- Description

BU4066BC series ICs each contain 4 independent switches capable of controlling either digital or analog signals.
BU4051BC / BU4052BC / BU4053BC / and BU4551B series ICs are analog selectable composite multiplexer/demultiplexer. BU4051BC series is configured with 8 channels, BU4052BC is configured with two 4 channels, $B U 4053 B C$ series is configured with three 2 channels, BU4551B series is configured with four 2 channels, and switches applicable for each channel are turned on according to digital signals of control terminal. Even if the logic amplitude (VDD-VSS) of the control signal is small, signals of large amplitude (VDD-VEE) can be switched.

-Features

1) Low power consumption
2) Wide operating supply voltage (3[V]~18[V])
3) High input impedance
4) L-TTL2 input and LS-TTL1 can be driven directly.
5) Applicable channel switches can be turned "ON" and "OFF" by the digital control signal.
6) Small control voltage (VDD-VSS) can control signals of large amplitude (VDD-VEE).
7) Linearity with excellent transfer characteristics

-Use

This product is used as the switch and chopper modulation circuit of analog and digital signals. Since ON resistance of each switch is low, the product can be connected to low impedance circuit. The product can be used as ON/OFF switch and changeover switch of high-speed lines without degrading analog signals such as voice and images.

- Lineup

(Quad-analog switch)

(8ch analog multiplexer/demultiplexer)
(Dual 4ch analog multiplexer/demultiplexer)
(Triple 2ch analog multiplexer/demultiplexer)
(Quad 2ch analog multiplexer/demultiplexer)

- Absolute Maximum Ratings

Parameter	Symbol	Limit					Unit
		BU4066BC	BU4051BC	BU4052BC	BU4053BC	BU4551B	
Power Supply Voltage	VDD	-0.5 to 20				-0.3 to 18	V
Supply current	lin	± 10					mA
Operating temperature	Topr	-40 to 85					${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to 150					${ }^{\circ} \mathrm{C}$
Input Voltage	VIN	-0.5 to VDD+0.5				-0.3 to VDD+0.3	V
Maximum junction temperature	Tjmax	150					${ }^{\circ} \mathrm{C}$

-Recommended Operating Conditions

Parameter	Symbol	Limit					Unit
		BU4066BC	BU4051BC	BU4052BC	BU4053BC	BU4551B	
Operating Power Supply	VDD	3 to 18				3 to 16	V
Input Voltage	VIN	0 to VDD					V

-Thermal Derating Curve

$(* 1)$	9.5	
$(* 2)$	7.0	
$(* 3)$	4.9	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$(* 4)$	10.0	
$(* 5)$	5.0	
(*6)	3.1	

When used at $\mathrm{Ta}=25\left[{ }^{\circ} \mathrm{C}\right]$ or above, values of above are reduced per $1\left[{ }^{\circ} \mathrm{C}\right]$. Allowable loss is the value for mounting $70[\mathrm{~mm}] \times 70[\mathrm{~mm}] \times 1.6[\mathrm{~mm}]$ FR4 glass epoxy circuit board copper foil area is 3% or less).
-Description of output rising / falling wave

- tPLH: Time up to 50% of the rise time of input waveform
-50% of the rise time of output waveform
- tPHL: Time up to 50% of the fall time of input waveform
$\sim 50 \%$ of the fall time of output waveform

tPZH: Time up to 50% of input $\sim 50 \%$ of the rise time of output waveform
tPHZ: Time up to 50% of input $\sim 50 \%$ of the fall time of output waveform

tPZH: Time up to 50% of input $\sim 50 \%$ of the fall time of output waveform
- tPHZ: Time up to 10% of input $\sim 10 \%$ of the rise time of output waveform

-Electrical Characteristics(BU4066BC)

