

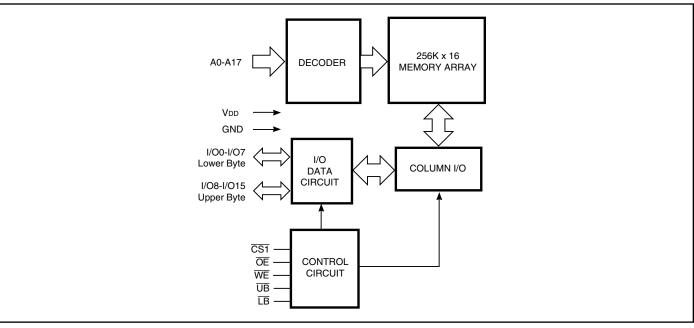
# 256K x 16 LOW VOLTAGE, ULTRA LOW POWER CMOS STATIC SRAM

#### **JUNE 2011**

#### **FEATURES**

- High-speed access time: 55ns, 70ns
- CMOS low power operation
   36 mW (typical) operating
   9 µW (typical) CMOS standby
- TTL compatible interface levels
- Single power supply 1.65V--2.2V VDD (IS62WV25616ALL) 2.5V--3.6V VDD (IS62WV25616BLL)
- Fully static operation: no clock or refresh required
- Three state outputs
- Data control for upper and lower bytes
- Industrial temperature available
- · Lead-free available

#### FUNCTIONAL BLOCK DIAGRAM


# DESCRIPTION

The *ISSI* IS62WV25616ALL/IS62WV25616BLL are highspeed, low power, 4M bit SRAMs organized as 256K words by 16 bits. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When  $\overline{CS1}$  is HIGH (deselected) or when  $\overline{CS1}$  is LOW and both  $\overline{LB}$  and  $\overline{UB}$  are HIGH, the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs. The active LOW Write Enable ( $\overline{WE}$ ) controls both writing and reading of the memory. A data byte allows Upper Byte ( $\overline{UB}$ ) and Lower Byte ( $\overline{LB}$ ) access.

The IS62WV25616ALL/IS62WV25616BLL are packaged in the JEDEC standard 44-Pin TSOP (TYPE II) and 48-pin mini BGA (6mmx8mm).



Copyright © 2011 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and

c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. E 06/03/2011



#### PIN CONFIGURATIONS 48- ball mini BGA (6mm x 8mm) (Package Code B)

|                                      | 1 | 2 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 | 6                                              |  |
|--------------------------------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------|--|
| A<br>B<br>C<br>D<br>E<br>F<br>G<br>H |   |   | $ \begin{array}{c} \hline & \hline & \hline \\ & \hline & \hline \\ & \hline & \hline \\ \\ \\ & \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$ | $ \begin{array}{c} (A) \\ (A) $ |   | (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3 |  |

### 44-Pin mini TSOP (Type II) (Package Code T)

| A4 🗖 1    | 44 🗖 A5    |
|-----------|------------|
| A3 🗖 2    | 43 🗖 A6    |
| A2 🗖 3    | 42 🗖 A7    |
| A1 🗖 4    | 41 🗖 ŌE    |
| A0 🗖 5    | 40 🗖 ŪB    |
|           | 39 🗖 LB    |
| 1/00 🗖 7  | 38 🗖 I/O15 |
| I/O1 🗖 8  | 37 🗖 I/O14 |
| I/O2 🗖 9  | 36 🗖 I/O13 |
| I/O3 🗖 10 | 35 🗖 1/012 |
| VDD 🗖 11  | 34 🗖 GND   |
| GND 🔲 12  | 33 🗖 Vdd   |
| I/O4 🔲 13 | 32 🔲 I/O11 |
| I/O5 🔲 14 | 31 🔲 I/O10 |
| I/O6 🔲 15 | 30 🔲 1/O9  |
| I/O7 🔲 16 | 29 🔲 1/08  |
| WE 17     | 28 🔲 NC    |
| A16 🔲 18  | 27 🔲 A8    |
| A15 🔲 19  | 26 🔲 A9    |
| A14 20    | 25 A10     |
| A13 21    | 24 A11     |
| A12 22    | 23 🗖 A17   |
|           |            |
|           |            |

