LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

FEATURES:

- 3.3V family uses less power than the 5 Volt 7201/7202/7203/7204/ 7205/7206 family
- 512 x 9 organization (72V01)
- 1,024 x 9 organization (72V02)
- 2,048 x 9 organization (72V03)
- $4,096 \times 9$ organization (72V04)
- $8,192 \times 9$ organization (72V05)
- 16,384 X 9 organization (72V06)
- Functionally compatible with 720x family
- Low-power consumption
- Active: 180 mW (max.)
- Power-down: 18 mW (max.)
- 15 ns access time
- Asynchronous and simultaneous read and write
- Fully expandable by both word depth and/or bit width
- Status Flags: Empty, Half-Full, Full
- Auto-retransmit capability
- Available in 32-pin PLCC
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

DESCRIPTION:

The IDT72V01/72V02/72V03/72V04/72V05/72V06 are dual-port FIFO memories that operate at a power supply voltage (Vcc) between 3.0 V and 3.6 V . Their architecture, functional operation and pin assignments are identical to those of the IDT7201/7202/7203/7204/7205/7206. These devices load and empty data on afirst-in/first-outbasis. They useFull and Empty flags to prevent data overflow and underflow and expansion logic to allow for unlimited expansion capability in both word size and depth.

The reads and writes are internally sequential through the use of ring pointers, with no address information required to load and unload data. Data is toggled in and out of the devices through the use of the Write (\bar{W}) and Read (\bar{R}) pins. The devices have a maximum data access time as fast as 25 ns .

The devices utilize a9-bit wide data array to allow for control and parity bits at the user's option. This feature is especially useful in data communications applicationswhere it is necessary to use a parity bitfor transmission/reception error checking. They also feature a Retransmit $(\overline{\mathrm{RT}})$ capability that allows for reset of the read pointer to its initial position when $\overline{\mathrm{RT}}$ is pulsed LOW to allowfor retransmission from the beginning of data. A Half-Full Flag is available in the single device mode and width expansion modes.

These FIFOs are fabricated using high-speed CMOS technology. It has been designed for those applications requiring asynchronous and simultaneous read/writes in multiprocessing and rate buffer applications.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'l	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TSTG	Storage Temperature	$-55 \mathrm{to}+125$	${ }^{\circ} \mathrm{C}$
IOUT	DC OutputCurrent	$-50 \mathrm{to}+50$	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Rating	Min.	Typ.	Max.	Unit
VCC	Supply Voltage	3.0	3.3	3.6	V
GND	Supply Voltage	0	0	0	V
$\mathrm{~V}_{\mathrm{IH}} \mathrm{H}^{(1)}$	InputHigh Voltage	2.0	-	$\mathrm{VCC}+0.5$	V
$\mathrm{VII}^{(2)}$	InputLow Voltage	-	-	0.8	V
TA_{A}	Operating TemperatureCommercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA_{A}	OperatingTemperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

NOTES:

1. For $\overline{\mathrm{RT}} / \overline{\mathrm{RS}} / \overline{\mathrm{XI}}$ input, $\quad \mathrm{VIH}^{\mathrm{RT}} / 2.6 \mathrm{~V}$ (commercial).

For $\overline{\mathrm{RT}} / \overline{\mathrm{RS}} / \overline{\mathrm{XI}}$ input, $\quad \mathrm{V}_{\mathrm{IH}}=2.8 \mathrm{~V}$ (military).
2. 1.5 V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VcC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT72V01IDT72V02IDT72V03IDT72V04Commercial \& Industrial ${ }^{(1)}$$\mathrm{t}_{\mathrm{A}}=15,25,35 \mathrm{~ns}$		IDT72V05 IDT72V06 Commercial \& Industrial ${ }^{(1)}$ $\mathrm{t}_{\mathrm{A}}=15,25,35 \mathrm{~ns}$		Unit
		Min.	Max.	Min.	Max.	
lı12)	InputLeakage Current(Any Input)	-1	1	-1	1	$\mu \mathrm{A}$
$\mathrm{ILO}^{(3)}$	OutputLeakage Current	-10	10	-10	10	$\mu \mathrm{A}$
Vor	Output Logic "1" Voltage Iot = 2 mA	2.4	-	2.4	-	V
VoL	Output Logic "0" Voltage IoL $=8 \mathrm{~mA}$	-	0.4	-	0.4	V
Icc1 ${ }^{(4,5)}$	Active Power Supply Current	-	60	-	75	mA
ICC2 ${ }^{(4,6)}$	Standby Current ($\overline{\mathrm{R}}=\overline{\mathrm{W}}=\overline{\mathrm{RS}}=\overline{\mathrm{FL}} / \overline{\mathrm{RT}}=\mathrm{V} / \mathrm{H})$	-	5	-	5	mA

