

June 18, 2009

QP27C256 – 256 Kilobit (32K x 8) CMOS EPROM

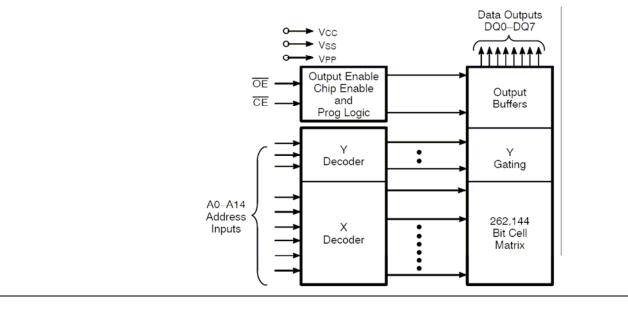
General Description

The QP27C256 is a 32Kx8 (256-Kbit), UV erasable programmable read-only memory. It operates from a single +5 V supply, has a static standby mode, and features fast single address location programming. The QP27C256 meets the same specification requirements and utilizes the same programming methodology as the AMD 27C256 that it replaces.

Products are available in windowed and non-windowed (OTP) ceramic hermetic packages.

Data is typically accessed in less than 55 ns, allowing high-performance microprocessors to operate without any WAIT states. The device offers separate Output Enable (\overline{oE}) and Chip Enable (\overline{oE}) pins, eliminating bus contention in a multiple bus system.

Typical power consumption is only 80 mW in active mode, and 100 μ W in standby mode.


All signals are TTL levels, including programming signals. Bit locations may be programmed singly, in blocks, or at random. The device is programmed identically to the AMD27C256 device that it replaces, using the same programming algorithm (100 us pulses).

The QP27C256 features:

- Same programming algorithm as the AMD27C256, allowing it to be programmed using the same equipment, data and algorithm. When programming this device select AMD as the manufacturer and 27C256 as the device type.
- Speed options as fast as 55ns
- JEDEC Pinout
- Single +5V power supply
- CMOS and TTL input/output compatibility
- Two line control functions
- Programming time typically 4 seconds.

The device/family is constructed using an advanced UV CMOS wafer fabrication process.

Block Diagram

Pin Name	Function
$A_0 - A_{14}$	Address Inputs
CE (E)	Chip Enable Input
$D_{Q0} - D_{Q7}$	Data Input/Output
OE (G)	Output Enable Input
PGM (P)	Program Enable Input
V _{CC}	V _{CC} Supply Voltage
V _{PP}	Program Voltage Input
V _{ss}	Ground
NC	No Connection

Connection Diagrams

	-	
1)0	IVne	١.
	: Туре	,
	J	

	CERDIP /	CERPACK	l	LCC	
е Туре		28 Vcc		A14 A14 A13	
	A12 🛛 2	27 🗍 A14	A6 5	1 32 31 30 29 A8	
	A7 🛛 3	26 🛛 A13	A5 🛛 6	28 A9	
	A6 🛛 4	25 🗋 A8	A4 🛛 7 A3 🗌 8	27 A11 26 NC	
	A5 🛛 5	24 🛛 A9	A2 🛛 9	25] OE (G)	
	A4 🛛 6	23 🛛 A11	A1 🗌 10 A0 🗌 11	24 A10 23 CE (E)	
	АЗ 🛛 7	22 🛛 🔂 🔂	NC 212 DQ0 13	22]DQ7 21]DQ6	
	A2 🛛 8	21 A10	14 15 16 1	17 18 19 20	
	A1 🛛 9	20 🗌 🔂 🔁 (Ē)	DQ1		
	A0 🛛 10	19 🛛 DQ7			
	DQ0 🚺 11	18 🛛 DQ6			
	DQ1 🚺 12	17 🛛 DQ5			
	DQ2 🛛 13	16 DQ4			
	VSS 14	15 DQ3			

Functional Description

Device Erasure

In order to clear all locations of their programmed contents, the device must be exposed to an ultraviolet light source. A dosage of 15 W seconds/cm² is required to completely erase the device. This dosage can be obtained by exposure to an ultraviolet lamp with a wavelength of 2537Å and an intensity of 12,000 μ W/cm² for 15 to 20 minutes. The device should be directly under and about one inch from the source, and all filters should be removed from the UV light source prior to erasure.