### **PIN DESCRIPTIONS**

| A0-A17     | Address Inputs                  |
|------------|---------------------------------|
| I/O0-I/O15 | Data Inputs/Outputs             |
| CS1        | Chip Enable Input               |
| ŌĒ         | Output Enable Input             |
| WE         | Write Enable Input              |
| LB         | Lower-byte Control (I/O0-I/O7)  |
| UB         | Upper-byte Control (I/O8-I/O15) |
| NC         | No Connection                   |
| Vdd        | Power                           |
| GND        | Ground                          |



#### TRUTH TABLE

|                 |    |     |    |    |    | I/O PIN                          |
|-----------------|----|-----|----|----|----|----------------------------------|
| Mode            | WE | CS1 | OE | LB | UB | I/O0-I/O7 I/O8-I/O15 VDD Current |
| Not Selected    | Х  | Н   | Х  | Х  | Х  | High-Z High-Z ISB1, ISB2         |
|                 | Х  | Х   | Х  | Н  | н  | High-Z High-Z ISB1, ISB2         |
| Output Disabled | Н  | L   | Н  | L  | Х  | High-Z High-Z Icc                |
|                 | Н  | L   | н  | Х  | L  | High-Z High-Z Icc                |
| Read            | Н  | L   | L  | L  | Н  | Dout High-Z Icc                  |
|                 | Н  | L   | L  | Н  | L  | High-Z Dout                      |
|                 | Н  | L   | L  | L  | L  | Dout Dout                        |
| Write           | L  | L   | Х  | L  | Н  | DIN High-Z Icc                   |
|                 | L  | L   | Х  | Н  | L  | High-Z DIN                       |
|                 | L  | L   | Х  | L  | L  | Din Din                          |

#### ABSOLUTE MAXIMUM RATINGS<sup>(1)</sup>

| Symbol | Parameter                            | Value           | Unit |  |
|--------|--------------------------------------|-----------------|------|--|
| VTERM  | Terminal Voltage with Respect to GND | -0.2 to VDD+0.3 | V    |  |
| Vdd    | VDD Related to GND                   | -0.2 to VDD+0.3 | V    |  |
| Тѕтс   | Storage Temperature                  | -65 to +150     | °C   |  |
| P⊤     | Power Dissipation                    | 1.0             | W    |  |

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

#### **OPERATING RANGE (VDD)**

| Range      | Ambient Temperature | IS62WV25616ALL | IS62WV25616BLL |
|------------|---------------------|----------------|----------------|
| Commercial | 0°C to +70°C        | 1.65V - 2.2V   | 2.5V-3.6V      |
| Industrial | –40°C to +85°C      | 1.65V - 2.2V   | 2.5V-3.6V      |

#### DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

| Symbol      | Parameter           | Test Conditions                         | Vdd             | Min. | Max.      | Unit |
|-------------|---------------------|-----------------------------------------|-----------------|------|-----------|------|
| Vон         | Output HIGH Voltage | Іон = -0.1 mA                           | 1.65-2.2V       | 1.4  | _         | V    |
|             |                     | Iон = -1 mA                             | 2.5-3.6V        | 2.2  |           | V    |
| Vol         | Output LOW Voltage  | lo∟ = 0.1 mA                            | 1.65-2.2V       |      | 0.2       | V    |
|             |                     | lo∟ = 2.1 mA                            | 2.5-3.6V        |      | 0.4       | V    |
| Vін         | Input HIGH Voltage  |                                         | 1.65-2.2V       | 1.4  | VDD + 0.2 | V    |
|             |                     |                                         | 2.5-3.6V        | 2.2  | VDD + 0.3 | V    |
| $VIL^{(1)}$ | Input LOW Voltage   |                                         | 1.65-2.2V       | -0.2 | 0.4       | V    |
|             |                     |                                         | 2.5-3.6V        | -0.2 | 0.8       | V    |
| lu          | Input Leakage       | $GND \leq V \text{in} \leq V \text{dd}$ |                 | -1   | 1         | μA   |
| Ilo         | Output Leakage      | $GND \le VOUT \le VDD, O$               | utputs Disabled | -1   | 1         | μA   |

