EFR32MG1 Mighty Gecko ZigBee® \& Thread SoC Family Data Sheet

The Mighty Gecko ZigBee \& Thread family of SoCs is part of the Wireless Gecko portfolio. Mighty Gecko SoCs are ideal for enabling energy-friendly ZigBee \& Thread networking for loT devices.

KEY FEATURES

- 32-bit ARM® Cortex®-M4 core with 40 MHz maximum operating frequency
- Scalable Memory and Radio configuration options available in several footprint compatible QFN packages
- 12-channel Peripheral Reflex System enabling autonomous interaction of MCU peripherals
- Autonomous Hardware Crypto Accelerator and Random Number Generator
- Integrated balun for 2.4 GHz and integrated PA with up to 19.5 dBm transmit power for 2.4 GHz and 20 dBm transmit power for Sub-GHz radios
- Integrated DC-DC with RF noise mitigation

1. Feature List

The EFR32MG1 highlighted features are listed below.

- Low Power Wireless System-on-Chip

- High Performance 32-bit 40 MHz ARM Cortex ${ }^{\circledR}$-M4 with DSP instruction and floating-point unit for efficient signal processing
- Up to 256 kB flash program memory
- Up to 32 kB RAM data memory
- 2.4 GHz and Sub-GHz radio operation
- Transmit power:
- 2.4 GHz radio: Up to 19.5 dBm
- Sub-GHz radio: Up to 20 dBm

- Low Energy Consumption

- 8.7 mA RX current at 2.4 GHz
- 8.2 mA TX current @ 0 dBm output power at 2.4 GHz
- 8.1 mA RX current at 868 MHz
- 34.5 mA TX current @ 14 dBm output power at 868 MHz
- $63 \mu \mathrm{~A} / \mathrm{MHz}$ in Active Mode (EM0)
- $1.4 \mu \mathrm{~A}$ EM2 DeepSleep current (full RAM retention and RTCC running from LFXO)
- $0.58 \mu \mathrm{~A}$ EM4H Hibernate Mode (128 byte RAM retention)
- Wake on Radio with signal strength detection, preamble pattern detection, frame detection and timeout
- High Receiver Performance
- -94 dBm sensitivity @ $1 \mathrm{Mbit} / \mathrm{s}$ GFSK (2.4GHz)
- -121.4 dBm sensitivity at 2.4 kbps GFSK (868 MHz)
- Supported Modulation Formats
- 2-FSK / 4-FSK with fully configurable shaping
- Shaped OQPSK / (G)MSK
- Configurable DSSS and FEC
- BPSK / DBPSK TX
- OOK / ASK
- Supported Protocols:
- Proprietary Protocols
- Wireless M-Bus
- Low Power Wide Area Networks

- Support for Internet Security

- General Purpose CRC
- Random Number Generation
- Hardware Cryptographic Acceleration for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC

- Wide selection of MCU peripherals

- 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
- $2 \times$ Analog Comparator (ACMP)
- Digital to Analog Current Converter (IDAC)
- Up to 31 pins connected to analog channels (APORT) shared between Analog Comparators, ADC, and IDAC
- Up to 31 General Purpose I/O pins with output state retention and asynchronous interrupts
- 8 Channel DMA Controller
- 12 Channel Peripheral Reflex System (PRS)
- 2×16-bit Timer/Counter - $3+4$ Compare/Capture/PWM channels
- 32-bit Real Time Counter and Calendar
- 16-bit Low Energy Timer for waveform generation
- 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode
- 16-bit Pulse Counter with asynchronous operation
- Watchdog Timer with dedicated RC oscillator @ 50nA
- 2×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I²S)
- Low Energy UART (LEUART ${ }^{\text {TM }}$)
- $\mathrm{I}^{2} \mathrm{C}$ interface with SMBus support and address recognition in EM3 Stop

- Wide Operating Range

- 1.85 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- QFN32 5x5 mm Package
- QFN48 7x7 mm Package

2. Ordering Information

Ordering Code	Protocol Stack	Frequency Band @ Max TX Power	Flash (kB)	$\begin{aligned} & \text { RAM } \\ & \text { (kB) } \end{aligned}$	GPIO	Package
EFR32MG1P233F256GM48-C0	- Bluetooth Smart - ZigBee - Thread - ZigBee RC - Proprietary	- 2.4 GHz @ 19.5 dBm - Sub-GHz @ 20 dBm	256	32	28	QFN48
EFR32MG1P232F256GM48-C0	- Bluetooth Smart - ZigBee - Thread - ZigBee RC - Proprietary	2.4 GHz @ 19.5 dBm	256	32	31	QFN48
EFR32MG1P232F256GM32-C0	- Bluetooth Smart - ZigBee - Thread - ZigBee RC - Proprietary	2.4 GHz @ 19.5 dBm	256	32	16	QFN32
EFR32MG1P133F256GM48-C0	- Bluetooth Smart - ZigBee - Thread - ZigBee RC - Proprietary	- 2.4 GHz @ 16.5 dBm - Sub-GHz @ 16.5 dBm	256	32	28	QFN48
EFR32MG1P132F256GM48-C0	- Bluetooth Smart - ZigBee - Thread - ZigBee RC - Proprietary	2.4 GHz @ 16.5 dBm	256	32	31	QFN48
EFR32MG1P132F256GM32-C0	- Bluetooth Smart - ZigBee - Thread - ZigBee RC - Proprietary	2.4 GHz @ 16.5 dBm	256	32	16	QFN32
EFR32MG1B232F256GM48-C0	- ZigBee - Thread - ZigBee RC	2.4 GHz @ 19.5 dBm	256	32	31	QFN48
EFR32MG1B232F256GM32-C0	- ZigBee - Thread - ZigBee RC	2.4 GHz @ 19.5 dBm	256	32	16	QFN32

Ordering Code	Protocol Stack	Frequency Band Max TX Power	Flash (kB)	RAM (kB)	GPIO	Package
EFR32MG1B132F256GM48-C0	- ZigBee - Thread - ZigBee RC	2.4 GHz @ 16.5 dBm	256	32	31	QFN48
EFR32MG1B132F256GM32-C0	- ZigBee - Thread - ZigBee RC	2.4 GHz @ 16.5 dBm	256	32	16	QFN32
EFR32MG1V132F256GM48-C0	- ZigBee - Thread - ZigBee RC	2.4 GHz @ 8 dBm	256	32	31	QFN48
EFR32MG1V132F256GM32-C0	- ZigBee - Thread - ZigBee RC	2.4 GHz @ 8 dBm	256	32	16	QFN32

EFR32 XG1P132 F 256 GM 32-C0 R

Figure 2.1. OPN Decoder

3. System Overview

3.1 Introduction

The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual.

A block diagram of the EFR32MG1 family is shown in Figure 3.1 Detailed EFR32MG1 Block Diagram on page 4. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Detailed EFR32MG1 Block Diagram

3.2 Radio

The Mighty Gecko family features a radio transceiver supporting Bluetooth Smart ${ }^{\circledR}$ and proprietary short range wireless protocols.

3.2.1 Antenna Interface

The EFR32MG1 family includes devices which support both single-band and dual-band RF communication over separate physical RF interfaces.

The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The 2G4RF_ION pin should be grounded externally.

The sub-GHz antenna interface consists of a differential transmit interface (pins SUBGRF_OP and SUBGRF_ON) and a differential receive interface (pinsSUBGRF_IP and SUBGRF_IN).

The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching Networks section.

3.2.2 Fractional-N Frequency Synthesizer

The EFR32MG1 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly generate the modulated RF carrier.

The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz , with low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to optimize system energy consumption.

3.2.3 Receiver Architecture

The EFR32MG1 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC).

The IF frequency is configurable from 150 kHz to 1371 kHz . The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.

The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub- GHz radio can be calibrated on-demand by the user for the desired frequency band.

Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz . High carrier frequency and baud rate offsets are tolerated by active estimation and compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).

A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received frame and the dynamic RSSI measurement can be monitored throughout reception.

The EFR32MG1 features integrated support for antenna diversity to improve link budget for 802.15.4 DSSS-OQPSK PHY configuration in the 2.4 GHz band, using complementary control outputs to an external switch. Internal configurable hardware controls automatic switching between antennae during RF receive detection operations.

3.2.4 Transmitter Architecture

The EFR32MG1 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.

Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by the EFR32MG1. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.

3.2.5 Wake on Radio

The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG1 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals.

3.2.6 RFSENSE

The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.

RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by enabling normal RF reception.

Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using available timer peripherals.

3.2.7 Flexible Frame Handling

EFR32MG1 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator:

- Highly adjustable preamble length
- Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
- Frame disassembly and address matching (filtering) to accept or reject frames
- Automatic ACK frame assembly and transmission
- Fully flexible CRC generation and verification:
- Multiple CRC values can be embedded in a single frame
- 8, 16, 24 or 32 -bit CRC value
- Configurable CRC bit and byte ordering
- Selectable bit-ordering (least significant or most significant bit first)
- Optional data whitening
- Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
- Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
- Optional symbol interleaving, typically used in combination with FEC
- Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware
- UART encoding over air, with start and stop bit insertion / removal
- Test mode support, such as modulated or unmodulated carrier output
- Received frame timestamping

3.2.8 Packet and State Trace

The EFR32MG1 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features:

- Non-intrusive trace of transmit data, receive data and state information
- Data observability on a single-pin UART data output, or on a two-pin SPI data output
- Configurable data output bitrate / baudrate
- Multiplexed transmitted data, received data and state / meta information in a single serial data stream

3.2.9 Data Buffering

The EFR32MG1 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.

3.2.10 Radio Controller (RAC)

The Radio Controller controls the top level state of the radio subsystem in the EFR32MG1. It performs the following tasks:

- Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
- Run-time calibration of receiver, transmitter and frequency synthesizer
- Detailed frame transmission timing, including optional LBT or CSMA-CA

3.2.11 Random Number Generator

The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications.

Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.

3.3 Power

The EFR32MG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

AVDD and VREGVDD need to be 1.85 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V , including the digital supply and I / O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA .

3.3.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.3.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.4 General Purpose Input/Output (GPIO)

EFR32MG1 has up to 31 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.5 Clocking

3.5.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the EFR32MG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.5.2 Internal and External Oscillators

The EFR32MG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire debug port with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.6 Counters/Timers and PWM

3.6.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.6.2 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes.

3.6.3 Low Energy Timer (LETIMER)

The unique LETIMER is a 16 -bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32 -bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.6.5 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_SOIN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.6.6 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.7 Communications and Other Digital Peripherals

3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- $\mathrm{I}^{2} \mathrm{~S}$

3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUART ${ }^{\text {TM }}$ provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.7.3 Inter-Integrated Circuit Interface $\left(I^{2} \mathrm{C}\right)$

The $\mathrm{I}^{2} \mathrm{C}$ module provides an interface between the MCU and a serial $\mathrm{I}^{2} \mathrm{C}$ bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 $\mathrm{kbit} / \mathrm{s}$ up to $1 \mathrm{Mbit} / \mathrm{s}$. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the $I^{2} \mathrm{C}$ module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.7.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

3.8 Security Features

3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)

The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0×04 C11DB7 (IEEE 802.3), while the 16 -bit polynomial can be programmed to any value, depending on the needs of the application.

3.8.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.

3.9 Analog

3.9.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X / Y pairs.

3.9.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.9.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.9.4 Digital to Analog Current Converter (IDAC)

The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between $0.05 \mu \mathrm{~A}$ and $64 \mu \mathrm{~A}$ with several ranges consisting of various step sizes.

3.10 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFR32MG1. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.11 Core and Memory

3.11.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Up to 256 kB flash program memory
- Up to 32 kB RAM data memory
- Configuration and event handling of all modules
- 2-pin Serial-Wire debug interface

3.11.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.11.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.

3.12 Memory Map

The EFR32MG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

Figure 3.2. EFR32MG1 Memory Map - Core Peripherals and Code Space

Figure 3.3. EFR32MG1 Memory Map - Peripherals

3.13 Configuration Summary

The features of the EFR32MG1 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.1. Configuration Summary

Module	Configuration	Pin Connections
USART0	IrDA SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	IrDA I2s SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
TIMER0	with DTI.	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1		TIM1_CC[3:0]

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on $\mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, by production test and/or technology characterization.
- Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output pow-er-specific external RF impedance-matching networks for interfacing to a 50Ω antenna.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to Table 4.2 General Operating Conditions on page 17 for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Junction Temperature	T_{J}		-40	-	105	${ }^{\circ} \mathrm{C}$

Note:

1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD must be the highest voltage in the system
- VREGVDD = AVDD
- DVDD \leq AVDD
- IOVDD \leq AVDD
- RFVDD \leq AVDD
- PAVDD \leq AVDD

4.1.2.1 General Operating Conditions

Table 4.2. General Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Operating temperature range	TOP	-G temperature grade, Ambient Temperature	-40	25	85	${ }^{\circ} \mathrm{C}$
AVDD Supply voltage ${ }^{1}$	$\mathrm{V}_{\text {AVDD }}$		1.85	3.3	3.8	V
VREGVDD Operating supply voltage ${ }^{1} 2$	VVREGVDD	DCDC in regulation	2.4	3.3	3.8	V
		DCDC in bypass, 50 mA load	1.85	3.3	3.8	V
		DCDC not in use. DVDD externally shorted to VREGVDD	1.85	3.3	3.8	V
VREGVDD Current	IVREGVDD	DCDC in bypass	-	-	200	mA
RFVDD Operating supply voltage	$\mathrm{V}_{\text {RFVDD }}$		1.62	-	VVREGVDD	V
DVDD Operating supply voltage	$V_{\text {DVDD }}$		1.62	-	$\mathrm{V}_{\text {VREGVDD }}$	V
PAVDD Operating supply voltage	$V_{\text {PAVDD }}$		1.62	-	$V_{\text {VREGVDD }}$	V
IOVDD Operating supply voltage	VIOVDD		1.62	-	VVREGVDD	V
Difference between AVDD and VREGVDD, ABS(AVDDVREGVDD)	$d V_{D D}$		-	-	0.1	V
HFCLK frequency	$\mathrm{f}_{\text {CORE }}$	0 wait-states (MODE $=$ WSO) ${ }^{3}$	-	-	26	MHz
		1 wait-states (MODE $=$ WS1) ${ }^{3}$	-	-	40	MHz

Note:

1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
2. The minimum voltage required in bypass mode is calculated using $R_{B Y P}$ from the DCDC specification table. Requirements for other loads can be calculated as $V_{\text {DVDD_min }}+l_{\text {LOAD }}{ }^{*} R_{\text {BYP_max }}$
3. In MSC_READCTRL register

4.1.3 Thermal Characteristics

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Thermal Resistance	THETA $_{\text {JA }}$	QFN32 Package, 2-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	79	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN32 Package, 2-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	62.2	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN32 Package, 2-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	54.1	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN32 Package, 4-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	32	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN32 Package, 4-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	28.1	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN32 Package, 4-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	26.9	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN48 Package, 2-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	64.5	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN48 Package, 2-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	51.6	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN48 Package, 2-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	47.7	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN48 Package, 4-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	26.2	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN48 Package, 4-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	23.1	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		QFN48 Package, 4-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	22.1	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

4.1.4 DC-DC Converter

Test conditions: $L_{D C D C}=4.7 \mu H$ (Murata LQH3NPN4R7MMOL), $C_{D C D C}=1.0 \mu \mathrm{~F}$ (Murata GRM188R71A105KA61D), $V_{D C D C _}=3.3 \mathrm{~V}$, $V_{D C D C _}=1.8 \mathrm{~V}, I_{D C D C} L O A D=50 \mathrm{~mA}$, Heavy Drive configuration, $\mathrm{F}_{\mathrm{DCDC}} \mathrm{LN}=7 \mathrm{MHz}$, unless otherwise indicated.

