C E

Grommet

Auto Switch Internal Circuits

D-M9PW, M9PWV

D-M9BW, M9BWV

Indicator light/Display method

Auto Switch Specifications

For details about certified products conforming to international standards, visit us at www.smoworld.com.

PLC: Programable Logic Controller

D-M9 \square W, D-M9 \square WV (with indicator light)						
Auto switch part no.	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP			-
Applicable load	IC circuit, Relay, PLC				24 VD	relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)					
Current consumption	10 mA or less					-
Load voltage	28 VDC or less		-		24 VDC	to 28 VDC)
Load current	40 mA or less		80 mA or less		5 to	40 mA
Internal voltage drop	1.5 V or less(0.8 V or less at 10 mA load current)		0.8 V or less		4 V	or less
Leakage voltage	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 m	or less
Indicator light	Actuated position \qquad Red LED light up Optimum operating position. \qquad Green LED light up					
- Lead wire - Oil proof heavy duty vinyl cable, ø2.7, $0.15 \mathrm{~mm}^{2} \times 3$ cores (brown, black, blue), $0.18 \mathrm{~mm}^{2} \times 2$ cores (brown, blue), 0.5 m						
Note 1) Refer to page 25 for solid state switch common specifications.						

Weight

Auto switch model		D-M9NW(V)	D-M9PW(V)	D-M9BW(V)
Lead wire length (m)	0.5	7	7	7
	3	34	34	32
	5	56	56	52

Dimensions

D-M9■W

D-M9 $\square W V$

Mounting screw M $2.5 \times 4 \mathrm{I}$

Solid State Switches/Direct Mounting Type D-F8N, D-F8P, D-F8B (E

Auto Switch Specifications
For details about certified products conforming to international standards, visit us at www.smcworld.com.

Grommet

\triangle Caution

Precautions

When securing the switch, be sure to use the fixing screws attached to the auto switch body. The switch may be damaged if screws other than specified ones are used.

Auto Switch Internal Circuits

D-F8P

D-F8B

PLC: Programable Logic Controller

Auto switch part no.	D-F8N	D-F8P	D-F8B
Electrical entry direction	Perpendicular	Perpendicular	Perpendicular
Wiring type	3-wire		2-wire
Output type	NPN	PNP	-
Applicable load	IC circuit, 24 VDC relay, PLC		24 VDC relay, PLC
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)		-
Current consumption	10 mA or less		-
Load voltage	28 VDC or less	-	24 VDC (10 to 28 V)
Load current	40 mA or less	80 mA or less	2.5 to 40 mA
Internal voltage drop	1.5 V or less (0.8 V or less at 10 mA load current)	0.8 V or less	4 V or less
Leakage current	$100 \mu \mathrm{~A}$ or les	24 VDC	0.8 mA or less at 24 VDC
Indicator light	Red LED light when ON		

- Lead wire - Heavy duty oil resistant vinyl cable, ø2.7, 0.5 m

D-F8N, D-F8P $0.15 \mathrm{~mm}^{2} \times 3$ wire (Brown, Black, Blue)
D-F8B $\quad 0.18 \mathrm{~mm}^{2} \times 2$ wire (Brown, Blue)
Note 1) Refer to page 25 for solid state switch common specifications.
Note 2) Refer to page 25 for lead wire length.

Weight

Auto switch model		D-F8N	D-F8P	D-F8B
Lead wire length (m)	0.5	7	7	7
	3	32	32	32
	5	52	52	52

Dimensions

D-F8N, D-F8P, D-F8B

Series MSQ

Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by labels of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO $4414^{\text {Note } 1)}$, JIS B $8370^{\text {Note 2) }}$ and other safety practices.
! Caution: Operator error could result in injury or equipment damage. I 1
I
t. Warning: Operator error could result in serious injury or loss of life. I
ADanger: In extreme conditions, there is a possible result of serious injury or loss of life. I
I Danger: In extreme conditions, there is a possible result of serious injury or loss of life. !

