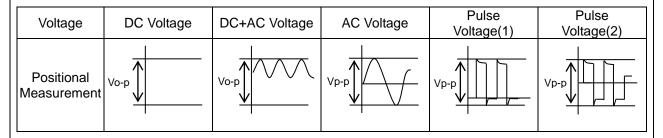


Type RA Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

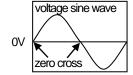
3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD


When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

$oldsymbol{\Lambda}$ NOTE

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RA used for General Electric equipment.

Type RA is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL/cUL	UL60384-14	E37921	
ENEC (VDE)	EN60384-14	40043033	X1:440 Y1:300
CQC	IEC60384-14	CQC16001138225	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

\sim	D - 1'	
٠,	Rati	nc

2-1. Operating temperature range -40 ~ +125°C

2-2. Rated Voltage X1:AC440V(r.m.s.) Y1:AC300V(r.m.s.)

2-3. Part number configuration

ex.) DE1 B3 RA 471 K A4 B P01F
Product Temperature Type Capacitance Capacitance Lead Packing Individual tolerance code style code specification

Product code

DE1 denotes X1,Y1 class.

• Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	Е

Please confirm detailed specification on [Specification and test methods].

Type name

This denotes safety certified type name Type RA.

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style	
A*	Vertical crimp long type	
J*	Vertical crimp short type	
N*	Vertical crimp taping type	

^{*} Please refer to [Part number list]

• Packing style code

Code	Packing type			
В	Bulk type			
Α	Ammo pack taping type			

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

Code	Specification
	Rated voltage: X1:AC440V(r.m.s.)
	Y1:AC300V(r.m.s.)
P01F	 Halogen free (Br ≤ 900ppm, Cl ≤ 900ppm) Br + Cl ≤ 1500ppm CP wire

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(RA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name : RA

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

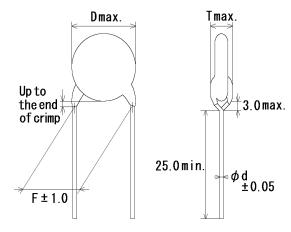
Capacitance tolerance : Code Class code and Rated voltage mark : **X1 440~**

Y1 300~

Manufacturing year : Letter code(The last digit of A.D. year.)

Manufacturing month : Code

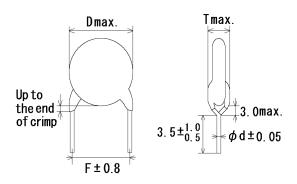
Feb./Mar. \rightarrow 2Aug./Sep. \rightarrow 8Apr./May \rightarrow 4Oct./Nov. \rightarrow OJun./Jul. \rightarrow 6Dec./Jan. \rightarrow D


Company name code : (Made in Thailand)

(Example)

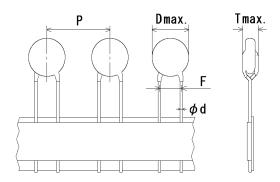
RA 471K X1 440~ Y1 300~ 5D (M15

4. Part number list


·Vertical crimp long type (Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

!!!!!!!
d Pack
e qty. (pcs)
250
500
500
250
250
250
500
250
500
500
250
250
250
250
250
250
200
\4 \4 \4


·Vertical crimp short type
(Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

									Unit :	mm
	Cap. Cap.		Overteen en Deut Norsk en	Manada Dant Namahan	Dir	nensi	Lead	Pack		
T.C.	(pF)	tol.	Customer Part Number	tomer Part Number Murata Part Number -		Т	F	d	code	qty. (pcs)
SL	10	±10%		DE11XRA100KJ4BP01F	7.0	4.0	10.0	0.6	J4	500
SL	15	±10%		DE11XRA150KJ4BP01F	6.0	5.0	10.0	0.6	J4	500
SL	22	±10%		DE11XRA220KJ4BP01F	6.0	4.0	10.0	0.6	J4	500
SL	33	\pm 10%		DE11XRA330KJ4BP01F	7.0	4.0	10.0	0.6	J4	500
SL	47	\pm 10%		DE11XRA470KJ4BP01F	7.0	4.0	10.0	0.6	J4	500
SL	68	$\pm 10\%$		DE11XRA680KJ4BP01F	8.0	4.0	10.0	0.6	J4	500
В	100	$\pm 10\%$		DE1B3RA101KJ4BP01F	6.0	4.0	10.0	0.6	J4	500
В	150	$\pm 10\%$		DE1B3RA151KJ4BP01F	7.0	4.0	10.0	0.6	J4	500
В	220	$\pm 10\%$		DE1B3RA221KJ4BP01F	6.0	5.0	10.0	0.6	J4	500
В	330	$\pm 10\%$		DE1B3RA331KJ4BP01F	6.0	5.0	10.0	0.6	J4	500
В	470	$\pm 10\%$		DE1B3RA471KJ4BP01F	7.0	5.0	10.0	0.6	J4	500
В	680	$\pm 10\%$		DE1B3RA681KJ4BP01F	8.0	5.0	10.0	0.6	J4	500
Е	1000	$\pm 20\%$		DE1E3RA102MJ4BP01F	7.0	4.0	10.0	0.6	J4	500
Е	1500	$\pm 20\%$		DE1E3RA152MJ4BP01F	8.0	4.0	10.0	0.6	J4	500
Е	2200	±20%		DE1E3RA222MJ4BP01F	9.0	4.0	10.0	0.6	J4	500
Е	3300	±20%		DE1E3RA332MJ4BP01F	10.0	5.0	10.0	0.6	J4	500
Е	4700	±20%		DE1E3RA472MJ4BP01F	12.0	5.0	10.0	0.6	J4	250