Table 4.4. DC-DC Converter

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input voltage range	V ${ }_{\text {DCDC }}$ I	Bypass mode, $I_{\text {DCDC_LOAD }}=50$ mA	1.85	-	VVREGVDD_ MAX	V
		Low noise (LN) mode, 1.8 V output, $I_{\text {DCDC_LOAD }}=100 \mathrm{~mA}$, or Low power (LP) mode, 1.8 V output, $\mathrm{I}_{\text {DCDC_LOAD }}=10 \mathrm{~mA}$	2.4	-	VVREGVDD_ MAX	V
		Low noise (LN) mode, 1.8 V output, $I_{\text {DCDC_LOAD }}=200 \mathrm{~mA}$	2.6	-	VVREGVDD_ MAX	V
Output voltage programmable range ${ }^{1}$	V ${ }_{\text {DCDC_O }}$		1.8	-	$V_{\text {VREGVDD }}$	V
Regulation DC Accuracy	$A_{C C}^{D C}$	Low noise (LN) mode, 1.8 V target output	1.7	-	1.9	V
Regulation Window ${ }^{2}$	WIN ${ }_{\text {REG }}$	Low power (LP) mode, LPCMPBIAS $^{3}=0,1.8 \mathrm{~V}$ target output, ${ }_{\text {DCDC_LOAD }} \leq 75 \mu \mathrm{~A}$	1.63	-	2.2	V
		Low power (LP) mode, LPCMPBIAS $^{3}=3,1.8 \mathrm{~V}$ target output, $l_{\text {DCDC_LOAD }} \leq 10 \mathrm{~mA}$	1.63	-	2.1	V
Steady-state output ripple	V_{R}	Radio disabled.	-	3	-	mVpp
Output voltage under/overshoot	Vov	CCM Mode (LNFORCECCM ${ }^{3}=$ 1), Load changes between 0 mA and 100 mA	-	-	150	mV
		DCM Mode (LNFORCECCM ${ }^{3}=$ 0), Load changes between 0 mA and 10 mA	-	-	150	mV
		Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode	-	200	-	mV
		Undershoot during BYP/LP to LN CCM (LNFORCECCM ${ }^{3}=1$) mode transitions compared to DC level in LN mode	-	50	-	mV
		Undershoot during BYP/LP to LN DCM (LNFORCECCM ${ }^{3}=0$) mode transitions compared to DC level in LN mode	-	125	-	mV
DC line regulation	$V_{\text {REG }}$	Input changes between VVREGVDD_MAX and 2.4 V	-	0.1	-	\%
DC load regulation	$\mathrm{I}_{\text {REG }}$	Load changes between 0 mA and 100 mA in CCM mode	-	0.1	-	\%

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max load current	LLOAD_MAX	Low noise (LN) mode, Heavy Drive ${ }^{4}$	-	-	200	mA
		Low noise (LN) mode, Medium Drive ${ }^{4}$	-	-	100	mA
		Low noise (LN) mode, Light Drive ${ }^{4}$	-	-	50	mA
		Low power (LP) mode, LPCMPBIAS $^{3}=0$	-	-	75	$\mu \mathrm{A}$
		Low power (LP) mode, LPCMPBIAS $^{3}=3$	-	-	10	mA
DCDC nominal output capacitor	$C_{\text {DCDC }}$	25\% tolerance	1	1	1	$\mu \mathrm{F}$
DCDC nominal output inductor	$L_{\text {DCDC }}$	20\% tolerance	4.7	4.7	4.7	$\mu \mathrm{H}$
Resistance in Bypass mode	$\mathrm{R}_{\mathrm{BYP}}$		-	1.2	2.5	Ω

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, $\mathrm{V}_{\text {VREGVDD }}$
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits
3. In EMU_DCDCMISCCTRL register
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.

4.1.5 Current Consumption

4.1.5.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD $=3.3 \mathrm{~V} . \mathrm{T}_{\mathrm{OP}}=25{ }^{\circ} \mathrm{C}$. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at $\mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}$. See Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 98.

Table 4.5. Current Consumption 3.3 V without DC/DC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in EMO Active mode with all peripherals disabled	I ACTIVE	38.4 MHz crystal, CPU running while loop from flash ${ }^{1}$	-	130	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running Prime from flash	-	88	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	100	105	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	112	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO, CPU running while loop from flash	-	102	106	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	222	350	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 Sleep mode with all peripherals disabled	$\mathrm{I}_{\mathrm{EM} 1}$	38.4 MHz crystal ${ }^{1}$	-	65	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO	-	35	38	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO	-	37	41	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	157	275	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM2 Deep Sleep mode.	IEM2	Full RAM retention and RTCC running from LFXO	-	3.3	-	$\mu \mathrm{A}$
		4 kB RAM retention and RTCC running from LFRCO	-	3	6.3	$\mu \mathrm{A}$
Current consumption in EM3 Stop mode	Iem3	Full RAM retention and CRYOTIMER running from ULFRCO	-	2.8	6	$\mu \mathrm{A}$
Current consumption in EM4H Hibernate mode	IEM4	128 byte RAM retention, RTCC running from LFXO	-	1.1	-	$\mu \mathrm{A}$
		128 byte RAM retention, CRYOTIMER running from ULFRCO	-	0.65	-	$\mu \mathrm{A}$
		128 byte RAM retention, no RTCC	-	0.65	1.3	$\mu \mathrm{A}$
Current consumption in EM4S Shutoff mode	$\mathrm{IEM4S}$	no RAM retention, no RTCC	-	0.04	0.11	$\mu \mathrm{A}$

Note:

1. CMU_HFXOCTRL_LOWPOWER=0

4.1.5.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD $=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=\mathrm{PAVDD}=1.8 \mathrm{~V}$ DC-DC output. $\mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}$. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at $\mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}$. See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98.

Table 4.6. Current Consumption 3.3V with DC-DC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in EMO Active mode with all peripherals disabled, DCDC in Low Noise DCM mode ${ }^{1}$.	I ${ }_{\text {active }}$	38.4 MHz crystal, CPU running while loop from flash ${ }^{2}$	-	88	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running Prime from flash	-	63	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	71	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	78	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO, CPU running while loop from flash	-	76	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EMO Active mode with all peripherals disabled, DCDC in Low Noise CCM mode ${ }^{3}$.		38.4 MHz crystal, CPU running while loop from flash ${ }^{2}$	-	98	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running Prime from flash	-	75	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	81	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	88	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO, CPU running while loop from flash	-	94	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 Sleep mode with all peripherals disabled, DCDC in Low Noise DCM mode ${ }^{1}$.	IEM1	38.4 MHz crystal ${ }^{2}$	-	49	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO	-	32	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO	-	38	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 Sleep mode with all peripherals disabled, DCDC in Low Noise CCM mode ${ }^{3}$.		38.4 MHz crystal ${ }^{2}$	-	61	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO	-	45	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO	-	58	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM2 Deep Sleep mode. DCDC in Low Power mode ${ }^{4}$.	$\mathrm{I}_{\mathrm{EM} 2}$	Full RAM retention and RTCC running from LFXO	-	1.4	-	$\mu \mathrm{A}$
		4 kB RAM retention and RTCC running from LFRCO	-	1.4	-	$\mu \mathrm{A}$
Current consumption in EM3 Stop mode	$\mathrm{I}_{\text {em3 }}$	Full RAM retention and CRYOTIMER running from ULFRCO	-	1.1	-	$\mu \mathrm{A}$
Current consumption in EM4H Hibernate mode	$\mathrm{I}_{\text {EM4 }}$	128 byte RAM retention, RTCC running from LFXO	-	0.86	-	$\mu \mathrm{A}$
		128 byte RAM retention, CRYOTIMER running from ULFRCO	-	0.58	-	$\mu \mathrm{A}$
		128 byte RAM retention, no RTCC	-	0.58	-	$\mu \mathrm{A}$

Parameter	Symbol	Test Condition	Min	Typ	Max
Current consumption in EM4S Shutoff mode	IEM4S	no RAM retention, no RTCC	-	0.04	-
Note:					
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD					
2. CMU_HFXOCTRL_LOWPOWER=0					
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD					
4.DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD					

4.1.5.3 Current Consumption 1.85 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD $=1.85 \mathrm{~V} . \mathrm{T}_{\mathrm{OP}}=25{ }^{\circ} \mathrm{C}$. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at $\mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}$. See Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 98.

Table 4.7. Current Consumption 1.85 V without DC/DC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in EMO Active mode with all peripherals disabled	I ${ }_{\text {active }}$	38.4 MHz crystal, CPU running while loop from flash ${ }^{1}$	-	131	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running Prime from flash	-	88	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	100	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	112	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO, CPU running while loop from flash	-	102	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	220	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 Sleep mode with all peripherals disabled	lem1	38.4 MHz crystal ${ }^{1}$	-	65	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO	-	35	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO	-	37	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	154	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM2 Deep Sleep mode	$\mathrm{I}_{\text {EM2 }}$	Full RAM retention and RTCC running from LFXO	-	3.2	-	$\mu \mathrm{A}$
		4 kB RAM retention and RTCC running from LFRCO	-	2.8	-	$\mu \mathrm{A}$
Current consumption in EM3 Stop mode	$\mathrm{I}_{\text {em3 }}$	Full RAM retention and CRYOTIMER running from ULFRCO	-	2.7	-	$\mu \mathrm{A}$
Current consumption in EM4H Hibernate mode	$\mathrm{I}_{\text {EM4 }}$	128 byte RAM retention, RTCC running from LFXO	-	1	-	$\mu \mathrm{A}$
		128 byte RAM retention, CRYOTIMER running from ULFRCO	-	0.62	-	$\mu \mathrm{A}$
		128 byte RAM retention, no RTCC	-	0.62	-	$\mu \mathrm{A}$
Current consumption in EM4S Shutoff mode	$\mathrm{I}_{\text {EM4S }}$	No RAM retention, no RTCC	-	0.02	-	$\mu \mathrm{A}$
Note:1. CMU_HFXOCTRL_LOWPOWER=0						

4.1.5.4 Current Consumption Using Radio

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, $\mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD} . \mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}$. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at $\mathrm{T}_{\mathrm{OP}}=25^{\circ} \mathrm{C}$. See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 or Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 98.

Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled)	I_{RX}	$500 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=915 \mathrm{MHz}$, Radio clock prescaled by 4	-	8.4	10	mA
		38.4 kbit/s, 2GFSK, F = 868 MHz , Radio clock prescaled by 4	-	8.1	10	mA
		38.4 kbit/s, 2GFSK, F = 490 MHz , Radio clock prescaled by 4	-	7.9	10	mA
		$50 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=433 \mathrm{MHz}$, Radio clock prescaled by 4	-	7.7	10	mA
		38.4 kbit/s, 2GFSK, F = 315MHz , Radio clock prescaled by 4	-	7.9	10	mA
		38.4 kbit/s, 2GFSK, F = 169MHz , Radio clock prescaled by 4	-	7.6	10	mA
		$1 \mathrm{Mbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=2.4 \mathrm{GHz}$, Radio clock prescaled by 4	-	8.7	-	mA
		802.15.4 receiving frame, $F=2.4$ GHz, Radio clock prescaled by 3	-	9.8	-	mA

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled)	$\mathrm{I}_{\text {TX }}$	$\mathrm{F}=915 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm}$ match, PAVDD connected directly to external 3.3 V supply	-	80.2	104	mA
		$\mathrm{F}=915 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, PAVDD connected to DCDC output	-	35.5	40.9	mA
		$\mathrm{F}=868 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm}$ match, PAVDD connected directly to external 3.3 V supply	-	84.9	114	mA
		$\mathrm{F}=868 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, PAVDD connected to DCDC output	-	34.5	42	mA
		$\mathrm{F}=490 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm}$ match, PAVDD connected directly to external 3.3 V supply	-	82.8	112	mA
		$\mathrm{F}=433 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, PAVDD connected to DCDC output	-	32.3	37.8	mA
		$\mathrm{F}=433 \mathrm{MHz}, \mathrm{CW}, 10 \mathrm{dBm}$ match, PAVDD connected to DCDC output	-	19.5	22.1	mA
		$\mathrm{F}=315 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, PAVDD connected to DCDC output	-	32.5	39.4	mA
		$\mathrm{F}=169 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm}$ match, PAVDD connected directly to external 3.3V supply	-	80.2	106.9	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 0 \mathrm{dBm}$ output power, Radio clock prescaled by 3	-	8.2	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 3 \mathrm{dBm}$ output power	-	16.5	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 8 \mathrm{dBm}$ output power	-	23.3	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 10.5 \mathrm{dBm}$ output power	-	32.7	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 16.5 \mathrm{dBm}$ output power, PAVDD connected directly to external 3.3 V supply	-	83.9	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 19.5 \mathrm{dBm}$ out put power, PAVDD connected directly to external 3.3 V supply	-	126.7	-	mA
RFSENSE current consumption	IRFSENSE		-	51	-	nA

4.1.6 Wake up times

Table 4.9. Wake up times

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Wake up from EM2 Deep Sleep	tEM2_WU	Code execution from flash	-	10.7	-	$\mu \mathrm{s}$
		Code execution from RAM	-	3	-	$\mu \mathrm{s}$
Wakeup time from EM1 Sleep	tem1_WU	Executing from flash	-	3	-	AHB Clocks
		Executing from RAM	-	3	-	AHB Clocks
Wake up from EM3 Stop	tem3_WU	Executing from flash	-	10.7	-	$\mu \mathrm{s}$
		Executing from RAM	-	3	-	$\mu \mathrm{s}$
Wake up from EM4H Hibernate ${ }^{1}$	tem4h_WU	Executing from flash	-	60	-	$\mu \mathrm{s}$
Wake up from EM4S Shutoff ${ }^{1}$	tem4s_Wu		-	290	-	$\mu \mathrm{s}$

Note:

1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.

4.1.7 Brown Out Detector

Table 4.10. Brown Out Detector

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
DVDDBOD threshold	$V_{\text {DVDDBOD }}$	DVDD rising	-	-	1.62	V
		DVDD falling	1.35	-	-	V
DVDD BOD hysteresis	V ${ }_{\text {DVDDBOD_HYST }}$		-	24	-	mV
DVDD response time	tDVDDBOD_DELAY	Supply drops at $0.1 \mathrm{~V} / \mu$ s rate	-	2.4	-	$\mu \mathrm{s}$
AVDD BOD threshold	$\mathrm{V}_{\text {AVDDBOD }}$	AVDD rising	-	-	1.85	V
		AVDD falling	1.62	-	-	V
AVDD BOD hysteresis	$\mathrm{V}_{\text {AVDDBOD_HYST }}$		-	21	-	mV
AVDD response time	$\mathrm{t}_{\text {AVDDBOD_DELAY }}$	Supply drops at $0.1 \mathrm{~V} / \mu$ s rate	-	2.4	-	$\mu \mathrm{s}$
EM4 BOD threshold	$V_{\text {EM4DBOD }}$	AVDD rising	-	-	1.7	V
		AVDD falling	1.45	-	-	V
EM4 BOD hysteresis	VEM4BOD_HYST		-	46	-	mV
EM4 response time	tem4bod_delay	Supply drops at $0.1 \mathrm{~V} / \mu$ s rate	-	300	-	$\mu \mathrm{s}$

4.1.8 Frequency Synthesizer Characteristics

Table 4.11. Frequency Synthesizer Characteristics

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF Synthesizer Frequency range	FRANGE_2400	2.4 GHz frequency range	2400	-	2483.5	MHz
LO tuning frequency range	FRANGE_900	Sub GHz frequency range	779	-	956	MHz
	$\mathrm{F}_{\text {RANGE_433 }}$		390	-	574	MHz
	FRANGE_315		195	-	358	MHz
	$\mathrm{F}_{\text {RANGE_169 }}$		110	-	191	MHz
LO tuning frequency resolution with 38.4 MHz crystal	FRES_2400	2400-2483.5 MHz	-	-	73	Hz
	FRES_900	779-956 MHz	-	-	24	Hz
	FRES_433	390-574 MHz	-	-	12.2	Hz
	FRES_315	195-358 MHz	-	-	7.3	Hz
	FRES_169	110-191 MHz	-	-	4.6	Hz
Frequency deviation resolution with 38.4 MHz crystal	$\Delta \mathrm{F}_{\text {RES_2400 }}$	2400-2483.5 MHz	-	-	73	Hz
	$\Delta \mathrm{F}_{\text {RES_900 }}$	779 - 956 MHz	-	-	24	Hz
	$\Delta \mathrm{F}_{\text {RES_433 }}$	390-574 MHz	-	-	12.2	Hz
	$\Delta \mathrm{F}_{\text {RES_315 }}$	195-358 MHz	-	-	7.3	Hz
	$\Delta \mathrm{F}_{\text {RES_169 }}$	110-191 MHz	-	-	4.6	Hz
Maximum frequency deviation with 38.4 MHz crystal	$\Delta \mathrm{F}_{\text {MAX_2400 }}$	2400-2483.5 MHz	-	-	1677	kHz
	$\Delta \mathrm{F}_{\text {MAX_900 }}$	$779-956 \mathrm{MHz}$	-	-	559	kHz
	$\Delta \mathrm{F}_{\text {MAX_433 }}$	390-574 MHz	-	-	280	kHz
	$\Delta \mathrm{F}_{\text {MAX_315 }}$	195-358 MHz	-	-	167	kHz
	$\Delta \mathrm{F}_{\text {MAX_169 }}$	$110-191$ MHz	-	-	105	kHz

4.1.9 2.4 GHz RF Transceiver Characteristics

4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=1 O V D D=3.3 \mathrm{~V}$, $\mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.

Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Maximum TX power 1	POUT $_{\text {MAX }}$	19.5 dBm-rated part numbers. PAVDD connected directly to external 3.3 V supply ${ }^{2}$	-	19.5	-	dBm
		16.5 dBm -rated part numbers. PAVDD connected directly to external 3.3V supply	-	16.5	-	dBm
		8 dBm -rated part numbers	-	8	-	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$	CW		-30	-	dBm
Output power step size	POUT $_{\text {STEP }}$	$-5 \mathrm{dBm}<$ Output power $<0 \mathrm{dBm}$	-	1	-	dB
		0 dBm < output power < POUT MAX	-	0.5	-	dB
Output power variation vs supply at $\mathrm{POUT}_{\text {MAX }}$	POUTVAR_V	$1.85 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, PAVDD connected directly to external supply, for output power > 10.5 dBm .	-	4.5	-	dB
		$1.85 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, PAVDD connected directly to external supply, for output power = 10.5 dBm .	-	3.8	-	dB
		$1.85 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$ using DC-DC converter	-	2.2	-	dB
Output power variation vs temperature at $\mathrm{POUT}_{\text {MAX }}$	POUTVAR_T	From - 40 to $+85^{\circ} \mathrm{C}$, PAVDD connected to DC-DC output	-	1.5	-	dB
		From - 40 to $+85^{\circ} \mathrm{C}$, PAVDD connected to external supply	-	1.5	-	dB
Output power variation vs RF frequency at POUT $_{\text {MAX }}$	POUTVAR_F	Over RF tuning frequency range	-	0.4	-	dB
RF tuning frequency range	$F_{\text {RANGE }}$		2400	-	2483.5	MHz

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information
2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions.

4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.440 GHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.

Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	FRANGE		2400	-	2483.5	MHz
Receive mode maximum spurious emission	$\mathrm{SPUR}_{\mathrm{RX}}$	30 MHz to 1 GHz	-	-57	-	dBm
		1 GHz to 12 GHz	-	-47	-	dBm
Max spurious emissions during active receive mode, per FCC Part 15.109(a)	SPURRX_FCC	216 MHz to 960 MHz, Conducted Measurement	-	-55.2	-	dBm
		Above 960 MHz, Conducted Measurement	-	-47.2	-	dBm
Level above which RFSENSE will trigger ${ }^{1}$	RFSENSE ${ }_{\text {TRIG }}$	CW at 2.45 GHz	-	-24	-	dBm
Level below which RFSENSE will not trigger ${ }^{1}$	RFSENSE ${ }_{\text {THRES }}$		-	-50	-	dBm
1\% PER Sensitivity	SENS 2 GFSK	2 Mbps 2GFSK signal ${ }^{2}$	-	-89.2	-	dBm
0.1\% BER Sensitivity		250 kbps 2GFSK signal	-	-99.1	-	dBm

Note:

1. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.
2. Channel at 2420 MHz will have degraded sensitivity. Sensitivity could be as high as -83 dBm on this channel.

4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25{ }^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.44 GHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.

Table 4.14. RF Transmitter Characteristics for Bluetooth Smart in the 2.4GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Transmit 6dB bandwidth	TXBW		-	740	-	kHz
Power spectral density limit	PSD ${ }_{\text {LIMIT }}$	Per FCC part 15.247 at 10 dBm	-	-6.5	-	$\begin{aligned} & \mathrm{dBm} / \\ & 3 \mathrm{kHz} \end{aligned}$
		Per FCC part 15.247 at 20 dBm	-	-2.6	-	$\begin{aligned} & \mathrm{dBm} / \\ & 3 \mathrm{kHz} \end{aligned}$
		Per ETSI 300.328 at $10 \mathrm{dBm} / 1$ MHz	-	10	-	dBm
Occupied channel bandwidth per ETSI EN300.328	$\mathrm{OCP}_{\text {ETSI328 }}$	99\% BW at highest and lowest channels in band	-	1.1	-	MHz
In-band spurious emissions at 10 dBm , with allowed exceptions ${ }^{1}$	$\mathrm{SPUR}_{\text {INB }}$	At $\pm 2 \mathrm{MHz}$	-	-39.8	-	dBm
		At $\pm 3 \mathrm{MHz}$	-	-42.1	-	dBm
In-band spurious emissions at 20 dBm , with allowed exceptions ${ }^{12}$		At $\pm 2 \mathrm{MHz}$	-	-	-20	dBm
		At $\pm 3 \mathrm{MHz}$	-	-	-30	dBm
Emissions of harmonics out-of-band, per FCC part 15.247	SPUR HRM_FCC	2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modulated carrier	-	-47	-	dBm
Spurious emissions out-ofband, per FCC part 15.247, excluding harmonics captured in SPUR ${ }_{\text {HARM,FCC }}$. Restricted Bands	SPUR ${ }_{\text {OOB_FCC }}$	Above 2.483 GHz or below 2.4 GHz ; continuous transmission of modulated carrier ${ }^{3}$	-	-47	-	dBm
Spurious emissions out-ofband, per FCC part 15.247, excluding harmonics captured in SPUR ${ }_{\text {HARM, }}$ FCC. Non Restricted Bands		Above 2.483 GHz or below 2.4 GHz ; continuous transmission of modulated carrier	-	-26	-	dBc
Spurious emissions out-ofband; per ETSI 300.328	SPURETSI328	$\begin{aligned} & \text { [2400-BW to } 2400] \mathrm{MHz},[2483.5 \\ & \text { to } 2483.5+\mathrm{BW}] \mathrm{MHz} \end{aligned}$	-	-16	-	dBm
		[2400-2BW to 2400-BW] MHz, [2483.5+BW to 2483.5+2BW] MHz per ETSI 300.328	-	-26	-	dBm
Spurious emissions per ETSI EN300. 440	SPUR ${ }_{\text {ETSI4 }}$	$\begin{aligned} & \text { 47-74 MHz, 87.5-108 MHz, } \\ & \text { 174-230 MHz, 470-862 MHz } \end{aligned}$	-	-60	-	dBm
		25-1000 MHz	-	-42	-	dBm
		1-12 GHz	-	-36	-	dBm

| Parameter | Symbol | Test Condition | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Unit

Note:

1. Per Bluetooth Core_4.2, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz . These exceptions shall have an absolute value of -20 dBm or less.
2. For 2456 MHz , a maximum output power of 15 dBm is used to achieve this value.
3. For 2480 MHz , a maximum duty cycle of 20% is used to achieve this value.

4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25{ }^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.440 GHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.

Table 4.15. RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level, 0.1\% BER	SAT	Signal is reference signal ${ }^{1}$. Packet length is 20 bytes.	-	10	-	dBm
Sensitivity, $0.1 \% \mathrm{BER}^{2}$	SENS	Signal is reference signal ${ }^{1}$. Using DC-DC converter	-	-94	-	dBm
		With non-ideal signals as specified in RF-PHY.TS.4.2.2, section 4.6.1	-	-92	-	dBm
Signal to co-channel interferer, 0.1\% BER	$\mathrm{C} / \mathrm{l}_{\mathrm{cc}}$	Desired signal 3 dB above reference sensitivity	-	8.3	-	dB
$\mathrm{N}+1$ adjacent channel (1 MHz) selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at $-67 \mathrm{dBm}$	$\mathrm{C} / \mathrm{I}_{1+}$	Interferer is reference signal at +1 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-3	-	dB
N -1 adjacent channel (1 MHz) selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{1}$	Interferer is reference signal at -1 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-0.5	-	dB
Alternate (2 MHz) selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{2}$	Interferer is reference signal at ± 2 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-43	-	dB
Alternate (3 MHz) selectivity, 0.1\% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{3}$	Interferer is reference signal at ± 3 MHz offset. Desired frequency $2404 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-46.7	-	dB
Selectivity to image frequency, 0.1% BER. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{IIM}^{\text {I }}$	Interferer is reference signal at image frequency with 1 MHz precision	-	-38.7	-	dB
Selectivity to image frequency $+1 \mathrm{MHz}, 0.1 \%$ BER. Desired is reference signal at $-67 \mathrm{dBm}$	$\mathrm{C} / \mathrm{IIM}_{1}$	Interferer is reference signal at image frequency +1 MHz with 1 MHz precision	-	-48.2	-	dB
Blocking, 0.1\% BER, Desired is reference signal at -67 dBm. Interferer is CW in OOB range.	$\mathrm{BLOCK}_{\text {OOB }}$	Interferer frequency $30 \mathrm{MHz} \leq \mathrm{f} \leq$ 2000 MHz	-	-27	-	dBm
		Interferer frequency $2003 \mathrm{MHz} \leq \mathrm{f}$ $\leq 2399 \mathrm{MHz}$	-	-32	-	dBm
		Interferer frequency $2484 \mathrm{MHz} \leq f$ $\leq 2997 \mathrm{MHz}$	-	-32	-	dBm
		Interferer frequency $3 \mathrm{GHz} \leq \mathrm{f} \leq$ 12.75 GHz	-	-27	-	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Intermodulation performance	IM	Per Core_4.1, Vol 6, Part A, Sec- tion 4.4 with $\mathrm{n}=3$	-	-25.8	-	dBm
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MAX }}$		4	-	-	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-	-	-101	dBm
RSSI resolution				-		
RSSI		Over RSSI				

Note:

1. Reference signal is defined 2GFSK at -67 dBm , Modulation index $=0.5, \mathrm{BT}=0.5$, Bit rate $=1 \mathrm{Mbps}$, desired data $=\mathrm{PRBS9}$; interferer data $=$ PRBS15; frequency accuracy better than 1 ppm
2. Receive sensitivity on Bluetooth Smart channel 26 is -86 dBm

4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD} . \mathrm{RFVDD}$ and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.

Table 4.16. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Error vector magnitude (offset EVM), per 802.15.4-2011, not including 2415 MHz channel ${ }^{1}$	EVM	Average across frequency. Signal is DSSS-OQPSK reference packet^{2}	-	5.5	-	\% rms
Power spectral density limit	PSD ${ }_{\text {LIMIT }}$	Relative, at carrier $\pm 3.5 \mathrm{MHz}$	-	-26	-	dBc
		Absolute, at carrier $\pm 3.5 \mathrm{MHz}^{3}$	-	-36	-	dBm
		Per FCC part 15.247	-	-4.2	-	$\begin{aligned} & \mathrm{dBm} / \\ & 3 \mathrm{kHz} \end{aligned}$
		Output power level which meets 10dBm/MHz ETSI 300.328 specification	-	12	-	dBm
Occupied channel bandwidth per ETSI EN300.328	$\mathrm{OCP}_{\text {ETSI328 }}$	99\% BW at highest and lowest channels in band	-	2.25	-	MHz
Spurious emissions of harmonics in restricted bands per FCC Part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm, PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz	$\text { SPUR }_{\text {HRM_FCC_ }}$ R	Continuous transmission of modulated carrier	-	-45.8	-	dBm
Spurious emissions of harmonics in harmonics in nonrestricted bands per FCC Part 15.247/15.35, Emissions taken at Pout_Max power level of 19.5 dBm , PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz	SPUR HRM_FCC_ NRR		-	-26	-	dBc

Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions out-ofband in restricted bands ($30-88 \mathrm{MHz}$), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm , PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz	$\begin{aligned} & \text { SPUROOB_FCC_ } \\ & \text { R } \end{aligned}$	Above 2.483 GHz or below 2.4 GHz ; continuous transmission of modulated carrier ${ }^{4}$	-	-52	-	dBm
Spurious emissions out-ofband in restricted bands ($88-216 \mathrm{MHz}$), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm , PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz			-	-62	-	dBm
Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm , PAVDD connected to external 3.3 V supply, Test Frequency $=2450 \mathrm{MHz}$			-	-57	-	dBm
Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC part 15.205/15.209, Emissions taken at Pout_Max power level of 19.5 dBm , PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz			-	-48	-	dBm
Spurious emissions out-ofband in non-restricted bands per FCC Part 15.247, Emissions taken at Pout_Max power level of 19.5 dBm , PAVDD connected to external 3.3 V supply, Test Frequency $=2450 \mathrm{MHz}$	SPUROOB_FCC_ NR	Above 2.483 GHz or below 2.4 GHz ; continuous transmission of modulated carrier	-	-26	-	dBc
Spurious emissions out-ofband; per ETSI 300.328^{5}	$\mathrm{SPUR}_{\text {ETSI328 }}$	[2400-BW to 2400], [2483.5 to 2483.5+BW];	-	-16	-	dBm
		[2400-2BW to 2400-BW], [2483.5+BW to 2483.5+2BW]; per ETSI 300.328	-	-26	-	dBm
Spurious emissions per ETSI EN300.440 ${ }^{5}$	SPUR ETSI440	47-74 MHz, 87.5-108 MHz, $174-230 \mathrm{MHz}, 470-862 \mathrm{MHz}$	-	-60	-	dBm
		$25-1000 \mathrm{MHz}$, excluding above frequencies	-	-42	-	dBm
		1G-14G	-	-36	-	dBm

Parameter	Symbol	Test Condition	Min	Typ
Note:	Max	Unit		
1. Typical EVM for the 2415 MHz channel is 7.9%				
2. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with				
pseudo-random packet data content				
3. For 2415 MHz , a maximum duty cycle of 50% is used to achieve this value.				
4. For 2480 MHz , a maximum duty cycle of 20% is used to achieve this value.				
5. Specified at maximum power output level of 10 dBm				

4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD} . \mathrm{RFVDD}$ and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.445 GHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100.

Table 4.17. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level, 1\% PER	SAT	Signal is reference signal ${ }^{1}$. Packet length is 20 octets.	-	10	-	dBm
Sensitivity, 1\% PER ${ }^{2}$	SENS	Signal is reference signal. Packet length is 20 octets. Using DC-DC converter.	-	-101	-	dBm
		Signal is reference signal. Packet length is 20 octets. Without DCDC converter.	-	-101	-	dBm
Co-channel interferer rejection, 1\% PER	CCR	Desired signal 10 dB above sensitivity limit	-	-2.6	-	dB
High-side adjacent channel rejection, 1\% PER. Desired is reference signal at 3dB above reference sensitivity level ${ }^{3}$	ACR_{+1}	Interferer is reference signal at +1 channel-spacing.	-	33.75	-	dB
		Interferer is filtered reference signal ${ }^{4}$ at +1 channel-spacing.	-	52.2	-	dB
		Interferer is CW at +1 channelspacing. ${ }^{5}$	-	58.6	-	dB
Low-side adjacent channel rejection, 1\% PER. Desired is reference signal at 3dB above reference sensitivity level ${ }^{3}$	ACR-1	Interferer is reference signal at -1 channel-spacing.	-	35	-	dB
		Interferer is filtered reference signal ${ }^{4}$ at -1 channel-spacing.	-	54.7	-	dB
		Interferer is CW at -1 channelspacing.	-	60.1	-	dB
Alternate channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level ${ }^{3}$	ACR_{2}	Interferer is reference signal at ± 2 channel-spacing	-	45.9	-	dB
		Interferer is filtered reference signal ${ }^{4}$ at ± 2 channel-spacing	-	56.8	-	dB
		Interferer is CW at ± 2 channelspacing	-	65.5	-	dB
Image rejection, 1\% PER, Desired is reference signal at 3 dB above reference sensitivity level ${ }^{3}$	IR	Interferer is CW in image band ${ }^{5}$	-	49.3	-	dB
Blocking rejection of all other channels. 1\% PER, Desired is reference signal at 3dB above reference sensitivity level ${ }^{3}$. Interferer is reference signal.	BLOCK	Interferer frequency < Desired frequency - 3 channel-spacing	-	57.2	-	dB
		Interferer frequency > Desired frequency +3 channel-spacing	-	57.9	-	dB
Blocking rejection of 802.11 g signal centered at +12 MHz or -13 MHz	$\mathrm{BLOCK}_{80211 \mathrm{G}}$	Desired is reference signal at 6dB above reference sensitivity level ${ }^{3}$	-	51.6	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MAX }}$		5	-	-	dBm
Lower limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\mathrm{MIN}}$		-	-	-98	dBm
RSSI resolution	RSSI ${ }_{\text {RES }}$	over $\mathrm{RSSI}_{\text {MIN }}$ to $\mathrm{RSSI}_{\text {MAX }}$	-	0.25	-	dB
RSSI accuracy in the linear region as defined by 802.15.4-2003	RSSILIN		-	± 1	-	dB

Note:

1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range $=2400-2483.5 \mathrm{MHz}$, Symbol rate $=62.5 \mathrm{ksym}-$ bols/s
2. Receive sensitivity on 802.15 .4 channel 14 is -98 dBm
3. Reference sensitivity level is -85 dBm
4. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3 dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.
5. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker tests place the Interferer center frequency at the Desired frequency $\pm 5 \mathrm{MHz}$ on the channel raster, whereas the image rejection test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.

4.1.10.1 Sub-GHz RF Transmitter Characteristics in the 915 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 915 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.

