FEATURES

- Overvoltage protection up to -55 V and +55 V
- Power-off protection up to -55 V and +55 V
- Overvoltage detection on source pins
- Low charge injection $\left(\mathrm{Q}_{\mathrm{in}_{\mathrm{N}}}\right)$: -0.4 pC
- Low on capacitance
- ADG5208F: 20 pF
- ADG5209F: 14 pF
- Latch-up immune under any circumstance
- Known state without digital inputs present
- $\mathrm{V}_{S S}$ to $\mathrm{V}_{D D}$ analog signal range
- $\pm 5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
- 8 V to 44 V single-supply operation
- Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V

APPLICATIONS

- Analog input/output modules
- Process control/distributed control systems
- Data acquisition
- Instrumentation
- Avionics
- Automatic test equipment
- Communication systems
- Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADG5208F Functional Block Diagram

Figure 2. ADG5209F Functional Block Diagram

The low capacitance and charge injection of these switches make them ideal solutions for data acquisition and sample-and-hold applications, where low glitch switching and fast settling times are required.

PRODUCT HIGHLIGHTS

1. The source pins are protected against voltages greater than the supply rails, up to -55 V and +55 V .
2. The source pins are protected against voltages between -55 V and +55 V in an unpowered state.
3. Trench isolation guards against latch-up.
4. Optimized for low charge injection and on capacitance.
5. The ADG5208F/ADG5209F can be operated from a dual supply of $\pm 5 \mathrm{~V}$ up to $\pm 22 \mathrm{~V}$ or a single power supply of 8 V up to 44 V .
pin is pulled to the secondary supply voltage that was exceeded Input signal levels of up to -55 V or +55 V relative to ground are blocked, in both the powered and unpowered conditions.

Rev. B

TABLE OF CONTENTS

Features 1
Test Circuits 20
Applications 1 Terminology. 23
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Specifications 3
± 15 V Dual Supply 3
$\pm 20 \mathrm{~V}$ Dual Supply 5
12 V Single Supply 7
36 V Single Supply 9
Continuous Current Per Channel, Sx, D, or Dx. 11
Absolute Maximum Ratings 12
ESD Caution. 12
Pin Configurations and Function Descriptions. 13
Typical Performance Characteristics 15
REVISION HISTORY
7/2023—Rev. A to Rev. B
Changes to Table 1 3
Changes to Table 2 5
Changes to Table 3 7
Changes to Table 4 9
Updated Outline Dimensions 28
Added Evaluation Boards. 29

SPECIFICATIONS

± 15 V DUAL SUPPLY

$V_{D D}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, C_{\text {DECOUPLING }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, R R_{N} On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On-Resistance Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$ Threshold Voltage, V_{T}	250 270 250 270 2.5 8 2.5 8 6.5 8.5 1.5 3.5 0.7	335 335 14 14 9.5 4	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 395 \\ & 395 \\ & 15 \\ & 15 \\ & 9.5 \\ & 4 \end{aligned}$	V Ω typ Ω max V typ	$\begin{aligned} & V_{D D}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}, \text { see Figure } 38 \\ & V_{S}= \pm 10 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 9 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 10 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 9 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 10 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 9 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \end{aligned}$ See Figure 30
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{D}(O n), s(O n)$	$\begin{aligned} & \pm 0.1 \\ & \pm 1 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 0.3 \\ & \pm 1.5 \end{aligned}$	± 2 ± 5 ± 20	± 5 ± 10 ± 25	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, V_{S S}=-16.5 \mathrm{~V} \\ & V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V}, \text { see Figure } 36 \\ & V_{S}= \pm 10 \mathrm{~V}, V_{D}=\mp 10 \mathrm{~V} \text {, see Figure } 36 \\ & V_{S}=V_{D}= \pm 10 \mathrm{~V} \text {, see Figure } 37 \end{aligned}$
FAULT Source Leakage Current, IS With Overvoltage Power Supplies Grounded or Floating Drain Leakage Current, I_{D} With Overvoltage Power Supplies Grounded Power Supplies Floating	$\begin{aligned} & \pm 66 \\ & \pm 25 \\ & \pm 10 \\ & \\ & \pm 50 \\ & \pm 500 \\ & \pm 700 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 70 \\ & \pm 700 \\ & \pm 50 \end{aligned}$	± 50	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ typ nA typ nA max nA typ nA max $\mu \mathrm{A}$ typ	$V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 55 \mathrm{~V} \text {, see }$ Figure 35 $V_{D D}=0 \mathrm{~V}$ or floating, $\mathrm{V}_{S S}=0 \mathrm{~V}$ or floating, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{Ax}=$ 0 V or floating, $\mathrm{V}_{S}= \pm 55 \mathrm{~V}$, see Figure 34 $V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 55 \mathrm{~V}$, see Figure 35 $V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 55 \mathrm{~V}, \mathrm{Ax}=0 \mathrm{~V}$, see Figure 34 $V_{D D}=$ floating, $V_{S S}=$ floating, $G N D=0 \mathrm{~V}, V_{S}= \pm 55 \mathrm{~V}, \mathrm{Ax}=0$ V, see Figure 34
DIGITAL INPUTS Input Voltage High, $\mathrm{V}_{\text {INH }}$ Low, $\mathrm{V}_{\text {INL }}$ Input Current, I_{NL} or I_{NH} Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$\begin{aligned} & \pm 0.7 \\ & \pm 1.1 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{array}{\|c} 2.0 \\ 0.8 \\ \pm 1.2 \end{array}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{I N}=V_{G N D}$ or $V_{D D}$