Note that all UV erasable devices will erase with light sources having wavelengths shorter than 4000Å, such as fluorescent light and sunlight. Although the erasure process happens over a much longer time period, exposure to any light source should be prevented for maximum system reliability. Simply cover the package window with an opaque label or substance.

Device Programming

Upon delivery, or after each erasure, the device has all of its bits in the "ONE", or HIGH state. "ZEROs" are loaded into the device through the programming procedure.

The device enters the programming mode when 12.75V \pm 0.25V is applied to the V_{PP} pin, and both \overline{OE} is at V_{IH} & \overline{CE}

are at V_{IL}.

For programming, the data to be programmed is applied 8 bits in parallel to the data pins.

The programming algorithm uses a 100 μ s programming pulse and gives each address only as many pulses as needed to reliably program the data. After each pulse is applied to a given address, the data in that address is verified. If the data does not verify, additional pulses are given until it verifies or the maximum pulses allowed is reached. This process is repeated while sequencing through each address of the device. This part of the algorithm is done with V_{CC} = 6.25 V to assure that each bit is programmed to a sufficiently high threshold voltage. After the final address is completed, the entire EPROM memory is verified at V_{CC} = V_{PP} = 5.25 V.

Program Inhibit

Programming different data to multiple devices in parallel is easily accomplished. Except for *CE*, all like inputs of the

devices may be common. A TTL low-level program pulse applied to one device's \overline{CE} input with V_{PP} = 12.75 V ± 0.25 V

and OE HIGH will program that particular device. A high-level CE input inhibits the other devices from being programmed.

Program Verify

Verification should be performed on the programmed bits to determine that they were correctly programmed. Verify should be performed with \overline{OE} at V_{IL}, \overline{CE} at V_{IH} and V_{PP} between 12.5 V and 13.0 V.

Autoselect Mode

The autoselect mode provides manufacturer and device identification through identifier codes on DQ0–DQ7. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ}C \pm 5^{\circ}C$ ambient temperature range that is required when programming the device. To activate this mode, the programming equipment must force V_H on address line A9. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH} (that is, changing the address from 00h to 01h). All other address lines must be held at V_{IL} during the autoselect mode. Byte 0 (A0 = V_{IL}) represents the manufacturer code, and Byte 1 (A0 = V_{IH}), the device identifier code. Both codes have odd parity, with DQ7 as the parity bit.

Read Mode

To obtain data at the device outputs, Chip Enable (CE) and Output Enable (OE) must be driven low. CE controls the

power to the device and is typically used to select the device. \overline{OE} enables the device to output data, independent of device selection. Addresses must be stable for at least $t_{ACC}-t_{OE}$.

Standby Mode

The device enters the CMOS standby mode when \overline{CE} is at V_{CC} ± 0.3 V. Maximum V_{CC} current is reduced to 100 µA. The device enters the TTL-standby mode when \overline{CE} is at V_{IH}. Maximum VCC current is reduced to 1.0 mA. When in

either standby mode, the device places its outputs in a high-impedance state, independent of the OE input.

Output OR Connection

To accommodate multiple memory connections, a two-line control function provides:

- Low memory power dissipation
- Assurance that output bus contention will not occur.

 \overline{CE} should be decoded and used as the primary device selecting function, while \overline{OE} be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

System Applications

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. As a minimum, a 0.1μ F ceramic capacitor (high frequency, low inductance) should be used on each device between V_{CC} and V_{SS} to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7μ F bulk electrolytic capacitor should be used

.