DC Characteristics(Unless otherwise noted, VSS=0[V], $\mathrm{Ta}=25\left[{ }^{\circ} \mathrm{C}\right]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Input "H" voltage	VIH	3.5	-	-	V	5	-	-
		7.0	-	-		10		
		11.0	-	-		15		
Input "L" voltage	VIL	-	-	1.5	V	5	-	-
		-	-	3.0		10		
		-	-	3.75		15		
Input "H" current	IIH	-	-	0.3	$\mu \mathrm{A}$	15	VIH=15[V]	-
Input "L" current	IIL	-	-	-0.3	$\mu \mathrm{A}$	15	VIL=0[V]	-
ON resistance	RON	-	150	600	Ω	5	$\begin{aligned} & \mathrm{VIN}=0.25[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \\ & \hline \end{aligned}$	1
		-	500	950		5	$\begin{aligned} & \mathrm{VIN}=2.5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	
			200	600		5	$\begin{aligned} & \mathrm{VIN}=5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	
			120	500		10	$\begin{aligned} & \mathrm{VIN}=5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	
		-	80	280		15	$\begin{aligned} & \mathrm{VIN}=7.5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	
ON resistance defluxion	$\triangle \mathrm{RON}$	-	25	-	Ω	5	$\begin{aligned} & \mathrm{VI}=\mathrm{VDD} / 2 \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	-
		-	10	-		10		
		-	5	-		15		
Channel-OFF Leakage current	IOFF	-	-	0.3	$\mu \mathrm{A}$	15	$\begin{aligned} & \mathrm{VIN}=15[\mathrm{~V}] \\ & \text { VOUT }=0[\mathrm{~V}] \\ & \hline \end{aligned}$	-
		-	-	-0.3		15	$\begin{aligned} & \mathrm{VIN}=0[\mathrm{~V}] \\ & \mathrm{VOUT}=15[\mathrm{~V}] \end{aligned}$	
Static supply current	IDD	-	-	1.0	$\mu \mathrm{A}$	5	VI=VDD or GND	-
		-	-	2.0		10		
		-	-	4.0		15		
Input capacitance (control input)	CC	-	8	-	pF	-	$\mathrm{f}=1[\mathrm{MHz}]$	-
Input capacitance (switch input)	CS	-	10	-	pF	-	$\mathrm{f}=1[\mathrm{MHz}]$	-

Switching Characteristics(Unless otherwise noted, VSS=0[V],Ta=25[$\left.{ }^{\circ} \mathrm{C}\right], \mathrm{CL}=50[\mathrm{pF}]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Propagation delay time SWIN \rightarrow OUT	$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$	-	20	50	ns	5	$\mathrm{RL}=10[\mathrm{k} \Omega$]	$2 \cdot 3$
		-	12	40		10		
		-	10	30		15		
Propagation delay time CONT \rightarrow OUT	$\begin{aligned} & \text { tPHZ,tPLZ } \\ & \text { tPZH,tPZL } \end{aligned}$	-	40	90	ns	5		$\begin{aligned} & 4 \cdot 5 \\ & 6 \cdot 7 \end{aligned}$
		-	35	80		10		
		-	30	70		15		
Propagation delay time CONT \rightarrow OUT	$\begin{aligned} & \mathrm{tPHZ}, \mathrm{tPLZ} \\ & \text { tPZH,tPZL } \end{aligned}$	-	60	140	ns	5	Output"Hi Z" \rightarrow "H"'L" $R L=1[k \Omega]$	
		-	20	50		10		
		-	15	40		15		
Feed through attenuation	FT	-	0.7	-	MHz	5	$\begin{aligned} & \mathrm{VSS}=-5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	-
Sine wave distortion	D	-	0.1	-	\%	5	$\begin{aligned} & \mathrm{VSS}=-5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	-
Cross talk (CONT \rightarrow OUT)	CTc	-	-	600	mVp-p	5	$\begin{aligned} & \mathrm{VSS}=-5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega], \mathrm{f}=1[\mathrm{MHz}] \end{aligned}$	-
Cross talk(2) Between channels	CT	-	1	-	MHz	5	$\begin{aligned} & \mathrm{VSS}=-5[\mathrm{~V}] \\ & \mathrm{RL}=10[\mathrm{k} \Omega] \end{aligned}$	-

-Electrical Characteristics(BU4051BC)

DC Characteristics(Unless otherwise noted, VSS $=0[\mathrm{~V}], \mathrm{Ta}=25\left[^{\circ} \mathrm{C}\right]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Input "H" voltage	VIH	3.5	-	-	V	5	-	-
		7.0	-	-		10		
		11.0	-	-		15		
Input "L" voltage	VIL	-	-	1.5	V	5	-	-
		-	-	3.0		10		
		-	-	4.0		15		
Input "H" current	IIH	-	-	0.3	$\mu \mathrm{A}$	15	VIH=15[V]	-
Input "L" current	IIL	-	-	-0.3	$\mu \mathrm{A}$	15	VIL=0[V]	-
ON resistance	RON	-	-	950	Ω	5	-	8
		-	-	250		10		
		-	-	160		15		
ON resistance defluxion	$\triangle \mathrm{RON}$	-	10	-	Ω	5	-	-
		-	6	-		10		
		-	4	-		15		
Channel-OFF Leakage current	IOFF	-	-	0.3	$\mu \mathrm{A}$	15	-	-
		-	-	-0.3		15		
Static supply current	IDD	-	-	5	$\mu \mathrm{A}$	5	$\mathrm{VI}=\mathrm{VDD}$ or GND	-
		-	-	10		10		
		-	-	15		15		