Table 4.18. Sub-GHz RF Transmitter characteristics for 915 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		902	-	930	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	PAVDD connected directly to external 3.3 V supply, 20 dBm output power setting	17.7	20.3	24.5	dBm
		PAVDD connected to DC-DC output, 14 dBm output power setting	10.4	13.8	17.6	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$		-	-45.5	-	dBm
Output power step size	POUT $_{\text {STEP }}$	output power $>0 \mathrm{dBm}$	-	0.5	-	dB
Output power variation vs supply at POUTMAX	POUTVAR_V	$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, PAVDD connected to external supply	-	4.8	-	dB
		$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V},$ PAVDD connected to DC-DC output	-	1.9	-	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	-40 to +85 C with PAVDD connected to external supply	-	0.6	1.3	dB
		-40 to +85 C with PAVDD connected to DC-DC output	-	0.7	1.4	dB
Output power variation vs RF frequency	POUTVAR_F	PAVDD connected to external supply	-	0.2	0.6	dB
		PAVDD connected to DC-DC output	-	0.3	0.6	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions of harmonics in restricted bands, per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD $=3.3 \mathrm{~V}$, Test Frequency $=915 \mathrm{MHz}$	SPURHARM_FCC$\text { \| } 20$	Conducted measurement, 20dBm match	-	-64.6	-47	dBm
Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency $=915$ MHz			-	-64.2	-42	dBc
Spurious emissions out-ofband in non-restricted bands, per FCC Part 15.231, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency $=915 \mathrm{MHz}$	SPUROOB_FCC_ 20		-	-76.2	-66	dBc
Spurious emissions out-ofband in restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency $=915 \mathrm{MHz}$			-	-68.8	-52	dBm
Spurious emissions out-ofband in restricted bands ($88-216 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD $=3.3 \mathrm{~V}$, Test Frequency $=915 \mathrm{MHz}$			-	-67.7	-62	dBm
Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD = 3.3V, Test Frequency $=915 \mathrm{MHz}$			-	-69.1	-58	dBm
Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 20 dBm output power, PAVDD $=3.3 \mathrm{~V}$, Test Frequency $=915 \mathrm{MHz}$			-	-54.6	-42.4	dBm

Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions of harmonics in restricted bands, per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 915 MHz	SPUR HARM_FCC _14	Conducted measurement, 14 dBm match	-	-75.2	-60	dBm
Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency $=915 \mathrm{MHz}$			-	-69	-49	dBc
Spurious emissions of harmonics out-of-band in nonrestricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 915 MHz	SPUROOB_FCC_14		-	-87.5	-66	dBc
Spurious emissions out-ofband in restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 915 MHz			-	-74.2	-52	dBm
Spurious emissions out-ofband in restricted bands ($88-216 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 915 MHz			-	-73.1	-67	dBm
Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency $=915 \mathrm{MHz}$			-	-74.3	-58	dBm
Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 915 MHz			-	-60.2	-49	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max
Note:					
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov- ered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information					

4.1.10.2 Sub-GHz RF Receiver Characteristics in the 915 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 915 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.

Table 4.19. Sub-GHz RF Receiver Characteristics for 915 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	$F_{\text {Range }}$		902	-	930	MHz
Max usable input level, 0.1\% BER	SAT	Desired is reference 500 kbps GFSK signal ${ }^{5}$	-	-	10	dBm
Sensitivity	SENS	Desired is reference 4.8 kbps OOK signal ${ }^{1}, 20 \%$ PER	-	-104.7	-100.7	dBm
		Desired is reference 600 bps GFSK signal ${ }^{2}$, 0.1\% BER	-	-126.4	-	dBm
		Desired is reference 50 kbps GFSK signal ${ }^{3}$, 0.1% BER	-	-107.5	-104.2	dBm
		Desired is reference 100 kbps GFSK signal ${ }^{4}$, 0.1% BER	-	-105.1	-101.5	dBm
		Desired is reference 500 kbps GFSK signal ${ }^{5}$, 0.1% BER	-	-97.7	-93.2	dBm
		Desired is reference 400 kbps GFSK signal ${ }^{6}, 1 \%$ PER	-	-90.9	-87.5	dBm
Level above which RFSENSE will trigger ${ }^{7}$	RFSENSE ${ }_{\text {TRIG }}$	CW at 915 MHz	-	-25.8	-	dBm
Level below which RFSENSE will not trigger ${ }^{7}$	RFSENSE ${ }_{\text {THRES }}$		-	-50	-	dBm
Adjacent channel selectivity, Interferer is CW at $\pm 1 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{1}$	Desired is 4.8 kbps OOK signal ${ }^{1}$ at 3dB above sensitivity level, 20\% PER	-	43.7	-	dB
		Desired is 600 bps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	65.76	-	dB
		Desired is 50 kbps GFSK signal ${ }^{3}$ at 3 dB above sensitivity level, 0.1\% BER	-	48.24	-	dB
		Desired is 100 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	51.1	-	dB
		Desired is 500 kbps GFSK signal ${ }^{5}$ at 3dB above sensitivity level, 0.1\% BER	-	47	-	dB
		Desired is 400 kbps 4GFSK signal ${ }^{6}$ at 3dB above sensitivity level, 0.1\% BER	-	35.9	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Alternate channel selectivity, Interferer is CW at $\pm 2 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{2}$	Desired is 4.8 kbps OOK signal ${ }^{1}$ at 3 dB above sensitivity level, 20\% PER	-	57.2	-	dB
		Desired is 600 bps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	71.76	-	dB
		Desired is 50 kbps GFSK signal ${ }^{3}$ at 3dB above sensitivity level, 0.1\% BER	-	53.6	-	dB
		Desired is 100 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	56.9	-	dB
		Desired is 500 kbps GFSK signal ${ }^{5}$ at 3 dB above sensitivity level, 0.1\% BER	-	53.6	-	dB
		Desired is 400 kbps 4GFSK signal ${ }^{6}$ at 3dB above sensitivity level, 0.1\% BER	-	44	-	dB
Image rejection, Interferer is CW at image frequency	C/IIMAGE	Desired is 4.8 kbps OOK signal ${ }^{1}$ at 3 dB above sensitivity level, 20\% PER	-	41.2	-	dB
		Desired is 50 kbps GFSK signal ${ }^{3}$ at 3 dB above sensitivity level, 0.1\% BER	-	52.4	-	dB
		Desired is 100 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	50.35	-	dB
		Desired is 500 kbps GFSK signal ${ }^{5}$ at 3 dB above sensitivity level, 0.1\% BER	-	46.2	-	dB
		Desired is 400 kbps 4GFSK signal ${ }^{6}$ at 3dB above sensitivity level, 0.1\% BER	-	35.9	-	dB
Blocking selectivity, 0.1\% BER. Desired is 100 kbps GFSK signal at 3dB above sensitivity level	C/IBLOCKER	Interferer CW at Desired $\pm 1 \mathrm{MHz}$	-	58.7	-	dB
		Interferer CW at Desired $\pm 2 \mathrm{MHz}$	-	60.9	-	dB
		Interferer CW at Desired $\pm 10 \mathrm{MHz}$	-	76.4	-	dB
Intermod selectivity, 0.1\% BER. CW interferers at 400 kHz and 800 kHz offsets	$\mathrm{C} / \mathrm{IIM}$	Desired is 100 kbps GFSK signal ${ }^{4}$ at 3dB above sensitivity level	-	46.1	-	dBm
Upper limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution	RSSI ${ }_{\text {RES }}$	Over $\mathrm{RSSI}_{\text {MIN }}$ to $\mathrm{RSSI}_{\text {MAX }}$ range	-	0.25	-	dBm
Max spurious emissions during active receive mode, per FCC Part 15.109(a)	SPUR ${ }_{\text {RX_FCC }}$	216-960 MHz	-	-77.7	-49.2	dBm
		Above 960 MHz	-	-62.7	-51.7	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max spurious emissions during active receive mode,per ARIB STD-T108 Section 3.3	SPUR ${ }_{\text {RX_ARIB }}$	Below 710 MHz , RBW=100kHz	-	-77.7	-60	dBm
		$710-900 \mathrm{MHz}$, RBW=1MHz	-	-75.8	-61	dBm
		$900-915 \mathrm{MHz}$, RBW=100kHz	-	-85.4	-61	dBm
		915-930 MHz, RBW=100kHz	-	-85.6	-55	dBm
		$930-1000 \mathrm{MHz}$, RBW= $=100 \mathrm{kHz}$	-	-85.1	-60	dBm
		Above $1000 \mathrm{MHz}, \mathrm{RBW}=1 \mathrm{MHz}$	-	-57.9	-47	dBm

Note:

1. Definition of reference signal is $4.8 \mathrm{kbps} \mathrm{OOK}, \mathrm{RX}$ channel $\mathrm{BW}=315.6 \mathrm{kHz}$, channel spacing $=500 \mathrm{kHz}$
2. Definition of reference signal is $600 \mathrm{bps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=0.3 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=1262 \mathrm{~Hz}$, channel spacing $=300 \mathrm{kHz}$
3. Definition of reference signal is $50 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=25 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=120.229 \mathrm{kHz}$, channel spacing $=200$ kHz
4. Definition of reference signal is $100 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=210.4 \mathrm{kHz}$, channel spacing $=200 \mathrm{kHz}$
5. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=175 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=2524.8 \mathrm{kHz}$, channel spacing $=1 \mathrm{MHz}$
6. Definition of reference signal is $400 \mathrm{kbps} 4 \mathrm{GFSK}, \mathrm{BT}=0.5$, inner deviation $=33.3 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=336.64 \mathrm{kHz}$, channel spacing $=600 \mathrm{kHz}$
7. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.3 Sub-GHz RF Transmitter Characteristics in the 868 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 868 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.

Table 4.20. Sub-GHz RF Transmitter characteristics for 868 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	$\mathrm{F}_{\text {RANGE }}$		863	-	876	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	PAVDD connected directly to external 3.3 V supply, 20 dBm output power setting	16.6	19.6	23	dBm
		PAVDD connected to DC-DC output, 14 dBm output power setting	10	14.7	17.5	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$		-	-43.5	-	dBm
Output power step size	POUT STEP	output power > 0 dBm	-	0.5	-	dB
Output power variation vs supply at POUTMAX	POUTVAR_V_No DCDC	$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, PAVDD connected to external supply	-	5	-	dB
	POUTVAR_V_DC DC	$\begin{aligned} & \text { 1.8 } \mathrm{V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V} \text {, } \\ & \text { PAVDD connected to } \mathrm{DC}-\mathrm{DC} \text { out- } \\ & \text { put } \end{aligned}$	-	2	-	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	-40 to +85 C with PAVDD connected to external supply	-	0.6	0.9	dB
		-40 to +85 C with PAVDD connected to DC-DC output	-	0.5	1.2	dB
Output power variation vs RF frequency	POUTVAR_F_NO DCDC	PAVDD connected to external supply	-	0.2	0.6	dB
	POUTVAR_F_DC DC	PAVDD connected to DC-DC output	-	0.2	0.8	dB
Spurious emissions of harmonics, per ETSI EN 300-220, Section 7.8.2.1	SPUR ${ }_{\text {HARM_ETSI }}$	Conducted measurement, PAVDD connected to DC-DC output	-	-44	-30	dBm
Spurious emissions, 47-74 / 87.5-118 / 174-230 / 470-862 MHz and $470-862 \mathrm{MHz}$, per ETSI EN 300-220, Section 7.8.2.1	SPUROOB_ETSI		-	-61.7	-55.7	dBm
Spurious emissions, other frequencies below 1 GHz , per ETSI EN 300-220, Section 7.8.2.1			-	-64.2	-43.5	dBm
Spurious emissions, frequencies above 1 GHz , per ETSI EN 300-220, Section 7.8.2.1			-	-59.9	-30	dBm

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information

4.1.10.4 Sub-GHz RF Receiver Characteristics in the 868 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 868 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.

Table 4.21. Sub-GHz RF Receiver Characteristics for 868 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	Frange		863	-	876	MHz
Max usable input level, 0.1% BER	SAT	Desired is reference 2.4 kbps GFSK signal ${ }^{1}$	-	-	10	dBm
		Desired is reference 38.4 kbps GFSK signal ${ }^{2}$	-	-	10	dBm
Sensitivity	SENS	Desired is reference 2.4 kbps GFSK signal ${ }^{1}, 0.1 \%$ BER	-	-121.4	-116.5	dBm
		Desired is reference 38.4 kbps GFSK signal², 0.1\% BER	-	-109.2	-105.4	dBm
		Desired is reference 500 kbps GFSK signal ${ }^{3}, 0.1 \%$ BER	-	-95.1	-	dBm
Level above which RFSENSE will trigger ${ }^{4}$	RFSENSE $_{\text {TRIG }}$	CW at 868 MHz	-	-25.8	-	dBm
Level below which RFSENSE will not trigger ${ }^{4}$	RFSENSE ${ }_{\text {THRES }}$		-	-50	-	dBm
Adjacent channel selectivity, Interferer is CW at $\pm 1 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{1}$	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3dB above sensitivity level, 0.1\% BER	48.5	57.7	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	36.4	44.9	-	dB
Alternate channel selectivity, Interferer is CW at $\pm 2 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{2}$	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3dB above sensitivity level, 0.1\% BER	-	59.1	-	dB
		Desired is 38.4 kbps GFSK signal 2 at 3 dB above sensitivity level, 0.1% BER	-	47.7	-	dB
Image rejection, Interferer is CW at image frequency	C/Image	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	47.5	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{2}$ at 3dB above sensitivity level, 0.1\% BER	-	47.2	-	dB
Blocking selectivity, 0.1\% BER. Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level.	C/I ${ }_{\text {BLOCKER }}$	Interferer CW at Desired $\pm 1 \mathrm{MHz}$	-	71.9	-	dB
		Interferer CW at Desired $\pm 2 \mathrm{MHz}$	-	77.9	-	dB
		Interferer CW at Desired $\pm 10 \mathrm{MHz}$	-	90.9	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution		Over RSSI				
Max spurious to RSSI $_{\text {MAX range }}$ ing active receive mode	RSSI $_{\text {RES }}$	-	0.25	-	dBm	

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=5.05 \mathrm{kHz}$, channel spacing $=12.5 \mathrm{kHz}$
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=84.16 \mathrm{kHz}$, channel spacing $=100 \mathrm{kHz}$
3. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=125 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=841.6 \mathrm{kHz}$
4. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.5 Sub-GHz RF Transmitter Characteristics in the 490 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 433 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.

Table 4.22. Sub-GHz RF Transmitter characteristics for 490 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		470	-	510	MHz
Maximum TX Power ${ }^{1}$	$\mathrm{POUT}_{\text {MAX }}$	PAVDD connected directly to external 3.3 V supply	18.5	21.1	23	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$			-44.9	-	dBm
Output power step size	POUT $_{\text {STEP }}$	output power > 0 dBm	-	0.5	-	dB
Output power variation vs supply, peak to peak	POUTVAR_V	at $20 \mathrm{dBm} ; 1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<$ 3.3 V , PAVDD connected directly to external supply	-	4.3	-	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	-40 to +85 C at 20 dBm	-	0.2	0.9	dB
Output power variation vs RF frequency	POUTVAR_F		-	0.2	0.4	dB
Harmonic emissions, frequencies below 1 GHz , per China SRW Requirement, Section 2.1	SPUR HARM_CN	20 dBm output power setting, $490 \mathrm{MHz}$	-	-41.3	-34.9	dBm
Harmonic emissions, frequencies above 1 GHz , per China SRW Requirement, Section 2.1			-	-47.2	-36	dBm
Spurious emissions, $48.5-72.5 \mathrm{MHz}, 76-108 \mathrm{MHz}$, $167-223 \mathrm{MHz}, 470-556 \mathrm{MHz}$, 606-798MHz, per China SRW Requirement, Section 3	SPUROOB_CN		-	-57.5	-	dBm
Spurious emissions, other frequencies below 1 GHz , per China SRW Requirement, Section 2.1			-	-58.5	-	dBm
Spurious emissions, frequencies above 1 GHz , per China SRW Requirement, Section 2.1			-	-47.9	-	dBm

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information

4.1.10.6 Sub-GHz RF Receiver Characteristics in the 490 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 490 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.