--

between V_{CC} and V_{SS} for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE Select Table

Mode	CE	OE	A ₀	A ₉	V_{PP}	Outputs	Notes
Read	V _{IL}	VIL	Х	Х	Х	D _{OUT}	\ <u>1</u>
Output Disable	Х	VIH	Х	Х	Х	High Z	\ <u>1</u>
Standby (TTL)	VIH	Х	Х	Х	Х	High Z	\ <u>1</u>
Standby (CMOS)	$V_{CC} \pm 0.3V$	Х	Х	Х	Х	High Z	\ <u>1</u>
Program	VIL	VIH	Х	Х	V_{PP}	D _{IN}	\ <u>1</u>
Program Verify	V _{IH}	VIL	Х	Х	V_{PP}	D _{OUT}	\ <u>1</u>
Program Inhibit	VIH	VIH	Х	Х	V_{PP}	High Z	\ <u>1</u>
Manufacturer Code	V _{IL}	VIL	VIL	V _H	Х	01h	\ <u>1 \2</u> \ <u>3</u> \ <u>4</u>
Device Code	VIL	VIL	VIH	V _H	Х	10h	\ <u>1 \2</u> \ <u>3</u> \ <u>4</u>

Notes:

 $\underline{X} = \text{Either } V_{IH} \text{ or } V_{IL}$

 $V_{\rm H} = 12.0V \pm 0.5V$

 $A_1 - A_8 \& A_{10} - A_{14} = V_{IL}$

\4 Device Manufacture Code and Device ID match original AMD device for programming compatibility

Absolute Maximum Ratings

Condition		Units	Notes
Power Supply (V _{CC})	-0.6 to +7.0	Volts DC	
Voltage with Respect to V_{SS}			
All pins except A_9 , V_{PP} , V_{CC}	-0.6 to V _{CC} +0.6	Volts	\ <u>5</u> \ <u>9</u>
A ₉ and V _{PP}	-0.6 to 13.5	Volts	\ <u>6</u> \ <u>9</u>
Storage Temperature Range	-65 to +150	°C	\ <u>7</u>
Lead Temperature (soldering, 10 seconds)	+300	°C	
Junction Temperature (T _J)	+150	°C	\ <u>7</u>
Maximum Operating Temperature			
Commercial Devices	0 to 70	°C	\ <u>7</u> \ <u>8</u>
Industrial Devices	-40 to 85	°C	\ <u>7</u> \ <u>8</u>
Military Temperature Range	-55 to 125	°C	\ <u>7</u> \ <u>8</u>
Data Retention	10	Years, minimum	
Device must not be removed from or inserted i	into a socket when \	$V_{\rm CC}$ or $V_{\rm PP}$ is applied.	

Recommended Operating Conditions			
Condition		Units	Notes
Supply Voltage Range (V _{CC})	4.5 to 5.5	Volts DC	
Input or Output Voltage Range	0.0 to V_{CC}	Volts DC	\ <u>5</u> \ <u>6</u>
Minimum High-Level Input Voltage (V _{IH})	2.0	Volts DC	
Maximum Low-Level Input Voltage (VIL)	0.8	Volts DC	
Case Operating Range (T _c)			
Commercial Devices	0 to 70	°C	\7 \8
Industrial Devices	-40 to 85	°C	\ <u>7</u> \ <u>8</u>
Military Temperature Range	-55 to 125	°C	\7 \8

Downloaded from Arrow.com. 2045 Oakmand Village Court, Santa Clara, CA 95051

- 15 Minimum DC Input Voltage on input or I/O pins –0.5V. During voltage transitions, the input may overshoot Vss to 2.0V for periods of up to 20ns. Maximum DC voltage on input and I/O pins is VCC+0.5V. During transitions, input and I/O pins may overshoot to V_{CC} +2.0V for periods up to 20ns.
- 16 Minimum DC Input Voltage on A₉ is –0.5V. During voltage transitions, A₉ and V_{PP} may overshoot V_{SS} to –2.0V for periods of up to 20ns. A₉ and V_{PP} must not exceed +13.5V at any time.
- \underline{T} Do not exceed 125°C T_c or T_J for plastic package devices.