Note 1) ISO 4414 : Pneumatic fluid power - General rules relating to systems
Note 2) JIS B 8370 : Pneumatic system axion

© Warning

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.
Since the products specified here are used in various operating conditions, their compatibility with the specific system must be based on specifications or after analysis and/or tests to meet your specific requirements. The expected performance and safety assurance will be the responsibility of the person who has determined the compatibility of the system. This person should continuously review the suitability of all items specified, referring to the latest catalogue information with a view to giving due consideration to any possibility of equipment failure when configuring a system.
2. Only trained personnel should operate pneumatically operated machinery and equipment.
Compressed air can be dangerous if handled incorrectly. Assembly, handling or maintenance of pneumatic systems should be performed by trained and experienced operators.

3. Do not service machinery/equipment or attempt to remove components until

 safety is confirmed.1. Inspection and maintenance of machinery/equipment should only be performed once measures to prevent falling or runaway of the driven object have been confirmed.
2. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
3. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc.
4. Contact SMC if the product is to be used in any of the following conditions:
5. Conditions and environments beyond the given specifications, or if product is used outdoors.
6. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, clutch and brake circuits in press applications, or safety equipment.
7. An application which has the possibility of having negative effects on people, property, or animals, and therefore requires special safety analysis.

Series MSQ
Rotary Table Precations 1
Be sure to read before handling.

Design

\triangle Warning

1. If the case involves load fluctuations, lifting or lowering operations or changes in frictional resistance, employ a safety design which allows for these factors.
Increases in operating speed can cause human injury as well as damage to equipment and machinery.
2. Install a protective cover when there is a risk of human injury.
If a driven object and moving parts of a cylinder pose a danger of human injury, design the structure to avoid contact with the human body.
3. Securely tighten all stationary parts and connected parts so that they will not become loose.
Especially when a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.
4. A deceleration circuit or shock absorber, etc., may be required.
When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In this case, the rigidity of the machinery should also be examined.
5. Consider a possible drop in operating pressure due to a power outage, etc.
When a cylinder is used in a clamping mechanism, there is a danger of work piece dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and/or human injury.
6. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by air pressure, electricity or hydraulics, etc.
7. When a speed controller is mounted as an exhaust throttle, employ a safety design which considers residual pressure.
If the air supply side is pressurized when there is no residual pressure on the exhaust side, operation will be abnormally fast and this can cause human injury as well as damage to equipment and machinery.
8. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused by operation of a rotary actuator when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.
9. Consider the action when operation is restarted after an emergency stop or abnormal stop. Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the rotary actuator has to be reset at the starting position, install safe manual control equipment.
10. Do not use the product as a shock absorbing mechanism.
If abnormal pressure or air leakage occurs, there may be a drastic loss of deceleration effectiveness, leading to a danger of human injury as well as damage to equipment and machinery.

Selection

\triangle Warning

1.Keep the speed setting within the product's allowable energy value.
Operation with the kinetic energy of the load exceeding the allowable value can cause damage to the product, leading to human injury as well as damage to equipment and machinery.
2. Provide a shock absorbing mechanism when kinetic energy applied to the product exceeds the allowable value.
Operation exceeding the allowable kinetic energy can cause damage to the product and lead to human injury and damage to equipment and machinery.
3. Do not perform stops or holding operations by containing air pressure inside the product. If intermediate stops are performed by containing air with a directional control valve when the product does not have an external stopping mechanism, the stopping position may not be held due to leakage, etc. This can cause human injury and damage to equipment and machinery.