NOTES:

1. Industrial temperature range product for the 25 ns speed grade is available as a standard device. All other speed grades are available by special order.
2. Measurements with $0.4 \leq \mathrm{V} \mathbb{N} \leq \mathrm{Vcc}$.
3. $\mathrm{R} \geq \mathrm{V} / \mathrm{H}, 0.4 \leq$ Vout $\leq \mathrm{VCc}$.
4. Tested with outputs open (lout $=0$).
5. Tested at $f=20 \mathrm{MHz}$.
6. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$.

CAPACITANCE ($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Condition	Max.	Unit
CIN	InputCapacitance	$\mathrm{VIN}=0 \mathrm{~V}$	8	pF
Cout	OutputCapacitance	Vout $=0 \mathrm{~V}$	8	pF

NOTE:

1. Characterized values, not currently tested.

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VcC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	CommercialIDT72V01L15IDT2V02LL5IDT2V2V03L15IDT72V04L15IDT2V05L15IDT72V06L15		Com'I and Ind'(12)IDT72V01L25IDT72V0225IDT72V0LL25IDT72V04L25IDT72V05L25IDT72V06L25		CommercialIDT72V01L35IDT72V02L35IDT72V03L35IDT72V04L35IDT2V05L35IDT72V06L35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
fs	ShittFrequency	-	40	-	28.5	-	22.2	MHz
RC	Read Cycle Time	25	-	35	-	45	-	ns
tA	Access Time	-	15	-	25	-	35	ns
tRR	Read Recovery Time	10	-	10	-	10	-	ns
tRPW	ReadPulseWidth ${ }^{(3)}$	15	-	25	-	35	-	ns
trLz	Read Pulse Low to Data Bus at Low ${ }^{(4)}$	3	-	3	-	3	-	ns
twLz	Write Pulse High to Data Bus at Low Z ${ }^{(4,5)}$	5	-	5	-	5	-	ns
DV	Data Valid from Read Pulse High	5	-	5	-	5	-	ns
tRHz	Read Pulse High to Data Bus at High Z ${ }^{(4)}$	-	15	-	18	-	20	ns
twc	Write Cycle Time	25	-	35	-	45	-	ns
twPW	WritePulseWidth ${ }^{(3)}$	15	-	25	-	35	-	ns
twR	Write Recovery Time	10	-	10	-	10	-	ns
DS	DataSetup Time	11	-	15	-	18	-	ns
DH	DataHold Time	0	-	0	-	0	-	ns
tRSC	Reset Cycle Time	25	-	35	-	45	-	ns
trS	ResetPulseWidth ${ }^{(3)}$	15	-	25	-	35	-	ns
tRSS	ResetSetup Time ${ }^{(4)}$	15	-	25	-	35	-	nS
tRS	ResetRecoveryTime	10	-	10	-	10	-	nS
tRTC	RetransmitCycle Time	25	-	35	-	45	-	nS
tRT	RetransmitPulseWidth ${ }^{(3)}$	15	-	25	-	35	-	ns
tRTS	RetransmitSetupTime ${ }^{(4)}$	15	-	25	-	35	-	nS
tRTR	RetransmitRecoveryTime	10	-	10	-	10	-	ns
tEFL	Resetto Empty Flag Low	-	25	-	35	-	45	ns
tHFH,FFH	Resetto Half-Full and Full Flag High	-	25	-	35	-	45	ns
tRTF	RetransmitLowto Flags Valid	-	25	-	35	-	45	ns
tREF	Read Low to Empty Flag Low	-	15	-	25	-	30	ns
tRFF	Read High to Full Flag High	-	15	-	25	-	30	ns
tRPE	Read Pulse Width after EF High	15	-	25	-	35	-	ns
tweF	Write High to Empty Flag High	-	15	-	25	-	30	ns
twFF	Write Low to Full Flag Low	-	15	-	25	-	30	ns
twhF	Write Low to Half-Full Flag Low	-	25	-	35	-	45	ns
tRHF	ReadHighto Half-Full Flag High	-	25	-	35	-	45	ns
twPF	Write Pulse Width after $\overline{\text { FF High }}$	15	-	25	-	35	-	ns
txoL	Read/Write to $\overline{\mathrm{XO}}$ Low	-	15	-	25	-	35	ns
txOH	Read/Write to $\overline{\mathrm{XO}} \mathrm{High}$	-	15	-	25	-	35	ns
tx ${ }^{\text {l }}$	$\overline{\mathrm{XI}}$ Pulse Width ${ }^{(3)}$	15	-	25	-	35	-	ns
tXIR	$\overline{\mathrm{XI}}$ Recovery Time	10	-	10	-	10	-	ns
txis	$\overline{\mathrm{XI}}$ Setup Time	10	-	10	-	10	-	ns