 \underline{N} – Maximum PD, Maximum T_J Are Not to Be Exceeded.

 $\sqrt{9}$ – During transitions, the inputs may undershoot to -2.0 V dc for periods less than 20 ns.

 $\sqrt{10} - V_{PP}$ may be connected directly to V_{CC} except during programming.

11 - Qualification Only.

 $\sqrt{12}$ – If not tested, shall be guaranteed to the limits specified.

TABLE I – ELECTRICAL PE	RFORMANC	E CHARACTERISTICS			
Test	Symbol	Conditions -55°C ≤TA≤+125°C	Min	Max	Unit
		Unless Otherwise Specified			-
Input Load Current	ILI	V_{IN} = 5.5V or 0.0V All other inputs at either V _{cc} or GND	-10.0	+10.0	μA
Output Leakage Current	I _{LO}	V _{OIT} = 5.5V or 0.0V	-10.0	+10.0	μA
Operating Current, TTL		$\overline{OE} = \overline{CE} = V_{IL}$ 35ns		85	mA
		$V_{PP} = V_{CC}$ 45ns		60	mA
		$O_0 - O_7 = 0 \text{ mA}$ 55ns		60	mA
		$f = 1/t_{ACC}max$ 70ns		60	mA
		QP27C256 90ns		60	mA
		QP27C256L 90ns		50	mA
		QP27C256 120ns		60	mA
		QP27C256L 120ns		50	mA
		QP27C256 150ns		60	mA
		QP27C256L 150ns		50	mA
		QP27C256 170ns		60	mA
		QP27C256L 170ns		50	mA
		QP27C256 200ns		60	mA
		QP27C256L 200ns		50	mA
		QP27C256 250ns		60	mA
		QP27C256L 250ns		50	mA
		QP27C256 300ns		60	mA
		QP27C256L 300ns		50	mA

TABLE I – ELECTRICAL PERI	FORMANC	E CHARACTERISTICS			
Test	Symbol	Conditions -55°C ≤TA≤+125°C Unless Otherwise Specified	Min	Max	Unit
Operating Current, CMOS	I _{CC} смоs	$\overline{OE} = \overline{CE} = V_{IL}$ 35ns		60	mA
		$V_{PP} = V_{CC}$ 45ns		60	mA
		$O_0 - O_7 = 0 \text{ mA}$ 55ns		60	mA
		$f = 1/t_{ACC}max$ 70ns		60	mA
		QP27C256 90ns		60	mA
		QP27C256L 90ns		25	mA
		QP27C256 120ns		60	mA
		QP27C256L 120ns		25	mA
		QP27C256 150ns		60	mA
		QP27C256L 150ns		25	mA
		QP27C256 170ns		60	mA
		QP27C256L 170ns		25	mA
		QP27C256 200ns		60	mA
		QP27C256L 200ns		25	mA
		QP27C256 250ns		60	mA
		QP27C256L 250ns		25	mA
		QP27C256 300ns		60	mA
		QP27C256L 300ns		25	mA

TABLE I – ELECTRICAL PERI	ORMANC	E CHARACTERI	STICS			
Test	Symbol	Conditions -55°C ≤TA≤+12 Unless Otherwise \$	25°C	Min	Max	Unit
Standby Current, TTL	I _{SB} ttl	CE = V _{IH}	35ns		25	mA
		V _{CC} = 5.5V	45ns		25	mA
		f = 0 MHz	55ns		25	mA
		$O_0 - O_7 = 0 \text{ mA}$	70ns		25	mA
		QP27C25	6 90ns		25	mA
		QP27C256	L 90ns		5	mA
		QP27C256	120ns		25	mA
		QP27C256L	120ns		5	mA
		QP27C256	150ns		25	mA
		QP27C256L	150ns		3	mA
		QP27C256	170ns		25	mA
		QP27C256L	170ns		3	mA
		QP27C256	200ns		25	mA
		QP27C256L	200ns		3	mA
		QP27C256	250ns		25	mA
		QP27C256L	250ns		3	mA
		QP27C256	300ns		25	mA
		QP27C256L	300ns		3	mA

