

Плата расширения Al Board MAX (v.01) платформы MIPLY

Техническое описание, v 1.0

Платформа MIPLY представляет собой набор из отладочной платы CPU board и плат расширения. Платы расширения серии MIPLY были созданы для комфорта работы с платой CPU, каждой соответствует свое основное функциональное назначение.

Платформа создана для разработки и отладки программного обеспечения, может быть использована как процессорная плата для различных лабораторных и отладочных комплектов, проектов различного назначения.

Модуль поставляется с предустановленной графической средой программирования MKS Studio, которая упрощает создание рабочих программ.



Рис. 1. Внешний вид плат

Содержание

1	Пла	ата расширения AI board	. 3
	1.1	Расположение элементов	. 3
	1.2	Назначение разъемов	. 3
	1.3	Назначение светодиодов	. 4
	1.4	Разъемы	. 5
2	Pas	въёмы ввода/вывода XP2, XP3	. 6
3	Кол	мплект поставки	. 9
1	Κοι	HTAVTN	a

1 Плата расширения Al board

Если не хватает выводов для аналоговых сигналов, можно воспользоваться платой Al board, где расположены 8 клемм.

Внимание! Не использовать одновременно с платой DAT!

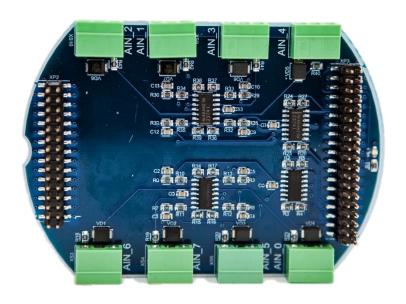


Рис. 1.1 Общий вид платы Al board

1.1 Расположение элементов

С расположением элементов на плате можно ознакомиться с помощью рис. 1.2.

1.2 Назначение разъемов

Таблица 1.1 Назначение разъёмов

Обозначение		Назначение	Тип разъема	Тип ответного разъема
XS3-XS10	MC_0	Аналоговые входы	15EDGRC-	15EDGK-
	_		3.81-03	3.81-03
	AIN_7			
XP2, XP3		а) Разъем для связи с	PLS	
		CPU		
		б) Цифровые		
		входы\выходы		

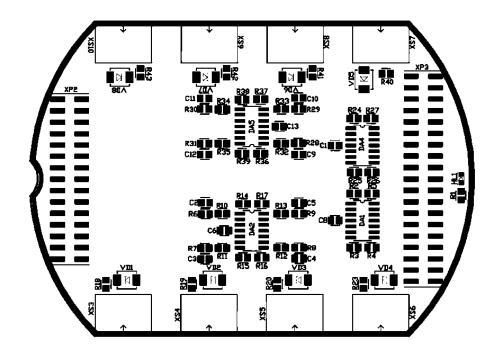


Рис. 1.2 Расположение элементов платы Al board

Начало нумерации обозначено квадратной маской первого контакта разъема (рис. 1.3). Счет направлен по рядам слева направо в разъемах типа PLS от первого контакта.

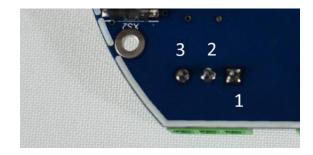


Рис. 1.3 Пример нумерации контактной группы разъема

1.3 Назначение светодиодов

Таблица 1.2 Назначение светодиодов

Обозначение	Назначение
HL1	Индикация наличия питания от CPU

1.4 Разъемы

Аналоговые входа работают через микросхему TLV2374IDR, подключение через клемму типа 15EDGRC-3.81-03 позволяет сразу подключать датчики и устройства с линией питания и земли. Названия у клемм в номерном порядке, но назначение соответствует таблице 1.3.