\triangle Caution

1. Do not operate the product at low speeds which are below the prescribed speed adjustment range.
If operated at low speeds below the speed adjustment range, this may cause sticking and slipping or stopping of operation.
2. Do not apply external torque exceeds the product's rated output.
If external force is applied which exceeds the product's rated output, the product can be damaged.
3. Rotation end holding torque for double piston type.
With a double piston type product, if the internal piston is stopped by contact with the angle adjustment screw or cover, the holding torque at the rotation end is half the effective output.
4. When repeatability of the rotation angle is required, the load should be directly stopped externally.
The initial rotation angle may vary even in products equipped with angle adjustment.
5. Avoid operation with oil hydraulics

Operation with oil hydraulics can cause damage to the product.

Series MSQ
Rotary Table Precations 2
Be sure to read before handling.

Mounting

\triangle Warning

1. When angle adjustment is performed while applying pressure, make advance preparations to keep equipment from rotating any more than necessary.
When adjustment is performed with pressure applied, there is a possibility of rotation and dropping during adjustment depending on the mounting position of the equipment, etc. This can cause human injury and damage to equipment and machinery.
2. Do not loosen the angle adjustment screw above the adjustment range.
If the angle adjustment screw is loosened above the adjustment range, it may come out causing human injury and damage to equipment and machinery.
3. Do not allow external magnetism close to the product.
Since the auto switches used are types sensitive to magnetism, external magnetism in close proximity to the product can cause malfunction leading to human injury and damage to equipment and machinery.
4. Do not perform additional machining to the product.
Additional machining of the product can result in insufficient strength and cause damage to the product leading to human injury and damage to equipment and machinery.
5. Do not enlarge the fixed throttle on the piping port by reworking, etc.
If the bore is enlarged, rotation speed and impact force will increase, which can cause damage to the product leading to human injury and damage to equipment and machinery.
6. When using a shaft coupling, use one with a sufficient degree of freedom.
If a shaft coupling is used which does not have a sufficient degree of freedom, twisting will occur due to eccentricity, and this can cause malfunction and product damage leading to human injury and damage to equipment and machinery.
7.Do not apply loads to the rotary table exceeding the values shown on page 2 .
If loads exceeding the allowable values are applied to the product, this can cause malfunction and product damage leading to human injury and damage to equipment and machinery.
Precautions when using external stoppers
When the kinetic energy generated by the load exceeds the limit value of the actuator, an external shock absorbing mechanism must be provided to absorb the energy. The correct method for mounting external stopper is explained in the figure below.

\triangle Caution

1. Do not secure the body and strike the rotary table or secure the rotary table and strike the body, etc.
This can bend the rotary table and cause damage to the bearing. When installing a load, etc., on the rotary table, secure the rotary table.
2. Do not step directly on the rotary table or the equipment installed on the rotary table.
Stepping directly on the rotary table can cause damage to the rotary table and bearing, etc.
3. Operate products equipped with the angle adjustment function within the prescribed adjustment range.
Operation outside the adjustment range can cause malfunction and product damage. Refer to product specifications for the adjustment range of each product.
4. When connecting pipes, thoroughly clean the pipes and fittings by blowing with clean air.
5. When screwing together pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside the piping.
Also, when a pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Air Supply

\triangle Warning

1. Use clean air.

Do not use compressed air which includes chemicals, synthetic oils containing organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

\triangle Caution

1. Install air filters.

Install air filters at the upstream side of valves. The rated filtration should be $5 \mu \mathrm{~m}$ or finer.
2. Install an after cooler, air dryer or water separator (Drain catch), etc.
Air that includes excessive drainage may cause malfunction of rotary actuators and other pneumatic equipment. To prevent this, install an after cooler air dryer or water separator, etc.
3. Use the product within the specified range of fluid and ambient temperature.
Take measures to prevent freezing, since moisture in circuits may be frozen under $5^{\circ} \mathrm{C}$, and this can cause damage to seals and lead to malfunction.

Refer to SMC's "Best Pneumatic vol.4" catalogue for further details on compressed air quality.

Be sure to read before handling.

