2.1Ω On Resistance, $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$ iCMOS Dual SPST Switches

Data Sheet

FEATURES

2.1Ω on resistance

0.5Ω maximum on resistance flatness

Up to $\mathbf{2 5 0} \mathbf{~ m A}$ continuous current
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$
No V_{L} supply required 3 V logic-compatible inputs
Rail-to-rail operation
10-lead MSOP and 10-lead, $\mathbf{3} \mathbf{~ m m} \times 3 \mathrm{~mm}$ LFCSP packages

APPLICATIONS

Automatic test equipment
 Data acquisition systems
 Relay replacements
 Battery-powered systems
 Sample-and-hold systems
 Audio signal routing
 Video signal routing
 Communication systems

GENERAL DESCRIPTION

The ADG1421/ADG1422/ADG1423 contain two independent single-pole/single-throw (SPST) switches. The ADG1421 and ADG1422 differ only in that the digital control logic is inverted. The ADG1421 switches are turned on with Logic 1 on the appropriate control input, and Logic 0 is required for the ADG1422. The ADG1423 has one switch with digital control logic similar to that of the ADG1421; the logic is inverted on the other switch. The ADG1423 exhibits break-before-make switching action for use in multiplexer applications. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The iCMOS ${ }^{\circledR}$ (industrial CMOS) modular manufacturing process combines high voltage, complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage parts has achieved. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC O INPUT 㩊
Figure 1. ADG1421 Functional Block Diagram

SWITCHES SHOWN FOR A LOGIC 0 INPUT
Figure 2. ADG1422 Functional Block Diagram

Figure 3. ADG1423 Functional Block Diagram
The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. The iCMOS construction ensures ultralow power dissipation, making the part ideally suited for portable and battery-powered instruments.

PRODUCT HIGHLIGHTS

1. 2.4Ω maximum on resistance at $25^{\circ} \mathrm{C}$.
2. Minimum distortion.
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
4. No V_{L} logic power supply required.
5. 10-lead MSOP and 10 -lead, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP packages.

Rev. A

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
+12 V Single Supply 4
± 5 V Dual Supply 5
REVISION HISTORY
7/14—Rev. 0 to Rev. A
Changes to Table 1 3
Updated Outline Dimensions 15
10/09—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +105^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range				V ${ }_{\text {d }}$ to $\mathrm{V}_{S S}$	V	
On Resistance, Ron	2.1				Ω typ	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; see Figure 23
	2.4	2.8	2.95	3.2	Ω max	$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$
On Resistance Match Between Channels, Δ Ron	0.02				Ω typ	$\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.1	0.12	0.124	0.13	Ω max	
On Resistance Flatness, RFLAT (O)	0.4				Ω typ	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
	0.5	0.6	0.63	0.65	Ω max	
LEAKAGE CURRENTS Source Off Leakage, $I_{\text {s }}$ (Off)						$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$
	± 0.1				nA typ	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$; see Figure 24
	± 0.5	± 2	± 9	± 75	nA max	
Drain Off Leakage, I_{D} (Off)	± 0.1				nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$; see Figure 24
	± 0.5	± 2	± 9	± 75	nA max	
Channel On Leakage, $\mathrm{I}_{\mathrm{l}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	± 0.2				nA typ	$V_{S}=V_{D}= \pm 10 \mathrm{~V}$; see Figure 25
	± 1	± 2	± 9	± 75	$n A$ max	
DIGITAL INPUTS						
Input High Voltage, V INH				2.0	V min	
Input Low Voltage, VINL				0.8	V max	
Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$	0.005				$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
				± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	4				pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$						
ton	115				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	145	180		210	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 26
toff	115				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF}$
	145	165		190	ns max	$V_{s}=10 \mathrm{~V} \text {; see Figure } 26$
Break-Before-Make Time Delay, $\mathrm{t}_{\text {D }}$ (ADG1423 Only)	45				ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
				30	ns min	$V_{S 1}=V_{S 2}=10 \mathrm{~V} \text {; see Figure } 27$
Charge Injection	-5				pC typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ see Figure 28
Off Isolation	-64				dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 29
Channel-to-Channel Crosstalk	-74				dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 30
Total Harmonic Distortion + Noise	0.016				\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 32 \end{aligned}$
-3 dB Bandwidth	180				MHz typ	$\mathrm{RL}=50 \Omega, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 31
Insertion Loss	0.12				dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 31
Cs_{s} (Off)	18				pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
$C_{\text {d }}$ (Off)	22				pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{d},} \mathrm{C}_{5}(\mathrm{On})$	86				pF typ	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$
POWER REQUIREMENTS						$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$
ldD	0.002				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
				1.0	$\mu A \max$	
IDD	120				$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
				190	$\mu \mathrm{A}$ max	
Iss	0.002				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$, or V_{DD}
				1.0	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$				$\pm 4.5 / \pm 16.5$	V min/max	Ground $=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design, not subject to production test.

