

Low Capacitance, Triple/Quad SPDT $\pm 15 \text{ V/} + 12 \text{ V} i\text{CMOS Switches}$

Data Sheet

ADG1233/ADG1234

FEATURES

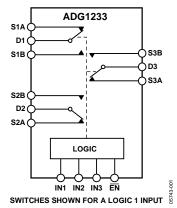
1.5 pF off capacitance
0.5 pC charge injection
33 V supply range
120 Ω on resistance
Fully specified at ±15 V/+12 V
3 V logic-compatible inputs
Rail-to-rail operation
Break-before-make switching action
16-lead TSSOP, 20-lead TSSOP, and 4 mm × 4 mm LFCSP
Typical power consumption (<0.03 μW)

APPLICATIONS

Audio and video routing Automatic test equipment Data acquisition systems Battery-powered systems Sample-and-hold systems Communication systems

GENERAL DESCRIPTION

The ADG1233 and ADG1234 are monolithic *i*CMOS® analog switches comprising three independently selectable single-pole, double throw SPDT switches and four independently selectable SPDT switches, respectively.


All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An EN input on the ADG1233 and ADG1234 enables or disables the device. When disabled, all channels are switched off.

The *i*CMOS (industrial-CMOS) modular manufacturing process combines a high voltage complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage devices has been able to achieve.

Rev. D

Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Fiaure 1.

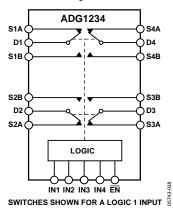


Figure 2.

Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lowered power consumption, and reduced package size.

The ultralow capacitance and charge injection of these multiplexers make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch and fast settling are required.

Fast switching speed coupled with high signal bandwidth make the devices suitable for video signal switching. *i*CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

- 1. 1.5 pF off capacitance (±15 V supply).
- 2. 0.5 pC charge injection.
- 3. 3 V logic-compatible digital input, VIH = 2.0 V, VIL = 0.8 V.
- 4. 16-lead TSSOP, 20-lead TSSOP, and 4 mm \times 4 mm LFCSP.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2006–2016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com

TABLE OF CONTENTS

Features
Applications1
Functional Block Diagrams
General Description1
Product Highlights
Revision History
Specifications
Dual Supply3
Single Supply5
REVISION HISTORY
Olasia B. C. B. B.
8/2016—Rev. C to Rev. D
8/2016—Rev. C to Rev. D Changes to Analog Inputs Parameter and Digital Inputs
Changes to Analog Inputs Parameter and Digital Inputs
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3

Absolute Maximum Ratings	7
ESD Caution	7
Pin Configurations and Function Descriptions	8
Terminology	10
Typical Performance Characteristics	11
Test Circuits	14
Outline Dimensions	16
Ordering Guide	17

8/2006—Rev. 0 to Rev. A

Updated Format	. \Universal
Changes to Table 1	13
Changes to Table 2	14
Changes to Figure 11	110
Changes to Figure 12	

1/2006—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

		Y Versio	n¹		
Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance (Ron)	120			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$; see Figure 24
	190	230	260	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels (ΔR _{ON})	3.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	6	10	12	Ω max	
On Resistance Flatness (R _{FLAT (ON)})	20			Ωtyp	$V_S = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}; I_S = -1 \text{ mA}$
	60	72	79	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage I _s (Off)	±0.02			nA typ	$V_D = \pm 10 \text{ V}, V_S = -10 \text{ V}; \text{ see Figure 25}$
	±0.1	±0.6	±1	nA max	
Drain Off Leakage I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 25
	±0.1	±0.6	±1	nA max	
Channel On Leakage ID, Is (On)	±0.02			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 26
	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
I _{INL} or I _{INH}	±0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ²					
t transition	110			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	130	150	170	ns max	$V_S = 10 \text{ V}$; see Figure 27
tввм	25			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{S1} = V_{S2} = +10 \text{ V}$; see Figure 28
ton (EN)	120			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	140	170	195	ns max	V _s = 10 V; see Figure 29
t _{off} (EN)	40			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	45	55	60	ns max	V _s = 10 V; see Figure 29
Charge Injection	0.5			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 30
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 33
Total Harmonic Distortion, THD + N	0.14			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, $f = 20 \text{ Hz to}$ 20 kHz; see Figure 34
–3 dB Bandwidth	900			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 32
C _s (Off)	1.5			pF typ	$f = 1 \text{ MHz; } V_S = 0 \text{ V}$
	1.7			pF max	$f = 1 \text{ MHz; } V_S = 0 \text{ V}$
C _D (Off)	1.6			pF typ	$f = 1 \text{ MHz; } V_S = 0 \text{ V}$
	1.8			pF max	$f = 1 \text{ MHz}; V_s = 0 \text{ V}$