Switching Characteristics(Unless otherwise noted, VSS=0[V],Ta=25[$\left.{ }^{\circ} \mathrm{C}\right], \mathrm{CL}=50[\mathrm{pF}]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Propagation delay time CHANNEL IN \rightarrow OUT	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	-	15	45	ns	5	-	9 - 10
		-	8	20		10		
		-	6	15		15		
Propagation delay time CONT \rightarrow OUT	$\begin{aligned} & \mathrm{tPHZ}, \mathrm{tPLZ} \\ & \mathrm{tPZH}, \mathrm{tPZL} \end{aligned}$	-	170	550	ns	5	-	$\begin{aligned} & 11 \cdot 12 \\ & 13 \cdot 14 \\ & 15 \cdot 16 \\ & 17 \cdot 18 \end{aligned}$
		-	90	240		10		
		-	70	160		15		
Propagation delay time INHIBIT \rightarrow OUT	$\begin{aligned} & \mathrm{tPHZ}, \mathrm{tPLZ} \\ & \mathrm{tPZH}, \mathrm{tPZL} \end{aligned}$	-	150	450	ns	5	-	
		-	70	210		10		
		-	50	160		15		
Maximum propagation frequency	fMAX.	-	20	-	MHz	5	VEE=-5[V]	-
Feed through attenuation	FT	-	0.5	-	MHz	5	VEE=-5[V]	-
Sine wave distortion	D	-	0.02	-	\%	5	VEE=-5[V]	-
Input capacitance (control input)	CC	-	5	-	pF	-	-	-
Input capacitance (switch input)	CS	-	10	-	pF	-	-	-

-Electrical Characteristics(BU4052BC)

DC Characteristics(Unless otherwise noted, VSS $=0[\mathrm{~V}], \mathrm{Ta}=25\left[^{\circ} \mathrm{C}\right]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Input " H " voltage	VIH	3.5	-	-	V	5	-	-
		7.0	-	-		10		
		11.0	-	-		15		
Input "L" voltage	VIL	-	-	1.5	V	5	-	-
		-	-	3.0		10		
		-	-	4.0		15		
Input "H" current	IIH	-	-	0.3	$\mu \mathrm{A}$	15	VIH=15[V]	-
Input "L" current	IIL	-	-	-0.3	$\mu \mathrm{A}$	15	VIL=0[V]	-
ON resistance	RON	-	-	950	Ω	5	-	19
		-	-	250		10		
		-	-	160		15		
ON resistance defluxion	$\triangle \mathrm{RON}$	-	10	-	Ω	5	-	-
		-	6	-		10		
		-	4	-		15		
Channel-OFF Leakage current	IOFF	-	-	0.3	$\mu \mathrm{A}$	15	-	-
		-	-	-0.3		15		
Static supply current	IDD	-	-	5	$\mu \mathrm{A}$	5	$\mathrm{VI}=\mathrm{VDD}$ or GND	-
		-	-	10		10		
		-	-	15		15		

Switching Characteristics(Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CL}=50 \mathrm{pF}$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Propagation delay time SWITCH IN \rightarrow OUT	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	-	15	45	ns	5	-	$20 \cdot 21$
		-	8	20		10		
		-	6	15		15		
Propagation delay time CONT \rightarrow OUT	$\begin{aligned} & \mathrm{tPHZ}, \mathrm{tPLZ} \\ & \mathrm{tPZH}, \mathrm{tPZL} \end{aligned}$	-	170	550	ns	5	-	$\begin{aligned} & 22 \cdot 23 \\ & 24 \cdot 25 \\ & 26 \cdot 27 \\ & 28 \cdot 29 \end{aligned}$
		-	90	240		10		
		-	70	160		15		
Propagation delay time INH \rightarrow OUT	$\begin{aligned} & \text { tPHZ,tPLZ } \\ & \text { tPZH,tPZL } \end{aligned}$	-	150	450	ns	5	-	
		-	70	210		10		
		-	50	160		15		
Maximum propagation frequency	fMAX.	-	20	-	MHz	5	VEE=-5[V]	-
Feed through attenuation	FT	-	0.5	-	MHz	5	VEE=-5[V]	-
Sine wave distortion	D	-	0.02	-	\%	5	VEE=-5[V]	-
Input capacitance (control input)	CC	-	5	-	pF	-	-	-
Input capacitance (switch input)	CS	-	10	-	pF	-	-	-

