Low Capacitance, Triple/Quad SPDT $\pm 15 \mathrm{~V} /+12 \mathrm{~V}$ iCMOS Switches

Data Sheet

FEATURES

1.5 pF off capacitance
0.5 pC charge injection

33 V supply range
120Ω on resistance
Fully specified at $\pm 15 \mathrm{~V} /+12 \mathrm{~V}$
3 V logic-compatible inputs
Rail-to-rail operation
Break-before-make switching action
16-lead TSSOP, 20-lead TSSOP, and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP
Typical power consumption (<0.03 $\mu \mathrm{W}$)

APPLICATIONS

Audio and video routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Communication systems

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 1 INPUT 営
Figure 1.

SWITCHES SHOWN FOR A LOGIC 1 INPUT
Figure 2.

GENERAL DESCRIPTION

The ADG1233 and ADG1234 are monolithic CMOS $^{\circledR}$ analog switches comprising three independently selectable single-pole, double throw SPDT switches and four independently selectable SPDT switches, respectively.
All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An EN input on the ADG1233 and ADG1234 enables or disables the device. When disabled, all channels are switched off.

The iCMOS (industrial-CMOS) modular manufacturing process combines a high voltage complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage devices has been able to achieve.

Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lowered power consumption, and reduced package size.

The ultralow capacitance and charge injection of these multiplexers make them ideal solutions for data acquisition and sample-andhold applications, where low glitch and fast settling are required.
Fast switching speed coupled with high signal bandwidth make the devices suitable for video signal switching. i CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

1. $\quad 1.5 \mathrm{pF}$ off capacitance ($\pm 15 \mathrm{~V}$ supply).
2. 0.5 pC charge injection.
3. 3 V logic-compatible digital input, $\mathrm{VIH}=2.0 \mathrm{~V}, \mathrm{VIL}=0.8 \mathrm{~V}$.
4. \quad 16-lead TSSOP, 20 -lead TSSOP, and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP.

ADG1233/ADG1234

TABLE OF CONTENTS

Features 1
Applications.
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 5
REVISION HISTORY
8/2016—Rev. C to Rev. D
Changes to Analog Inputs Parameter and Digital Inputs Parameter, Table 3 7
Updated Outline Dimensions 17
3/2016-Rev. B to Rev. C
Changes to Figure 5 and Figure 6 9
Updated Outline Dimensions 17
Changes to Ordering Guide 17
2/2009—Rev. A to Rev. B
Change to Idd Parameter, Table 1 4
Change to IdD Parameter, Table 2 6
Updated Outline Dimensions 16
Absolute Maximum Ratings 7
ESD Caution. 7
Pin Configurations and Function Descriptions 8
Terminology 10
Typical Performance Characteristics 11
Test Circuits 14
Outline Dimensions 16
Ordering Guide 17
8/2006-Rev. 0 to Rev. A
Updated Format. \Universal
Changes to Table 1 13
Changes to Table 2 14
Changes to Figure 11 110
Changes to Figure 12 111
1/2006-Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

[^0]${ }^{2}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	Y Version ${ }^{1}$			Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
POWER REQUIREMENTS	0.002		1.0		$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
ld				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
				$\mu \mathrm{A}$ max	
IDD	260			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			475	$\mu \mathrm{A}$ max	
$V_{D D}$			5/16.5	\checkmark min/max	$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Temperature range for the Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA (whichever occurs first)
Digital Inputs	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or30 mA (whichever occurs first)
Continuous Current, S or D	24 mA
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Maximum)	100 mA
Operating Temperature Range	
Automotive Temperature Range (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP, θ_{JA}, Thermal Impedance	$112^{\circ} \mathrm{C} / \mathrm{W}$
LFCSP, $\theta_{\text {JA }}$, Thermal Impedance	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb-Fee	$260^{\circ} \mathrm{C}$

[^1]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating is applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. 16-Lead TSSOP Pin Configuration

Figure 4. 20-Lead TSSOP Pin Configuration

Table 4. 16-Lead TSSOP/20-Lead TSSOP Pin Configurations

Pin No. ADG1233 16-Lead TSSOP	Pin No. ADG1234 20-Lead TSSOP	Mnemonic
1	16	VDD
2	2	S1A
3	3	D1
4	4	S1B
5	7	S2B
6	8	D2
7	9	S2A
8	10	IN2
9	11	IN3
10	12	S3A
11	13	D3
12	14	S3B
13	5	VSS
14	15	EN
15	1	IN1
16	6	GND
Not applicable	17	S4B
Not applicable	18	D4
Not applicable	19	S4A
Not applicable	20	IN4

NOTES

1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PAD MUST BE TIED TO SUBSTRATE, $\mathrm{V}_{\text {SS }}$.