NOTES:

1. Timings referenced as in AC Test Conditions.
2. Industrial temperature range product for the 25 ns speed grade is available as a standard device

All other speed grades are available by special order.
3. Pulse widths less than minimum value are not allowed.
4. Values guaranteed by design, not currently tested.
5. Only applies to read data flow-through mode.

AC TEST CONDITIONS

InputPulse Levels	GND to 3.0V
InputRise/Fall Times	5 ns
InputTiming Reference Levels	1.5 V
OutputReferenceLevels	1.5 V
OutputLoad	SeeFigure 1

or equivalent circuit
Figure 1. Output Load

* Includes scope and jig capacitances.

SIGNAL DESCRIPTIONS

INPUTS:

DATA IN (D0 - D8)
Data inputs for 9-bit wide data.

CONTROLS:

RESET ($\overline{\mathrm{RS}}$)

Reset is accomplished whenever the Reset $(\overline{\mathrm{RS}})$ input is taken to a LOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power up before a write operation can take place. Both the Read Enable ($\overline{\mathrm{R}}$) and Write Enable $(\overline{\mathrm{W}})$ inputs must be in the HIGH state during the window shown in Figure 2, (i.e., tRSS before the rising edge of $\overline{\mathrm{RS}}$) and should not change until tRSR after the rising edge of $\overline{R S}$. Half-Full Flag ($\overline{\mathrm{HF}}$) will be reset to HIGH after Reset ($\overline{\mathrm{RS}}$).

WRITE ENABLE (\bar{W})

A write cycle is initiated on the falling edge of this inputif the Full Flag ($\overline{\mathrm{FF}}$) is notset. Datasetup and holdtimesmustbe adhered to with respecttothe rising edge of the Write Enable (\bar{W}). Data is stored inthe RAM array sequentially and independently of any ongoing read operation.

After half of the memory is filled and at the falling edge of the next write operation, the Half-Full Flag ($\overline{\mathrm{HF}}$) will be setto LOW and will remain set until the difference between the write pointer and read pointer is less than or equal to one half of the total memory of the device. The Half-Full Flag ($\overline{\mathrm{HF}}$) is then reset by the rising edge of the read operation.

To prevent data overflow, the Full Flag ($\overline{\mathrm{FF}}$) will go LOW, inhibiting further write operations. Upon the completion of a valid read operation, the Full Flag $(\overline{\mathrm{FF}})$ will go HIGH after tRFF, allowing a valid write to begin. When the FIFO isfull, the internal write pointer is blocked from \bar{W}, so external changes in \bar{W} will notaffect the FIFO when it is full.

READ ENABLE ($\overline{\mathrm{R}})$

A read cycle is initiated on the falling edge of the Read Enable $(\overline{\mathrm{R}})$ provided theEmpty Flag($\overline{(\mathrm{FF}})$ is notset. The datais accessed onaFirst-In/First-Outbasis, independent of any ongoing write operations. After Read Enable $(\overline{\mathrm{R}})$ goes HIGH, the Data Outputs(Q0-Q8) will returnto ahigh impedance condition until thenextReadoperation. Whenall datahas been readfromtheFIFO, the Empty Flag $(\overline{\mathrm{EF}})$ will go LOW, allowing the "final" read cycle but inhibiting further read operations with the data outputs remaining in a high impedance state. Oncea valid write operationhas been accomplished, the Empty Flag ($\overline{\mathrm{EF}})$ will goHIGH aftertwEF and avalid Read canthen begin. WhentheFIFO is empty, the internal read pointer is blocked from \bar{R} so external changes in \bar{R} will notaffect the FIFO when it is empty.