SPECIFICATIONS

Table 1. (Continued)

SPECIFICATIONS

Table 1. (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
$V_{D D} V_{S S}$			$\begin{array}{\|l} \pm 5 \\ \pm 22 \end{array}$	$\begin{aligned} & V \text { min } \\ & V \text { max } \end{aligned}$	$\begin{aligned} & \text { GND }=0 \mathrm{~V} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$

± 20 V DUAL SUPPLY

$V_{D D}=20 \mathrm{~V} \pm 10 \%, V_{S S}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}, C_{D E C O U P L I N G}=0.1 \mu F$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, R R_{N} On-Resistance Match Between Channels, ΔR_{ON} On-Resistance Flatness, $\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$ Threshold Voltage, V_{T}	260 290 250 270 2.5 8 2.5 8 12.5 14 1.5 3.5 0.7	355 335 14 14 15 4	$\begin{aligned} & V_{D D} \text { to } V_{S S} \\ & 415 \\ & 395 \\ & 15 \\ & 15 \\ & 15 \\ & 4 \end{aligned}$	V Ω typ Ω max V typ	$\begin{aligned} & V_{D D}=+18 \mathrm{~V}, V_{S S}=-18 \mathrm{~V}, \text { see Figure } 38 \\ & V_{S}= \pm 15 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 13.5 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 15 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 13.5 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 15 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \\ & V_{S}= \pm 13.5 \mathrm{~V}, I_{S}=-1 \mathrm{~mA} \end{aligned}$ See Figure 30
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, $I_{D}(O n), I_{S}(O n)$	$\begin{aligned} & \pm 0.1 \\ & \pm 1 \\ & \pm 0.1 \\ & \pm 1 \\ & \pm 0.3 \\ & \pm 1.5 \end{aligned}$	± 2 ± 5 ± 20	± 5 ± 10 ± 25	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V} \\ & \mathrm{~V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V}, \text { see Figure } 36 \\ & \mathrm{~V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {, see Figure } 36 \\ & \mathrm{~V}_{S}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {, see Figure } 37 \end{aligned}$
FAULT Source Leakage Current, IS With Overvoltage Power Supplies Grounded or Floating Drain Leakage Current, I_{D} With Overvoltage Power Supplies Grounded Power Supplies Floating	$\begin{aligned} & \pm 66 \\ & \pm 25 \\ & \pm 10 \\ & \pm 2 \\ & \pm 2 \\ & \pm 500 \\ & \\ & \pm 700 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \\ & \pm 700 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & \pm 700 \\ & \pm 50 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ typ nA typ $\mu \mathrm{A}$ max nA typ nA max μ A typ	$V_{D D}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 55 \mathrm{~V}$, see Figure 35 $V_{D D}=0 \mathrm{~V}$ or floating, $\mathrm{V}_{S S}=0 \mathrm{~V}$ or floating, $\mathrm{GND}=0 \mathrm{~V}, \mathrm{Ax}=$ 0 V or floating, $\mathrm{V}_{\mathrm{S}}= \pm 55 \mathrm{~V}$, see Figure 34 $V_{D D}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 55 \mathrm{~V}$, see Figure 35 $V_{D D}=0 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{S}= \pm 55 \mathrm{~V}, \mathrm{Ax}=0 \mathrm{~V}$, see Figure 34 $V_{D D}=$ floating, $V_{S S}=$ floating, $G N D=0 \mathrm{~V}, V_{S}= \pm 55 \mathrm{~V}, \mathrm{Ax}=0$ V, see Figure 34
DIGITAL INPUTS Input Voltage					