**Notes:** 1. V<sub>IL</sub> (min.) = -1.0V for pulse width less than 10 ns.



| Symbol | Parameter                               | Test Conditions                                                                                                                                                                                                                                                                   |              | Max.<br>70   | Unit |
|--------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------|
| lcc    | VDD Dynamic Operating<br>Supply Current | $V_{DD} = Max.,$<br>lout = 0 mA, f = fmax                                                                                                                                                                                                                                         | Com.<br>Ind. | 25<br>30     | mA   |
| Icc1   | Operating Supply<br>Current             | $\frac{V_{DD} = Max., CS1 = 0.2V}{WE = V_{DD} = 0.2V}$<br>f=1MHz                                                                                                                                                                                                                  | Com.<br>Ind. | 10<br>10     | mA   |
| ISB1   | TTL Standby Current<br>(TTL Inputs)     | $\label{eq:VDD} \begin{array}{l} V_{DD} = Max., \\ V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ \hline \hline CS1 = V_{IH} \mbox{ , } f = 1 \mbox{ MHz} \\ \hline \textbf{OR} \end{array}$                                                                                               | Com.<br>Ind. | 0.35<br>0.35 | mA   |
|        | ULB Control                             | $\frac{V_{DD}}{CS1} = Max., V_{IN} = V_{IH} \text{ or } V_{I}$ $\frac{V_{DD}}{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH},$                                                                                                                                                      |              |              |      |
| ISB2   | CMOS Standby<br>Current (CMOS Inputs)   | $\label{eq:VDD} \begin{split} & \frac{V_{\text{DD}} = \text{Max.}, \\ \hline & \overline{CS1} \geq V_{\text{DD}} - 0.2\text{V}, \\ & V_{\text{IN}} \geq V_{\text{DD}} - 0.2\text{V}, \text{ or} \\ & V_{\text{IN}} \leq 0.2\text{V}, \ f = 0 \\ \hline & \textbf{OR} \end{split}$ | Com.<br>Ind. | 15<br>15     | μΑ   |
|        | ULB Control                             | $\label{eq:VDD} \begin{array}{l} V_{DD} = Max., \ \overline{CS1} = V_{IL}, \\ V_{IN} \leq 0.2V, \ f = 0; \ \overline{UB} \ / \ \overline{LB} = 0 \end{array}$                                                                                                                     | = Vdd – 0.2V |              |      |