Operating Environment

\triangle Warning

1. Do not use in environments where there is a danger of corrosion.
Refer to the construction drawings regarding rotary actuator materials.
2. Do not use in dusty locations or where water and oil, etc., splash on the equipment.

Speed Adjustment

\triangle Warning

1. Perform speed adjustment gradually from the low speed side.
Speed adjustment from the high speed side can cause product damage leading to human injury and damage to equipment an machinery.

Caution

1. When operating at high speed with a large load weight, a large amount of energy is applied to the actuator and can cause damage.
Refer to the model selection on page 1 to find the proper operating time.
2. Do not machine the fixed orifice of the port to enlarge its size. If the fixed orifice size is enlarged, the actuator operating speed and impact force will increase and cause damage.

Lubrication

\triangle Caution

1. Use the product without lubrication.

This product is lubricated with grease at the factory, and further lubrication will result in a failure to meet the product's specifications.

Maintenance

\triangle Warning

1. Maintenance should be performed according to the procedure indicated in the instruction manual. Improper handling can cause damage and malfunction of equipment and machinery.
2. During maintenance, do not disassemble while the electric power and supply air are turned ON.
3. Conduct suitable function tests after the product has been disassembled for maintenance. Failure to test functions can result in inability to satisfy the product specifications.

Maintenance

\triangle Caution

1. For lubrication use the grease specified for each product.
Use of a lubricant other than that specified can cause damage to seals, etc.

Rotation Adjustment

\triangle Caution

1. As a standard feature, the rotary table is equipped with a rotation adjustment screw (adjustment bolt or shock absorber) that can be used to adjust the rotation. The table below shows the rotation adjustment per single rotation of the rotation adjustment screw. Please refer to following pages for the rotation direction, rotation angle and rotation angle range.

MSQ size1 to $7 \quad \rightarrow$ page 9
MSQ size10 to $200 \rightarrow$ page 14
MSQ with external shock absorber \rightarrow page 21
With adjustment bolt, With external shock absorber

Size	Rotation adjustment per single rotation of rotation adjustment screw
$\mathbf{1}$	8.2°
$\mathbf{2}$	10.0°
$\mathbf{3}$	10.9°
$\mathbf{7}$	10.2°
$\mathbf{1 0}$	10.2°
$\mathbf{2 0}$	7.2°
$\mathbf{3 0}$	6.5°
$\mathbf{5 0}$	8.2°
$\mathbf{7 0}$	7.0°
$\mathbf{1 0 0}$	6.1°
$\mathbf{2 0 0}$	4.9°

With external shock absorber

Size	Rotation adjustment per single rotation of rotation adjustment screw
$\mathbf{1 0}$	1.4°
$\mathbf{2 0}$	1.2°
$\mathbf{3 0}$	1.1°
$\mathbf{5 0}$	1.3°

The rotation adjustment range for the external shock absorber is $\pm 3^{\circ}$ at each rotation end. When adjusted beyond this range, note that the shock absorber's durability may decrease.
2. Series MSQ is equipped with a rubber bumper or shock absorber. Therefore, perform rotation adjustment in the pressurized condition (minimum operation pressure: 0.1 MPa or more for adjustment bolt and internal shock absorber types, and 0.2 MPa or more for external shock absorber type.)

Rotary Table Precations 4
Be sure to read before handling.

Shock Absorber

\triangle Caution

1. Refer to the table below for tightening torques of the shock absorber setting nut.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Tightening torque $\mathrm{N} \cdot \mathrm{m}$	1.67	3.14		10.8	23.5	62.8	

2. Never rotate the bottom screw of the shock absorber. (It is not an adjustment screw.) This may cause oil leakage.

3. When rotation of the rotary table with internal shock absorber is set at a value smaller than the table below, the piston stroke becomes smaller than the shock absorber's effective stroke and energy absorption capacity decreases.