SPECIFICATIONS

Table 2. (Continued)

SPECIFICATIONS

Table 2. (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
$\mathrm{I}_{\text {GND }}$	0.9			mA typ	
	1.8		1.9	mA max	
$1{ }_{\text {ss }}$	0.65			mA typ	
$V_{D D} / V_{S S}$	1.2		1.3	mA max	
			± 5	V min	GND $=0 \mathrm{~V}$
			± 22		GND $=0 \mathrm{~V}$

12 V SINGLE SUPPLY

$V_{D D}=12 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}, G N D=0 \mathrm{~V}, C_{D E C O U P L I N G}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 3.

SPECIFICATIONS

Table 3. (Continued)

SPECIFICATIONS

Table 3. (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
	0.95		1	mA max	
Fault Mode					$\mathrm{V}_{S}= \pm 55 \mathrm{~V}$
$l_{D D}$	1.6			mA typ	
	2.5		2.6	mA max	
$\mathrm{I}_{\text {GND }}$	0.9			mA typ	
	1.8		1.9	mA max	
$I_{s s}$	0.65			mA typ	Digital inputs $=5 \mathrm{~V}$
$V_{D D}$	1.2		1.3	mA max	$\mathrm{V}_{\mathrm{S}}= \pm 55 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$
			8	V min	GND $=0 \mathrm{~V}$
			44	V max	GND $=0 \mathrm{~V}$

36 V SINGLE SUPPLY

$V_{D D}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{DECOUPLING}}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
Table 4.

SPECIFICATIONS

Table 4. (Continued)

SPECIFICATIONS

Table 4. (Continued)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
	2.15		2.15	mA max	
$I_{\text {GND }}$	0.75			mA typ	
	1.4		1.4	mA max	
$I_{\text {SS }}$	0.5			mA typ	
	0.95		1	mA max	
Fault Mode					$\mathrm{V}_{S}=+55 \mathrm{~V},-40 \mathrm{~V}$
$I_{D D}$	1.6			mA typ	
	2.5		2.6	mA max	
$\mathrm{I}_{\text {GND }}$	0.9			mA typ	
	1.8		1.9	mA max	
$I_{S S}$	0.65			mA typ	
$V_{D D}$	1.2		1.3	mA max	
			8	V min	GND $=0 \mathrm{~V}$
			44	V max	GND $=0 \mathrm{~V}$

CONTINUOUS CURRENT PER CHANNEL, SX, D, OR DX

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\begin{aligned} & \text { ADG5208F } \\ & \text { 16-Lead TSSOP, } \theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W} \\ & \text { 16-Lead LFCSP, } \theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{array}{\|l\|} 27 \\ 16 \\ 48 \\ 27 \end{array}$	$\begin{array}{\|l\|} 16 \\ 11 \\ 25 \\ 17 \end{array}$	$\begin{array}{\|l} 8 \\ 7 \\ 11 \\ 9 \end{array}$	mA max mA max mA max mA max	$\begin{aligned} & V_{S}=V_{S S} \text { to } V_{D D}-4.5 \mathrm{~V} \\ & V_{S}=V_{S S} \text { to } V_{D D} \\ & V_{S}=V_{S S} \text { to } V_{D D}-4.5 \mathrm{~V} \\ & V_{S}=V_{S S} \text { to } V_{D D} \end{aligned}$
$\begin{aligned} & \text { ADG5209F } \\ & \text { 16-Lead TSSOP, } \theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W} \\ & \text { 16-Lead LFCSP, } \theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 20 \\ & 12 \\ & 36 \\ & 21 \end{aligned}$	$\begin{array}{\|l} 13 \\ 8 \\ 20 \\ 13 \end{array}$	$\begin{array}{\|l} 8 \\ 6 \\ 10 \\ 8 \end{array}$	mA max mA max mA max mA max	$\begin{aligned} & V_{S}=V_{S S} \text { to } V_{D D}-4.5 \mathrm{~V} \\ & V_{S}=V_{S S} \text { to } V_{D D} \\ & V_{S}=V_{S S} \text { to } V_{D D}-4.5 \mathrm{~V} \\ & V_{S}=V_{S S} \text { to } V_{D D} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$V_{D D}$ to $V_{S S}$	48 V
$V_{D D}$ to $G N D$	-0.3 V to +48 V
$V_{\text {SS }}$ to GND	-48 V to +0.3V
Sx Pins	-55 V to +55 V
Sx to $V_{D D}$ or $V_{S S}$	80 V
V_{S} to V_{D}	80 V
D or Dx Pins ${ }^{1}$	$\mathrm{V}_{S S}-0.7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.7 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{2}$	GND - 0.7 V to 48 V or 30 mA , whichever occurs first
Peak Current, Sx, D, or Dx Pins	72.5 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx, D, or Dx Pins	Data ${ }^{3}+15 \%$
D or Dx Pins, Overvoltage State, Load Current	1 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, $\theta_{\text {JA }}$ (4-Layer Board)	
16-Lead TSSOP	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$