#### **IS62WV25616ALL**, **POWER SUPPLY CHARACTERISTICS**<sup>(1)</sup> (Over Operating Range)

# IS62WV25616BLL, POWER SUPPLY CHARACTERISTICS<sup>(1)</sup> (Over Operating Range)

| Symbol | Parameter             | Test Conditions                                                                                                                                                             |                     | Max.<br>55 | Max.<br>70 | Unit |
|--------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|------------|------|
| lcc    | VDD Dynamic Operating | VDD = Max.,                                                                                                                                                                 | Com.                | 40         | 35         | mA   |
|        | Supply Current        | IOUT = 0 mA, f = fMAX                                                                                                                                                       | Ind.                | 45         | 40         |      |
| Icc1   | Operating Supply      | $V_{DD} = Max., \overline{CS1} = 0.2V$                                                                                                                                      | Com.                | 15         | 15         | mA   |
|        | Current               | WE = Vdd-0.2V<br>f=1мнz                                                                                                                                                     | Ind.                | 15         | 15         |      |
| ISB1   | TTL Standby Current   | VDD = Max.,                                                                                                                                                                 | Com.                | 0.35       | 0.35       | mA   |
|        | (TTL Inputs)          | $\frac{V_{IN} = V_{IH} \text{ or } V_{IL}}{CS1} = V_{IH}, f = 1 \text{ MHz}$<br>OR                                                                                          | Ind.                | 0.35       | 0.35       |      |
|        | ULB Control           | $\frac{V_{DD} = Max., V_{IN} = V_{IH} \text{ or } V}{\overline{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH}}$                                                               |                     |            |            |      |
| ISB2   | CMOS Standby          | Vdd = Max.,                                                                                                                                                                 | Com.                | 15         | 15         | μA   |
|        | Current (CMOS Inputs) | $\overline{\text{CS1}} \ge \text{V}_{\text{DD}} - 0.2\text{V},$                                                                                                             | Ind.                | 15         | 15         |      |
|        |                       | $\label{eq:VIN} \begin{array}{l} V_{\text{IN}} \geq V_{\text{DD}} - 0.2 \text{V} \text{, or} \\ V_{\text{IN}} \leq 0.2 \text{V} \text{, } f = 0 \\ \textbf{OR} \end{array}$ | typ. <sup>(1)</sup> | 3          |            |      |
|        | ULB Control           | $\label{eq:VDD} \begin{array}{l} V_{DD} = Max., \ \overline{CS1} = V_{\text{IL}}, \\ V_{\text{IN}} \leq 0.2V, \ f = 0; \ \overline{UB} \ / \ \overline{LB} = 0 \end{array}$ | = Vdd - 0.2V        |            |            |      |

#### Note:

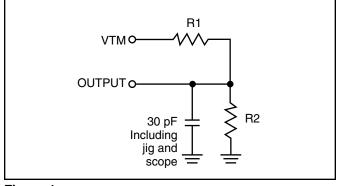
1. Typical values are measured at VDD = 3.0V, TA = 25°C. Not 100% tested.



### CAPACITANCE<sup>(1)</sup>

| Symbol | Parameter                | Conditions    | Max. | Unit |
|--------|--------------------------|---------------|------|------|
| Cin    | Input Capacitance        | $V_{IN} = 0V$ | 8    | pF   |
| Соит   | Input/Output Capacitance | Vout = 0V     | 10   | pF   |

Note:


1. Tested initially and after any design or process changes that may affect these parameters.

#### **ACTEST CONDITIONS**

| Parameter                                      | IS62WV25616ALL<br>(Unit) | IS62WV25616BLL<br>(Unit) |  |
|------------------------------------------------|--------------------------|--------------------------|--|
| Input Pulse Level                              | 0.4V to VDD-0.2V         | 0.4V to VDD-0.3V         |  |
| Input Rise and Fall Times                      | 5 ns                     | 5ns                      |  |
| Input and Output Timing<br>and Reference Level | Vref                     | VREF                     |  |
| Output Load                                    | See Figures 1 and 2      | See Figures 1 and 2      |  |

|               | IS62WV25616ALL | IS62WV25616BLL |
|---------------|----------------|----------------|
|               | 1.65V-2.2V     | 2.5V - 3.6V    |
| <b>R1(</b> Ω) | 3070           | 3070           |
| <b>R2(</b> Ω) | 3150           | 3150           |
| VREF          | 0.9V           | 1.5V           |
| Vтм           | 1.8V           | 2.8V           |

