life.augmented

STF5N65M6

N-channel 650 V, 1.15 Ω typ., 4 A MDmesh[™] M6 Power MOSFET in a TO-220FP package

Datasheet - production data

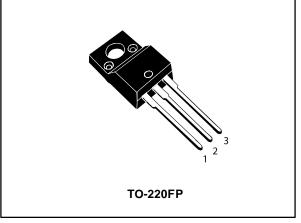
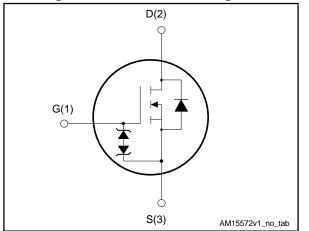



Figure 1: Internal schematic diagram

Features

Order code	VDS	R _{DS(on)} max.	ID
STF5N65M6	650 V	1.3 Ω	4 A

- Reduced switching losses
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

The new MDmesh[™] M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent R_{DS(on)} * area improvement with one of the most effective switching behaviors available, as well as a user-friendly experience for maximum endapplication efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing	
STF5N65M6	5N65M6	TO-220FP	Tube	

DocID029232 Rev 1

www.st.com

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	± 25	V
ID	Drain current (continuous) at T _C = 25 °C	4	А
ID	Drain current (continuous) at Tc = 100 °C	2.5	А
Idм ⁽¹⁾	Drain current (pulsed)	16	А
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	20	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	v/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 °C)	2.5	kV
TJ	Operating junction temperature range	EE to 150	.0°
T _{stg}	Storage temperature range	-55 to 150	C

Notes:

 $^{(1)}\mbox{Pulse}$ width limited by safe operating area

 $^{(2)}I_{SD} \leq$ 4 A, di/dt = 400 A/µs; V_{DS peak} < V(BR)DSS, V_{DD} = 400 V $^{(3)}V_{DS} \leq$ 520 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit	
R _{thj} -case	Thermal resistance junction-case	6.25	°C ///	
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W	

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	1	А
E _{as}	Single pulse avalanche energy (starting $T_j=25^{\circ}C$, $I_D=I_{AR}$, $V_{DD}=50$ V)	90	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off-state							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	650			V	
		$V_{GS} = 0 V, V_{DS} = 650 V$			1	μA	
I _{DSS} Zero gate voltage of	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V};$ $T_{C} = 125 \text{ °C} (1)$			100	μA	
lgss	Gate body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±5	μA	
VGS(th)	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2.25	3	3.75	V	
R _{DS(on)}	Static drain-source on-resistance	$V_{GS}=10~V,~I_{D}=2~A$		1.15	1.3	Ω	

Table 5: On/off-state

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	170	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	20	-	pF
C _{rss}	Reverse transfer capacitance	VDS = 100 V, I = I MHZ, VGS = 0 V		1	-	pF
C _{oss} eq. ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 520 V, V_{GS} = 0 V	-	35	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	5	-	Ω
Qg	Total gate charge	Vpp = 350 V, lp = 1 A, Vgs= 10 V,	-	5.1	-	nC
Q_{gs}	Gate-source charge	(see Figure 15: "Test circuit for	-	0.8	-	nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	2	-	nC

Table 6: Dynamic

Notes:

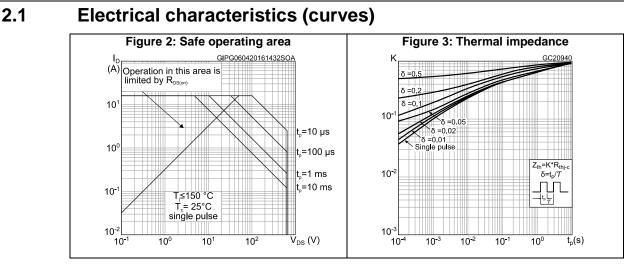
 $^{(1)}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

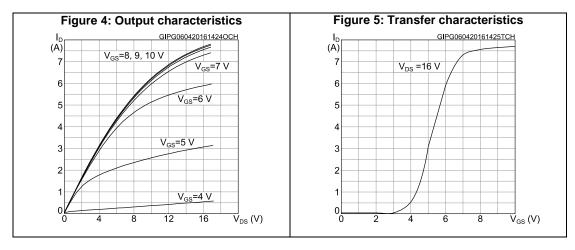
Table	7:	Switching	times
i unio	•••	omitoring	

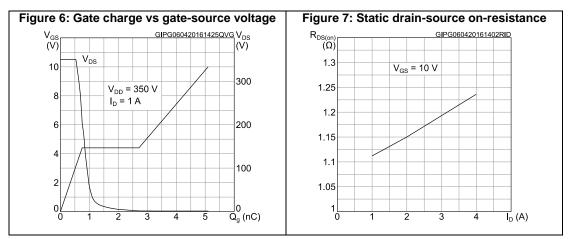
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 325 V, I_D = 2 A, R_G = 4.7 Ω ,	-	6.5	-	ns
tr	Rise time	V _{GS} = 10 V (see Figure 14: "Test circuit for resistive load switching		5.9	-	ns
t _{d(off)}	Turn-off delay time	times" and Figure 19: "Switching	-	17.4	-	ns
tr	Fall time	time waveform")	-	15.2	-	ns