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

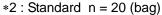
										Unit :	mm
T.C.	Сар.	Сар.	Customer Part Number Murata Part Number		Dime		nension (mm)			Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	ividiata Fait Number	D	Т	F	d	Р	code	qty. (pcs)
SL	10	±10%	DE11XRA100KN4AP01F				10.0	0.6	25.4	N4	600
SL	15	±10%		DE11XRA150KN4AP01F	6.0	5.0	10.0	0.6	25.4	N4	600
SL	22	±10%		DE11XRA220KN4AP01F	6.0	4.0	10.0	0.6	25.4	N4	600
SL	33	±10%		DE11XRA330KN4AP01F	7.0	4.0	10.0	0.6	25.4	N4	600
SL	47	±10%		DE11XRA470KN4AP01F	7.0	4.0	10.0	0.6	25.4	N4	600
SL	68	±10%		DE11XRA680KN4AP01F	8.0	4.0	10.0	0.6	25.4	N4	600
В	100	±10%		DE1B3RA101KN4AP01F	6.0	4.0	10.0	0.6	25.4	N4	600
В	150	±10%		DE1B3RA151KN4AP01F	7.0	4.0	10.0	0.6	25.4	N4	600
В	220	±10%		DE1B3RA221KN4AP01F	6.0	5.0	10.0	0.6	25.4	N4	600
В	330	±10%		DE1B3RA331KN4AP01F	6.0	5.0	10.0	0.6	25.4	N4	600
В	470	±10%		DE1B3RA471KN4AP01F	7.0	5.0	10.0	0.6	25.4	N4	600
В	680	±10%		DE1B3RA681KN4AP01F	8.0	5.0	10.0	0.6	25.4	N4	600
Е	1000	±20%		DE1E3RA102MN4AP01F	7.0	4.0	10.0	0.6	25.4	N4	600
Е	1500	±20%		DE1E3RA152MN4AP01F	8.0	4.0	10.0	0.6	25.4	N4	600
Е	2200	±20%		DE1E3RA222MN4AP01F	9.0	4.0	10.0	0.6	25.4	N4	600
Е	3300	±20%		DE1E3RA332MN4AP01F	10.0	5.0	10.0	0.6	25.4	N4	600
Е	4700	±20%		DE1E3RA472MN4AP01F	12.0	5.0	10.0	0.6	25.4	N4	600
	l l		I.	1						1	

