

WW25P, WW20P, WW12P

±1%, ±5%

Thick Film High Power Low Ohm Chip Resistors

Size 2512 2W, 2010 1W, 1206 1/2W

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High power rating and compact size
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. RoHS compliant and lead free products.

APPLICATION

- Power supply
- PDA
- Digital meter
- Computer
- Automotives
- Battery charger
- DC-DC power converter

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead free) alloy.

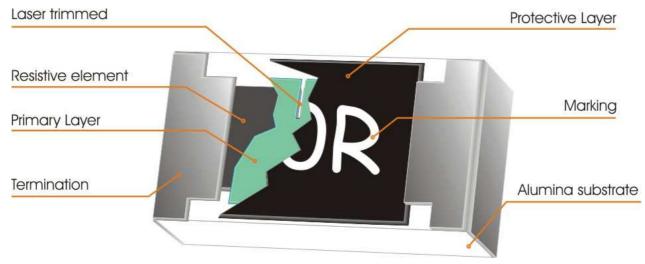
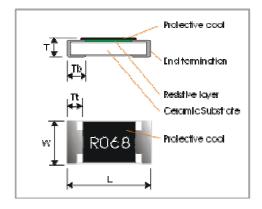


Fig 1. Construction of Chip-R

QUICK REFERENCE DATA

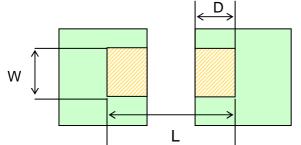
Item	General Specification			
Series No.	WW25P	WW20P	WW12P	
Size code	2512 (6432)	2010 (5025)	1206 (3216)	
Resistance Tolerance	±1%, ±5%			
Resistance Range	0.040Ω ~	$0.020\Omega \sim 0.976\Omega$		
TCR (ppm/°C) 100mohm ~ 976mohm 47mohm ~ 97.6mohm 20 mohm ~ 43mohm	±100ppm ±150ppm ±200ppm	±100ppm ±150ppm ±200ppm	±100ppm ±200ppm ±1000ppm	
Max. dissipation at T _{amb} =70°C	2 W	1 W	1/2 W	
Max. Operation Voltage	300V	200V	200V	
Max. Overload Voltage	500V	400V	400V	
Climatic category (IEC 60068)		55/155/56		

Note :


1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"

2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{Rated Power \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.


- 3. 2W loading with total solder-pad and trace size of 300 mm²
- 4. Resistance value will be changed by soldering condition and design of soldering pad, please design products in consideration of this change of resistance value.

MECHANICAL DATA

Unit: mm						
Symbol	WW25P	WW20P	WW12P			
L	6.30 ± 0.20	5.00 ± 0.20	$\textbf{3.10} \pm \textbf{0.15}$			
W	3.10 ± 0.20	2.50 ± 0.20	1.60 ± 0.15			
Т	0.60 ± 0.15	0.60 ± 0.10	0.55 ± 0.10			
Tt	0.60 ± 0.25	0.60 ± 0.25	0.50 ± 0.25			
Tb	1.80 ± 0.25	0.60 ± 0.25	0.50 ± 0.25			

Recommended Solder Pad Dimensions

Туре	W	D	L
WW25P	3.7mm	2.45mm	7.6mm

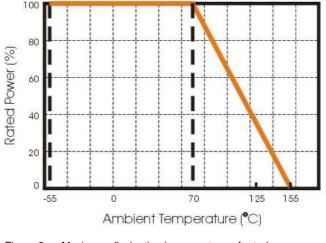
MARKING

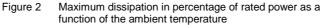
Each resistor is marked with a four-digit code on the protective coating to designate the nominal resistance value.

Example:

$$R100 = 0.100\Omega$$

 $R910 = 0.910\Omega$


FUNCTIONAL DESCRIPTION


Product characterization

Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of $\pm 5\% \& \pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

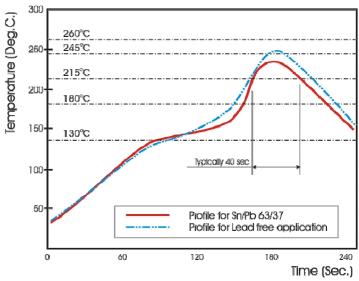
MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.


Approval sheet

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

Fig 3. Infrared soldering profile for Chip Resistors

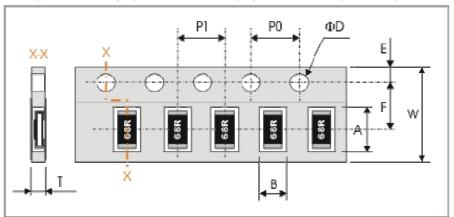
CATALOGUE NUMBERS

The resistors have a catalogue number starting with.