TABLE I – ELECTRICAL PERI Test	Symbol	Conditions -55°C ≤TA≤+125°C Unless Otherwise Specified	Min	Max	Unit
Standby Current, CMOS	I _{SB} CMOS	$\overline{CE} = V_{IH}$ 35ns		25	mA
		V _{CC} = 5.5V 45ns		25	mA
		f = 0 MHz 55ns		25	mA
		$O_0 - O_7 = 0 \text{ mA}$ 70ns		25	mA
		QP27C256 90ns		25	mA
		QP27C256L 90ns		300	uA
		QP27C256 120ns		25	mA
		QP27C256L 120ns		300	uA
		QP27C256 150ns		25	mA
		QP27C256L 150ns		300	uA
		QP27C256 170ns		25	mA
		QP27C256L 170ns		300	uA
		QP27C256 200ns		25	mA
		QP27C256L 200ns		300	uA
		QP27C256 250ns		25	mA
		QP27C256L 250ns		300	uA
		QP27C256 300ns		25	mA
		QP27C256L 300ns		300	uA
V _{PP} Read Current	I _{PP}	$V_{PP} = V_{CC} = 5.5V$		10	μA
Input Low Voltage TTL	V _{IL}	$V_{PP} = V_{CC}$	-0.1	0.8	V
Input Low Voltage CMOS	V _{IL}	$V_{PP} = V_{CC}$	-0.2	0.2	V
Input High Voltage TTL	V _{IH}	$V_{PP} = V_{CC}$	2.0	V _{CC} +1.0	V
Input High Voltage CMOS	V _{IH}	V _{PP} = V _{CC}	V _{CC} -0.2	V _{CC} +0.2	V
Output Low Voltage	V _{OL}	I _{OL} = 2.1mA		0.45	V
Output High Voltage	V _{OH}	V _{IL} =0.8V,V _{IH} =2.0V	2.4		V
		I _{OL} = -400µA,V _{CC} =4.5V			
Output Short Circuit Current	I _{OS}	V _{OUT} = 0.0V Duration not to exceed 1 second, one output at a time		-100	mA
V _{PP} Read Voltage \10	V _{PP}		V _{CC} - 0.7	V _{cc}	V

QP27C256 & QP27C256L **TABLE I – ELECTRICAL PERFORMANCE CHARACTERISTICS** Symbol Conditions Min Max Unit Test -55°C ≤TA≤+125°C **Unless Otherwise Specified** Address to Output Delay 35 $\mathbf{t}_{\mathsf{ACC}}$ $\overline{CE} = V_{\parallel}$ 35ns ns OE = VIL 45 45ns ns 55 55ns ns 70ns 70 ns 90ns 90 ns 120ns 120 ns 150ns 150 ns 170ns 170 ns 200ns 200 ns 250 250ns ns 300ns 300 ns CE to Output Delay t_{CE} OE = VIL 40 35ns ns 45ns 45 ns 55ns 55 ns 70 70ns ns 90 90ns ns 120 120ns ns 150ns 150 ns 170ns 170 ns 200ns 200 ns 250 250ns ns 300 300ns ns