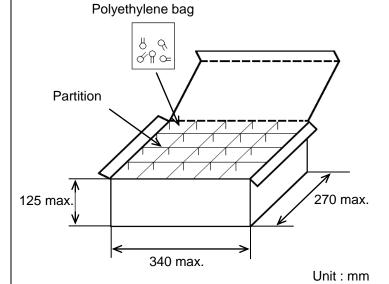
				eference on	ıy				
	pecification and					T			
No.	Ite:			cification fect on appearand		Test method			
1	Appearance and c	aimensions	form and dime		Се	The capacitor should be inspected by naked eyes for visible evidence of defect.			
			Please refer to [Part number list].		tl.	Dimensions should be measured with slide calipers.			
2	Marking		To be easily le			The capacitor should be inspected by naked eyes.			
3	Dielectric	Between lead	No failure.			The capacitor should not be damaged when			
	strength	wires				AC4000V(r.m.s.)<50/60Hz> is applied between the	he		
		D. d.	NI - C-Thomas			lead wires for 60 s.			
		Body insulation	No failure.			First, the terminals of the capacitor should be connected together.			
		Ilisulation				Then, a metal foil should be			
						closely wrapped around			
						the body of the capacitor Metal About	ıt		
						to the distance of about 3 to 6mm			
						about 3 to 6mm	al		
						Then, the capacitor should be inserted into a	•		
						container filled with metal balls of about 1mm			
						diameter.			
						Finally, AC4000V (r.m.s.)<50/60Hz> is applied for	r		
						60 s between the capacitor lead wires and metal balls.			
4	Insulation Resista	nce (I.R.)	10 000MΩ min		\dashv	The insulation resistance should be measured wit	th		
•		(10 00014122 111111	•		DC500±50V within 60±5 s of charging.			
						The voltage should be applied to the capacitor			
						through a resistor of $1M\Omega$.			
5	Capacitance		Within specifie	d tolerance.		The capacitance should be measured at 20°C wit	:h		
	Dingingtion Foot	· (D.F.)	2.50/		_	1±0.1kHz and AC1±0.2V(r.m.s.) max			
6	Dissipation Factor	(D.F.)	2.5% max.			The dissipation factor should be measured	,		
						at 20°C with 1±0.1kHz and AC1±0.2V(r.m.s.) max			
7	Temperature chara	acteristic	Char. SL: +350 to -1000 ppm/°C		С	The capacitance measurement should be made a	at		
			(Temp. range : +20 to +85°C)			each step specified in Table.			
			Char. B: Within ±10 %						
			Char. E : Within +20/-55%						
			(Temp. range : -25 to +85°C)			J			
			Step			1 2 3 4 5			
					20	20±2 -25±2 20±2 85±2 20±2			
	A - Constitution of the Co		The cheese-cloth should not be			Transaction should be to the transaction			
8	Active flammability	у	on fire.	oth should not be		The capacitors should be individually wrapped in least one but more than two complete layers of	at		
			on me.			cheese-cloth. The capacitor should be subjected			
						to 20 discharges. The interval between successiv	e		
						discharges should be 5 s. The UAc should be			
						maintained for 2min after the last discharge.			
						S1 F L1 L2 R			
						$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
						4			
						Osciloscope			
						C1,2 : 1μF±10%, C3 : 0.033μF±5% 10kV			
						L1 to L4: 1.5mH±20% 16A Rod core choke			
						R : 100Ω±2%, Ct : 3μ F±5% 10kV			
						UAc : UR ±5% UR : Rated voltage Cx : Capacitor under test			
						Cx : Capacitor under test F : Fuse, Rated 10A			
						Ut : Voltage applied to Ct			
						Ux			
				 1					
						5kV J			
						time			

	1		Reference only	
No.	Iten	n	Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of
		Bending		capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the
				capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the
				end of the termination. The body of the capacitor is then inclined,
				within a period of 2 to 3 s, through an angle of approximately 90° in the vertical plane and then
				returned to its initial position over the same period of time; this operation constitutes one bend.
10	Vibration	Appearance	No marked defect.	One bend immediately followed by a second bend in the opposite direction. The capacitor should be firmly soldered to the
10	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
	10010101100	D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in
			2.070 1110.00	total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to
				10Hz is applied for a total of 6 h; 2 h each in
	0 11 133			3 mutually perpendicular directions.
11	Solderability of lea	as	Lead wire should be soldered With uniformly coated on the	The lead wire of a capacitor should be dipped into
			axial direction over 3/4 of the	ethanol solution of 25wt% rosin and then into
			circumferential direction.	molten solder for 2±0.5 s. In both cases the depth dipping is up to about 1.5 to 2.0mm from the root of
				lead wires.
				Temp. of solder:
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change		(In case of 260±5°C : 10±1 s)
		I.R.	1000MΩ min.	The depth of immersion is up to about
		Dielectric strength	Per item 3	1.5 to 2.0mm from the root of lead wires.
		Strength		Thermal
				insulating
				V 1.5 to 2.0mm
				Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed *1room condition for 24±2 h before initial measurements.
				(Do not apply to Char. SL)
				Post-treatment: Capacitor should be stored for 1
				2 h at *1room condition.
13	Soldering effect (On-preheat)	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C for 60+0/-5 s.
	(On-preneat)	Capacitance change	Within ±10%	Then, as in figure, the lead wires should be
		I.R.	1 000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.
		strength		Thermal
				insulating ()
				_ \ 1.5
				to 2.0mm
				Molten solder
				Dro trootmont . Consoiter should be stored at
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed
				*1room condition for 24±2 h
				before initial measurements.
				(Do not apply to Char. SL)
				Post-treatment: Capacitor should be stored for 1 2 h at *1room condition.
+1 "ro	nm condition" Tempo	rature: 15 to 35%	L C, Relative humidity: 45 to 75%, Atm	
100	un condition Tempe	ກ່ອນເພາອ. 10 ເປ ວວິ	o, relative numbrily. 45 to 75%, Atm	וטסארופווט אופסטנופ. סט נט זטטגרמ