-Electrical Characteristics(BU4053BC)

DC Characteristics(Unless otherwise noted, VSS $=0[\mathrm{~V}], \mathrm{Ta}=25\left[^{\circ} \mathrm{C}\right]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Input " H " voltage	VIH	3.5	-	-	V	5	-	-
		7.0	-	-		10		
		11.0	-	-		15		
Input "L" voltage	VIL	-	-	1.5	V	5	-	-
		-	-	3.0		10		
		-	-	4.0		15		
Input "H" current	IIH	-	-	0.3	$\mu \mathrm{A}$	15	VIH=15[V]	-
Input "L" current	IIL	-	-	-0.3	$\mu \mathrm{A}$	15	VIL=0[V]	-
RON resistance	RON	-	-	950	Ω	5	-	30
		-	-	250		10		
		-	-	160		15		
RON resistance defluxion	$\triangle \mathrm{RON}$	-	10	-	Ω	5	-	-
		-	6	-		10		
		-	4	-		15		
Channel-OFF Leakage current	IOFF	-	-	0.3	$\mu \mathrm{A}$	15	-	-
		-	-	-0.3		15		
Static supply current	IDD	-	-	5	$\mu \mathrm{A}$	5	$\mathrm{VI}=\mathrm{VDD}$ or GND	-
		-	-	10		10		
		-	-	15		15		

Switching Characteristics(Unless otherwise noted, VSS=0[V],Ta=25[$\left.{ }^{\circ} \mathrm{C}\right], \mathrm{CL}=50[\mathrm{pF}]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Propagation delay time SW IN \rightarrow OUT	$\begin{aligned} & \mathrm{tPLH} \\ & \mathrm{tPHL} \end{aligned}$	-	15	45	ns	5	-	$31 \cdot 32$
		-	8	20		10		
		-	6	15		15		
Propagation delay time CONT \rightarrow OUT	$\begin{aligned} & \mathrm{tPHZ}, \mathrm{tPLZ} \\ & \text { tPZH,tPZL } \end{aligned}$	-	170	550	ns	5	-	$\begin{aligned} & 33 \cdot 34 \\ & 35 \cdot 36 \\ & 37 \cdot 38 \\ & 39 \cdot 40 \end{aligned}$
		-	90	240		10		
		-	70	160		15		
Propagation delay time INH \rightarrow OUT	$\begin{aligned} & \text { tPHZ,tPLZ } \\ & \text { tPZH,tPZL } \end{aligned}$	-	150	380	ns	5	-	
		-	70	200		10		
		-	50	160		15		
Maximum propagation frequency	fMAX.	-	20	-	MHz	5	VEE $=-5[\mathrm{~V}$]	-
Feed through attenuation	FT	-	0.7	-	MHz	5	VEE=-5[V]	-
Sine wave distortion	D	-	0.02	-	\%	5	VEE=-5[V]	-
Input capacitance (control input)	CC	-	5	-	pF	-	-	-
Input capacitance (switch input)	CS	-	10	-	pF	-	-	-

-Electrical Characteristics(BU4551BC)

DC Characteristics(Unless otherwise noted, VSS $=0[\mathrm{~V}], \mathrm{Ta}=25\left[^{\circ} \mathrm{C}\right]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Input " H " voltage	VIH	3.5	-	-	V	5	-	-
		7.0	-	-		10		
		11.0	-	-		15		
Input "L" voltage	VIL	-	-	1.5	V	5	-	-
		-	-	3.0		10		
		-	-	4.0		15		
Input "H" current	IIH	-	-	0.3	$\mu \mathrm{A}$	15	VIH=15[V]	-
Input "L" current	IIL	-	-	-0.3	$\mu \mathrm{A}$	15	VIL=0[V]	-
ON resistance	RON	-	-	1100	Ω	5	-	41
		-	-	500		10		
		-	-	280		15		
ON resistance defluxion	$\triangle \mathrm{RON}$	-	25	-	Ω	5	-	-
		-	10	-		10		
		-	5	-		15		
Channel-OFF Leakage current	IOFF	-	-	0.3	$\mu \mathrm{A}$	15	-	-
		-	-	-0.3		15		
Static supply current	IDD	-	-	5	$\mu \mathrm{A}$	5	$\mathrm{VI}=\mathrm{VDD}$ or GND	-
		-	-	10		10		
		-	-	15		15		