			QP27	C256 & QP	27C256L
TABLE I – ELECTRICAL PERF	ORMANC Symbol	Conditions	Min	Max	Unit
		-55°C ≤TA≤+125°C Unless Otherwise Specified			
OE to Output Delay	t _{OE}	$\overline{CE} = V_{IL}$ 35ns		20	ns
		45ns		15	ns
		55ns		25	ns
		70ns		25	ns
		90ns		30	ns
		120ns		35	ns
		150ns		40	ns
		170ns		40	ns
		200ns		60	ns
		250ns		60	ns
		300ns		60	ns
OE high to Output Float	t _{DF}	$\overline{OE} = V_{IL}$ 35ns		15	ns
		45ns		15	ns
		55ns		20	ns
		70ns		25	ns
		90ns		30	ns
		120ns		35	ns
		150ns		40	ns
		170ns		40	ns
		200ns		55	ns
		250ns		60	ns
		300ns		60	ns
Output hold from Addresses, OE or CE	t _{он}	CE = OE =V _{IL}	0		ns
Whichever Occurred First \12					
Input Capacitance	C _{IN}	V _{IN} =0V, f=1Mhz		12	pF
Output Capacitance	C _{OUT}	V _{IN} =0V, f=1Mhz		14	pF

Downloaded from Arrow.com. 2045 Oakmend Village Court, Santa Clara, CA 95051

Ordering Information		
Part Number	Package (Mil-Std-1835)	Generic
5962-8606301UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256L-200/UA
5962-8606301XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256L-200/XA
5962-8606301YA	CQCC1-N32 (LCC)	QP27C256L-200/YA
5962-8606301YC	CQCC1-N32 (LCC)	QP27C256L-200/YC
5962-8606301ZA	JLCC-N32	QP27C256L-200/ZA
5962-8606302UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256L-250/UA
5962-8606302XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256L-250/XA
5962-8606302YA	CQCC1-N32 (LCC)	QP27C256L-250/YA
5962-8606302YC	CQCC1-N32 (LCC)	QP27C256L-250/YC
5962-8606302ZA	JLCC-N32	QP27C256L-250/ZA
5962-8606303UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256L-300/UA
5962-8606303XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256L-300/XA
5962-8606303YA	CQCC1-N32 (LCC)	QP27C256L-300/YA
5962-8606303YC	CQCC1-N32 (LCC)	QP27C256L-300/YC
5962-8606303ZA	JLCC-N32	QP27C256L-300/ZA
5962-8606304UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256L-170/UA
5962-8606304XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256L-170/XA
5962-8606304YA	CQCC1-N32 (LCC)	QP27C256L-170/YA
5962-8606304YC	CQCC1-N32 (LCC)	QP27C256L-170/YC
5962-8606304ZA	JLCC-N32	QP27C256L-170/ZA
5962-8606305UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256L-150/UA
5962-8606305XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256L-150/XA
5962-8606305YA	CQCC1-N32 (LCC)	QP27C256L-150/YA
5962-8606305YC	CQCC1-N32 (LCC)	QP27C256L-150/YC
5962-8606305ZA	JLCC-N32	QP27C256L-150/ZA
5962-8606306UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256L-120/UA
5962-8606306XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256L-120/XA
5962-8606306YA	CQCC1-N32 (LCC)	QP27C256L-120/YA
5962-8606306YC	CQCC1-N32 (LCC)	QP27C256L-120/YC
5962-8606306ZA	JLCC-N32	QP27C256L-120/ZA
5962-8606307UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256L-90/UA
5962-8606307XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256L-90/XA
5962-8606307YA	CQCC1-N32 (LCC)	QP27C256L-90/YA
5962-8606307YC	CQCC1-N32 (LCC)	QP27C256L-90/YC
5962-8606307ZA	JLCC-N32	QP27C256L-90/ZA
5962-8606308UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-70/UA
5962-8606308XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-70/XA
5962-8606308YA	CQCC1-N32 (LCC)	QP27C256-70/YA
5962-8606308YC	CQCC1-N32 (LCC)	QP27C256-70/YC
5962-8606308ZA	JLCC-N32	QP27C256-70/ZA
5962-8606309UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-55/UA
5962-8606309XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-55/XA
5962-8606309YA	CQCC1-N32 (LCC)	QP27C256-55/YA
5962-8606309YC	CQCC1-N32 (LCC)	QP27C256-55/YC
5962-8606310UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-45/UA
5962-8606310XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-45/XA
5962-8606310YA	CQCC1-N32 (LCC)	QP27C256-45/YA
5962-8606310YC	CQCC1-N32 (LCC)	QP27C256-45/YC