		Y Versio	1 ¹		
Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
C_D , C_S (On)	3.5			pF typ	$f = 1 \text{ MHz; } V_S = 0 \text{ V}$
	4			pF max	$f = 1 \text{ MHz}; V_S = 0 \text{ V}$
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I_{DD}	0.002			μA typ	Digital inputs = 0 V or V_{DD}
			1.0	μA max	
I_{DD}	260			μA typ	Digital inputs = 5 V
			475	μA max	
Iss	0.002			μA typ	Digital inputs = 0 V or V_{DD}
			1.0	μA max	
Iss	0.002			μA typ	Digital inputs = 5 V
			1.0	μA max	
V_{DD}/V_{SS}			±5/±16.5	V min/max	GND = 0 V

 $^{^1}$ Temperature range for the Y version: -40°C to +125°C. 2 Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

		Y Version			
Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 \text{ to } V_{DD}$	V	
On Resistance (R _{ON})	300			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA;}$ see Figure 24
	475	567	625	Ω max	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On Resistance Match Between Channels (ΔR_{ON})	5			Ωtyp	$V_s = 0 \text{ V to } 10 \text{ V, } I_s = -1 \text{ mA}$
	16	26	27	Ω max	
On Resistance Flatness (R _{FLAT (ON)})	60			Ω typ	$V_S = 3 V, 6 V, 9 V, I_S = -1 mA$
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}$
Source Off Leakage Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 25
	±0.1	±0.6	±1	nA max	
Drain Off Leakage I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 25
	±0.1	±0.6	±1	nA max	
Channel On Leakage ID, Is (On)	±0.02			nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V, see Figure } 26$
	±0.2	±0.6	±1	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.001			μA typ	
			±0.1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
t transition	135			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	170	200	230		$V_S = 8 V$; see Figure 27
tввм	45			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			10	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 28
t _{on} (EN)	150			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	195	230	265		$V_s = 8 V$; see Figure 29
t _{OFF} (EN)	45			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
,	60	70	75	,	$V_S = 8 \text{ V}$; see Figure 29
Charge Injection	-0.3	, ,	, ,	pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see}$ Figure 30
Off Isolation	-80			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Channel-to-Channel Crosstalk	-85			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 33
–3 dB Bandwidth	600			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 32
C _s (Off)	1.5			pF typ	$f = 1 \text{ MHz}; V_s = 6 \text{ V}$
	1.7			pF max	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$
C _D (Off)	2			pF typ	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$
	2.2			pF max	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$
C _D , C _s (On)	4			pF typ	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$
, (,	4.5			pF max	$f = 1 \text{ MHz}; V_S = 6 \text{ V}$

		Y Version ¹				
Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments	
POWER REQUIREMENTS					V _{DD} = 13.2 V	
I_{DD}	0.002			μA typ	Digital inputs = 0 V or V _{DD}	
			1.0	μA max		
I_{DD}	260			μA typ	Digital inputs = 5 V	
			475	μA max		
V_{DD}			5/16.5	V min/max	$V_{SS} = 0 \text{ V, GND} = 0 \text{ V}$	

 $^{^1}$ Temperature range for the Y version: -40°C to $+125^\circ\text{C}$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

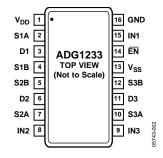
 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Parameter	Rating
V_{DD} to V_{SS}	35 V
V_{DD} to GND	−0.3 V to +25 V
V _{SS} to GND	+0.3 V to -25 V
Analog Inputs ¹	$V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA (whichever occurs first)
Digital Inputs	GND – 0.3 V to V _{DD} + 0.3 V or30 mA (whichever occurs first)
Continuous Current, S or D	24 mA
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Maximum)	100 mA
Operating Temperature Range	
Automotive Temperature Range (Y Version)	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
TSSOP, θ_{JA} , Thermal Impedance	112°C/W
LFCSP, θ_{JA} , Thermal Impedance	30.4°C/W
Reflow Soldering Peak Temperature, Pb-Fee	260°C

 $^{^1}$ Overvoltages at A, $\overline{\text{EN}}$, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.