FIRST LOAD/RETRANSMIT ($\overline{\mathrm{FL}} / \overline{\mathrm{RT}}$)

This is a dual-purpose input. In the Depth Expansion Mode, this pin is grounded to indicate thatitisthefirstloaded (seeOperating Modes). Inthe Single Device Mode, this pin acts as the retransmitinput. The Single Device Mode is initiated by grounding the Expansion $\ln (\overline{\mathrm{XI}})$.

TheseFIFOs canbe made to retransmit data when the Retransmit Enable control $(\overline{\mathrm{RT}})$ inputis pulsed LOW. A retransmitoperation will setthe internal read pointer to the firstlocation and will notaffect the write pointer. Read Enable($\overline{\mathrm{R}})$ andWrite Enable $(\overline{\mathrm{W}})$ mustbe intheHIGH state during retransmit. This feature is useful when less than 512/1,024/2,048/4,096/8,192/16,384 writes are performed between resets. The retransmit feature is not compatible with the Depth Expansion Mode and will affect the Half-Full Flag ($\overline{\mathrm{HF}}$), depending on the relative locations of the read and write pointers.

EXPANSION IN ($\overline{\mathrm{XI}})$

This inputis a dual-purpose pin. Expansion $\ln (\overline{\mathrm{XI}})$ is grounded to indicate an operation in the single device mode. Expansion $\ln (\overline{\mathrm{XI}})$ is connected to Expansion Out ($\overline{\mathrm{XO}})$ of the previous device in the Depth Expansion or Daisy Chain Mode.

OUTPUTS:

FULL FLAG (FF)
The Full Flag $(\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operation, when the write pointer is one location less than the read pointer, indicating that the device is full. If the read pointer is not moved after Reset $(\overline{\mathrm{RS}})$, the Full-Flag $(\overline{\mathrm{FF}})$ will go LOW after 512/1,024/2,048/4,096/8,192/16,384 writes to the IDT72V01/ $72 \mathrm{~V} 02 / 72 \mathrm{~V} 03 / 72 \mathrm{~V} 04 / 72 \mathrm{~V} 05 / 72 \mathrm{~V} 06$.

EMPTY FLAG ($\overline{\mathrm{EF}}$)

The Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating that the device is empty.

EXPANSION OUT/HALF-FULL FLAG ($\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$)

This is a dual-purpose output. Inthe single device mode, when Expansion $\operatorname{In}(\overline{\mathrm{XI}})$ is grounded, this output acts as an indication of a half-full memory.

After half of the memory is filled and at the falling edge of the next write operation, the Half-Full Flag $(\overline{\mathrm{HF}})$ will be set LOW and will remain set until the difference between the write pointer and read pointer is less than or equal to one half of the total memory of the device. The Half-Full Flag $(\overline{\mathrm{HF}})$ is then reset by using rising edge of the read operation.

Inthe Depth ExpansionMode, Expansion $\operatorname{In}(\overline{\mathrm{XI}})$ is connected to Expansion Out $(\overline{\mathrm{XO}})$ of the previous device. This output acts as a signal to the next device in the Daisy Chain by providing a pulse to the next device when the previous device reaches the lastlocation of memory.

DATA OUTPUTS (Q0-Q8)

Data outputs for 9-bitwide data. This datais in ahigh impedance condition whenever Read (\bar{R}) is in a HIGH state.

NOTES

1. $\overline{\mathrm{EF}}, \overline{\mathrm{FF}}, \overline{\mathrm{HF}}$ may change status during Reset, but flags will be valid at trsc.
2. $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}}=\mathrm{V}_{\mathbb{H}}$ around the rising edge of $\overline{\mathrm{RS}}$.

Figure 2. Reset

Figure 3. Asynchronous Write and Read Operation

Figure 4. Full Flag From Last Write to First Read

Figure 5. Empty Flag From Last Read to First Write

Figure 6. Retransmit

Figure 7. Minimum Timing for an Empty Flag Coincident Read Pulse

Figure 8. Minimum Timing for a Full Flag Coincident Write Pulse

Figure 9. Half-Full Flag Timing

Figure 10. Expansion Out

Figure 11. Expansion In

OPERATING MODES:

Caremustbetakentoassurethat the appropriate flagis monitored by each system (i.e. $\overline{\mathrm{FF}}$ is monitored on the device where $\overline{\mathrm{W}}$ is used; $\overline{\mathrm{EF}}$ is monitored on the device where \bar{R} is used). For additional information, refer to Tech Note 8: Operating FIFOs on Full and Empty Boundary Conditions and Tech Note 6: Designing with FIFOs.