#### AC TEST LOADS



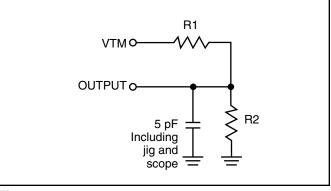


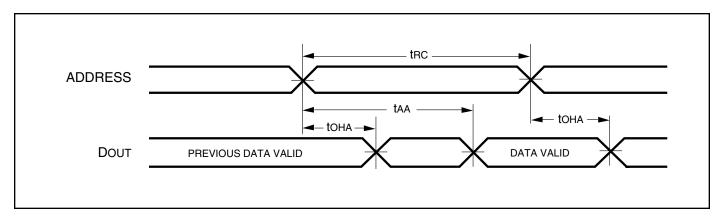



Figure 2

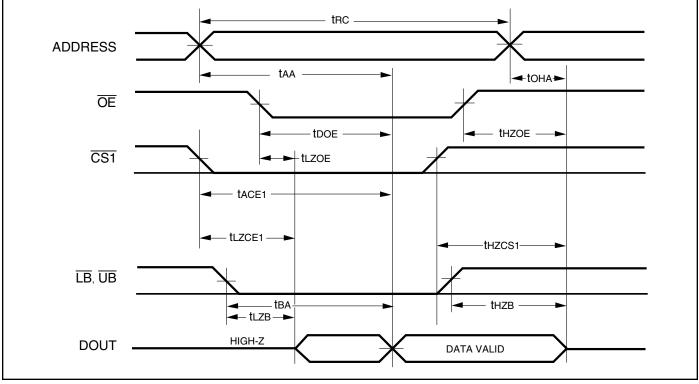
|                      |                                                                  | 55 ns |      | 70 n | 70 ns |      |
|----------------------|------------------------------------------------------------------|-------|------|------|-------|------|
| Symbol               | Parameter                                                        | Min.  | Max. | Min. | Max.  | Unit |
| <b>t</b> RC          | Read Cycle Time                                                  | 55    | —    | 70   |       | ns   |
| taa                  | Address Access Time                                              |       | 55   | _    | 70    | ns   |
| tона                 | Output Hold Time                                                 | 10    | _    | 10   | _     | ns   |
| t <sub>ACS1</sub>    | CS1 Access Time                                                  | _     | 55   | —    | 70    | ns   |
| <b>t</b> DOE         | OE Access Time                                                   |       | 25   | _    | 35    | ns   |
| thzoe <sup>(2)</sup> | OE to High-Z Output                                              | —     | 20   | —    | 25    | ns   |
| tlzoe <sup>(2)</sup> | OE to Low-Z Output                                               | 5     | _    | 5    | _     | ns   |
| tHZCS1               | CS1 to High-Z Output                                             | 0     | 20   | 0    | 25    | ns   |
| tLZCS1               | CS1 to Low-Z Output                                              | 10    | _    | 10   | _     | ns   |
| tва                  | LB, UB Access Time                                               |       | 55   |      | 70    | ns   |
| tнzв                 | $\overline{\text{LB}}$ , $\overline{\text{UB}}$ to High-Z Output | 0     | 20   | 0    | 25    | ns   |
| tlzв                 | $\overline{LB}$ , $\overline{UB}$ to Low-Z Output                | 0     | _    | 0    |       | ns   |

#### **READ CYCLE SWITCHING CHARACTERISTICS**<sup>(1)</sup> (Over Operating Range)

Notes:


1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.

2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.




### **AC WAVEFORMS**

### **READ CYCLE NO. 1**<sup>(1,2)</sup> (Address Controlled) ( $\overline{CS1} = \overline{OE} = V_{IL}, \overline{WE} = V_{IH}, \overline{UB} \text{ or } \overline{LB} = V_{IL}$ )



### READ CYCLE NO. 2<sup>(1,3)</sup> (CS1, OE, AND UB/LB Controlled)



#### Notes:

1. WE is HIGH for a Read Cycle.

2. The device is continuously selected.  $\overline{OE}$ ,  $\overline{CS1}$ ,  $\overline{UB}$ , or  $\overline{LB} = V_{IL}$ .  $\overline{WE} = V_{IH}$ .

3. Address is valid prior to or coincident with  $\overline{\text{CS1}}$  LOW transition.

| WRITE CYCLE SWITCHING CHARACTERISTICS <sup>(1,2)</sup> (Over Opera | ating Range) |
|--------------------------------------------------------------------|--------------|
|--------------------------------------------------------------------|--------------|