WW25	Р	R100	J	т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WW25 : 2512	P :Power	E96 +E24:	J : ±5%	T : 7" Reel taping	L = Sn base (lead
WW20 : 2010	2512 size=2 watt	"R" is first digit followed by 3	F :±1%	G : 13" Reel taping free)	free)
WW12 : 1206	2010 size=1 watt	significant digits.			
	1206 size=0.5 watt	e.g.:			
		0.1ohm = R100			
		0.047ohm = R047			
		0.56ohm = R560			

Tape packaging WW12 : 8mm width paper taping 5,000pcs per 7" reel. 20,000pcs per 13" reel.

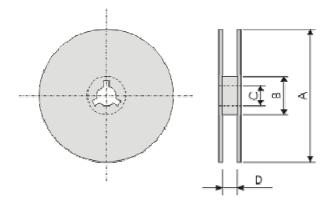
WW25 ; WW20: 12mm width plastic taping 4,000pcs per reel.


TEST AND REQUIREMENTS

Basic specification : JIS C 5201-1 : 1998

TEST	PROCEDURE	REQUIREMENT
Clause 4.8 Temperature Coefficient of Resistance (TCR)	Natural resistance change per change in degree centigrade. $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$ R ₁ : Resistance at reference temperature R ₂ : Resistance at test temperature t ₁ : 20°C+5°C-1°C	Refer to quick reference data for T.C.R specification
Clause 4.13 Short time overload	Permanent resistance change after 5 second application of a power 5.0 times of rated power or the maximum overload voltage specified in the above list, whichever is less.	Δ R/R max. J: $\leq \pm$ (2%+0.5m Ω) F: $\leq \pm$ (1%+0.5m Ω)
Clause 4.18 Resistance to soldering heat(R.S.H)	Un-mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $260^{\circ}C\pm5\circ$ C	No visible damage Δ R/R max. J: $\leq \pm$ (1%+0.5m Ω) F: $\leq \pm$ (0.5%+0.5m Ω)
Clause 4.17 Solderability	Un-mounted chips completely immersed for 2±0.5second in a SAC solder bath at 235 $^\circ\!C$ ±5 $^\circ\!C$	Good tinning (>95% covered) No visible damage
Clause 4.19 Temperature cycling	30 minutes at -55°C±3°C, 2~3 minutes at 20℃+5℃-1℃, 30 minutes at +155°C±3°C, 2~3 minutes at 20℃+5℃-1℃, total 5 continuous cycles	No visible damage Δ R/R max. J \leq ±(1%+1m Ω) F \leq ±(0.5%+1m Ω)
Clause 4.25 Load life (endurance)	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off	No visible damage Δ R/R max. J $\leq \pm$ (3%+0.5m Ω) F $\leq \pm$ (1%+0.5m Ω)
Clause 4.24 Load life in Humidity	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40℃±2℃ and 90~95% relative humidity, 1.5hours on and 0.5 hours off	No visible damage Δ R/R max. J $\leq \pm$ (3%+0.5m Ω) F $\leq \pm$ (1%+0.5m Ω)
Clause 4.33 Bending strength	Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 2 mm(2512;2010) 3mm(1206), once for 10 seconds	No visible damage Δ R/R max. J \leq ±(1%+1m Ω) F \leq ±(0.5%+1m Ω)
Clause 4.32 Adhesion	Pressurizing force: 5N, Test time: 10±1sec	No remarkable damage or removal of the terminations
Insulation Resistance	Apply the maximum overload voltage (DC) for 1minutes	$R \ge 10 G \Omega$
Clause 4.6 Dielectric Withstand Voltage	Apply the maximum overload voltage (AC) for 1 minutes	No breakdown or flashover
Clause 4.7		

PACKAGING


Paper Tape(WW12P) & Plastic Tape(WW25P;WW20P) specifications (unit :mm)

Series No.	А	В	W	F	E
WW25P	6.90±0.20	3.60±0.20	12.00±0.30 5.50±0.10		
WW20P	5.50±0.20	2.80±0.20	12.00±0.30	5.50±0.10	1.75±0.10
WW12P	3.60±0.20	2.00±0.20	8.00±0.30	3.50±0.20	

Series No.	P1	P0	ΦD	Т
WW25P				Max. 1.2
WW20P	4.00±0.10	4.00±0.10	$\Phi 1.50^{+0.1}_{-0.0}$	Max. 1.2
WW12P				Max. 1.0

Reel dimensions

(unit : mm)

Reel / Tape	А	В	С	D
7" reel for 8mm tape	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	9.00±0.50
7" reel for 12mm tape	$\Psi 170.0\pm 2.0$			12.4±1.00
13" reel for 8mm tape	Ф 330.0±2.00	⊖100.0±1.00	13.0±0.2	9.00±0.50

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Walsin:

WW20PR680FTL WW25PR500FTL WW12PR620FTL WW12PR360FTL WW25PR400FTL WW12PR470FTL