SINGLE DEVICE MODE

A single IDT72V01/72V02/72V03/72V04/72V05/72V06 may be used when the application requirements are for 512/1,024/2,048/4,096/8,192/ 16,384 words or less. These devices are in a Single Device Configuration when the Expansion $\operatorname{In}(\overline{\mathrm{XI}})$ control input is grounded (see Figure 12).

These FIFOs can easily be adapted to applicationswhen the requirements are for greater than 512/1,024/2,048/4,096/8,192/16,384 words. Figure 14 demonstrates DepthExpansionusing three IDT72V01/72V02/72V03/72V04/ $72 \mathrm{~V} 05 / 72 \mathrm{~V} 06 \mathrm{~s}$. Any depth can be attained by adding additional IDT72V01/ $72 \mathrm{~V} 02 / 72 \mathrm{~V} 03 / 72 \mathrm{~V} 04 / 72 \mathrm{~V} 05 / 72 \mathrm{~V} 06 \mathrm{~s}$. These devices operate in the Depth Expansion modewhen the following conditions are met:

1. The firstdevicemustbedesignated by grounding the FirstLoad $(\overline{\mathrm{FL}})$ control input.
2. All other devices must have $\overline{F L}$ in the HIGH state.
3. The Expansion Out $(\overline{\mathrm{XO}})$ pin of each device must be tied to the Expansion In $(\overline{\mathrm{XI}})$ pin of the next device. See Figure 14.
4. Externallogic is needed to generate acomposite Full Flag ($\overline{\mathrm{FF}}$) and Empty Flag ($\overline{\mathrm{EF}}$). This requires the ORing of all $\overline{\mathrm{EF}}$ s and ORing of all $\overline{\mathrm{FF}}$ (i.e. all mustbe setto generate the correctcomposite $\overline{\mathrm{FF}}$ or $\overline{\mathrm{EF}}$). SeeFigure 14.
5. The Retransmit ($\overline{\mathrm{RT}}$) function and Half-Full Flag ($\overline{\mathrm{HF}})$ are not available in the Depth Expansion Mode.

For additional information, refer to TechNote 9: Cascading FIFOs orFIFO Modules.

USAGE MODES:

WIDTH EXPANSION

Word width may be increased simply by connecting the corresponding input control signals of multiple devices. Statusflags ($\overline{\mathrm{EF}}, \overline{\mathrm{FF}}$ and $\overline{\mathrm{FF}})$ canbe detected from any one device. Figure 13 demonstrates an 18-bit word width by using two IDT72V01/72V02/72V03/72V04/72V05/72V06s. Any word width can be attained by adding additional IDT72V01/72V02/72V03/72V04/72V05/72V06s (Figure 13).

BIDIRECTIONAL OPERATION

Applications which require data buffering between two systems (each system capable of Read and Write operations) can be achieved by pairing IDT72V01/72V02/72V03/72V04/72V05/72V06s as shown in Figure 16. Both Depth Expansion and Width Expansion may be used in this mode.

DATAFLOW-THROUGH

Two types of flow-through modes are permitted, a read flow-through and writeflow-through mode. For the read flow-through mode(Figure17), theFIFO permits a reading of a single word after writing one word of data into an empty FIFO. The data is enabled on the bus in (tWEF + tA) ns after the rising edge of \bar{W}, called the first write edge, and it remains on the bus until the $\overline{\mathrm{R}}$ line is raised from LOW-to-HIGH, after whichthe bus would go into athree-state mode after tRHz ns. The EF line would have a pulse showing temporary deassertion and then would be asserted.

Inthe write flow-through mode (Figure 18), the FIFO permits the writing of asingleword ofdataimmediately after reading oneword ofdatafrom afull FIFO. The \bar{R} line causes the $\overline{F F}$ to be deasserted but the \bar{W} line being LOW causes it to be asserted again in anticipation of a new data word. On the rising edge of \bar{W}, the new word is loaded inthe FIFO. The \bar{W} line mustbe toggled when $\overline{F F}$ is not asserted to write new data intheFIFO and to increment the write pointer.