Size	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
Minimum rotation without energy absorption capacity decrease	52°	43°	40°	60°	71°	62°	82°

4. Products with shock absorber are not designed to smooth stop but to absorb the kinetic energy of the load. If the load has to be stopped smoothly, a shock absorber of the optimum size meeting the operating conditions must be installed external to the equipment.
5. Shock absorbers are consumable parts. When a decrease in energy absorption capacity is noticed, it must be replaced.

With internal shock absorber

Size	Shock absorber model
10	RBA0805-X692
20	RBA1006-X692
$\mathbf{3 0}$	RBA1411-X692
$\mathbf{5 0}$	RBA2015-X821
$\mathbf{1 0 0}$	RBA2725-X821
200	

With external shock absorber

Size	Type	Shock absorber model
$\mathbf{1 0}$	For low energy	RB 0805
	For high energy	RB0806
$\mathbf{2 0}$	For low energy	RB1006
	For high energy	RB1007
$\mathbf{3 0}$	For low energy	RB1006
	For high energy	RB1007
$\mathbf{5 0}$	For low energy	RB1411
	For high energy	RB1412

External Shock Absorber

\triangle Caution

The threaded orifices shown below are not connecting ports. Never remove the plugs as this will cause malfunction.

Speed Controller and Fittings

\triangle Caution

Size 1, 2, and 3 use M3 x 0.5 piping ports. When connecting a speed controller or fittings directly, use the following series.

- Speed controller

AS12■1F/Elbow type
AS13 $\square 1 F /$ Universal type
-One-touch fitting
One-touch miniature fittings Series KJ

- Miniature fittings Series M3

Auto switch

\triangle Caution

In case of sizes 1, 2, 3 and 7, when 2 pieces of auto switches are installed in one switch groove, the minimum detectable rotation angles are as follows.

Size	Minimum detectable rotation
$\mathbf{1}$	25°
$\mathbf{2}$	25°
$\mathbf{3}$	20°
$\mathbf{7}$	20°

Maintenance and Inspection

\triangle Caution

Because sizes 1, 2, 3 and 7 require special tools, they cannot be disassembled.
Because sizes 10, 20, 30 and 50 have the table press fit into an angular type bearing, they cannot be disassembled.

Series MSQ
Auto Switch Precations 1
Be sure to read before handling.

Design and Selection

© Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for current load, voltage, temperature or impact.
2. Take precautions when multiple cylinders are used close together.
When multiple auto switch cylinders are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40 mm . (When the allowable separation is indicated for each cylinder series, use the specified value.)
3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.
When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$
\mathrm{V}(\mathrm{~mm} / \mathrm{s})=\frac{\text { Auto switch operating range }(\mathrm{mm})}{\text { Load operating time }(\mathrm{ms})} \times 1000
$$

4. Keep wiring as short as possible.
<Reed switch>
As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)
1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5 m or longer.
<Solid state switch>
2) Although wire length does not affect switch function, use wiring 100 m or shorter.
5. Take precautions for the internal voltage drop of the switch.

<Reed switch>

1) Switches with an indicator light (Except D-A96, A96V)

- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)
[The voltage drop will be " n " times larger when " n " auto switches are connected.]
Even though an auto switch operates normally, the load may not operate.

- In the same way, when operating under a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply
voltage
:---:
drop of switch
:---:
voltage of load

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model A90, A90V).
<Solid state switch>
3) Generally, the internal voltage drop will be greater with a 2-wire solid state auto switch than with a reed switch. Take the same precautions as in 1).
Also, note that a 12 VDC relay is not applicable.
6. Pay attention to leakage current.
<Solid state switch>
With a 2-wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.
Operating current of load
(Input OFF current in case of a controller) $>$ Leakage current
If the criteria given by the above formula are not met, it will not reset correctly (stays ON). Use a 3-wire switch if this specification will not be satisfied.
Moreover, leakage current flow to the load will be " n " times larger when " n " auto switches are connected in parallel.
7. Do not use a load that generates surge voltage.

<Reed switch>

If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switch>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid valve, which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.