Table 4.23. Sub-GHz RF Receiver Characteristics for 490 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	$\mathrm{F}_{\text {RANGE }}$		470	-	510	dBm
Max usable input level, 0.1\% BER	SAT	Desired is reference 2.4 kbps GFSK signal ${ }^{1}$	-	-	10	dBm
		Desired is reference 38.4 kbps GFSK signal ${ }^{2}$	-	-	10	dBm
Sensitivity	SENS	Desired is reference 2.4 kbps GFSK signal ${ }^{1}, 0.1 \%$ BER	-	-122.2	-	dBm
		Desired is reference 38.4 kbps GFSK signal ${ }^{2}$, 0.1% BER	-	-111.7	-108.9	dBm
		Desired is reference 10 kbps GFSK signal ${ }^{3}$, 0.1% BER	-	-117.5	-114.8	dBm
		Desired is reference 100 kbps GFSK signal ${ }^{4}$, 0.1% BER	-	-107.6	-104.7	dBm
Level above which RFSENSE will trigger ${ }^{5}$	RFSENSE $_{\text {TRIG }}$	CW at 490 MHz	-	-25.8	-	dBm
Level below which RFSENSE will not trigger ${ }^{5}$	RFSENSE ${ }_{\text {THRES }}$		-	-50	-	dBm
Adjacent channel selectivity, Interferer is CW at $\pm 1 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{1}$	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	48	58.4	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	40	47.5	-	dB
Alternate channel selectivity, Interferer is CW at $\pm 2 \times$ channel-spacing	$\mathrm{C} / \mathrm{l}_{2}$	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	60.8	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	51.7	-	dB
Image rejection, Interferer is CW at image frequency	C/IMAGE	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	60.9	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	53	-	dB
Blocking selectivity, 0.1\% BER. Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level .	C/IBLOCKER	Interferer CW at Desired $\pm 1 \mathrm{MHz}$	-	71.9	-	dB
		Interferer CW at Desired $\pm 2 \mathrm{MHz}$	-	74.1	-	dB
		Interferer CW at Desired $\pm 10 \mathrm{MHz}$	-	87.9	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSIMAX			-	-	5
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution				-		
Max spurious emissions dur- ing active receive mode	SPUR $_{\text {RX }}$	30 MHz to 1 GHz	-	-	-8.25	-
		1 GHz to 12 GHz	-	-66.8	-54	dBm

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=5.05 \mathrm{kHz}$, channel spacing $=12.5 \mathrm{kHz}$
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=84.16 \mathrm{kHz}$, channel spacing $=100 \mathrm{kHz}$
3. Definition of reference signal is $10 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=5 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=21.04 \mathrm{kHz}$
4. Definition of reference signal is $100 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=210.4 \mathrm{kHz}$
5. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.7 Sub-GHz RF Transmitter Characteristics in the 433 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 433 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.

Table 4.24. Sub-GHz RF Transmitter characteristics for 433 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		426	-	445	MHz
Maximum TX Power ${ }^{1}$	$\mathrm{POUT}_{\text {MAX }}$	PAVDD connected to DCDC output	11	14.3	18	dBm
			7	10.7	14	dBm
Minimum active TX Power	$\mathrm{POT}_{\text {MIN }}$		-	-42	-	dBm
Output power step size	POUTSTEP	output power > 0 dBm	-	0.5	-	dB
Output power variation vs supply, peak to peak Pout = 10dBm	POUTVAR_V	at $10 \mathrm{dBm} ; 1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<$ 3.3 V, PAVDD = DC-DC output	-	1.7	-	dB
Output power variation vs temperature, peak to peak Pout= 10dBm	POUTVAR_T	-40 to +85 C at 10 dBm	-	0.5	1.2	dB
Output power variation vs RF frequency Pout $=10 \mathrm{dBm}$	POUTVAR_F		-	0.2	0.6	dB

Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions of harmonics in restricted bands, per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 434 MHz	SPUR ${ }_{\text {HARM_FCC }}$	Conducted measurement using rms detector, Pout=+14dBm	-	-61.2	-47	dBm
Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency $=434 \mathrm{MHz}$		Conducted measurement using peak detector, Pout $=+14 \mathrm{dBm}$	-	-68.5	-26	dBc
Spurious emissions of harmonics out-of-band in nonrestricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 434 MHz	SPUR ${ }_{\text {OOB_FCC }}$		-	-86.2	-26	dBc
Spurious emissions out-ofband in restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 434 MHz		Conducted measurement using peak, 434MHz	-	-71.9	-52	dBm
Spurious emissions out-ofband in restricted bands ($88-216 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 434 MHz		Conducted measurement using peak detector, Pout=+14dBm	-	-70.2	-62	dBm
Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency $=434 \mathrm{MHz}$			-	-60.5	-54.5	dBm
Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 434 MHz		Conducted measurement using rms detector, Pout=+14dBm	-	-57.7	-46	dBm

Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions of harmonics, frequencies below 1Ghz, per ETSI EN 300-220, Section 7.8.2.1, 434MHz	SPUR HRM_ETSI	Conducted measurement using peak detector, PAVDD connected to DC-DC output	-	-57.3	-36	dBm
Spurious emissions of harmonics, frequencies above 1 GHz , per ETSI EN 300-220, Section 7.8.2.1, 434MHz			-	-84.5	-36	dBm
Spurious emissions, 47-74 / 87.5-118 / 174-230 / 470-862 MHz and $470-862 \mathrm{MHz}$, per ETSI EN 300-220, Section 7.8.2.1, 434MHz	SPUROOB_ETSI	Conducted measurement using rms detector, PAVDD connected to DC-DC output	-	-65.1	-60	dBm
Spurious emissions, other frequencies below 1 GHz , per ETSI EN 300-220, Section 7.8.2.1, 434MHz			-	-63.9	-42	dBm
Spurious emissions, frequencies above 1 GHz , per ETSI EN 300-220, Section 7.8.2.1, 434 MHz		Conducted measurement using peak detector, PAVDD connected to DC-DC output	-	-56.8	-36	dBm
Note: 1. Supported transmit powe ered in this datasheet can	levels are deter be found in the	ined by the ordering part number ax TX Power column of Section 2.	Tra ring	wer ra on	all d	cov-

4.1.10.8 Sub-GHz RF Receiver Characteristics in the 433 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 433 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.

Table 4.25. Sub-GHz RF Receiver Characteristics for 433 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	FRANGE		426	-	445	MHz
Max usable input level, 0.1\% BER	SAT	Desired is reference 2.4 kbps GFSK signal ${ }^{4}$	-	-	10	dBm
		Desired is reference 50 kbps GFSK signal ${ }^{3}$	-	-	10	dBm
Sensitivity	SENS	Desired is reference 4.8 kbps OOK signal ${ }^{1}, 20 \%$ PER	-	-107	-	dBm
		Desired is reference 100 kbps GFSK signal ${ }^{2}$, 0.1\% BER	-	-107.5	-105	dBm
		Desired is reference 50 kbps GFSK signal ${ }^{3}, 0.1 \%$ BER	-	-110	-107.2	dBm
		Desired is reference 2.4 kbps GFSK signal ${ }^{4}$, 0.1% BER	-	-122.3	-	dBm
		Desired is reference 9.6 kbps GFSK signal ${ }^{5}$, 1\% PER	-	-109.4	-106.2	dBm
Level above which RFSENSE will trigger ${ }^{6}$	RFSENSE ${ }_{\text {TRIG }}$	CW at 433 MHz	-	-25.8	-	dBm
Level below which RFSENSE will not trigger ${ }^{6}$	RFSENSE ${ }_{\text {THRES }}$		-	-50	-	dBm
Adjacent channel selectivity, Interferer is CW at $\pm 1 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{1}$	Desired is 4.8 kbps OOK signal ${ }^{1}$ at 3 dB above sensitivity level, 20\% PER	-	46	-	dB
		Desired is 100 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	24.8	33.4	-	dB
		Desired is 2.4 kbps GFSK signal ${ }^{4}$ at 3dB above sensitivity level, 0.1\% BER	47	59.1	-	dB
		Desired is 50 kbps GFSK signal ${ }^{3}$ at 3 dB above sensitivity level, 0.1\% BER	45.6	50.7	-	dB
		Desired is 9.6 kbps 4GFSK signal ${ }^{5}$ at 3dB above sensitivity level, 1\% PER	-	31.2	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Alternate channel selectivity, Interferer is CW at $\pm 2 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{2}$	Desired is 4.8 kbps OOK signal ${ }^{1}$ at 3 dB above sensitivity level, 20\% PER	-	56.8	-	dB
		Desired is 100 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	56.2	-	dB
		Desired is 2.4 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	62.2	-	dB
		Desired is 50 kbps GFSK signal ${ }^{3}$ at 3 dB above sensitivity level, 0.1\% BER	-	57.4	-	dB
		Desired is 9.6 kbps 4 GFSK signal ${ }^{5}$ at 3dB above sensitivity level, 1\% PER	-	47.8	-	dB
Image rejection, Interferer is CW at image frequency	C/IIMAGE	Desired is 4.8 kbps OOK signal ${ }^{1}$ at 3dB above sensitivity level>, 20\% PER	-	42.2	-	dB
		Desired is 100 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	50	-	dB
		Desired is 2.4 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	52.3	-	dB
		Desired is 50 kbps GFSK signal ${ }^{3}$ at 3dB above sensitivity level, 0.1\% BER	-	53	-	dB
		Desired is 9.6 kbps 4 GFSK signal ${ }^{5}$ at 3dB above sensitivity level, 1\% PER	-	45	-	dB
Blocking selectivity, 0.1\% BER. Desired is 2.4 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level	C/IBLOCKER	Interferer CW at Desired $\pm 1 \mathrm{MHz}$	-	73.8	-	dB
		Interferer CW at Desired $\pm 2 \mathrm{MHz}$	-	75.7	-	dB
		Interferer CW at Desired $\pm 10 \mathrm{MHz}$	-	89.9	-	dB
Intermod selectivity, 0.1\% BER. CW interferers at 12.5 kHz and 25 kHz offsets	$\mathrm{C} / \mathrm{IIM}$	Desired is 2.4 kbps GFSK signal ${ }^{4}$ at 3dB above sensitivity level	-	59.1	-	dBm
Upper limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution	RSSIRES	Over $\mathrm{RSSI}_{\text {MIN }}$ to $\mathrm{RSSI}_{\text {MAX }}$ range	-	0.25	-	dBm
Max spurious emissions during active receive mode, per FCC Part 15.109(a)	SPUR ${ }_{\text {RX_FCC }}$	$216-960 \mathrm{MHz}$	-	-83.5	-57	dBm
		Above 960 MHz	-	-62.5	-52	dBm
Max spurious emissions during active receive mode, per ETSI 300-220 Section 8.6	SPUR RX_ETSI	below 1000 MHz	-	-84.6	-57	dBm
		Above 1000 MHz	-	-59.7	-52	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max spurious emissions during active receive mode, per ARIB STD T67 Section 3.3(5)	SPUR RX_ARIB	Below 710 MHz , RBW=100kHz	-	-83.6	-57	dBm

Note:

1. Definition of reference signal is 4.8 kbps OOK, RX channel $\mathrm{BW}=315.6 \mathrm{kHz}$, channel spacing $=500 \mathrm{kHz}$
2. Definition of reference signal is $100 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=210.4 \mathrm{kHz}$, channel spacing $=200 \mathrm{kHz}$
3. Definition of reference signal is $50 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=25 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=120.229 \mathrm{kHz}$, channel spacing $=200$ kHz
4. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=5.05 \mathrm{kHz}$, channel spacing $=12.5 \mathrm{kHz}$
5. Definition of reference signal is $9.6 \mathrm{kbps} 4 \mathrm{GFSK}, \mathrm{BT}=0.5$, inner deviation $=0.8 \mathrm{kHz}$, RX channel $\mathrm{BW}=9.989 \mathrm{kHz}$, channel spacing $=12.5 \mathrm{kHz}$
6. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.9 Sub-GHz RF Transmitter Characteristics in the 315 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}, \mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 315 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.

Table 4.26. Sub-GHz RF Transmitter characteristics for 315 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		195	-	358	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	PAVDD connected to DC-DC output	10.8	15.3	17	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$			-43.9	-	dBm
Output power step size	POUTSTEP	output power > 0 dBm	-	0.5	-	dB
Output power variation vs supply	POUTVAR_V	$\begin{aligned} & 1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V} \\ & \text { PAVDD }=\mathrm{DC}-\mathrm{DC} \text { output } \end{aligned}$	-	1.8	-	dB
Output power variation vs temperature	POUTVAR_T		-	0.5	1.2	dB
Output power variation vs RF frequency	POUTVAR_F		-	0.1	0.7	dB

Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions of harmonics in restricted bands, per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 315 MHz	SPUR ${ }_{\text {HARM_FCC }}$	Conducted measurement using averaging detector, Pout=+14dBm	-	-53.8	-47	dBm
Spurious emissions of harmonics in non-restricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency $=315 \mathrm{MHz}$			-	-63.4	-26	dBc
Spurious emissions of harmonics out-of-band in nonrestricted bands, per FCC Part 15.231, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency = 315 MHz	SPUROOB_FCC		-	-76.6	-26	dBc
Spurious emissions out-ofband in restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 315 MHz			-	-71.8	-51	dBm
Spurious emissions out-ofband in restricted bands ($88-216 \mathrm{MHz}$), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 315 MHz			-	-70.2	-61	dBm
Spurious emissions out-ofband in restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DC-DC output, Test Frequency $=315 \mathrm{MHz}$			-	-68.2	-57	dBm
Spurious emissions out-ofband in restricted bands (>960 MHz), per FCC Part 15.205 / 15.209, Emissions taken at 14 dBm output power, PAVDD connected to DCDC output, Test Frequency = 315 MHz			-	-57.5	-46	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max
Note:					
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov- ered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information					

4.1.10.10 Sub-GHz RF Receiver Characteristics in the 315 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 315 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.

Table 4.27. Sub-GHz RF Receiver Characteristics for 315 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	FRANGE		Desired is reference 2.4 kbps GFSK signal			
Max usable input level, 0.1\% BER	SAT	Desired is reference 38.4 kbps GFSK signal				

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution		Over RSSI				
Max spurious to RSSI $_{\text {MAX range }}$ ing active receive mode	RSSI $_{\text {RES }}$	-	0.25	-	dBm	

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=5.05 \mathrm{kHz}$, channel spacing $=12.5 \mathrm{kHz}$
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=84.16 \mathrm{kHz}$, channel spacing $=100 \mathrm{kHz}$
3. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=125 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=841.6 \mathrm{kHz}$
4. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.11 Sub-GHz RF Transmitter Characteristics in the 169 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 169.5 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101.

Table 4.28. Sub-GHz RF Transmitter characteristics for 169 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	FRANGE		169	-	170	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	PAVDD connected to external 3.3 V supply	18.4	20.4	23.3	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$			-42.6	-	dBm
Output power step size	POUT $_{\text {STEP }}$	output power $>0 \mathrm{dBm}$	-	0.5	-	dB
Output power variation vs supply, peak to peak	POUTVAR_V	$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, PAVDD connected to external supply	-	4.8	-	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	-40 to +85 C at 10 dBm	-	0.6	1.2	dB
Harmonic emissions above 1 GHz, per ETSI EN 300-220, Section 7.8.2.1	SPUR HARM_ETSI	Conducted measurement, Pout= $+20 \mathrm{dBm}$	-	-49.3	-36	dBm
Harmonic emissions, 47-74 MHz, $87.5-118 \mathrm{MHz}$, $174-230 \mathrm{MHz}$ and 470-862 MHz, per ETSI EN 300-220, Section 7.8.2.1			-	-58.2	-53	dBm
Harmonic emissions, other frequencies below 1 GHz , per ETSI EN 300-220, Section 7.8.2.1			-	-38.9	-25.4	dBm
Spurious emissions (excluding harmonics) above 1 GHz , per ETSI EN 300-220, Section 7.8.2.1	SPUROOB_ETSI		-	-61.8	-36	dBm
Spurious emissions (excluding harmonics), $47-74 \mathrm{MHz}$, 87.5-118 MHz, 174-230 MHz and $470-862 \mathrm{MHz}$, per ETSI EN 300-220, Section 7.8.2.1			-	-62	-54	dBm
Spurious emissions (excluding harmonics), other frequencies below 1 GHz , per ETSI EN 300-220, Section 7.8.2.1			-	-47.6	-41.1	dBm

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of Section 2. Ordering Information

4.1.10.12 Sub-GHz RF Receiver Characteristics in the 169 MHz Band

Unless otherwise indicated, typical conditions are: $T_{O P}=25{ }^{\circ} \mathrm{C}, \mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 169.5 MHz . Test circuit according to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 98 and Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101. Unless otherwise indicated, all interferer tests have been performed with an unmodulated (CW) interferer with the desired signal 3 dB above sensitivity limit.