Switching Characteristics(Unless otherwise noted, VSS $\left.=0[\mathrm{~V}], \mathrm{Ta}=25{ }^{\circ} \mathrm{C}\right], \mathrm{CL}=50[\mathrm{pF}]$)

Parameter	Symbol	Standard Value			Unit		Condition	Fig.No
		MIN	TYP	MAX		VDD[V]		
Propagation delay time SW IN \rightarrow OUT	$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	-	35	-	ns	5	-	$42 \cdot 43$
		-	15	-		10		
		-	12	-		15		
Propagation delay time CONT \rightarrow OUT	$\begin{aligned} & \mathrm{tPZH} \\ & \mathrm{tPHZ} \end{aligned}$	-	360	-	ns	5	-	$44 \cdot 45$
		-	160	-		10		
		-	120	-		15		
Propagation delay time INH \rightarrow OUT	$\begin{aligned} & \mathrm{tPZL} \\ & \mathrm{tPLZ} \end{aligned}$	-	360	-	ns	5	-	46-47
		-	160	-		10		
		-	120	-		15		
Maximum propagation frequency	fMAX.	-	15	-	MHz	-	VEE=-5[V]	-
Feed through attenuation	FT	-	0.7	-	MHz	-	VEE=-5[V]	-
Sine wave distortion	D	-	0.02	-	\%	-	VEE $=-5[\mathrm{~V}$]	-
Input capacitance (control input)	CC	-	5	-	pF	-	-	-
Input capacitance (switch input)	CS	-	10	-	pF	-	-	-

-Reference Data(BU4066BC)

Fig. 1 On resistance-input voltage

Fig. 4 rising propagation delay
(CONT - OUT ,tPZH)

Fig. 7 falling propagation delay (CONT—OUT ,tPZL)

Fig. 2 rising propagation delay
(IN-OUT)

Fig. 5 falling propagation delay (CONT-OUT ,tPHZ)

Fig. 3 falling propagation delay (IN-OUT)

Fig. 6 rising propagation delay (CONT—OUT ,tPLZ)

- Reference Data(BU4051BC)

Fig. 8 ON resistance-input voltage

Fig. 11 propagation delay time tPZH
(CONT-OUT)

Fig. 14 propagation delay time tPZL
(CONT-OUT)

Fig. 17 propagation delay time tPZL (INH-OUT)

Fig. 9 propagation delay time tPLH
(IN-OUT)

Fig. 12 propagation delay time tPHZ
(CONT-OUT)

Fig. 15 propagation delay time tPZH (INH-OUT)

Fig. 18 propagation delay time tPLZ (INH—OUT)

- Reference Data(BU4052BC)

Fig. 19 ON resistance-input voltage

Fig. 22 propagation delay time tPZH (CONT-OUT)

Fig. 25 propagation delay time tPZL (CONT-OUT)

Fig. 28 propagation delay time tPZL (INH—OUT)

Fig. 20 propagation delay time tPLH
(IN-OUT)

Fig. 23 propagation delay time tPHZ
(CONT-OUT)

Fig. 26 propagation delay time tPZH (INH-OUT)

Fig. 29 propagation delay time tPLZ
(INH—OUT)

- Reference Data(BU4053BC)

Fig. 30 ON resistance-input voltage

Fig. 33 propagation delay time tPZH (CONT-OUT)

Fig. 36 propagation delay time tPZL (CONT-OUT)

Fig. 39 propagation delay time tPZL (INH—OUT)

Fig. 31 propagation delay time tPLH
(IN-OUT)

Fig. 34 propagation delay time tPHZ (CONT-OUT)

Fig. 37 propagation delay time tPZH (INH-OUT)

Fig. 40 propagation delay time tPLZ (INH—OUT)

Fig. 32 propagation delay time tPHL
(IN-OUT)