Figure 5. 16-Lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP Pin Configuration, Exposed Pad Tied to Substrate, Vss

NOTES

1. THE EXPOSED PAD MUST BE TIED TO SUBSTRATE, V_{SS}.

Figure 6. 20-Lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP Pin Configuration,
Exposed Pad Tied to Substrate, Vss

Table 5. 16-Lead LFCSP/20-Lead LFCSP Pin Configurations

Pin No. ADG1233 16-Lead LFCSP	Pin No. ADG1234 20-Lead LFCSP	Mnemonic
1	1	D1
2	2	S1B
3	5	S2B
4	6	D2
5	7	S2A
6	8	IN2
7	9	IN3
8	10	S3A
9	11	D3
10	12	S3B
11	3	VSS
12	18	EN
13	19	IN1
14	4	GND
15	13	VDD
16	20	S1A
Not applicable	14	S4B
Not applicable	15	D4
Not applicable	16	S4A
Not applicable	17	IN4

Table 6. ADG1233/ADG1234 Truth Table

$\overline{\text { EN }}$	INx	Switch $\mathbf{x A}$	Switch $\mathbf{x B}$
1	X	Off	Off
0	0	Off	On
0	1	On	Off

ADG1233/ADG1234

TERMINOLOGY

$V_{\text {DD }}$
Most positive supply potential.
Vss
Most negative power supply potential in dual supplies. In single-supply applications, it can be connected to ground.

GND

Ground (0 V) reference.
Ron
Ohmic resistance between D and S .

Δ Ron

Difference between the Ron of any two channels.
Is (Off)
Source leakage current when switch is off.
I_{D} (Off)
Drain leakage current when switch is off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
Channel leakage current when switch is on.
V_{D}, V_{s}
Analog voltage on Terminal D, Terminal S.
Cs (Off)
Channel input capacitance for off condition.
C_{D} (Off)
Channel output capacitance for off condition.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
$t_{\text {ON }}(\overline{\mathrm{EN}})$
Delay time between the 50% and 90% points of the digital input and switch on condition.
$\mathbf{t o f f}(\overline{\mathrm{EN}})$
Delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {transition }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
$t_{\text {BBM }}$
Off time measured between the 80% point of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
IINL, $\mathbf{I}_{\text {INH }}$
Input current of the digital input.
I_{DD}
Positive supply current.
Iss
Negative supply current.

Off Isolation

A measure of an unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth
Frequency at which the output is attenuated by 3 dB .

On Response

Frequency response of the on switch.
THD + N
Ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 10. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 11. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 12. Leakage Currents as a Function of Temperature, Dual Supply

Figure 13. Leakage Currents as a Function of Temperature, Single Supply

Figure 14. IDD vs. Logic Level

Figure 15. Charge Injection vs. Source Voltage

Figure 16. trtansition $^{\text {vs. Temperature }}$

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. On Response vs. Frequency

Figure 20. $T H D+N$ vs. Frequency

Figure 21. Capacitance vs. Source Voltage for Dual Supply

Figure 22. Capacitance vs. Source Voltage for Single Supply

Figure 23. Capacitance vs. Source Voltage for Dual Supply

TEST CIRCUITS

Figure 24. On Resistance

Figure 25. Off Leakage

Figure 26. On Leakage

Figure 28. Break-Before-Make Delay

Figure 29. Enable Delay, toN $(\overline{E N})$, $t_{\text {OFF }}(\overline{E N})$

Figure 30. Charge Injection

Figure 31. Off Isolation

Figure 32. Bandwidth
 CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{S}}}$ 镸

Figure 33. Channel-to-Channel Crosstalk

Figure 34. THD + Noise

OUTLINE DIMENSIONS

Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-16$)
Dimensions shown in millimeters

Figure 36. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 37. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-23)
Dimensions shown in millimeters

FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.

COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-1.
Figure 38. 20-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-20-6)
Dimensions shown in millimeters
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option
ADG1233YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1233YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1233YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG1234YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG1234YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG1234YCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6
ADG1234YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Temperature range for the Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

[^1]: ${ }^{1}$ Overvoltages at $\mathrm{A}, \overline{\mathrm{EN}}, \mathrm{S}$, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