Table 4.29. Sub-GHz RF Receiver Characteristics for 169 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	$\mathrm{F}_{\text {RANGE }}$		169	-	170	dBm
Max usable input level, 0.1\% BER	SAT	Desired is reference 2.4 kbps GFSK signal ${ }^{1}$	-	-	10	dBm
		Desired is reference 38.4 kbps GFSK signal ${ }^{2}$	-	-	10	dBm
Sensitivity	SENS	Desired is reference 2.4 kbps GFSK signal ${ }^{1}, 0.1 \%$ BER	-	-124	-	dBm
		Desired is reference 38.4 kbps GFSK signal ${ }^{2}$, 0.1% BER	-	-111.9	-108	dBm
		Desired is reference 500 kbps GFSK signal ${ }^{3}$, 0.1% BER	-	-97.7	-94.6	dBm
Level above which RFSENSE will trigger ${ }^{4}$	RFSENSE $_{\text {TRIG }}$	CW at 169 MHz	-	-25.8	-	dBm
Level below which RFSENSE will not trigger ${ }^{4}$	RFSENSE ${ }_{\text {THRES }}$		-	-50	-	dBm
Adjacent channel selectivity, Interferer is CW at $\pm 1 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{1}$	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	65	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	43.3	50.4	-	dB
Alternate channel selectivity, Interferer is CW at $\pm 2 \times$ channel-spacing	$\mathrm{C} / \mathrm{l}_{2}$	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	67.9	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{2}$ at 3dB above sensitivity level, 0.1\% BER	-	55.5	-	dB
Image rejection, Interferer is CW at image frequency	C/IMAGE	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3dB above sensitivity level, 0.1\% BER	-	54.6	-	dB
		Desired is 38.4 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	51	-	dB
Blocking selectivity, 0.1\% BER. Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level.	C/IBLOCKER	Interferer CW at Desired $\pm 1 \mathrm{MHz}$	-	74.2	-	dB
		Interferer CW at Desired $\pm 2 \mathrm{MHz}$	68.7	76	-	dB
		Interferer CW at Desired $\pm 10 \mathrm{MHz}$	80	90.6	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSIMAX			-	-	5
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution				-		
Max spurious emissions dur- ing active receive mode	SPUR $_{\text {RX }}$	30 MHz to 1 GHz	-	-	-25	-
		1 GHz to 12 GHz	-83.7	-63	dBm	

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=5.05 \mathrm{kHz}$, channel spacing $=12.5 \mathrm{kHz}$
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=84.16 \mathrm{kHz}$, channel spacing $=100 \mathrm{kHz}$
3. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=125 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=841.6 \mathrm{kHz}$
4. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.11 Modem Features

Table 4.30. Modem Features

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Receive Bandwidth	RX Bandwidth	Configurable range with 38.4 MHz crystal	0.1	-	2530	kHz
IF Frequency	IF $_{\text {Freq }}$	Configurable range with 38.4 MHz crystal. Selected steps available.	150	-	1371	kHz
DSSS symbol length	DSSS $_{\text {Range }}$	Configurable in steps of 1 chip	2	-	32	chips
DSSS Bits per symbol	DSSS $_{\text {BitPerSym }}$	Configurable	1	-	4	bits/ symbol

4.1.12 Oscillators

4.1.12.1 LFXO

Table 4.31. LFXO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Crystal frequency	flFXO		-	32.768	-	kHz
Supported crystal equivalent series resistance (ESR)	ESR ${ }_{\text {LFXO }}$		-	-	70	$\mathrm{k} \Omega$
Supported range of crystal load capacitance ${ }^{1}$	CLFXO_CL		6	-	18	pF
On-chip tuning cap range ${ }^{2}$	CLFXO_T	On each of LFXTAL_N and LFXTAL_P pins	8	-	40	pF
On-chip tuning cap step size	SS ${ }_{\text {LFXO }}$		-	0.25	-	pF
Current consumption after startup ${ }^{3}$	ILFXO	$\begin{aligned} & \mathrm{ESR}=70 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}, \mathrm{GAIN}^{4}= \\ & 3, \mathrm{AGC}^{4}=1 \end{aligned}$	-	273	-	nA
Start- up time	tLFXO	$\begin{aligned} & \mathrm{ESR}=70 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}, \mathrm{GAIN}^{4}= \\ & 2 \end{aligned}$	-	308	-	ms

Note:

1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be $\mathrm{C}_{\text {LFXO_T }}$ /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW $=0$, or DVDD if ANASW $=1$ in EMU_PWRCTRL register
4. In CMU_LFXOCTRL register

4.1.12.2 HFXO

Table 4.32. HFXO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Crystal Frequency	$\mathrm{f}_{\mathrm{HFXO}}$	38.4 MHz required for radio transciever operation.	38	38.4	40	MHz
Supported crystal equivalent series resistance (ESR)	ESR HFXO	Crystal frequency 38.4 MHz	-	-	60	Ω
Supported range of crystal load capacitance ${ }^{1}$	$\mathrm{CHFXO}_{\text {_CL }}$		6	-	12	pF
On-chip tuning cap range ${ }^{2}$	$\mathrm{CHFXO}_{\text {_T }}$	On each of HFXTAL_N and HFXTAL_P pins	9	20	25	pF
On-chip tuning capacitance step	SS ${ }_{\text {HFXO }}$		-	0.04	-	pF
Startup time	$\mathrm{t}_{\mathrm{HFXO}}$	$\begin{aligned} & 38.4 \mathrm{MHz}, \mathrm{ESR}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \\ & \mathrm{pF} \end{aligned}$	-	300	-	$\mu \mathrm{s}$
Frequency Tolerance for the crystal	$\mathrm{FT}_{\mathrm{HFXO}}$	$\begin{aligned} & 38.4 \mathrm{MHz}, \mathrm{ESR}=50 \Omega, \mathrm{CL}=10 \\ & \mathrm{pF} \end{aligned}$	-40	-	40	ppm

Note:

1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be $\mathrm{C}_{\mathrm{HFXO}} \mathrm{T}^{\mathrm{T}} / 2$. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.12.3 LFRCO

Table 4.33. LFRCO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency	flfRCO	ENVREF = 1 in CMU_LFRCOCTRL	30.474	32.768	34.243	kHz
		ENVREF $=0$ in CMU_LFRCOCTRL	30.474	32.768	33.915	kHz
Startup time	tLFRCO		-	500	-	$\mu \mathrm{s}$
Current consumption ${ }^{1}$	ILFRCO	ENVREF = 1 in CMU_LFRCOCTRL	-	342	-	nA
		ENVREF $=0$ in CMU_LFRCOCTRL	-	494	-	nA

Note:

1. Block is supplied by AVDD if ANASW $=0$, or DVDD if ANASW=1 in EMU_PWRCTRL register
4.1.12.4 HFRCO and AUXHFRCO

Table 4.34. HFRCO and AUXHFRCO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Frequency Accuracy	$\mathrm{f}_{\mathrm{HFRCO}}$ _ACC	Any frequency band, across supply voltage and temperature	-2.5	-	2.5	\%
Start-up time	thfrco	$\mathrm{f}_{\mathrm{HFRCO}} \geq 19 \mathrm{MHz}$	-	300	-	ns
		$4<\mathrm{f}_{\text {HFRCO }}<19 \mathrm{MHz}$	-	1	-	$\mu \mathrm{s}$
		$\mathrm{f}_{\mathrm{HFRCO}} \leq 4 \mathrm{MHz}$	-	2.5	-	$\mu \mathrm{s}$
Current consumption on all supplies	IHFRCO	$\mathrm{f}_{\text {HFRCO }}=38 \mathrm{MHz}$	-	204	228	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=32 \mathrm{MHz}$	-	171	190	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=26 \mathrm{MHz}$	-	147	164	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=19 \mathrm{MHz}$	-	126	138	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=16 \mathrm{MHz}$	-	110	120	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=13 \mathrm{MHz}$	-	100	110	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=7 \mathrm{MHz}$	-	81	91	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=4 \mathrm{MHz}$	-	33	35	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=2 \mathrm{MHz}$	-	31	35	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=1 \mathrm{MHz}$	-	30	35	$\mu \mathrm{A}$
Step size	$S_{\text {HFRCO }}$	Coarse (\% of period)	-	0.8	-	\%
		Fine (\% of period)	-	0.1	-	\%
Period Jitter	PJ ${ }_{\text {HFRCO }}$		-	0.2	-	\% RMS

4.1.12.5 ULFRCO

Table 4.35. ULFRCO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency	fulfrco		0.95	1	1.07	kHz

4.1.13 Flash Memory Characteristics

Table 4.36. Flash Memory Characteristics ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Flash erase cycles before failure	ECFLASH		10000	-	-	cycles
Flash data retention	RET ${ }_{\text {FLASH }}$		10	-	-	years
Word (32-bit) programming time	tw_PROG		20	26	40	$\mu \mathrm{s}$
Page erase time	tperase		20	27	40	ms
Mass erase time	$\mathrm{t}_{\text {MERASE }}$		20	27	40	ms
Device erase time ${ }^{2}$	t DERASE		-	60	74	ms
Page erase current ${ }^{3}$	lerase		-	-	3	mA
Mass or Device erase current ${ }^{3}$			-	-	5	mA
Write current ${ }^{3}$	IWRITE		-	-	3	mA

Note:

1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock Word (ULW)
3. Measured at $25^{\circ} \mathrm{C}$

4.1.14 GPIO

Table 4.37. GPIO

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input low voltage	$V_{\text {IOIL }}$	$V_{\text {IOIH }}$		-	-	IOVDD*0.3
Input high voltage	Sourcing 3 mA, IOVDD $\geq 3 \mathrm{~V}$,	IOVDD*0.8				

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output fall time, From 70\% to 30% of V_{10}	tioof	$C_{\mathrm{L}}=50 \mathrm{pF}$ DRIVESTRENGTH ${ }^{1}=$ STRONG, $\text { SLEWRATE }^{1}=0 \times 6$	-	1.8	-	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { DRIVESTRENGTH }^{1}=\text { WEAK, } \\ & \text { SLEWRATE }^{1}=0 \times 6 \end{aligned}$	-	4.5	-	ns
Output rise time, From 30\% to 70% of V_{10}	$\mathrm{t}_{\text {IOOR }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { DRIVESTRENGTH }{ }^{1}=\mathrm{STRONG}, \\ & \text { SLEWRATE }=0 \times 6^{1} \end{aligned}$	-	2.2	-	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { DRIVESTRENGTH }^{1}=\text { WEAK, } \\ & \text { SLEWRATE }^{1}=0 \times 6 \end{aligned}$	-	7.4	-	ns
Note: 1. In GPIO_Pn_CTRL register						

4.1.15 VMON

Table 4.38. VMON

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
VMON Supply Current	$\mathrm{I}_{\mathrm{VMON}}$	In EM0 or EM1, 1 supply monitored	-	5.8	8.26	$\mu \mathrm{A}$
		In EM0 or EM1, 4 supplies monitored	-	11.8	16.8	$\mu \mathrm{A}$
		In EM2, EM3 or EM4, 1 supply monitored	-	62	-	nA
		In EM2, EM3 or EM4, 4 supplies monitored	-	99	-	nA
VMON Loading of Monitored Supply	ISENSE	In EM0 or EM1	-	2	-	$\mu \mathrm{A}$
		In EM2, EM3 or EM4	-	2	-	nA
Threshold range	VVMON_RANGE		1.62	-	3.4	V
Threshold step size	NVMON_STESP	Coarse	-	200	-	mV
		Fine	-	20	-	mV
Response time	tVMON_RES	Supply drops at $1 \mathrm{~V} / \mu \mathrm{s}$ rate	-	460	-	ns
Hysteresis	V VMON_HYST		-	26	-	mV

Table 4.39. ADC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Resolution	VRESOLUTION		6	-	12	Bits
Input voltage range	$\mathrm{V}_{\text {ADCIN }}$	Single ended	0	-	$2^{*} V_{\text {REF }}$	V
		Differential	- $\mathrm{V}_{\text {REF }}$	-	$V_{\text {REF }}$	V
Input range of external reference voltage, single ended and differential	VADCREFIN_P		1	-	$\mathrm{V}_{\text {AVDD }}$	V
Power supply rejection ${ }^{1}$	$\mathrm{PSRR}_{\text {ADC }}$	At DC	-	80	-	dB
Analog input common mode rejection ratio	$\mathrm{CMRR}_{\text {ADC }}$	At DC	-	80	-	dB
Current from all supplies, using internal reference buffer. Continous operation. WARMUPMODE ${ }^{2}=$ KEEPADCWARM	IADC_CONTINOUS_LP	$\begin{aligned} & 1 \mathrm{Msps} / 16 \mathrm{MHz} \text { ADCCLK, } \\ & \text { BIASPROG }=0, \text { GPBIASACC }=1 \\ & 3 \end{aligned}$	-	301	350	$\mu \mathrm{A}$
		$250 \mathrm{ksps} / 4 \mathrm{MHz}$ ADCCLK, BIASPROG $=6$, GPBIASACC $=1^{3}$	-	149	-	$\mu \mathrm{A}$
		$\begin{aligned} & 62.5 \mathrm{ksps} / 1 \mathrm{MHz} \text { ADCCLK, } \\ & \text { BIASPROG = 15, GPBIASACC = } \\ & 1^{3} \end{aligned}$	-	91	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Duty-cycled operation. WARMUPMODE ${ }^{2}=$ NORMAL	$I_{\text {ADC_NORMAL_LP }}$	$\begin{aligned} & 35 \mathrm{ksps} / 16 \mathrm{MHz} \text { ADCCLK, } \\ & \text { BIASPROG }=0, \text { GPBIASACC }=1 \\ & 3 \end{aligned}$	-	51	-	$\mu \mathrm{A}$
		$\begin{aligned} & 5 \mathrm{ksps} / 16 \mathrm{MHz} \text { ADCCLK } \\ & \mathrm{BIASPROG}=0, \text { GPBIASACC }=1 \\ & 3 \end{aligned}$	-	9	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Duty-cycled operation. AWARMUPMODE ${ }^{2}=$ KEEPINSTANDBY or KEEPINSLOWACC	$I_{\text {ADC_STAND- }}$ BY_LP	125 ksps / 16 MHz ADCCLK, BIASPROG $=0$, GPBIASACC $=1$ 3	-	117	-	$\mu \mathrm{A}$
		$\begin{aligned} & 35 \mathrm{ksps} / 16 \mathrm{MHz} \text { ADCCLK, } \\ & \mathrm{BIASPROG}=0, \text { GPBIASACC }=1 \\ & 3 \end{aligned}$	-	79	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Continous operation. WARMUPMODE ${ }^{2}=$ KEEPADCWARM	IADC_CONTINOUS_HP	$\begin{aligned} & 1 \mathrm{Msps} / 16 \mathrm{MHz} \text { ADCCLK, } \\ & \text { BIASPROG }=0, \text { GPBIASACC }=0 \\ & 3 \end{aligned}$	-	345	-	$\mu \mathrm{A}$
		$250 \mathrm{ksps} / 4 \mathrm{MHz}$ ADCCLK, BIASPROG $=6$, GPBIASACC $=0^{3}$	-	191	-	$\mu \mathrm{A}$
		$62.5 \mathrm{ksps} / 1 \mathrm{MHz}$ ADCCLK, BIASPROG $=15$, GPBIASACC $=$ 0^{3}	-	132	-	$\mu \mathrm{A}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current from all supplies, using internal reference buffer. Duty-cycled operation. WARMUPMODE ${ }^{2}=$ NORMAL	IADC_NORMAL_HP	$35 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK, BIASPROG $=0$, GPBIASACC $=0$ 3	-	102	-	$\mu \mathrm{A}$
		5 ksps / 16 MHz ADCCLK BIASPROG $=0$, GPBIASACC $=0$ 3	-	17	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Duty-cycled operation. AWARMUPMODE ${ }^{2}=$ KEEPINSTANDBY or KEEPINSLOWACC	IADC_STAND-BY_HP	125 ksps / 16 MHz ADCCLK, BIASPROG $=0$, GPBIASACC $=0$ 3	-	162	-	$\mu \mathrm{A}$
		$35 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK, BIASPROG $=0$, GPBIASACC $=0$ 3	-	123	-	$\mu \mathrm{A}$
Current from HFPERCLK	$\mathrm{I}_{\text {ADC_CLK }}$	HFPERCLK $=16 \mathrm{MHz}$	-	140	-	$\mu \mathrm{A}$
ADC Clock Frequency	$\mathrm{f}_{\text {ADCCLK }}$		-	-	16	MHz
Throughput rate	$\mathrm{f}_{\text {ADCRATE }}$		-	-	1	Msps
Conversion time ${ }^{4}$	$\mathrm{t}_{\text {ADCCONV }}$	6 bit	-	7	-	cycles
		8 bit	-	9	-	cycles
		12 bit	-	13	-	cycles
Startup time of reference generator and ADC core	$\mathrm{t}_{\text {ADCSTART }}$	WARMUPMODE ${ }^{2}=$ NORMAL	-	-	5	$\mu \mathrm{s}$
		WARMUPMODE ${ }^{2}=$ KEEPIN STANDBY	-	-	2	$\mu \mathrm{s}$
		WARMUPMODE ${ }^{2}=$ KEEPINSLOWACC	-	-	1	$\mu \mathrm{s}$
SNDR at 1 Msps and $\mathrm{f}_{\mathrm{in}}=$ 10 kHz	$\mathrm{SNDR}_{\text {ADC }}$	Internal reference, 2.5 V full-scale, differential (-1.25, 1.25)	58	67	-	dB
		vrefp_in $=1.25 \mathrm{~V}$ direct mode with 2.5 V full-scale, differential	-	68	-	dB
Spurious-Free Dynamic Range (SFDR)	SFDR ${ }_{\text {ADC }}$	1 MSamples/s, 10 kHz full-scale sine wave	-	75	-	dB
Input referred ADC noise, rms	$\mathrm{V}_{\text {REF_NOISE }}$	Including quantization noise and distortion	-	380	-	$\mu \mathrm{V}$
Offset Error	$\mathrm{V}_{\text {ADCOFFSETERR }}$		-3	0.25	3	LSB
Gain error in ADC	$V_{\text {ADC_GAIN }}$	Using internal reference	-	-0.2	5	\%
		Using external reference	-	-1	-	\%
Differential non-linearity (DNL)	DNL ${ }_{\text {ADC }}$	12 bit resolution, No Missing Codes	-1	-	2	LSB
Integral non-linearity (INL), End point method	$\mathrm{INL}_{\text {ADC }}$	12 bit resolution	-6	-	6	LSB
Temperature Sensor Slope	$\mathrm{V}_{\text {TS_SLOPE }}$		-	-1.84	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Test Condition	Min	Typ
Note:	Max	Unit		
1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL				
2. In ADCn_CNTL register				
3. In ADCn_BIASPROG register				
4. Derived from ADCCLK				