Fig. 35 propagation delay time tPLZ (CONT-OUT)

Fig. 38 propagation delay time tPHZ (INH-OUT)

- Reference Data(BU4551B)

Fig. 41 ON resistance-input voltage

Fig. 44 propagation delay time tPZH
(CONT-OUT)

Fig. 47 propagation delay time tPZL
(CONT-OUT)

Fig. 42 propagation delay time tPLH
(IN-OUT)

Fig. 45 propagation delay time tPHZ (CONT-OUT)

Fig. 43 propagation delay time tPHL
(IN-OUT)

Fig. 46 propagation delay time tPLZ
(CONT-OUT)

-Pin Configration - Pin Function - Block Diagram - Truth Table

1) BU4066BC Series

2) $B U 4051 B C S e r i e s$

PIN FUNCTION

PIN No.	PIN NAME	I/O	PIN FUNCTION
1	IN/OUT	I/O	Analog Switch Input / Output
2	OUT/IN	I/O	Analog Switch Input / Output
3	OUT/IN	I/O	Analog Switch Input / Output
4	IN/OUT	I/O	Analog Switch Input / Output
5	CONT.B	I	Control Input
6	CONT.C	I	Control Input
7	VEE	-	Power Supply($(-)$
8	IN/OUT	I/O	Analog Switch Input / Output
9	OUT/IN	I/O	Analog Switch Input / Output
10	OUT/IN	I/O	Analog Switch Input / Output
11	IN/OUT	I/O	Analog Switch Input / Output
12	CONT.D	I	Control Input
13	CONT.A	I	Control Input
14	VDD	-	Power Supply(+)

TRUTH TABLE

CONTROL	ON SWITCH
A	A(1pin-2pin)
B	B(3pin-4pin)
C	C(8pin-9pin)
D	(10pin-11pin)

PIN FUNCTION

PIN No.	PIN NAME	I/O	PIN FUNCTION
1	X4	I/O	Analog Switch Input / Output
2	X6	I/O	Analog Switch Input / Output
3	X	I/O	Analog Switch Input / Output
4	X7	I/O	Analog Switch Input / Output
5	X5	I/O	Analog Switch Input / Output
6	INHIBIT	I	Control Input
7	VEE	-	Power Supply(-)
8	VSS	-	Power Supply(-)
9	C	I	Control Input
10	B	I	Control Input
11	A	I	Control Input
12	X3	I/O	Analog Switch Input / Output
13	X0	I/O	Analog Switch Input / Output
14	X1	I/O	Analog Switch Input / Output
15	X2	I/O	Analog Switch Input / Output
16	VDD	-	Power Supply(+)

TRUTH TABLE

INHIBIT	A	B	C	ON
SWITCH				
L	L	L	L	X0
L	H	L	L	X1
L	H	H	L	L
L	L	L	H	X3
L	H	L	H	X5
L	L	H	H	X6
L	H	H	H	X7
H	X	X	X	NONE

3) BU4052BC Series

4) BU4053BC Series

PIN FUNCTION

PIN No.	PIN NAME	I/O	PIN FUNCTION
1	Y0	I/O	Analog Switch Input / Output
2	Y2	I/O	Analog Switch Input / Output
3	COMMON Y	I/O	Analog Switch Input / Output
4	Y3	I/O	Analog Switch Input / Output
5	Y1	I/O	Analog Switch Input / Output
6	INHIBIT	I	Control Input
7	VEE	-	Power Supply(-)
8	VSS	-	Power Supply(-)
9	B	I	Control Input
10	A	I	Control Input
11	X3	I/O	Analog Switch Input / Output
12	X0	I/O	Analog Switch Input / Output
13	COMMON X	I/O	Analog Switch Input / Output
14	X1	I/O	Analog Switch Input / Output
15	X2	I/O	Analog Switch Input / Output
16	VDD	-	Power Supply(+)

TRUTH TABLE

INHIBIT	A	B	ON SWITCH
L	L	L	X0, Y0
L	H	L	X1, Y1
L	L	H	X2, Y2
L	H	H	X3, Y3
H	X	X	NONE

PIN FUNCTION

PIN No.	PIN NAME	I/O	PIN FUNCTION
1	Y1	I/O	Analog Switch Input / Output
2	YO	I/O	Analog Switch Input / Output
3	Z1	I/O	Analog Switch Input / Output
4	Z	I/O	Analog Switch Input / Output
5	Z0	I/O	Analog Switch Input / Output
6	INHIBIT	I	Control Input
7	VEE	-	Power Supply(-)
8	VSS	-	Power Supply(-)
9	C	I	Control Input
10	B	I	Control Input
11	A	I	Control Input
12	X0	I/O	Analog Switch Input / Output
13	X1	I/O	Analog Switch Input / Output
14	X	I/O	Analog Switch Input / Output
15	Y	I/O	Analog Switch Input / Output
16	VDD	-	Power Supply(+)