9. Ensure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Series MSQ
Auto Switch Precations 2
Be sure to read before handling.

Mounting and Adjustment

© Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts ($300 \mathrm{~m} / \mathrm{s}^{2}$ or more for reed switches and $1000 \mathrm{~m} / \mathrm{s}^{2}$ or more for solid state switches) while handling.
Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.
2. Do not carry a cylinder by the auto switch lead wires.
Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.
3. Mount switches using the proper tightening torque.
When a switch is tightened beyond the range of tightening torque, the mounting screws mounting bracket or switch may be damaged. On the other hand, tightening below the range of tightening torque may allow the switch to slip out of position.
4. Mount a switch at the center of the operating range.
Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON). (The mounting positions shown in the catalog indicate the optimum positions at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation may be unstable.

Wiring

\triangle Warning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from repeatedly applying bending stress or stretching force to the lead wires.
2. Be sure to connect the load before power is applied.

<2-wire type>

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess current.
3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits containing auto switches may malfunction due to noise from these other lines.

Wiring

\triangle Warning

5.Do not allow short circuit of loads.

<Reed switch>
If the power is turned $O N$ with a load in a short circuit condition, the switch will be instantly damaged because of excess current flow into the switch.
<Solid state switch>
Model D-M9 \square (V), M9 $\square \mathrm{W}(\mathrm{V})$, D-M9 \square and all models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged, as in the case of reed switches.
Take special care to avoid reverse wiring with the brown [red] power supply line and the black [white] output line on 3-wire type switches.

6.Avoid incorrect wiring.

<Reed switch>
A 24 VDC switch with indicator light has polarity. The brown [red] lead wire is (+), and the blue [black] lead wire is (-).

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.
Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.
Applicable models: D-A93, A93V

<Solid state switch>

1) If connections are reversed on a 2-wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will be in a normally ON state.
However, note that the switch will be damaged if reversed connections are made while the load is in a short circuited condition.
2) If connections are reversed (power supply line + and power supply line -) on a 3-wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue [black] wire and the power supply line (-) is connected to the black [white] wire, the switch will be damaged.

* Lead wire colour changes

Lead wire colours of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.
Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colours.

2-wire			3-wire		
	Old	New		Old	New
Output (+)	Red	Brown	Power supply	Red	Brown
Output (-)	Black	Blue	GND	Black	Blue
			Output	White	Black
Solid state with diagnostic output			Solid state with latch type diagnostic output		
	Old	New		Old	New
Power supply	Red	Brown	Power supply	Red	Brown
GND	Black	Blue	GND	Black	Blue
Output	White	Black	Output	White	Black
Diagnostic output	Yellow	Orange	Latch type diagnostic output	Yellow	Orange

Series MSQ
Auto Switch Precations 3
Be sure to read before handling.

Operating Environment

Warning

1. Never use in an atmosphere of explosive gases.
The structure of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.
2. Do not use in an area where a magnetic field is generated.
Auto switches will malfunction or magnets inside cylinders will become demagnetized. (Consult SMC regarding the availability of a magnetic field resistant auto switch.)
3. Do not use in an environment where the auto switch will be continually exposed to water.
Although switches, except for some models, satisfy IEC standard IP67 construction (JIS C 0920: watertight construction), do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.
4. Do not use in an environment with oil or chemicals.
Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.
5. Do not use in an environment with temperature cycles.
Consult SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.
6. Do not use in environment where there is excessive impact shock.
<Reed switch>
When excessive impact ($300 \mathrm{~m} / \mathrm{s}^{2}$ or more) is applied to a reed switch during operation, the contact will malfunction and generate or cut off a signal momentarily (1 ms or less). Consult SMC regarding the need to use a solid state switch depending upon the environment.
7. Do not use in an area where surges are generated.
<Solid state switch>
When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to internal circuit elements of the switch. Avoid sources of surge generation and crossed lines.
8. Avoid accumulation of iron debris or close contact with magnetic substances.
When a large amount of ferrous debris such as machining chips or welding spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause auto switches to malfunction due to a loss of the magnetic force inside the cylinder.