Table 6. (Continued)

Parameter	Rating
Reflow Soldering Peak Temperature, Pb-	As per JEDEC J-STD-020
Free	
1	Overvoltages at the D or Dx pins are clamped by internal diodes. Limit the
current to the maximum ratings given.	
2	The digital inputs are the EN and Ax pins.
3	See Table 5.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devi- ces and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG5208F Pin Configuration (TSSOP)

1. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO' THE SUBSTRATE, $V_{S S}$. I

Figure 4. ADG5208F Pin Configuration (LFCSP)
Table 7. ADG5208F Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
3	1	$V_{S S}$	Most Negative Power Supply Potential.
4	2	S1	Overvoltage Protected Source Terminal 1. This pin can be an input or an output.
5	3	S2	Overvoltage Protected Source Terminal 2. This pin can be an input or an output.
6	4	S3	Overvoltage Protected Source Terminal 3. This pin can be an input or an output.
7	5	S4	Overvoltage Protected Source Terminal 4. This pin can be an input or an output.
8	6	D	Drain Terminal. This pin can be an input or an output.
9	7	S8	Overvoltage Protected Source Terminal 8. This pin can be an input or an output.
10	8	S7	Overvoltage Protected Source Terminal 7. This pin can be an input or an output.
11	9	S6	Overvoltage Protected Source Terminal 6. This pin can be an input or an output.
12	10	S5	Overvoltage Protected Source Terminal 5. This pin can be an input or an output.
13	11	$V_{D D}$	Most Positive Power Supply Potential.
14	12	GND	Ground (O) Reference.
15	13	A2	Logic Control Input.
16	14	A1	Logic Control Input.
N / A^{1}	0	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, $\mathrm{V}_{S S}$.

1 N/A means not applicable.
Table 8. ADG5208F Truth Table

A2	A1	A0	EN	On Switch
X^{1}	X^{1}	X^{1}	0	None
0	0	0	1	S1
0	0	1	1	S2
0	1	1	1	$S 3$
0	0	1	$S 4$	
1	0	1	$S 5$	
1	1	1	S6	
1	1	1	$S 7$	
1	1	1	$S 8$	

[^0]
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 5. ADG5209F Pin Configuration (TSSOP)

NOTES

1. THE EXPOSED PAD II CONNECTED INTERNALLY. FOR
INGREASED RELIABILITY OF THE SOLDR JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED
THAT THE PAD BE SOLDERED TO THE SUBSTRATE, $\mathrm{V}_{\text {SS. }}$:

Table 9. ADG5209F Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	AO	Logic Control Input. 2
	16	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic	
inputs determine the on switches.			

1 N/A means not applicable.
Table 10. ADG5209F Truth Table

A1	A0	EN	On Switch Pair
X^{1}	X^{1}	0	None
0	0	1	S1x
0	1	1	S2x
1	0	1	S3x
1	1	1	S4x

[^1]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. $R_{O N}$ as a Function of V_{S}, V_{D}, Dual Supply

Figure 8. $R_{O N}$ as a Function of $V_{S}, V_{D}, 12 V$ Single Supply

Figure 9. $R_{O N}$ as a Function of $V_{S}, V_{D}, 36 \mathrm{~V}$ Single Supply

Figure 10. $R_{0 N}$ as a Function of V_{S}, V_{D} for Different Temperatures, $\pm 15 \mathrm{~V}$ Dual Supply