|                      |                                                                       | 55 ns |      | 70 ns |      |      |
|----------------------|-----------------------------------------------------------------------|-------|------|-------|------|------|
| Symbol               | Parameter                                                             | Min.  | Max. | Min.  | Max. | Unit |
| twc                  | Write Cycle Time                                                      | 55    | —    | 70    | —    | ns   |
| tscs1                | CS1 to Write End                                                      | 45    | _    | 60    | —    | ns   |
| taw                  | Address Setup Time to Write End                                       | 45    | —    | 60    | —    | ns   |
| tна                  | Address Hold from Write End                                           | 0     | _    | 0     | _    | ns   |
| <b>t</b> sa          | Address Setup Time                                                    | 0     | _    | 0     | —    | ns   |
| tрwв                 | $\overline{\text{LB}}$ , $\overline{\text{UB}}$ Valid to End of Write | 45    | _    | 60    |      | ns   |
| <b>t</b> PWE         | WE Pulse Width                                                        | 40    | _    | 50    | _    | ns   |
| <b>t</b> sd          | Data Setup to Write End                                               | 25    | _    | 30    | _    | ns   |
| <b>t</b> hd          | Data Hold from Write End                                              | 0     | _    | 0     | _    | ns   |
| thzwe <sup>(3)</sup> | WE LOW to High-Z Output                                               | _     | 20   |       | 20   | ns   |
| tlzwe <sup>(3)</sup> | WE HIGH to Low-Z Output                                               | 5     | _    | 5     | _    | ns   |

#### Notes:

1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4V to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.
The internal write time is defined by the overlap of CS1 LOW and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one

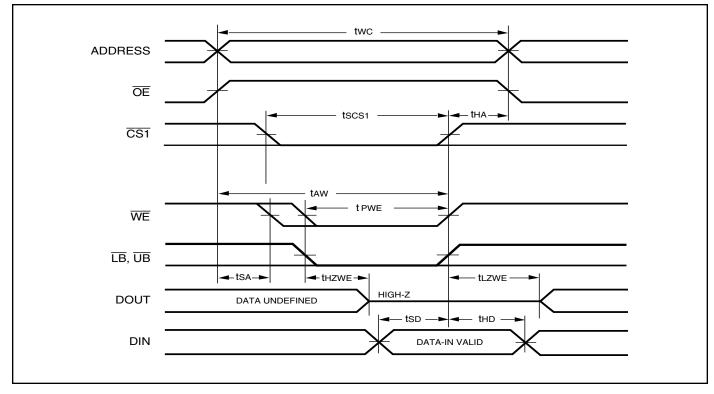
can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.



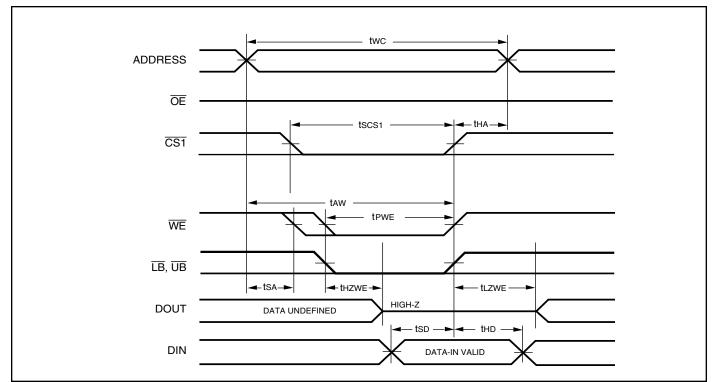
### **AC WAVEFORMS**

#### twc ADDRESS tHA tSCS1 CS1 tAW **t**PWE WE tpwb LB, UB −tSA ← tHZWE → **t**LZWE HIGH-Z DOUT DATA UNDEFINED - tSD **t**HD DATA-IN VALID DIN


WRITE CYCLE NO.  $1^{(1,2)}$  ( $\overline{CS1}$  Controlled,  $\overline{OE}$  = HIGH or LOW)