ADG1421/ADG1422/ADG1423

+12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^0]
± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

[^1]
CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL ${ }^{1}$					
$\pm 15 \mathrm{~V}$ Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$
	185	120	75	mA maximum	
	250	155	85	mA maximum	
+12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
$10-$ Lead MSOP ($\theta_{\text {JA }}=142^{\circ} \mathrm{C} / \mathrm{W}$)	150	100	65	mA maximum	
$10-L e a d ~ L F C S P ~(~(~ נ J A ~=~ 76 ~ \% ~ \% ~ W ~) ~$	205	130	80	mA maximum	
$\pm 5 \mathrm{~V}$ Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-4.5 \mathrm{~V}$
$10-L e a d$ MSOP ($\theta_{\mathrm{JA}}=142^{\circ} \mathrm{C} / \mathrm{W}$)	145	100	65	mA maximum	
	195	125	75	mA maximum	

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 5.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {D }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty-Cycle Maximum)	
10-Lead MSOP (4-Layer Board)	300 mA
10-Lead LFCSP	400 mA
Continuous Current per Channel, S or D	Data in Table $4+15 \% \mathrm{~mA}$
Operating Temperature Range Industrial	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb Free	$260^{\circ} \mathrm{C}$

THERMAL RESISTANCE

Table 6. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathbf{J c}}$	Unit
10-Lead MSOP (4-Layer Board)	142	44	${ }^{\circ} \mathrm{C} / \mathrm{W}$
10-Lead LFCSP	76		${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

${ }^{1}$ Over voltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 5. 10-Lead MSOP Pin Configuration

Table 7. 10-Lead LFCSP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S1	Source Terminal. This pin can be an input or output. Source Terminal. This pin can be an input or output.
3	S2	NC
4	GND Connect.	
5	V $_{\text {DD }}$	Ground (0 V) Reference. Most Positive Power Supply Potential. 6
7	IN2	Logic Control Input. Logic Control Input.
8	VSS	Most Negative Power Supply Potential. Drain Terminal. This pin can be an input or output.
10	D2	Drain Terminal. This pin can be an input or output. Exposed pad tied to substrate, VSS.

Table 8. 10-Lead MSOP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	S1	Source Terminal. This pin can be an input or output. Source Terminal. This pin can be an input or output. 2
3	S2	No Connect.
4	GND	Ground (0 V) Reference. Most Positive Power Supply Potential. 5
6	V $_{\text {DD }}$	IN2
7	IN1	Logic Control Input. Logic Control Input.
8	V SS $^{\text {Most Negative Power Supply Potential. }}$	
9	D2	Drain Terminal. This pin can be an input or output. Drain Terminal. This pin can be an input or output.
10	D1	

Table 9. ADG1421/ADG1422 Truth Table

ADG1421 INx	ADG1422 INx	Switch Condition
1	0	On
0	1	Off

Table 10. ADG1423 Truth Table

ADG1423 INx	Switch 1 Condition	Switch 2 Condition
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Dual Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 10. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, +12 V Single Supply

Figure 11. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, ± 5 V Dual Supply

Figure 12. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

Figure 13. Leakage Currents as a Function of Temperature, +12 V Single Supply

Figure 14. Leakage Currents as a Function of Temperature, ± 5 V Dual Supply

Figure 15. IDD vs. Logic Level

Figure 16. Charge Injection vs. Source Voltage

Figure 17. $t_{\text {transition }}$ Times vs. Temperature

Figure 18. Off Isolation vs. Frequency

Figure 19. On Response vs. Frequency

Figure 20. Crosstalk vs. Frequency

Figure 21. THD $+N$ vs. Frequency

Figure 22. ACPSRR vs. Frequency

TEST CIRCUITS

Figure 23. On Resistance

Figure 25. On Leakage

Figure 26. Switching Times

Figure 27. Break-Before-Make Time Delay

Figure 28. Charge Injection

Figure 29. Off Isolation

Figure 30. Channel-to-Channel Crosstalk

Figure 31. Bandwidth

Figure 32. $T H D+N$

TERMINOLOGY

I_{DD}
The positive supply current.
Iss
The negative supply current.

V_{D} (V_{s})

The analog voltage on Terminal D and Terminal S.
$\mathrm{R}_{\text {on }}$
The ohmic resistance between Terminal D and Terminal S.
$\mathbf{R}_{\text {fiat (ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_{s} (Off)

The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
Cs (Off)
The off switch source capacitance, measured with reference to ground.

C_{D} (Off)

The off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}$ (On)
The on switch capacitance, measured with reference to ground.
Cin
The digital input capacitance.
$\mathrm{t}_{\text {ON }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch on condition. See Figure 26.
$t_{\text {OFF }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch off condition. See Figure 26.

$\mathbf{t}_{\text {transition }}$

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$\mathrm{T}_{\text {ввм }}$

Off time measured between the 80% point of both switches when switching from one address state to another. See Figure 27.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching. See Figure 28.

Off Isolation

A measure of unwanted signal coupling through an off switch. See Figure 29.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. See Figure 30.

Bandwidth

The frequency at which the output is attenuated by 3 dB . See Figure 31.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch. See Figure 31.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental. See Figure 32.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62 \mathrm{~V} \mathrm{p-p}$. . The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR. See Figure 22.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 33. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

*FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET.

Figure 34. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Very Thin, Dual Lead (CP-10-9)
Dimensions shown in millimeters

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option	Branding
ADG1421BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2V
ADG1421BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2V
ADG1421BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10- Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S2V
ADG1422BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2W
ADG1422BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2W
ADG1422BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10- Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S2W
ADG1423BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2X
ADG1423BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package [MSOP]	RM-10	S2X
ADG1423BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10- Lead Frame Chip Scale Package [LFCSP_WD]	CP-10-9	S2X

[^3]
[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^3]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