Table 4.40. IDAC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Number of Ranges	NIDAC_RANGES		-	4	-	-
Output Current	IIDAC_OUT	RANGSEL ${ }^{1}=$ RANGE0	0.05	-	1.6	$\mu \mathrm{A}$
		RANGSEL ${ }^{1}=$ RANGE1	1.6	-	4.7	$\mu \mathrm{A}$
		RANGSEL ${ }^{1}=$ RANGE2	0.5	-	16	$\mu \mathrm{A}$
		RANGSEL ${ }^{1}=$ RANGE3	2	-	64	$\mu \mathrm{A}$
Linear steps within each range	NIDAC_STEPS		-	32	-	
Step size	SS ${ }_{\text {IDAC }}$	RANGSEL ${ }^{1}=$ RANGE0	-	50	-	nA
		RANGSEL ${ }^{1}=$ RANGE1	-	100	-	nA
		RANGSEL ${ }^{1}=$ RANGE2	-	500	-	nA
		RANGSEL ${ }^{1}=$ RANGE3	-	2	-	$\mu \mathrm{A}$
Total Accuracy, STEPSEL ${ }^{1}=$ 0×10	ACC IDAC	EM0 or EM1, AVDD=3.3 V, T = 25 ${ }^{\circ} \mathrm{C}$	-2	-	2	\%
		EM0 or EM1	-18	-	22	\%
		EM2 or EM3, Source mode, RANGSEL ${ }^{1}=$ RANGE0, AVDD $=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	-2	-	\%
		EM2 or EM3, Source mode, RANGSEL ${ }^{1}=$ RANGE1, AVDD $=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	-1.7	-	\%
		EM2 or EM3, Source mode, RANGSEL ${ }^{1}=$ RANGE2, AVDD $=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	-0.8	-	\%
		EM2 or EM3, Source mode, RANGSEL ${ }^{1}=$ RANGE3, AVDD $=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	-0.5	-	\%
		EM2 or EM3, Sink mode, RANGSEL ${ }^{1}=$ RANGEO, AVDD $=3.3 \mathrm{~V}, \mathrm{~T}$ $=25^{\circ} \mathrm{C}$	-	-0.7	-	\%
		EM2 or EM3, Sink mode, RANGSEL ${ }^{1}=$ RANGE1, AVDD $=3.3 \mathrm{~V}$, T $=25^{\circ} \mathrm{C}$	-	-0.6	-	\%
		EM2 or EM3, Sink mode, RANG$S E L^{1}=$ RANGE2, $A V D D=3.3 \mathrm{~V}, \mathrm{~T}$ $=25^{\circ} \mathrm{C}$	-	-0.5	-	\%
		EM2 or EM3, Sink mode, RANGSEL ${ }^{1}=$ RANGE3, $A V D D=3.3 \mathrm{~V}, \mathrm{~T}$ $=25^{\circ} \mathrm{C}$	-	-0.5	-	\%
Start up time	tidAC_SU	Output within 1% of steady state value	-	5	-	$\mu \mathrm{s}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Settling time, (output settled within 1% of steady state value)	tIDAC_SETTLE	Range setting is changed	-	5	-	$\mu \mathrm{s}$
		Step value is changed	-	1	-	$\mu \mathrm{s}$
Current consumption in EMO or EM1 ${ }^{2}$	IIDAC	Source mode, excluding output current	-	8.9	13	$\mu \mathrm{A}$
		Sink mode, excluding output current	-	12	16	$\mu \mathrm{A}$
Current consumption in EM2 or EM3 ${ }^{2}$		Source mode, excluding output current, duty cycle mode, $\mathrm{T}=25$ ${ }^{\circ} \mathrm{C}$	-	1.04	-	$\mu \mathrm{A}$
		Sink mode, excluding output current, duty cycle mode, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	1.08	-	$\mu \mathrm{A}$
		Source mode, excluding output current, duty cycle mode, $\mathrm{T} \geq 85$ ${ }^{\circ} \mathrm{C}$	-	8.9	-	$\mu \mathrm{A}$
		Sink mode, excluding output current, duty cycle mode, $\mathrm{T} \geq 85^{\circ} \mathrm{C}$	-	12	-	$\mu \mathrm{A}$
Output voltage compliance in source mode, source current change relative to current sourced at 0 V	ICOMP_SRC	RANGESEL1=0, output voltage = $\min \left(\mathrm{V}_{\text {IOVDD }}, \mathrm{V}_{\text {AVDD }}{ }^{2}-100 \mathrm{mv}\right)$	-	0.04	-	\%
		RANGESEL1=1, output voltage = $\min \left(\mathrm{V}_{\text {IOVDD }}, \mathrm{V}_{\text {AVDD }}{ }^{2}-100 \mathrm{mV}\right)$	-	0.02	-	\%
		RANGESEL1=2, output voltage = $\min \left(\mathrm{V}_{\text {IOVDD }}, \mathrm{V}_{\text {AVDD }}{ }^{2}-150 \mathrm{mV}\right.$)	-	0.02	-	\%
		RANGESEL1=3, output voltage = $\min \left(\mathrm{V}_{\text {IOVDD }}, \mathrm{V}_{\text {AVDD }}{ }^{2}-250 \mathrm{mV}\right.$)	-	0.02	-	\%
Output voltage compliance in sink mode, sink current change relative to current sunk at IOVDD	ICOMP_SINK	RANGESEL1=0, output voltage = 100 mV	-	0.18	-	\%
		RANGESEL1=1, output voltage $=$ 100 mV	-	0.12	-	\%
		RANGESEL1=2, output voltage = 150 mV	-	0.08	-	\%
		RANGESEL1=3, output voltage = 250 mV	-	0.02	-	\%
Note:						
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0 , ANASW selects between AVDD (0) and DVDD (1).						

Table 4.41. ACMP

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input voltage range	$\mathrm{V}_{\text {ACMPIN }}$	ACMPVDD = ACMPn_CTRL_PWRSEL ${ }^{1}$	0	-	$\mathrm{V}_{\text {ACMPVDD }}$	V
Supply Voltage	$V_{\text {ACMPVDD }}$	BIASPROG $^{2} \leq 0 \times 10$ or FULL$\mathrm{BIAS}^{2}=0$	1.85	-	VVREGVDD_ MAX	V
		$0 \times 10<$ BIASPROG $^{2} \leq 0 \times 20$ and FULLBIAS ${ }^{2}=1$	2.1	-	VVREGVDD_ MAX	V
Active current not including voltage reference	$\mathrm{I}_{\text {ACMP }}$	$\mathrm{BIASPROG}^{2}=1, \mathrm{FULLBIAS}^{2}=0$	-	50	-	nA
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 10, \text { FULLBIAS }^{2} \\ & =0 \end{aligned}$	-	306	-	nA
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 20, \text { FULLBIAS }^{2} \\ & =1 \end{aligned}$	-	74	95	$\mu \mathrm{A}$
Current consumption of internal voltage reference	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	-	50	-	nA
		VLP selected as input using VDD	-	20	-	nA
		VBDIV selected as input using 1.25 V reference / 1	-	4.1	-	$\mu \mathrm{A}$
		VADIV selected as input using VDD/1	-	2.4	-	$\mu \mathrm{A}$
Hysteresis $\left(\mathrm{V}_{\mathrm{CM}}=1.25 \mathrm{~V}\right.$, BIASPROG $^{2}=0 \times 10$, FULL$\left.B I A S^{2}=1\right)$	$V_{\text {ACMPHYST }}$	HYSTSEL ${ }^{3}=$ HYSTO	-1.75	0	1.75	mV
		HYSTSEL ${ }^{3}=$ HYST1	10	18	26	mV
		HYSTSEL ${ }^{3}=$ HYST2	21	32	46	mV
		HYSTSEL ${ }^{3}=$ HYST3	27	44	63	mV
		HYSTSEL $^{3}=$ HYST4	32	55	80	mV
		HYSTSEL ${ }^{3}=$ HYST5	38	65	100	mV
		HYSTSEL ${ }^{3}=$ HYST6	43	77	121	mV
		HYSTSEL $^{3}=$ HYST7	47	86	148	mV
		HYSTSEL $^{3}=$ HYST8	-4	0	4	mV
		HYSTSEL ${ }^{3}=$ HYST9	-27	-18	-10	mV
		HYSTSEL $^{3}=$ HYST10	-47	-32	-18	mV
		HYSTSEL ${ }^{3}=$ HYST11	-64	-43	-27	mV
		HYSTSEL $^{3}=$ HYST12	-78	-54	-32	mV
		HYSTSEL $^{3}=$ HYST13	-93	-64	-37	mV
		HYSTSEL $^{3}=$ HYST14	-113	-74	-42	mV
		HYSTSEL $^{3}=$ HYST15	-135	-85	-47	mV

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:
$I_{\text {ACMPTOTAL }}=I_{\text {ACMP }}+I_{\text {ACMPREF }}$
$I_{\text {ACMPREF }}$ is zero if an external voltage reference is used.

4.1.19 I2C

I2C Standard-mode (Sm)

Table 4.42. I2C Standard-mode (Sm) ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCL clock frequency ${ }^{2}$	$\mathrm{f}_{\text {SCL }}$		0	-	100	kHz
SCL clock low time	t Low		4.7	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$		4	-	-	$\mu \mathrm{s}$
SDA set-up time	${ }^{\text {t Su, DAT }}$		250	-	-	ns
SDA hold time ${ }^{3}$	$\mathrm{t}_{\text {HD, DAT }}$		100	-	3450	ns
Repeated START condition set-up time	${ }^{\text {t SU, STA }}$		4.7	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	$\mathrm{t}_{\text {HD, STA }}$		4	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu, Sto		4	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BUF }}$		4.7	-	-	$\mu \mathrm{s}$

Note:

1. For CLHR set to 0 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time ($t_{\text {HD,DAT }}$) needs to be met only when the device does not stretch the low time of SCL ($\mathrm{t}_{\mathrm{LOW}}$)

I2C Fast-mode (Fm)

Table 4.43. I2C Fast-mode (Fm) ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCL clock frequency ${ }^{2}$	$\mathrm{f}_{\text {SCL }}$		0	-	400	kHz
SCL clock low time	t Low		1.3	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$		0.6	-	-	$\mu \mathrm{s}$
SDA set-up time	tsu,DAT		100	-	-	ns
SDA hold time ${ }^{3}$	$\mathrm{t}_{\text {HD, DAT }}$		100	-	900	ns
Repeated START condition set-up time	tsu,STA		0.6	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	$\mathrm{t}_{\text {HD, STA }}$		0.6	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu,sto		0.6	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BUF }}$		1.3	-	-	$\mu \mathrm{s}$
Note: 1. For CLHR set to 1 in the 2. For the minimum HFPER 3. The maximum SDA hold	2Cn_CTR CLK frequ time ($t_{\text {HD, }}$	uired in Fast-mod ds to be met only	not str	eren low	al SCL (

I2C Fast-mode Plus (Fm+)

Table 4.44. I2C Fast-mode Plus (Fm+) ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCL clock frequency ${ }^{2}$	fSCL		0	-	1000	kHz
SCL clock low time	t Low		0.5	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$		0.26	-	-	$\mu \mathrm{s}$
SDA set-up time	tsu,DAT		50	-	-	ns
SDA hold time	$\mathrm{t}_{\text {HD, DAT }}$		100	-	-	ns
Repeated START condition set-up time	$\mathrm{t}_{\text {SU, STA }}$		0.26	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	$\mathrm{t}_{\text {HD, STA }}$		0.26	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu,sto		0.26	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BUF }}$		0.5	-	-	$\mu \mathrm{s}$
Note: 1. For CLHR set to 0 or 1 in 2. For the minimum HFPER	the I2Cn CLK frequ	gister uired in Fast-mod	cha	e ref	manua	

4.1.20 USART SPI

SPI Master Timing

Table 4.45. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCLK period ${ }^{12}$	tsCLK		$2 \text { * }$ $\mathrm{t}_{\text {HFPERCLK }}$	-	-	ns
CS to MOSI ${ }^{12}$	tcs_MO		0	-	8	ns
SCLK to MOSI ${ }^{12}$	tsclk_MO		3	-	20	ns
MISO setup time ${ }^{12}$	tSU_Mı	$1 \mathrm{OVDD}=1.62 \mathrm{~V}$	56	-	-	ns
		IOVDD $=3.0 \mathrm{~V}$	37	-	-	ns
MISO hold time ${ }^{12}$	$\mathrm{t}_{\mathrm{H} \text { _ }} \mathrm{Ml}$		6	-	-	ns

Note:

1. Applies for both CLKPHA $=0$ and CLKPHA $=1$ (figure only shows CLKPHA $=0$)
2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD})

Figure 4.1. SPI Master Timing Diagram

SPI Slave Timing

Table 4.46. SPI Slave Timing

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCKL period ${ }^{12}$	tsCLK_s		2 * thFPERCLK	-	-	ns
SCLK high period ${ }^{12}$	tsCLK_hi		3 * $t_{\text {HFPERCLK }}$	-	-	ns
SCLK low period ${ }^{12}$	tscLK_Io		3 * $\mathrm{t}_{\text {HFPERCLK }}$	-	-	ns
CS active to MISO ${ }^{12}$	tCS_ACT_MI		4	-	50	ns
CS disable to MISO ${ }^{12}$	tCS_DIS_MI		4	-	50	ns
MOSI setup time ${ }^{12}$	$\mathrm{t}_{\text {SU_MO }}$		4	-	-	ns
MOSI hold time ${ }^{12}$	th_MO $^{\text {a }}$		$3+2 \text { * }$ $\mathrm{t}_{\text {HFPERCLK }}$	-	-	ns
SCLK to MISO ${ }^{12}$	tsCLK_MI		$16+$ $\mathrm{t}_{\text {HFPERCLK }}$	-	$66+2 \text { * }$ thFPERCLK	ns
Note: 1. Applies for both CLKPHA $=0$ and CLKPHA $=1$ (figure only shows CLKPHA = 0) 2. Measurement done with 8 pF output loading at 10% and 90% of V_{DD} (figure shows 50% of V_{DD})						

Figure 4.2. SPI Slave Timing Diagram

4.2 Typical Performance Curves

Typical performance curves indicate typical characterized performance under the stated conditions.

4.2.1 Supply Current

Figure 4.3. EMO Active Mode Typical Supply Current

Figure 4.4. EM1 Sleep Mode Typical Supply Current

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

EM2, 4kB RAM Retention,
RTCC running from LFRCO

EM4H, Full RAM Retention,
RTCC from LFXO

EM3, Full RAM Retention, CRYOTIMER from ULFRCO

Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current

4.2.2 DC-DC Converter

Default test conditions: $C C M$ mode, $\operatorname{LDCDC}=4.7 \mu \mathrm{H}, \mathrm{CDCDC}=1.0 \mu \mathrm{~F}, \mathrm{VDCDC} _\mathrm{I}=3.3 \mathrm{~V}, \mathrm{VDCDC}$ O $=1.8 \mathrm{~V}$, FDCDC_LN $=7 \mathrm{MHz}$

Figure 4.6. DC-DC Converter Typical Performance Characteristics

Figure 4.7. DC-DC Converter Transition Waveforms

4.2.3 Internal Oscillators

Figure 4.8. HFRCO and AUXHFRCO Typical Performance at 38 MHz

Figure 4.9. HFRCO and AUXHFRCO Typical Performance at $32 \mathbf{M H z}$

Figure 4.10. HFRCO and AUXHFRCO Typical Performance at $\mathbf{2 6 ~ M H z}$

Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 19 MHz

Frequency vs. Temperature

Frequency vs. Supply

Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz

Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz

Frequency vs. Temperature

Frequency vs. Supply

Figure 4.14. HFRCO and AUXHFRCO Typical Performance at $\mathbf{7 M H z}$

Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 4 MHz

Figure 4.16. HFRCO and AUXHFRCO Typical Performance at $2 \mathbf{M H z}$

Figure 4.17. HFRCO and AUXHFRCO Typical Performance at $1 \mathbf{M H z}$

Figure 4.18. LFRCO Typical Performance at 32.768 kHz

Figure 4.19. ULFRCO Typical Performance at 1 kHz

Output Power vs. Temperature,

Output Power vs. Supply, PAVDD = External Supply, 25 Degrees C, 2.4 GHz, CW

Figure 4.20. 2.4 GHz RF Transmitter Output Power

Figure 4.21. 2.4 GHz RF Receiver Sensitivity

5. Typical Connection Diagrams

5.1 Power

Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.