Only one absolute maximum rating is applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

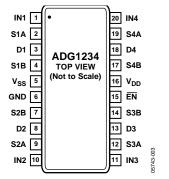


Figure 3. 16-Lead TSSOP Pin Configuration

Figure 4. 20-Lead TSSOP Pin Configuration

Table 4. 16-Lead TSSOP/20-Lead TSSOP Pin Configurations

Pin No. ADG1233 16-Lead TSSOP	Pin No. ADG1234 20-Lead TSSOP	Mnemonic
1	16	V_{DD}
2	2	S1A
3	3	D1
4	4	S1B
5	7	S2B
6	8	D2
7	9	S2A
8	10	IN2
9	11	IN3
10	12	S3A
11	13	D3
12	14	S3B
13	5	V _{SS}
14	15	EN
15	1	IN1
16	6	GND
Not applicable	17	S4B
Not applicable	18	D4
Not applicable	19	S4A
Not applicable	20	IN4

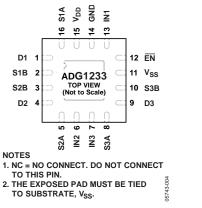


Figure 5. 16-Lead, 4 mm \times 4 mm LFCSP Pin Configuration, Exposed Pad Tied to Substrate, V_{SS}

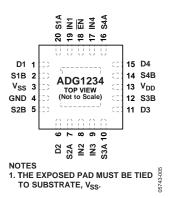


Figure 6. 20-Lead, 4 mm \times 4 mm LFCSP Pin Configuration, Exposed Pad Tied to Substrate, V_{SS}

Table 5. 16-Lead LFCSP/20-Lead LFCSP Pin Configurations

Pin No. ADG1233 16-Lead LFCSP	Pin No. ADG1234 20-Lead LFCSP	Mnemonic
1	1	D1
2	2	S1B
3	5	S2B
4	6	D2
5	7	S2A
6	8	IN2
7	9	IN3
8	10	S3A
9	11	D3
10	12	S3B
11	3	V _{SS}
12	18	EN
13	19	IN1
14	4	GND
15	13	V_{DD}
16	20	S1A
Not applicable	14	S4B
Not applicable	15	D4
Not applicable	16	S4A
Not applicable	17	IN4

Table 6. ADG1233/ADG1234 Truth Table

EN	INx	Switch xA	Switch xB
1	X	Off	Off
0	0	Off	On
0	1	On	Off

TERMINOLOGY

 V_{DD}

Most positive supply potential.

 \mathbf{V}_{ss}

Most negative power supply potential in dual supplies. In single-supply applications, it can be connected to ground.

GND

Ground (0 V) reference.

 \mathbf{R}_{ON}

Ohmic resistance between D and S.

 ΔR_{ON}

Difference between the R_{ON} of any two channels.

Is (Off)

Source leakage current when switch is off.

I_D (Off)

Drain leakage current when switch is off.

 I_D , I_S (On)

Channel leakage current when switch is on.

 V_D, V_S

Analog voltage on Terminal D, Terminal S.

Cs (Off)

Channel input capacitance for off condition.

 C_D (Off)

Channel output capacitance for off condition.

 C_D , C_S (On)

On switch capacitance.

 C_{IN}

Digital input capacitance.

 $t_{ON}(\overline{EN})$

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition.

tTRANSITION

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

t_{RRM}

Off time measured between the 80% point of both switches when switching from one address state to another.

 V_{INL}

Maximum input voltage for Logic 0.

 $\mathbf{V}_{ ext{INH}}$

Minimum input voltage for Logic 1.

IINL, IINH

Input current of the digital input.

 \mathbf{I}_{DD}

Positive supply current.

Iss

Negative supply current.

Off Isolation

A measure of an unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

Frequency at which the output is attenuated by 3 dB.

On Response

Frequency response of the on switch.