Maintenance

. Warning

1.Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.

1) Securely tighten switch mounting screws.

If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
2) Confirm that there is no damage to lead wires.

To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
3) Confirm the lighting of the green light on a 2-colour display type switch.
Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights up.

Other

\triangle Warning

1. Consult SMC concerning water resistance, elasticity of lead wires and usage at welding sites, etc.

EUROPEAN SUBSIDIARIES:

SMC Pneumatik GmbH (Austria).
Girakstrasse 8, A-2100 Korneuburg
hone: +43 2262-62280, Fax: +43 2262-62285
E-mail: office@smc.a
http://www.smc.at

SMC Pneumatics N.V./S.A.
Nijverheidsstraat 20, B-2160 Wommelgem
Phone: +32 (0) $3-355-1464$, Fax: +32 (0) $3-355-1466$
E-mail: post@smcpneumatics.be
http://www.smcpneumatics.be

Bulgaria

SMC Industrial Automation Bulgaria EOOD 6 kliment Ohridski Blvd., fl. 13 BG-1517 Sofia
Phone:+359 2 9744492, Fax:+359 29744519
E-mail: office@smc.bg
http://www.smc.bg

SMC Industrijska automatika d.o.0
Crnomerec 12, 10000 ZAGREB
Phone: +385 137766 74, Fax: +385 13776674 E-mail: office@smc.hr
http://www.smceu.com

Czech Republic
SMC Industrial Automation CZ s.r.o
Hudcova 78a, CZ-61200 Brno
Phone: +420541424611, Fax: +42054121803
E-mail: office@smc.cz
http://www.smc.cz

Knudsminde 4B, DK-8300 Odde
Phone: +45 70252900, Fax: +45 70252901
E-mail: smc@smc-pneumatik.dk
http://www.smcdk.com

SMC Pneumatics Estonia OÜ
aki 12-101, 10621 Tallinn
Phone: +372 (0)6593540, Fax: +372 (0)6593541
E-mail: smc@smcpneumatics.ee
http://www.smcpneumatics.ee

SMC Pneumatics Finland OY
PL72, Tiistinniityntie 4, SF-02031 ESPOO
Phone: +358 (0)9-859 580, Fax: +358 (0)9-8595 8595 E-mail: smcfi@smc.fi
http://www.smc.fi

SMC Pneumatik GmbH
Boschring 13-15, D-63329 Egelsbach
Phone: +49 (0)6103-4020, Fax: +49 (0)6103-402139
E-mail: info@smc-pneumatik.de
http://www.smc-pneumatik.de

Greece

S. Parianopoulus S.A

7, Konstantinoupoleos Street, GR-11855 Athens Phone: +30 (0)1-3426076, Fax: $+30(0) 1-3455578$
E-mail: parianos@hol.gr
ttp://www.smceu.com

SMC Hungary Ipari Automatizálási Kft.
Budafoki ut 107-113, H-1117 Budapest
Phone: +36 1371 1343, Fax: +36 13711344
E-mail: office@smc-automation.hu
http://www.smc-automation.hu

Ireland
SMC Pneumatics (Ireland) Ltd 002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin Phone: +353 (0) 1-403 9000, Fax: +353 (0) 1-464-0500 E-mail: sales@smcpneumatics.ie
http://www.smcpneumatics.ie

SMC Italia S.p.A
Via Garibaldi 62, I-20061Carugate, (Milano)
hone: +39 (0)2-92711, Fax: +39 (0)2-9271365
E-mail: mailbox@smcitalia.it
http://www.smcitalia.it

SMC Pneumatics Latvia SIA
Smerla 1-705, Riga LV-1006, Latvia
hone: +371 (0)777-94-74, Fax: +371 (0)777-94-75
E-mail: info@smclv.lv
http://www.smclv.lv