Figure 11. $R_{O N}$ as a Function of V_{S}, V_{D} for Different Temperatures, $\pm 20 \mathrm{~V}$ Dual Supply

Figure 12. $R_{0 N}$ as a Function of V_{S}, V_{D} for Different Temperatures, 12 V Single Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 13. $R_{O N}$ as a Function of V_{S}, V_{D} for Different Temperatures, 36 V Single Supply

Figure 14. Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 15. Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 16. Leakage Current vs. Temperature, 12 V Single Supply

Figure 17. Leakage Current vs. Temperature, 36 V Single Supply

Figure 18. Overvoltage Leakage Current vs. Temperature, $£ 15$ V Dual Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 19. Overvoltage Leakage Current vs. Temperature, ± 20 V Dual Supply

Figure 20. Overvoltage Leakage Current vs. Temperature, 12 V Single Supply

Figure 21. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply

Figure 22. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 23. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 24. Charge Injection vs. Source Voltage (VS), Single Supply

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 25. Charge Injection vs. Source Voltage (V_{s}), Dual Supply

Figure 26. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 27. THD + N vs. Frequency

Figure 28. Bandwidth vs. Frequency

Figure 29. $t_{\text {TRANSIIION }}$ vs. Temperature

Figure 30. Threshold Voltage $\left(V_{T}\right)$ vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 31. Drain Output Response to Positive Overvoltage

Figure 32. Drain Output Response to Negative Overvoltage

Figure 33. Large Voltage Signal Tracking vs. Frequency

TEST CIRCUITS

Figure 34. Switch Unpowered Leakage

Figure 35. Switch Overvoltage Leakage

*SIMILAR CONNECTION FOR ADG5209F.
Figure 36. Off Leakage

*SIMILAR CONNECTION FOR ADG5209F. \%
Figure 37. On Leakage

Figure 38. On Resistance

Figure 39. $T H D+N$

Figure 40. Off Isolation

Figure 41. Bandwidth

TEST CIRCUITS

Figure 42. Channel-to-Channel Crosstalk

Figure 43. Overvoltage Response Time, $t_{\text {RESPONSE }}$

NOTES 1 THE OUTPUT STARTS FROM THE $V_{\text {DD }}$ CLAMP LEVEL WITHOUT A $1 \mathrm{k} \Omega$ RESISTOR (INTERNAL 40k』 PULL-UP RESISTOR TO THE SUPPLY RAIL DURING A FAULT). \&

Figure 44. Overvoltage Recovery Time, $t_{\text {RECOVERY }}$

Figure 45. Break-Before-Make Time Delay, t_{D}

TEST CIRCUITS

Figure 46. Enable Delay, $\mathrm{t}_{\mathrm{ON}}(E N), \mathrm{t}_{\text {OFF }}$ (EN)

Figure 47. Address to Output Switching Time, tiransition

Figure 48. Charge Injection, $Q_{I N J}$

TERMINOLOGY

$I_{D D}$

$I_{D D}$ represents the positive supply current.

Iss

$I_{S S}$ represents the negative supply current.

$\mathrm{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{s}}$

V_{D} and V_{S} represent the analog voltage on the D or $D x$ pins and the $S x$ pins, respectively.

R_{ON}

$R_{\text {ON }}$ represents the ohmic resistance between the D or $D x$ pins and the Sx pins.

$\Delta \mathbf{R}_{\mathrm{ON}}$

$\Delta R_{O N}$ represents the difference between the $R_{O N}$ of any two channels.

$\mathrm{R}_{\text {FLAt(ON) }}$

$R_{F L A T(O N)}$ is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

I_{S} (Off)

I_{S} (off) is the source leakage current with the switch off.

I_{D} (Off)

I_{D} (off) is the drain leakage current with the switch off.

$I_{D}(O n), I_{S}(O n)$

I_{D} (on) and $I_{S}(0 n)$ represent the channel leakage currents with the switch on.
$\mathrm{V}_{\mathrm{INL}}$
$V_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
$V_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INL }}, \mathbf{l}_{\text {INH }}$
$I_{I_{N L}}$ and $I_{I_{N H}}$ represent the low and high input currents of the digital inputs.

C_{D} (Off)

C_{D} (off) represents the off switch drain capacitance, which is measured with reference to ground.