Таблица 1.3 Аналоговые входы

Разъем	Контакт	Назначение	Вывод МК
	1	AIN_0	PF6
XS3	2	VCC	+5 V
	3	GND	
	1	AIN_5	PF3
XS4	2	VCC	+5 V
	3	GND	
	1	AIN_7	PF5
XS5	2	VCC	+5 V
	3	GND	
	1	AIN_6	PF4
XS6	2	VCC	+5 V
	3	GND	
	1	AIN_4	PF10
XS7	2	VCC	+5 V
	3	GND	
	1	AIN_3	PF9
XS8	2	VCC	+5 V
	3	GND	
	1	AIN_2	PF7
XS9	2	VCC	+5 V
	3	GND	
	1	AIN_1	PF8
XS10	2	VCC	+5 V
	3	GND	

2 Разъёмы ввода/вывода ХР2, ХР3

Ввод/вывод логических сигналов с микропроцессора на внешние платы расширения осуществляется через разъёмы XP2, XP3.

Выводы этих разъёмов допускают работу с уровнем напряжения 3,3 В кроме линии питания VCC (5 B).

Назначение выводов разъёмов приведено в табл. 2.1, 2.2.

Таблица 2.1 Разъем ХР2

Разъем	Контакт	Назначение	Вывод МК
	1	I2_SCL	PB10
	2	I2C_SDA	PB11
	3	1_WIRE	PEO
	4	CAN1_BUS_TX	PB13
	5	CAN1_BUS_RX	PB12
	6	CANO_BUS_TX	PD1
	7	CANO_BUS_RX	PD0
	8	SPI6_CLK	PG13
	9	SPI6_MOSI	PG14
	10	SPI6_MISO	PG12
	11	SPI_BUS_CSB3	PI7
	12	SPI_BUS_CSB2	PI6
	13	SPI_BUS_CSB1	PI5
XP2	14	SPI_BUS_CSB0	PI4
	15	UART2_RTS	PD4
	16	UART2_CTS	PD3
	17	UART2_RX	PD6
	18	UART2_TX	PD5
	19	DIR_TIM5_CH1	PG15
	20	DIR_TIM5_CH2	PG9
	21	DIR_TIM5_CH3#	PB9
	22	DIR_TIM5_CH3	PB8
	23	DIR_TIM5_CH2#	PG11
	24	DIR_TIM5_CH1#	PG10
	25	DIR_TIM5_CH4	PG6
	26	DIR_TIM5_CH4#	PG5
	27	DIR_TIM9_CH1	PG3

28	DIR_TIM9_CH1#	PG7
29	DIR_TIM9_CH2	PG2
30	DIR_TIM9_CH2#	PG4

Таблица 2.2 Разъем ХРЗ

Разъем	Контакт	Назначение	Вывод МК
	1	GND	
	2	GND	
	3	AIN_5	PF3
	4	AIN_7	PF5
	5	AIN_6	PF4
	6	AIN_0	PF6
	7	AIN_1	PF7
	8	AIN_3	PF9
	9	AIN_4	PF10
	10	AIN_2	PF8
	11	DIR_TIM12_CH1	PB0
	12	DIR_TIM12_CH1#	PB1
	13	DIR_TIM12_CH2	PC4
	14	DIR_TIM12_CH2#	PC5
	15	UART6_TX	PC6
	16	UART6_RX	PC7
XP3	17	UART6_DD	PH12
	18	PWM_TIM9_CH1	PE5
	19	PWM_TIM5_CH4	PA3
	20	PWM_TIM3_CH1	PA6
	21	PWM_TIM3_CH2	PA7
	22	PWM_TIM4_CH2	PD13
	23	PWM_TIM4_CH3	PD14
	24	PWM_TIM5_CH1	PH10
	25	PWM_TIM9_CH2	PE6
	26	PWM_TIM2_CH1	PA0
	27	PWM_TIM2_CH2	PA1
	28	PWM_TIM5_CH3	PA2
	29	PWM_TIM5_CH2	PH11
	30	PWM_TIM12_CH1	PH6
	31	PWM_TIM12_CH2	PH9
	32	GND	
	33	GND	

34	EN_PWM	PD10
35	+3,3 V	
36	+3,3 V	
37	VCC	
38	VCC	

3 Комплект поставки

Модули поставляются в следующем комплекте:

- Плата расширения Al Board MAX;
- •Комплект ответных разъемов;
- Паспорт изделия.

4 Контакты

OOO «Мехатроника-Софт» г. Томск, ул. Ивана Черных 85 mks.simply@gmail.com https://www.mks-robo.com/