			Reference only	
No.	Item	1	Specification	Test method
14	Flame test		The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.
15	Passive flammabilit	ry	The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm Gas burner About 8mm About 10mm thick board
16	Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within $\pm 5\%$ Char. B: Within $\pm 10\%$ Char. E: Within $\pm 15\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to
17	Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within ±5% Char. B: Within ±10% Char. E: Within ±15% Char. SL: 2.5% max. Char. B, E: 5.0% max. 3 000MΩ min. Per item 3 C, Relative humidity: 45 to 75%, Atm	2 h at *1room condition. Apply AC440V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.

No.	Item	<u> </u>	Reference onl Specification	· y		Test n	nethod								
18	Life	Appearance	No marked defect.	Impu	se volt		Juliou								
		Capacitance	Within ±20%	Each	Each individual capacitor should be subjected to										
		change	3000M $Ω$ min.	8kV impulses for three times. Then the capacitors are applied to life test.											
		I.R.													
		Dielectric	Per item 3		400 (%)		Front time (T1) —	17.us-167T							
		strength		Front time (T1) = 1.7μ s= $1.67T$ Time to half-value (T2) = 50μ s The capacitors are placed in a circulating air oven for a period of 1000 h. The air in the oven is maintained at a temperature of $125+2/-0$ °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC550V(r.m.s.)< $50/60$ Hz> alternating voltage of mains frequency, except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1 s											
										Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed a *1room condition for 24±2 h					
											before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for				
										Post-					
												24±2 h a	t *1room co	ndition.	
19				Temperature and	Appearance	No marked defect.			or should be si	ubjected to	5 temperature				
				immersion cycle	Capacitance change D.F.	Char. SL: Within ±5%	cycles, then consecutively to 2 immersion cycles.								
						Char. B : Within ±10%	<tem< td=""><td>neratui</td><td>e cycle></td><td></td><td></td></tem<>	neratui	e cycle>						
						Char. E: Within $\pm 20\%$ Char. SL: 2.5% max. Char. B, E: 5.0% max. $3000M\Omega$ min.	- 1011	Step	Tempera	turo(°C)	Time				
								1		-0/-3	30 min				
								2	Room		3 min				
					Dielectric	Per item 3		3	+125		30 min				
		strength			4	Room	temp.	3 min							
				Cycle time:5 cycles											
				<111111	iersion	cycle>	1	Lanca and the							
				Ste	p Ten	nperature(°C)	Time	Immersion water							
								Clean							
				1		+65+5/-0	15 min	water							
				2		0 <u>±</u> 3	15 min	Salt							
						0_0		water							
							Cycle tim	e:2 cycles							
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL)											
				Post-treatment: Capacitor should be stored for 24±2 h at *1 room condition.											
*1 "ro	om condition" Tempe	rature: 15 to 35°	C, Relative humidity: 45 to 75%, A	tmospheri	c press	ure: 86 to 106	ikPa								

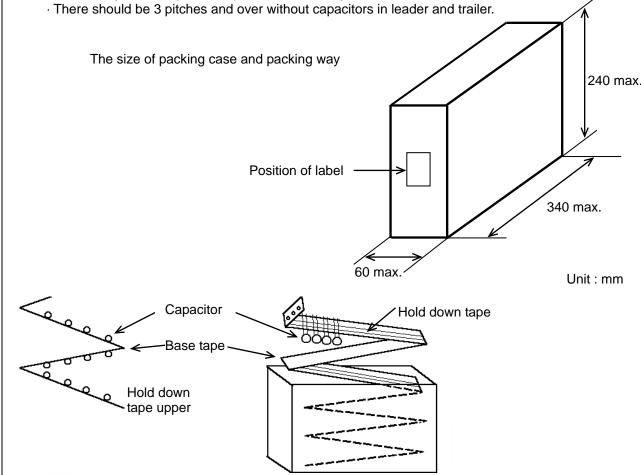

6.Packing specification


•Bulk type (Packing style code : B)

*1 *2 The number of packing = Packing quantity \times n

The size of packing case and packing way

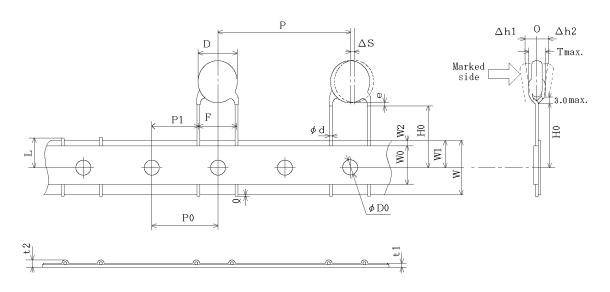
*1 : Please refer to [Part number list].