THD + N

Ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

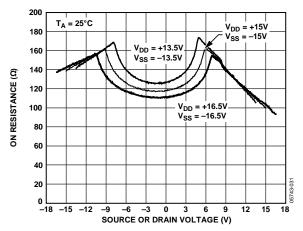


Figure 7. On Resistance as a Function of V_D (V_S) for Dual Supply

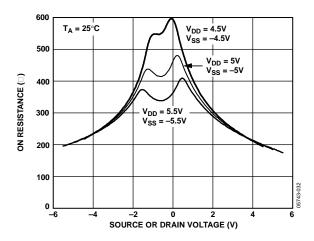


Figure 8. On Resistance as a Function of V_D (V_S) for Dual Supply

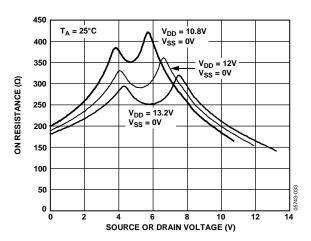


Figure 9. On Resistance as a Function of V_D (V_S) for Single Supply

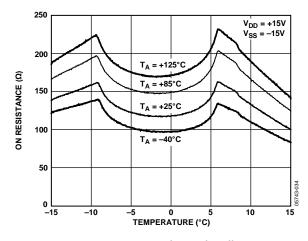


Figure 10. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

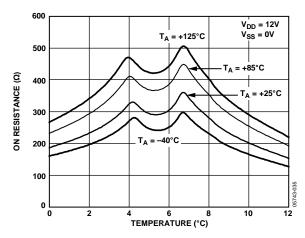


Figure 11. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

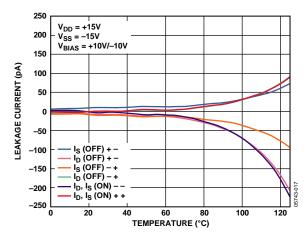


Figure 12. Leakage Currents as a Function of Temperature, Dual Supply

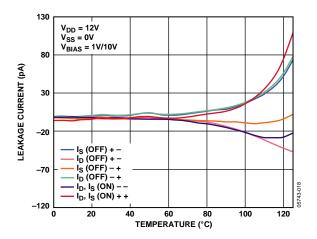


Figure 13. Leakage Currents as a Function of Temperature, Single Supply

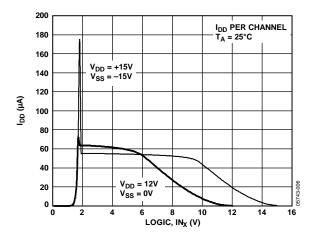


Figure 14. IDD vs. Logic Level

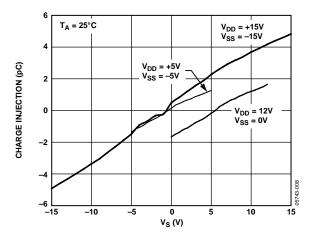


Figure 15. Charge Injection vs. Source Voltage

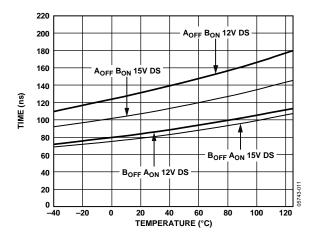


Figure 16. t_{TRANSITION} vs. Temperature

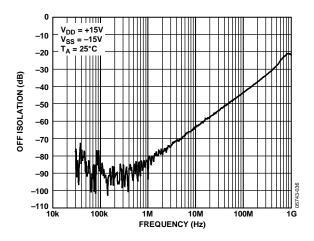


Figure 17. Off Isolation vs. Frequency

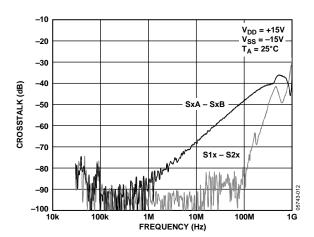


Figure 18. Crosstalk vs. Frequency

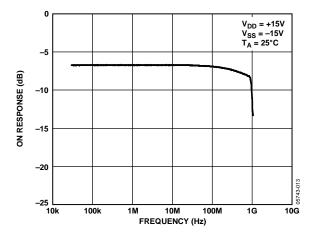


Figure 19. On Response vs. Frequency

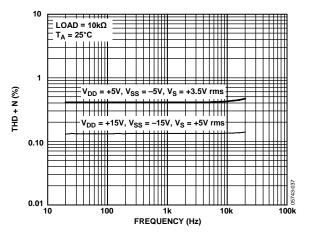


Figure 20. THD + N vs. Frequency

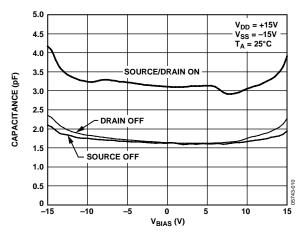


Figure 21. Capacitance vs. Source Voltage for Dual Supply

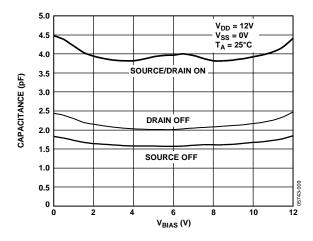


Figure 22. Capacitance vs. Source Voltage for Single Supply

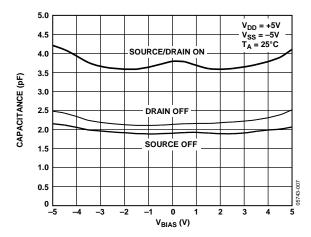


Figure 23. Capacitance vs. Source Voltage for Dual Supply

TEST CIRCUITS

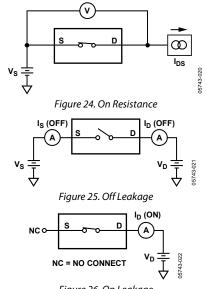


Figure 26. On Leakage

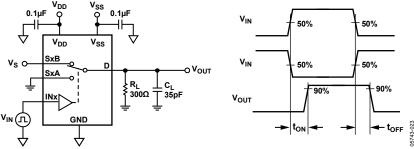


Figure 27. Switching Timing