C_{s} (Off)

C_{S} (off) represents the off switch source capacitance, which is
measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{S}}(\mathrm{On})$

C_{D} (on) and C_{S} (on) represent the on switch capacitances, which are measured with reference to ground.
C_{IN}
$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.
$t_{0 N}$ (EN)
$t_{0 N}(E N)$ represents the delay between applying the digital control input and the output switching on (see Figure 46).

$t_{\text {OFF }}$ (EN)

$t_{\text {OFF }}$ (EN) represents the delay between applying the digital control input and the output switching off (see Figure 46).

$\mathbf{t}_{\text {TRANSITION }}$

$\mathrm{t}_{\text {TRANSITION }}$ represents the delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

t_{D}

$t_{\text {D }}$ represents the off time measured between the 90% points of both switches when switching from one address state to another.

$t_{\text {RESPONSE }}$

$t_{\text {RESPONSE }}$ represents the delay between the source voltage exceeding the supply voltage by 0.5 V and the drain voltage falling to 50% of its peak voltage.

$t_{\text {RECOVERY }}$

$t_{\text {RECOVERY }}$ represents the delay between an overvoltage on the $S x$ pin falling below the supply voltage plus 0.5 V and the drain voltage rising from 0 V to 50% of its peak voltage.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

TERMINOLOGY

-3 dB Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. ACPSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62 \mathrm{~V} p-\mathrm{p}$.

On Response

On response is the frequency response of the on switch.
V_{T}
V_{T} is the voltage threshold at which the overvoltage protection circuitry engages (see Figure 30).

Total Harmonic Distortion Plus Noise (THD + N)

THD +N is the ratio of the harmonic amplitude plus noise of the signal to the fundamental.

THEORY OF OPERATION

SWITCH ARCHITECTURE

Each channel of the ADG5208F/ADG5209F consists of a parallel pair of NDMOS and PDMOS transistors. This construction provides excellent performance across the signal range. The ADG5208F/ ADG5209F channels operate as standard switches when input signals with a voltage between $\mathrm{V}_{S S}$ and $\mathrm{V}_{D D}$ are applied. For example, the on resistance is 250Ω typically and opening or closing the switch is controlled using the appropriate address pins.
Additional internal circuitry enables the switch to detect overvoltage inputs by comparing the voltage on a source pin with $\mathrm{V}_{D D}$ and $\mathrm{V}_{S S}$. A signal is considered overvoltage if it exceeds the supply voltages by the voltage threshold, V_{T}. The threshold voltage is typically 0.7 V , but can range from 0.8 V at $-40^{\circ} \mathrm{C}$ down to 0.6 V at $+125^{\circ} \mathrm{C}$. See Figure 30 to see the change in V_{T} with operating temperature.

The voltage range that can be applied to any source input is +55 V to -55 V . When the device is powered using a single supply of 25 V or greater, the minimum signal level increases from -55 V to -40 V at $\mathrm{V}_{\mathrm{DD}}=+40 \mathrm{~V}$ to remain within the 80 V maximum rating. Construction of the process allows the channel to withstand 80 V across the switch when it is opened. These overvoltage limits apply whether the power supplies are present or not.

Figure 49. Switch Channel and Control Function

Overvoltage Reaction

When an overvoltage condition is detected on a source pin, the switch automatically opens regardless of the digital logic state. The source pin becomes high impedance and, if that source pin is selected, the drain pin is pulled to the supply that was exceeded. For example, if the source voltage exceeds $V_{D D}$, then the drain output pulls to $V_{D D}$, similarly for V_{SS}. In Figure 31 , the voltage on the drain pin can be seen to follow the voltage on the source pin until the switch turns off completely. The drain pin then pulls to GND due to the $1 \mathrm{k} \mathrm{\Omega}$ load resistor; otherwise, it pulls to the $V_{D D}$ supply. The maximum voltage on the drain is limited by the internal ESD diodes and the rate at which the output voltage discharges is dependent on the load at the pin.
During overvoltage conditions, the leakage current into and out of the source pins is limited to tens of microamperes. If the source pin is unselected, only nanoamperes of leakage appear on the drain pin. However, if the source is selected, the pin is pulled to the supply rail. The device that pulls the drain pin to the rail has an impedance of approximately $40 \mathrm{k} \Omega$; thus, the D or Dx pin current
is limited to approximately 1 mA during a shorted load condition. This internal impedance also determines the minimum external load resistance required to ensure that the drain pin is pulled to the desired voltage level during a fault. When an overvoltage event occurs, the channels undisturbed by the overvoltage input continue to operate normally without additional crosstalk.