Note)

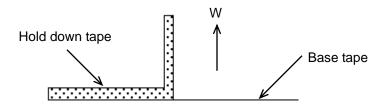
The outer package and the number of outer packing be changed by the order getting amount.

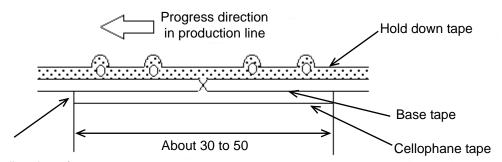
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- · When body of the capacitor is piled on other body under it.

7. Taping specification

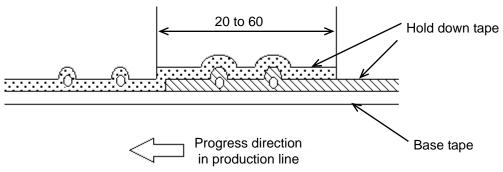
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead code : N4 > Pitch of component 25.4mm / Lead spacing 10.0mm


Item	Code	Dimensions	Remarks		
Pitch of component	Р	25.4±2.0			
Pitch of sprocket hole	P0	12.7±0.3			
Lead spacing	F	10.0±1.0			
Length from hole center to lead	P1	7.7±1.5			
Body diameter	D	Please refer to [Part number list].			
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .		
Carrier tape width	W	18.0±0.5			
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction		
Lead distance between reference and	H0	$18.0\pm_{0}^{2.0}$			
bottom planes		16.0± ₀			
Protrusion length	Q	+0.5~-1.0			
Diameter of sprocket hole	φD0	4.0±0.1			
Lead diameter	φd	0.60±0.05			
Total tape thickness	t1	0.6±0.3	There is alrede heald down town thicken		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.		
Deviation across tape, front	∆h1	2.0			
Deviation across tape, rear	∆h2	2.0 max.			
Portion to cut in case of defect	L	11.0± _{1.0}			
Hold down tape width	WO	11.5 min.			
Hold down tape position	W2	1.5±1.5			
Coating extension on lead	е	Up to the end of crimp			
Body thickness	Т	Please refer to [Part number list].			

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

```
        DE1B3RA681KA4BP01F
        DE1B3RA101KN4AP01F
        DE11XRA470KJ4BP01F
        DE11XRA330KA4BP01F

        DE11XRA220KJ4BP01F
        DE11XRA150KJ4BP01F
        DE1E3RA222MJ4BP01F
        DE11XRA330KN4AP01F

        DE11XRA680KJ4BP01F
        DE1B3RA681KN4AP01F
        DE1B3RA151KJ4BP01F
        DE1B3RA471KJ4BP01F

        DE1E3RA102MN4AP01F
        DE11XRA220KN4AP01F
        DE11XRA680KN4AP01F
        DE11XRA100KN4AP01F

        DE1B3RA151KA4BP01F
        DE11XRA220KA4BP01F
        DE1B3RA331KJ4BP01F
        DE1B3RA221KJ4BP01F

        DE1B3RA151KA4BP01F
        DE11XRA220KA4BP01F
        DE11XRA470KA4BP01F
        DE1B3RA101KJ4BP01F

        DE1E3RA152MA4BP01F
        DE1B3RA331KN4AP01F
        DE11XRA100KA4BP01F
        DE1B3RA221KA4BP01F

        DE11XRA470KN4AP01F
        DE1B3RA331KN4AP01F
        DE1B3RA471KN4AP01F
        DE1B3RA221KA4BP01F

        DE11XRA100KJ4BP01F
        DE1B3RA151KN4AP01F
        DE1B3RA221KN4AP01F
        DE11XRA150KN4AP01F
        DE1B3RA152MJ4BP01F

        DE11XRA150KN4AP01F
        DE1B3RA332MA4BP01F
        DE1B3RA332MJ4BP01F
        DE1E3RA472MJ4BP01F
        DE1E3RA472MJ4BP01F

        DE1B3RA472MA4BP01F
        DE1E3RA332MN4AP01F
        DE1E3RA472MN4AP01F
        DE1E3RA472MN4AP01F
```