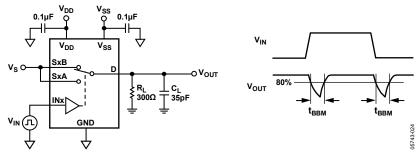


Figure 28. Break-Before-Make Delay

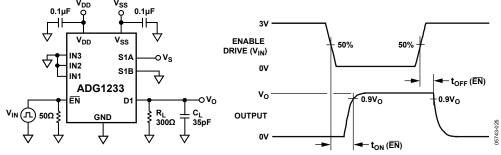


Figure 29. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})

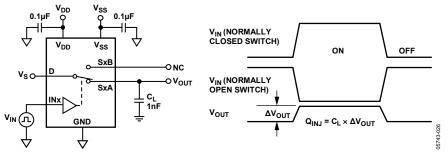


Figure 30. Charge Injection

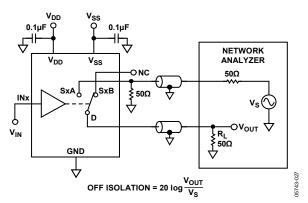
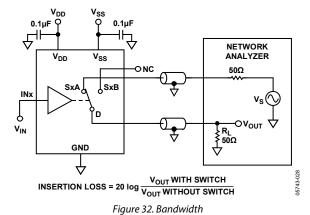



Figure 31. Off Isolation

NETWORK
ANALYZER
VOUT O RL
50Ω

SXA

SXA

GND

CHANNEL-TO-CHANNEL CROSSTALK = 20 log VOUT
V

CHANNEL-TO-CHANNEL CROSSTALK = 20 log VOUT
V

SSS

O.1µF

VSS

O.1µF

VSS

O.1µF

VSS

O.1µF

VSS

O.1µF

VSS

O.1µF

VOUT

VSS

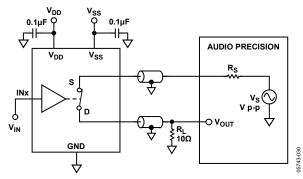
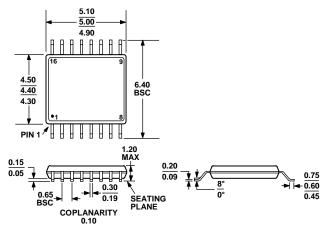
SXA

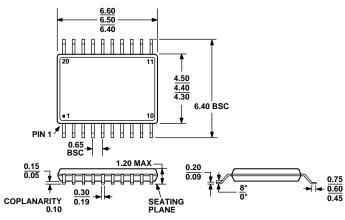
O

VSS

SXA

Figure 33. Channel-to-Channel Crosstalk


Figure 34. THD + Noise

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-153-AC

Figure 36. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20) Dimensions shown in millimeters

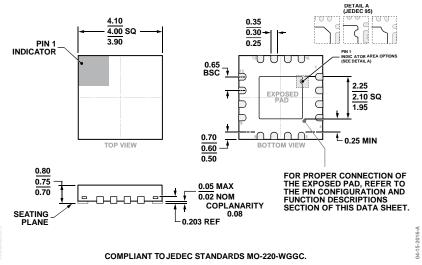


Figure 37. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23)

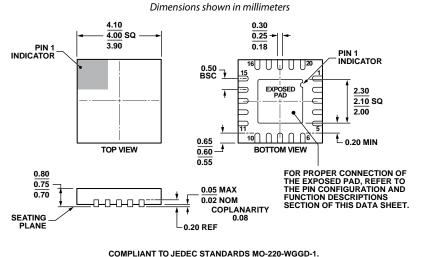


Figure 38. 20-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-20-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1233YRUZ	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1233YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1233YCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG1234YRUZ	−40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG1234YRUZ-REEL7	−40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG1234YCPZ-REEL	−40°C to +125°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
ADG1234YCPZ-REEL7	−40°C to +125°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6

¹ Z = RoHS Compliant Part.

©2006–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

D05743-0-8/16(D)

www.analog.com