ESD Performance

The drain pins have ESD protection diodes to the rails and the voltage at these pins must not exceed the supply voltage. The source pins have specialized ESD protection that allows the signal voltage to reach $\pm 55 \mathrm{~V}$ regardless of supply voltage level. See Figure 49 for an overview of the switch channel function.

Trench Isolation

In the ADG5208F and ADG5209F, an insulating oxide layer (trench) is placed between the NDMOS and the PDMOS transistors of each switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a switch that is latch-up immune under all circumstances.

Figure 50. Trench Isolation

FAULT PROTECTION

When the voltages at the source inputs exceed $V_{D D}$ or $V_{S S}$ by V_{T}, the switch turns off or, if the device is unpowered, the switch remains off. The switch input remains high impedance regardless of the digital input state and if it is selected, the drain pulls to either $V_{D D}$ or $\mathrm{V}_{S S}$. Signal levels up to +55 V and -55 V are blocked in both the powered and unpowered condition as long as the 80 V limitation between the source and supply pins is met.

Power-On Protection

The following three conditions must be satisfied for the switch to be in the on condition:

- $V_{D D}$ to $V_{S S} \geq 8 \mathrm{~V}$
- The input signal is between $\mathrm{V}_{S S}-\mathrm{V}_{T}$ and $\mathrm{V}_{D D}+\mathrm{V}_{T}$

THEORY OF OPERATION

- The digital logic control input is active

When the switch is turned on, signal levels up to the supply rails are passed.

The switch responds to an analog input that exceeds $\mathrm{V}_{D D}$ or $\mathrm{V}_{S S}$ by a threshold voltage, V_{T}, by turning off. The absolute input voltage limits are -55 V and +55 V , while maintaining an 80 V limit between the source pin and the supply rails. The switch remains off until the voltage at the source pin returns to between $V_{D D}$ and $V_{S S}$.
The fault response time ($\mathrm{t}_{\text {RESPONSE }}$) when powered by a $\pm 15 \mathrm{~V}$ dual supply is typically 90 ns and the fault recovery time (teECOVERY) is 745 ns . These vary with supply voltages and output load conditions.
Exceeding $\pm 55 \mathrm{~V}$ on any source input may damage the ESD
protection circuitry on the device.
The maximum stress across the switch channel is 80 V , therefore, the user must pay close attention to this limit under a fault condition.

For example, consider the case where the device is set up as shown in Figure 51.

- $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}= \pm 22 \mathrm{~V}, \mathrm{~S} 1=+22 \mathrm{~V}, \mathrm{~S} 1$ is selected
- S2 has a -55 V fault and S 3 has a +55 V fault
- The voltage between S 2 and $\mathrm{D}=+22 \mathrm{~V}-(-55 \mathrm{~V})=+77 \mathrm{~V}$
- The voltage between S 3 and $\mathrm{D}=55 \mathrm{~V}-22 \mathrm{~V}=33 \mathrm{~V}$

These calculations are all within device specifications: a 55 V maximum fault on the source inputs and a maximum of 80 V across the off switch channel.

Figure 51. ADG5208F in an Overvoltage Condition

Power-Off Protection

When no power supplies are present, the switch remains in the off condition, and the switch inputs are high impedance. This state ensures that no current flows and prevents damage to the switch or downstream circuitry. The switch output is a virtual open circuit.
The switch remains off regardless of whether the $V_{D D}$ and $V_{S S}$ supplies are 0 V or floating. A GND reference must always be present to ensure proper operation. Signal levels of up to $\pm 55 \mathrm{~V}$ are blocked in the unpowered condition.

Digital Input Protection

The ADG5208F and the ADG5209F can tolerate digital input signals being present on the device without power. When the device is unpowered, the switch is guaranteed to be in the off state, regardless of the state of the digital logic signals.

The digital inputs are protected against positive faults of up to 44 V . The digital inputs do not offer protection against negative overvoltages. ESD protection diodes connected to GND are present on the digital inputs.

APPLICATIONS INFORMATION

The overvoltage protected family of switches and multiplexers provides robust solutions for instrumentation, industrial, automotive, aerospace, and other harsh environments where overvoltage signals can be present and the system must remain operational both during and after the overvoltage has occurred.