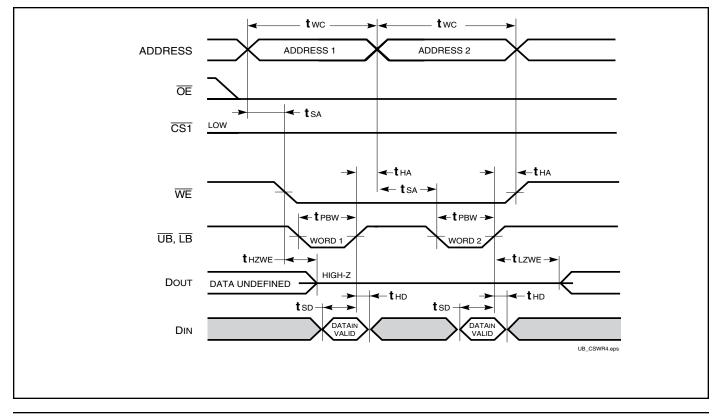
#### Notes:

1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the CS1 and WE inputs and at least one of the LB and UB inputs being in the LOW state.


2. WRITE =  $(\overline{CS1}) [(\overline{LB}) = (\overline{UB})^{\cdot}] (\overline{WE}).$ 





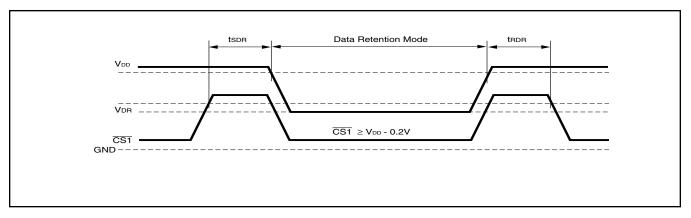

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. E 06/03/2011





# WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

### WRITE CYCLE NO. 4 (UB/LB Controlled)






| Symbol       | Parameter                 | Test Condition                                    | Min. | Max. | Unit |
|--------------|---------------------------|---------------------------------------------------|------|------|------|
| Vdr          | VDD for Data Retention    | See Data Retention Waveform                       | 1.2  | 3.6  | V    |
| Idr          | Data Retention Current    | $V_{DD} = 1.2V, \overline{CS1} \ge V_{DD} - 0.2V$ | —    | 15   | μA   |
| <b>t</b> sdr | Data Retention Setup Time | See Data Retention Waveform                       | 0    | _    | ns   |
| <b>t</b> rdr | Recovery Time             | See Data Retention Waveform                       | trc  | _    | ns   |

# DATA RETENTION SWITCHING CHARACTERISTICS

# DATA RETENTION WAVEFORM (CS1 Controlled)





### **ORDERING INFORMATION**

#### IS62WV25616ALL (1.65V-2.2V)

### Commercial Range: 0°C to +70°C

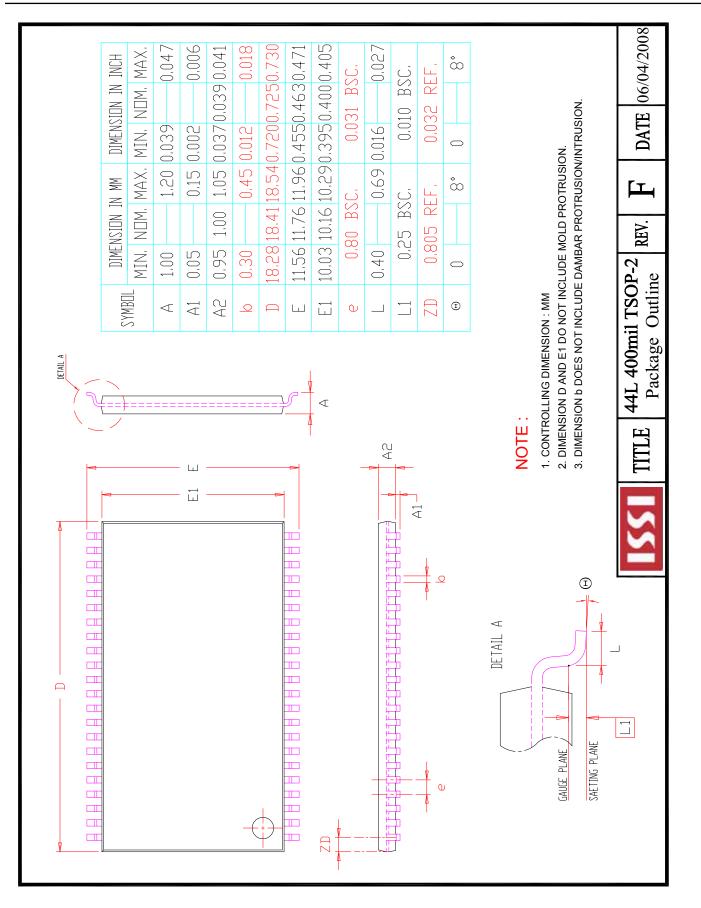
| Speed (ns) | Order Part No.     | Package |
|------------|--------------------|---------|
| 70         | IS62WV25616ALL-70T | TSOP    |