Figure 12. Block Diagram of Single $512 \times 9,1,024 \times 9,2,048 \times 9,4,096 \times 9,8,192 \times 9$ and $16,384 \times 9$ FIFO

Figure 13. Block Diagram of $512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18,8,192 \times 18$ and $16,384 \times 18$ FIFO Memory Used in Width Expansion Mode

TABLE 1 - RESET AND RETRANSMIT

Single Device Configuration/Width Expansion Mode

Mode	Inputs			Internal Status		Outputs		
	$\overline{\mathrm{R}}$ S	$\overline{\mathrm{RT}}$	$\overline{\mathrm{X}}$	Read Pointer	Write Pointer	$\overline{\mathrm{E}}$	$\overline{\text { FF }}$	$\overline{\mathrm{HF}}$
Reset	0	X	0	LocationZero	LocationZero	0	1	1
Retransmit	1	0	0	LocationZero	Unchanged	X	X	X
Read/Write	1	1	0	Increment ${ }^{(1)}$	Increment ${ }^{(1)}$	X	X	X

NOTE:

1. Pointer will increment if flag is HIGH

TABLE 2 - RESET AND FIRST LOAD TRUTH TABLE

Depth Expansion/Compound Expansion Mode

Mode	Inputs			Internal Status		Outputs	
	$\overline{\mathrm{R}} \overline{\mathbf{S}}$	$\overline{\mathrm{FL}}$	$\overline{\mathbf{X}} \overline{\mathrm{I}}$	Read Pointer	Write Pointer	$\overline{\mathrm{EF}}$	$\overline{\mathrm{FF}}$
Reset FirstDevice	0	0	(1)	LocationZero	LocationZero	0	1
Reset All Other Devices	0	1	(1)	LocationZero	LocationZero	0	1
Read/Write	1	X	(1)	X	X	X	

NOTE:

1. $\overline{\bar{X}}$ is connected to $\overline{X O}$ of previous device. See Figure 14. $\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL}} \overline{\mathrm{RT}}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half-Full Flag Output

Figure 14. Block Diagram of $1,536 \times 9,3,072 \times 9,6,144 \times 9,12,288 \times 9,24,576 \times 9$ and 49,152 $\times 9$ FIFO Memory (Depth Expansion)

Figure 15. Compound FIFO Expansion

Figure 16. Bidirectional FIFO Mode

DATA IN \qquad

Figure 17. Read Data Flow-Through Mode

Figure 18. Write Data Flow-Through Mode

ORDERING INFORMATION

3033 drw 21
NOTES:

1. Industrial temperature range product for the 25 ns speed grade is available as a standard device. All other speed grades are available by special order.
2. Green parts are available. For specific speeds and packages contact your local sales office.

LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN\# SP-17-02

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Renesas Electronics:
72V02L25J 72V05L15JG 72V02L15J 72V01L25JI 72V06L25J 72V02L35J 72V06L15J 72V06L35J 72V03L25J8
72V06L25JI 72V04L25J 72V02L35J8 72V04L35J8 72V01L15J8 72V04L15J 72V04L35J 72V03L25JGI8 72V05L25JGI8 72V02L25JGI8 72V06L25JGI8 72V05L25J8 72V01L35J8 72V05L35J 72V05L25J 72V04L25JI 72V05L15J 72V04L15J8 72V03L25J 72V03L15J 72V03L35J 72V03L25JI 72V02L15JG 72V02L25J8 72V03L15JG 72V06L15JG 72V01L35J 72V01L25J 72V06L25JGI 72V02L25JGI 72V04L25JGI 72V05L25JGI 72V02L15JG8 72V03L15JG8 72V01L15JG8 72V04L15JG8 72V06L15JG8 72V05L15JG8 72V03L25JGI 72V05L15J8 72V04L25J8 72V02L25JI 72V01L15J 72V01L15JG 72V05L25JI8 72V03L25JI8 72V02L25JI8 72V06L25JI8 72V04L25JI8 $\underline{72 \mathrm{~V} 01 \mathrm{~L} 25 \mathrm{JI} 8} \underline{72 \mathrm{~V} 02 \mathrm{~L} 15 \mathrm{~J} 8} \underline{72 \mathrm{~V} 05 \mathrm{~L} 35 \mathrm{~J} 8} \underline{72 \mathrm{~V} 06 \mathrm{~L} 35 \mathrm{~J} 8} \underline{72 \mathrm{~V} 03 \mathrm{~L} 15 \mathrm{~J} 8}$ 72V06L25J8 72V04L25JGI8 $\underline{72 \mathrm{~V} 05 \mathrm{~L} 25 \mathrm{JI}}$ 72V04L15JG 72V01L25J8 72V06L15J8 72V03L35J8