POWER SUPPLY RAILS

To guarantee correct operation of the device, $0.1 \mu \mathrm{~F}$ decoupling capacitors are required.
The ADG5208F and the ADG5209F can operate with bipolar supplies between $\pm 5 \mathrm{~V}$ and $\pm 22 \mathrm{~V}$. The supplies on $\mathrm{V}_{D D}$ and $\mathrm{V}_{S S}$ need not be symmetrical, but the $V_{D D}$ to $V_{S S}$ range must not exceed 44 V. The ADG5208F and the ADG5209F can also operate with single supplies between 8 V and 44 V with $\mathrm{V}_{S S}$ connected to GND .
These devices are fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V supply ranges.

POWER SUPPLY SEQUENCING PROTECTION

The switch channel remains open when the devices are unpowered and signals from -55 V to +55 V can be applied without damaging the devices. The switch channel closes only when the supplies are connected, a suitable digital control signal is placed on the address pins, and the signal is within normal operating range. Placing the ADG5208F/ADG5209F between external connectors and sensitive components offers protection in systems where a signal is presented to the source pins before the supply voltages are available.

SIGNAL RANGE

The ADG5208F/ADG5209F switches have overvoltage detection circuitry on their inputs that compares the voltage levels at the source terminals with $\mathrm{V}_{D D}$ and $\mathrm{V}_{S S}$. To protect downstream circuitry from overvoltages, supply the ADG5208F/ADG5209F with voltages that match the intended signal range. The additional protection architecture allows the signals up to the supply rails to be passed and only a signal that exceeds the supply rail by the threshold voltage is then blocked. This signal block offers protection to both the device and any downstream circuitry.

POWER SUPPLY RECOMMENDATIONS

Analog Devices, Inc., has a wide range of power management products to meet the requirements of most high performance signal chains.

An example of a bipolar power solution is shown in Figure 52. The ADP7118 and ADP7182 can be used to generate clean positive and negative rails from the ADP5070 (dual switching regulator) output. These rails can be used to power the ADG5208F/ADG5209F amplifier, and/or a precision converter in a typical signal chain.

Figure 52. Bipolar Power Solution
Table 11. Recommended Power Management Devices

Product	Description
ADP5070	$1 \mathrm{~A} / 0.6 \mathrm{~A}$, dc-to-dc switching regulator with independent positive and negative outputs
ADP7118	$20 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO
ADP7142	$40 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO
ADP7182	$-28 \mathrm{~V},-200 \mathrm{~mA}$, low noise, linear regulator

HIGH VOLTAGE SURGE SUPPRESSION

The ADG5208F/ADG5209Fare not intended for use in very high voltage applications. The maximum operating voltage of the transistor is 80 V . In applications where the inputs are likely to be subject to overvoltages exceeding the breakdown voltage, use transient voltage suppressors (TVSs) or similar devices.

LARGE VOLTAGE, HIGH FREQUENCY SIGNALS

Figure 33 illustrates the voltage range and frequencies that the ADG5208F/ADG5209F can reliably convey. For signals that extend across the full signal range from $V_{S S}$ to $V_{D D}$, keep the frequency below 1 MHz . If the required frequency is greater than 1 MHz , decrease the signal range appropriately to ensure signal integrity.

OUTLINE DIMENSIONS

Figure 53. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

Figure 54. 16-Lead Lead Frame Chip Scale Package [LFCSP] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-17)
Dimensions shown in millimeters
Updated: July 05, 2023
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Packing Quantity	Package Option
ADG5208FBCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP (4mm x 4mm)	Reel, 1500	CP-16-17
ADG5208FBRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead TSSOP		RU-16
ADG5208FBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead TSSOP	Reel, 1000	RU-16
ADG5209FBCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP (4mm x 4mm)	Reel, 1500	CP-16-17
ADG5209FBRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead TSSOP		RU-16
ADG5209FBRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead TSSOP	Reel, 1000	RU-16

[^2]
OUTLINE DIMENSIONS

EVALUATION BOARDS

Model 1	Description
EVAL-ADG5208FEBZ	Evaluation Board
EVAL-ADG5209FEBZ	Evaluation Board

1 Z = RoHS Compliant Part.

[^0]: 1 X is don't care.

[^1]: 1 X is don't care.

[^2]: 1 Z = RoHS Compliant Part.