#### Industrial Range: -40°C to +85°C

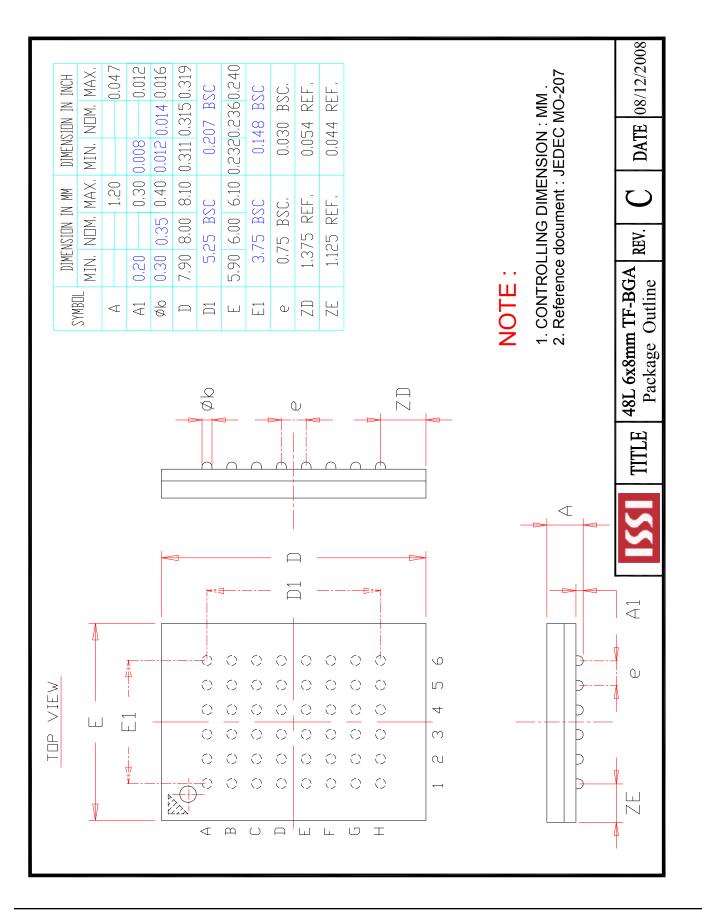
| Speed (ns) | Order Part No.      | Package            |
|------------|---------------------|--------------------|
| 70         | IS62WV25616ALL-70TI | TSOP               |
| 70         | IS62WV25616ALL-70BI | mini BGA (6mmx8mm) |

#### IS62WV25616BLL (2.5V - 3.6V)

#### Commercial Range: 0°C to +70°C


| Speed (ns) | Order Part No.     | Package |
|------------|--------------------|---------|
| 55         | IS62WV25616BLL-55T | TSOP    |
| 70         | IS62WV25616BLL-70T | TSOP    |

#### Industrial Range: -40°C to +85°C


| Speed (ns) | Order Part No.       | Package                       |
|------------|----------------------|-------------------------------|
| 55         | IS62WV25616BLL-55TI  | TSOP                          |
| 55         | IS62WV25616BLL-55TLI | TSOP, Lead-free               |
| 55         | IS62WV25616BLL-55BI  | mini BGA (6mmx8mm)            |
| 55         | IS62WV25616BLL-55BLI | mini BGA (6mmx8mm), Lead-free |



# IS62WV25616ALL, IS62WV25616BLL



#### Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. E 06/03/2011