TRUTH TABLE

INHIBIT	A	B	C	ON SWITCH
L	L	L	L	$\mathrm{X} 0, \mathrm{YO}, \mathrm{ZO}$
L	H	L	L	$\mathrm{X} 1, \mathrm{YO}, \mathrm{ZO}$
L	L	H	L	$\mathrm{X0}, \mathrm{Y}, \mathrm{ZO}$
L	H	H	L	$\mathrm{X} 1, \mathrm{Y} 1, \mathrm{ZO}$
L	L	L	H	$\mathrm{X} 0, \mathrm{Y0}, \mathrm{Z1}$
L	H	L	H	$\mathrm{X} 1, \mathrm{Y0}, \mathrm{Z1}$
L	L	H	H	$\mathrm{X} 0, \mathrm{Y} 1, \mathrm{Z1}$
L	H	H	H	$\mathrm{X} 1, \mathrm{Y}, \mathrm{Z1}$
H	X	X	X	NONE

5) BU4551B Series

PIN FUNCTION

PIN No.	PIN NAME	I/O	PIN FUNCTION
1	W1	I/O	Analog Switch Input / Output
2	X0	I/O	Analog Switch Input / Output
3	X1	I/O	Analog Switch Input / Output
4	X	I/O	Analog Switch Input / Output
5	Y	1/O	Analog Switch Input / Output
6	Y0	1/O	Analog Switch Input / Output
7	VEE	-	Power Supply(-)
8	VSS	-	Power Supply(-)
9	CONTROL	1	Control Input
10	Y1	I/O	Analog Switch Input / Output
11	Z0	I/O	Analog Switch Input / Output
12	Z1	I/O	Analog Switch Input / Output
13	Z	I/O	Analog Switch Input / Output
14	W	I/O	Analog Switch Input / Output
15	W0	I/O	Analog Switch Input / Output
16	VDD	-	Power Supply(+)
TRUTH TABLE			
CONTROL			ON SWITCH
0			W0,X0,Y0,Z0
1			W1,X1,Y1,Z1

- Notes for use

1. Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.
2. Connecting the power supply connector backward

Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply lines. An external direction diode can be added.
3. Power Supply lines

Design PCB layout pattern to provide low impedance GND and supply lines. To obtain a low noise ground and supply line, separate the ground section and supply lines of the digital and analog blocks. Furthermore, for all power terminals to ICs, connect a capacitor between the power supply and the GND terminal. When applying electrolytic capacitors in the circuit, not that capacitance characteristic values are reduced at low temperatures.
4. GND voltage

The potential of GND pin must be minimum potential in all operating conditions.
5. Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
6. Inter-pin shorts and mounting errors

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if pins are shorted together.
7. Actions in strong electromagnetic field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.
8. Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or remove it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting or storing the IC.
9.Ground Wiring Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a signal ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

-Ordering part number

B U	45	5	1	B	F V	E	2	
Part No.						Packaging and forming specification E2: Embossed tape and reel None:Tray,Tube		

SOP14

<Tape and Reel information>
Tape Embossed carrier tape Quantity 2500 pcs $\begin{array}{l}\text { Direction } \\ \text { of feed }\end{array}$ $\begin{array}{l}\text { E2 } \\ \text { The direction is the 1pin of product is at the upper left when you hold } \\ \text { reel on the left hand and you pull out the tape on the right hand }\end{array}$

SSOP-B14

DIP14

SOP16

SSOP-B16

<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2500 pcs
Direction of feed	E2 The direction is the 1pin of product is at the upper left when you hold reel on the left hand and you pull out the tape on the right hand

DIP16

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ${ }^{(N o t e}{ }^{1}$), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl 2 , $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}$, and NO_{2}
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl} 2, \mathrm{H} 2 \mathrm{~S}, \mathrm{NH} 3, \mathrm{SO} 2$, and NO 2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the la test information with a ROHM sale s representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.