Lithuania

JAB Ottensten Lietuva

Savanoriu pr. 180, LT-2600 Vilnius, Lithuania
Phone/Fax: +370-2651602

SMC Pneumatics BV
De Ruyterkade 120, NL-1011 AB Amsterdam
Phone: +31 (0)20-5318888, Fax: +31 (0)20-5318880
E-mail: info@smcpneumatics.nl
http://www.smcpneumatics.nl

SMC Pneumatics Norway A/S
Vollsveien 13 C, Granfos Næringspark N-1366 Lysaker Tel: +4767129020, Fax: +4767129021
E-mail: post@smc-norge.no
http://www.smc-norge.no

Poland

SMC Industrial Automation Polska Sp.z.o.o ul. Konstruktorska 11A, PL-02-673 Warszawa, Phone: +48 22548 5085, Fax: +48 225485087 E-mail: office@smc.pl
http://www.smc.pl

(1) Portuga

SMC Sucursal Portugal, S.A.
Rua de Eng ${ }^{\circ}$ Ferreira Dias 452, 4100-246 Porto Phone: +351 22-610-89-22, Fax: +351 22-610-89-36
E-mail: postpt@smc.smces.es
http://www.smces.es

SMC Romania srl
Str Frunzei 29, Sector 2, Bucharest Phone: +40 213205111, Fax: +40 213261489 E-mail: smccadm@canad.ro http://www.smcromania.ro

SMC Pneumatik LLC
36/40 Sredny pr. St. Petersburg 199004
Phone.:+812 118 5445, Fax:+812 1185449
E-mail: smcfa@peterlink.ru
http://www.smc-pneumatik.ru

\ddagger Slovakia

SMC Priemyselná Automatizáciá, s.r.o.
Námestie Martina Benku 10, SK-81107 Bratislava
Phone: +421244456725, Fax: +421244456028
E-mail: office@smc.sk
http://www.smc.sk

Slovenia
SMC industrijska Avtomatika d.o.o.
Grajski trg 15, SLO-8360 Zuzemberk
Phone: +38673885240 Fax: +38673885249
E-mail: office@smc-ind-avtom.si
http://www.smc-ind-avtom.si

SMC España, S.A.
Zuazobidea 14, 01015 Vitoria
Phone: +34 945-184 100, Fax: +34 945-184 124 E-mail: post@smc.smces.es http://www.smces.es

SMC Pneumatics Sweden AB Ekhagsvägen 29-31, S-141 71 Huddinge Phone: +46 (0) 8-603 1200 , Fax: +46 (0) $8-6031290$ E-mail: post@smcpneumatics.se http://www.smc.nu

SMC Pneumatik AG
Dorfstrasse 7, CH-8484 Weisslingen Phone: +41 (0)52-396-3131, Fax: +41 (0)52-396-3191
E-mail: info@smc.ch
http://www.smc.ch

Entek Pnömatik San. ve Tic Ltd. Sti.
Perpa Tic. Merkezi Kat: 11 No: 1625 , TR-80270 Okmeydani Istanbul Phone: +90 (0)212-221-1512, Fax: +90 (0)212-221-1519 E-mail: smc-entek@entek.com.tr http://www.entek.com.tr

NLIT UK

SMC Pneumatics (UK) Ltd
Vincent Avenue, Crownhill, Milton Keynes, MK8 0AN Phone: +44 (0)800 1382930 Fax: +44 (0) 1908-555064
E-mail: sales@smcpneumatics.co.uk
http://www.smcpneumatics.co.uk

OTHER SUBSIDIARIES WORLDWIDE:

ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, INDONESIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA, TAIWAN, THAILAND, USA, VENEZUELA

[^0]: *23 The hexagon socket head set screws are tightened at different positions

[^1]: Note) Values above do not include auto switch weights.