4/13

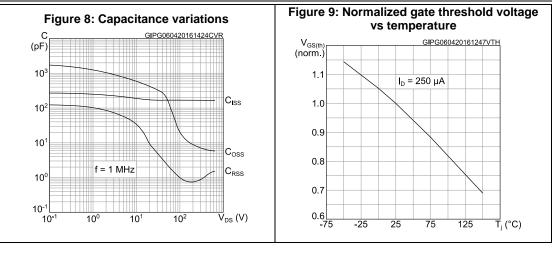
Electrical characteristics

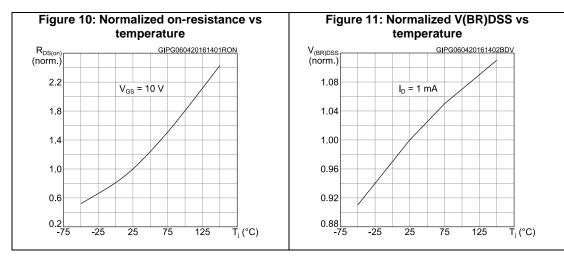

	Table 8: Source-drain diode							
Symbol	mbol Parameter Test conditions				Max.	Unit		
Isd	Source-drain current		-		4	А		
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		16	А		
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 4 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$	-		1.6	V		
trr	Reverse recovery time	I _{SD} = 4 A, di/dt = 100 A/µs,	-	222		ns		
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$, (see <i>Figure 19</i> :		1.24		μC		
Irrm	Reverse recovery current	"Switching time waveform")	-	11.2		А		
trr	Reverse recovery time	I _{SD} = 4 A, di/dt = 100 A/µs,	-	264		ns		
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$ (see Figure 19: "Switching	-	1.39		μC		
I _{RRM}	Reverse recovery current	time waveform")	-	10.5		А		

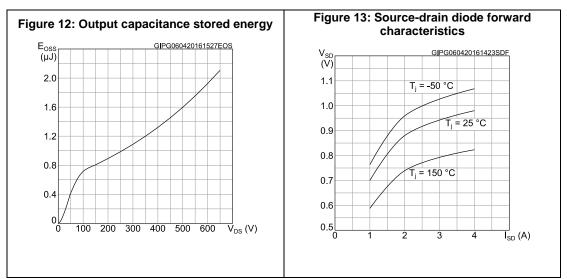

Notes:


⁽¹⁾Pulse width limited by safe operating area

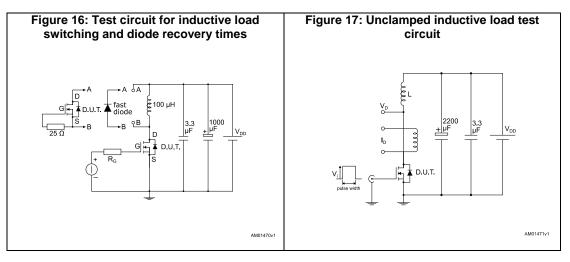
 $^{(2)}\text{Pulsed:}$ pulse duration = 300 µs, duty cycle 1.5%

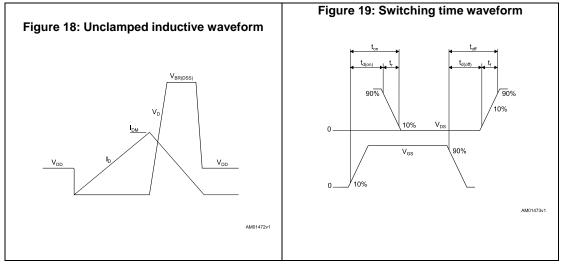



6/13


DocID029232 Rev 1

Electrical characteristics

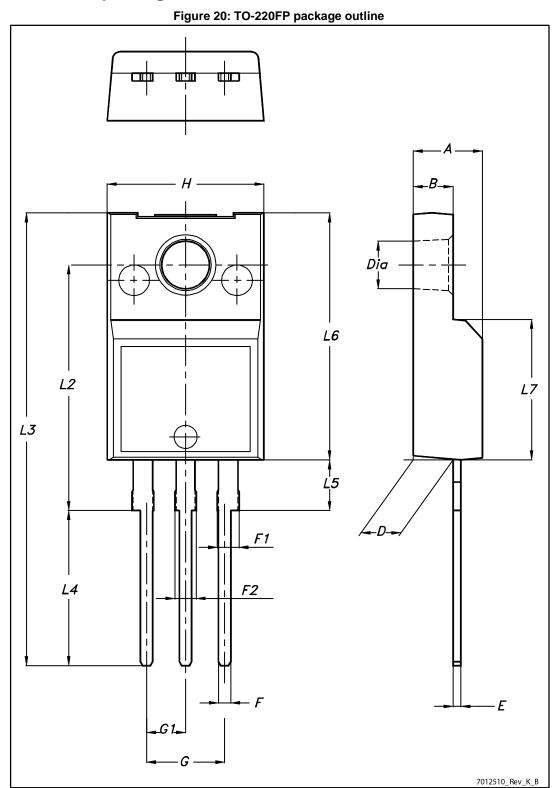



57

DocID029232 Rev 1

3 Test circuits

DocID029232 Rev 1



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

DocID029232 Rev 1

57

10/13

STF5N65M6

Package information

M6			Package information
	Table 9: TO-220FP page	ckage mechanical dat	a
Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
05-May-2016	1	Initial release.

STF5N65M6

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