		QF27C250 & QF27C250L
Part Number	Package (Mil-Std-1835)	Generic
5962-8606311QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-200/XA
5962-8606311QYA	CQCC1-N32 (LCC)	QP27C256-200/YA
5962-8606311UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-200/UA
5962-8606311XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-200/XA
5962-8606311YA	CQCC1-N32 (LCC)	QP27C256-200/YA
5962-8606312QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-250/XA
5962-8606312QYA	CQCC1-N32 (LCC)	QP27C256-250/YA
5962-8606312UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-250/UA
5962-8606312XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-250/XA
5962-8606312YA	CQCC1-N32 (LCC)	QP27C256-250/YA
5962-8606313QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-300/XA
5962-8606313QYA	CQCC1-N32 (LCC)	QP27C256-300/YA
5962-8606313UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-300/UA
5962-8606313XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-300/XA
5962-8606313YA	CQCC1-N32 (LCC)	QP27C256-300/YA
5962-8606314QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-170/XA
5962-8606314QYA	CQCC1-N32 (LCC)	QP27C256-170/YA
5962-8606314UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-170/UA
5962-8606314XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-170/XA
5962-8606314YA	CQCC1-N32 (LCC)	QP27C256-170/YA
5962-8606315QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-150/XA
5962-8606315QYA	CQCC1-N32 (LCC)	QP27C256-150/YA
5962-8606315UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-150/UA
5962-8606315XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-150/XA
5962-8606315YA	CQCC1-N32 (LCC)	QP27C256-150/YA
5962-8606316QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-120/XA
5962-8606316QYA	CQCC1-N32 (LCC)	QP27C256-120/YA
5962-8606316UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-120/UA
5962-8606316XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-120/XA
5962-8606316YA	CQCC1-N32 (LCC)	QP27C256-120/YA
5962-8606317QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-90/XA
5962-8606317QYA	CQCC1-N32 (LCC)	QP27C256-90/YA
5962-8606317UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-90/UA
5962-8606317XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-90/XA
5962-8606317YA	CQCC1-N32 (LCC)	QP27C256-90/YA
5962-8606318QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-70/XA
5962-8606318QYA	CQCC1-N32 (LCC)	QP27C256-70/YA
5962-8606318UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-70/UA
5962-8606318XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-70/XA
5962-8606318YA	CQCC1-N32 (LCC)	QP27C256-70/YA
5962-8606319QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-55/XA
5962-8606319QXA	CQCC1-N32 (LCC)	QP27C256-55/YA
		-
5962-8606319UA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-55/UA
5962-8606319XA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-55/XA
5962-8606319YA		QP27C256-55/YA
5962-8606320QUA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-45/UA
5962-8606320QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-45/XA
5962-8606320QYA		QP27C256-45/YA
5962-8606321QUA	GDIP3-T28 CDIP4-T28 (DIP)	QP27C256-35/UA

Part Number	Package (Mil-Std-1835)	Generic
5962-8606321QXA	GDIP1-T28 CDIP2-T28 (DIP)	QP27C256-35/XA
5962-8606321QYA	CQCC1-N32 (LCC)	QP27C256-35/YA

QP Semiconductor supports Source Control Drawing (SCD), and custom package development for this product family.

Notes:

Package outline information and specifications are defined by Mil-Std-1835 package dimension requirements.

"-MIL" products manufactured by QP Semiconductor are compliant to the assembly, burn-in, test and quality conformance requirements of Test Methods 5004 & 5005 of Mil-Std-883 for Class B devices. This datasheet defines the electrical test requirements for the device(s).

The listed drawings, Mil-PRF-38535, Mil-Std-883 and Mil-Std-1835 are available online at http://www.dscc.dla.mil/

Additional information is available at our website http://www.qpsemi.com