Figure 5.1. EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter

Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13 dBm , the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm .

Figure 5.2. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC)

Figure 5.3. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD)

5.2 RF Matching Networks

Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 100 for applications in the 2.4 GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual. For low RF transmit power applications less than 13 dBm , the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (> 13 dBm).

Typical RF matching network circuit diagrams are shown in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 101 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32 Reference Manual. For low RF transmit power applications less than 13 dBm , the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (>13dBm).

Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits

Sub-GHz Match Topology I (169-450 MHz)

Sub-GHz Match Topology 2 (450-915 MHz)

Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits

5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).

6. Pin Definitions

6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout

Figure 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout

Table 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
0	VSS	Ground				
1	PF0	BUSBY BUSAX	$\begin{gathered} \text { TIM0_CC0 \#24 } \\ \text { TIM0_CC1 \#23 } \\ \text { TIM0_CC2 \#22 } \\ \text { TIM0_CDTIO \#21 } \\ \text { TIM0_CDTI1 \#20 } \\ \text { TIM0_CDTI2 \#19 } \\ \text { TIM1_CC0 \#24 } \\ \text { TIM1_CC1 \#23 } \\ \text { TIM1_CC2 \#22 } \\ \text { TIM1_CC3 \#21 LE- } \\ \text { TIM0_OUT0 \#24 } \\ \text { LETIM0_OUT1 \#23 } \\ \text { PCNT0_SOIN \#24 } \\ \text { PCNT0_S1IN \#23 } \end{gathered}$	USO_TX \#24 USO_RX \#23 USO_CLK \#22 US0_CS \#21 USO_CTS \#20 USO_RTS \#19 US1_TX \#24 US1_RX \#23 US1_CLK \#22 US1_CS \#21 US1_CTS \#20 US1_RTS \#19 LEUO_TX \#24 LEU0_RX \#23 I2CO_SDA \#24 I2C0_SCL \#23	FRC_DCLK \#24 FRC_DOUT \#23 FRC_DFRAME \#22 MODEM DCLK \#24 MODEM_DIN \#23 MODEM_DOUT \#22 MODEM_ANTO \#21 MODEM_ANT1 \#20	PRS_CHO \#0 PRS_CH1 \#7 PRS_CH2 \#6 PRS_CH3 \#5 ACMPO_O \#24 ACMP1_O \#24 DBG_SWCLKTCK
2	PF1	BUSAY BUSBX	$\begin{gathered} \text { TIM0_CC0 \#25 } \\ \text { TIM0_CC1 \#24 } \\ \text { TIM0_CC2 \#23 } \\ \text { TIM0_CDTIO \#22 } \\ \text { TIM0_CDTI1 \#21 } \\ \text { TIM0_CDTI2 \#20 } \\ \text { TIM1_CC0 \#25 } \\ \text { TIM1_CC1 \#24 } \\ \text { TIM1_CC2 \#23 } \\ \text { TIM1_CC3 \#22 LE- } \\ \text { TIM0_OUT0 \#25 } \\ \text { LETIM0_OUT1 \#24 } \\ \text { PCNT0_SOIN \#25 } \\ \text { PCNT0_S1IN \#24 } \end{gathered}$	USO_TX \#25 USO_RX \#24 USO_CLK \#23 USO_CS \#22 USO_CTS \#21 USO_RTS \#20 US1_TX \#25 US1_RX \#24 US1_CLK \#23 US1_CS \#22 US1_CTS \#21 US1_RTS \#20 LEUO_TX \#25 LEUO_RX \#24 I2C0_SDA \#25 I2CO_SCL \#24	FRC_DCLK \#25 FRC_DOUT \#24 FRC_DFRAME \#23 MODEM DCLK \#25 MODEM_DIN \#24 MODEM_DOUT \#23 MODEM_ANTO \#22 MODEM_ANT1 \#21	PRS_CHO \#1 PRS_CH1 \#0 PRS_CH2 \#7 PRS_CH3 \#6 ACMP0_O \#25 ACMP1_O \#25 DBG_SWDIOTMS
3	PF2	BUSBY BUSAX	$\begin{gathered} \text { TIM0_CC0 \#26 } \\ \text { TIM0_CC1 \#25 } \\ \text { TIM0_CC2 \#24 } \\ \text { TIM0_CDTIO \#23 } \\ \text { TIM0_CDTI1 \#22 } \\ \text { TIM0_CDTI2 \#21 } \\ \text { TIM1_CC0 \#26 } \\ \text { TIM1_CC1 \#25 } \\ \text { TIM1_CC2 \#24 } \\ \text { TIM1_CC3 \#23 LE- } \\ \text { TIM0_OUT0 \#26 } \\ \text { LETIM0_OUT1 \#25 } \\ \text { PCNT0_SOIN \#26 } \\ \text { PCNT0_S1IN \#25 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#26 } \\ \text { USO_RX \#25 } \\ \text { USO_CLK \#24 } \\ \text { USO_CS \#23 } \\ \text { USO_CTS \#22 } \\ \text { USO_RTS \#21 } \\ \text { US1_TX \#26 } \\ \text { US1_RX \#25 } \\ \text { US1_CLK \#24 } \\ \text { US1_CS \#23 } \\ \text { US1_CTS \#22 } \\ \text { US1_RTS \#21 } \\ \text { LEU0_TX \#26 } \\ \text { LEUO_RX \#25 } \\ \text { I2C0_SDA \#26 } \\ \text { I2CO_SCL \#25 } \end{gathered}$	FRC_DCLK \#26 FRC_DOUT \#25 FRC_DFRAME \#24 MODEM_DCLK \#26 MODEM_DIN \#25 MODEM_DOUT \#24 MODEM_ANT0 \#23 MODEM_ANT1 \#22	CMU CLK0 \#6 PRS_CHO \#2 PRS_CH1 \#1 PRS_CH2 \#0 PRS_CH3 \#7 ACMPO_O \#26 ACMP1_O \#26 DBG_TDO DBG_SWO \#0 GPIO_EM4WU0

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
4	PF3	BUSAY BUSBX	TIMO_CCO \#27 TIM0_CC1 \#26 TIMO_CC2 \#25 TIMO_CDTIO \#24 TIMO_CDTI1 \#23 TIMO_CDTI2 \#22 TIM1_CC0 \#27 TIM1_CC1 \#26 TIM1_CC2 \#25 TIM1_CC3 \#24 LE- TIMO_OUT0 \#27 LETIMO_OUT1 \#26 PCNTO_SOIN \#27 PCNTO_S1IN \#26	$\begin{gathered} \text { USO_TX \#27 } \\ \text { USO_RX \#26 } \\ \text { USO_CLK \#25 } \\ \text { USO_CS \#24 } \\ \text { USO_CTS \#23 } \\ \text { USO_RTS \#22 } \\ \text { US1_TX \#27 } \\ \text { US1_RX \#26 } \\ \text { US1_CLK \#25 } \\ \text { US1_CS \#24 } \\ \text { US1_CTS \#23 } \\ \text { US1_RTS \#22 } \\ \text { LEU0_TX \#27 } \\ \text { LEUO_RX \#26 } \\ \text { I2CO_SDA \#27 } \\ \text { I2CO_SCL \#26 } \end{gathered}$	FRC_DCLK \#27 FRC_DOUT \#26 FRC_DFRAME \#25 MODEM_DCLK \#27 MODEM_DIN \#26 MODEM_DOUT \#25 MODEM_ANT0 \#24 MODEM_ANT1 \#23	CMU_CLK1 \#6 PRS_CHO \#3 PRS_CH1 \#2 PRS_CH2 \#1 PRS CH3 \#0 ACMP0_O \#27 ACMP1_O \#27 DBG_TDI
5	PF4	BUSBY BUSAX	$\begin{gathered} \text { TIMO_CC0 \#28 } \\ \text { TIM0_CC1 \#27 } \\ \text { TIM0_CC2 \#26 } \\ \text { TIM0_CDTIO \#25 } \\ \text { TIM0_CDTII \#24 } \\ \text { TIM0_CDTI2 \#23 } \\ \text { TIM1_CC0 \#28 } \\ \text { TIM1_CC1 \#27 } \\ \text { TIM1_CC2 \#26 } \\ \text { TIM1_CC3 \#25 LE- } \\ \text { TIM0_OUT0 \#28 } \\ \text { LETIM0_OUT1 \#27 } \\ \text { PCNT0_SOIN \#28 } \\ \text { PCNT0_S1IN \#27 } \end{gathered}$	USO_TX \#28 USO_RX \#27 USO_CLK \#26 USO_CS \#25 USO_CTS \#24 USO_RTS \#23 US1_TX \#28 US1_RX \#27 US1_CLK \#26 US1_CS \#25 US1_CTS \#24 US1_RTS \#23 LEUO_TX \#28 LEUO_RX \#27 I2CO_SDA \#28 12C0_SCL \#27	FRC_DCLK \#28 FRC_DOUT \#27 FRC_DFRAME \#26 MODEM_DCLK \#28 MODEM_DIN \#27 MODEM_DOUT \#26 MODEM_ANT0 \#25 MODEM_ANT1 \#24	PRS CHO \#4 PRS_CH1 \#3 PRS_CH2 \#2 PRS_CH3 \#1 ACMPO_O \#28 ACMP1_O \#28
6	PF5	BUSAY BUSBX	$\begin{gathered} \text { TIMO_CC0 \#29 } \\ \text { TIM0_CC1 \#28 } \\ \text { TIM0_CC2 \#27 } \\ \text { TIM0_CDTIO \#26 } \\ \text { TIM0_CDTII \#25 } \\ \text { TIM0_CDTI2 \#24 } \\ \text { TIM1_CC0 \#29 } \\ \text { TIM1_CC1 \#28 } \\ \text { TIM1_CC2 \#27 } \\ \text { TIM1_CC3 \#26 LE- } \\ \text { TIM0_OUT0 \#29 } \\ \text { LETIM0_OUT1 \#28 } \\ \text { PCNT0_SOIN \#29 } \\ \text { PCNT0_S1IN \#28 } \end{gathered}$	USO_TX \#29 USO_RX \#28 USO_CLK \#27 USO_CS \#26 USO_CTS \#25 USO_RTS \#24 US1_TX \#29 US1_RX \#28 US1_CLK \#27 US1_CS \#26 US1_CTS \#25 US1_RTS \#24 LEUO_TX \#29 LEUO_RX \#28 I2C0_SDA \#29 12C0_SCL \#28	FRC_DCLK \#29 FRC_DOUT \#28 FRC_DFRAME \#27 MODEM DCLK \#29 MODEM_DIN \#28 MODEM_DOUT \#27 MODEM_ANT0 \#26 MODEM_ANT1 \#25	PRS CHO \#5 PRS_CH1 \#4 PRS_CH2 \#3 PRS CH3 \#2 ACMPO O \#29 ACMP1_O \#29

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
7	PF6	BUSBY BUSAX	$\begin{gathered} \text { TIM0_CC0 \#30 } \\ \text { TIM0_CC1 \#29 } \\ \text { TIM0_CC2 \#28 } \\ \text { TIM0_CDTIO \#27 } \\ \text { TIM0_CDTI1 \#26 } \\ \text { TIM0_CDTI2 \#25 } \\ \text { TIM1_CC0 \#30 } \\ \text { TIM1_CC1 \#29 } \\ \text { TIM1_CC2 \#28 } \\ \text { TIM1_CC3 \#27 LE- } \\ \text { TIM0_OUT0 \#30 } \\ \text { LETIM0_OUT1 \#29 } \\ \text { PCNT0_SOIN \#30 } \\ \text { PCNT0_S1IN \#29 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#30 } \\ \text { USO_RX \#29 } \\ \text { USO_CLK \#28 } \\ \text { USO_CS \#27 } \\ \text { USO_CTS \#26 } \\ \text { USO_RTS \#25 } \\ \text { US_TX \#30 } \\ \text { US1_RX \#29 } \\ \text { US1_CLK \#28 } \\ \text { US1_CS \#27 } \\ \text { US1_CTS \#26 } \\ \text { US1_RTS \#25 } \\ \text { LEU0_TX \#30 } \\ \text { LEUO_RX \#29 } \\ \text { I2C0_SDA \#30 } \\ \text { I2CO_SCL \#29 } \end{gathered}$	FRC_DCLK \#30 FRC_DOUT \#29 FRC_DFRAME \#28 MODEM_DCLK \#30 MODEM_DIN \#29 MODEM_DOUT \#28 MODEM_ANT0 \#27 MODEM_ANT1 \#26	CMU_CLK1 \#7 PRS_CHO \#6 PRS_CH1 \#5 PRS_CH2 \#4 PRS_CH3 \#3 ACMP0_O \#30 ACMP1_O \#30
8	PF7	BUSAY BUSBX	$\begin{gathered} \text { TIM0_CC0 \#31 } \\ \text { TIM0_CC1 \#30 } \\ \text { TIM0_CC2 \#29 } \\ \text { TIM0_CDTIO \#28 } \\ \text { TIM0_CDTI1 \#27 } \\ \text { TIM0_CDTI2 \#26 } \\ \text { TIM1_CC0 \#31 } \\ \text { TIM1_CC1 \#30 } \\ \text { TIM1_CC2 \#29 } \\ \text { TIM1_CC3 \#28 LE- } \\ \text { TIMO_OUT0 \#31 } \\ \text { LETIM0_OUT1 \#30 } \\ \text { PCNTO_SOIN \#31 } \\ \text { PCNT0_S1IN \#30 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#31 } \\ \text { US0_RX \#30 } \\ \text { USO_CLK \#29 } \\ \text { US0_CS \#28 } \\ \text { USO_CTS \#27 } \\ \text { US0_RTS \#26 } \\ \text { US1_TX \#31 } \\ \text { US1_RX \#30 } \\ \text { US1_CLK \#29 } \\ \text { US1_CS \#28 } \\ \text { US1_CTS \#27 } \\ \text { US1_RTS \#26 } \\ \text { LEU0_TX \#31 } \\ \text { LEU0_RX \#30 } \\ \text { I2C0_SDA \#31 } \\ \text { I2C0_SCL \#30 } \end{gathered}$	FRC_DCLK \#31 FRC_DOUT \#30 FRC_DFRAME \#29 MODEM_DCLK \#31 MODEM_DIN \#30 MODEM_DOUT \#29 MODEM_ANT0 \#28 MODEM_ANT1 \#27	CMU_CLKO \#7 PRS_CHO \#7 PRS_CH1 \#6 PRS_CH2 \#5 PRS_CH3 \#4 ACMP0_O \#31 ACMP1_O \#31 GPIO_EM4WU1
9	RFVDD	Radio power supply				
10	HFXTAL_N	High Frequency Crystal input pin.				
11	HFXTAL_P	High Frequency Crystal output pin.				
12	RESETn	Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.				
13	SUBGRF_OP	Sub GHz Differential RF output, positive path.				
14	SUBGRF_ON	Sub GHz Differential RF output, negative path.				
15	SUBGRF_IP	Sub GHz Differential RF input, positive path.				
16	SUBGRF_IN	Sub GHz Differential RF input, negative path.				
17	RFVSS	Radio Ground				
18	PAVSS	Power Amplifier (PA) voltage regulator VSS				
19	2G4RF_ION	2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.				
20	2G4RF_IOP	2.4 GHz Differential RF input/output, positive path.				
21	PAVDD	Power Amplifier (PA) voltage regulator VDD input				

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
22	PD13	BUSCY BUSDX	$\begin{gathered} \text { TIMO_CC0 \#21 } \\ \text { TIM0_CC1 \#20 } \\ \text { TIM0_CC2 \#19 } \\ \text { TIM0_CDTIO \#18 } \\ \text { TIM0_CDTI1 \#17 } \\ \text { TIM0_CDTI2 \#16 } \\ \text { TIM1_CC0 \#21 } \\ \text { TIM1_CC1 \#20 } \\ \text { TIM1_CC2 \#19 } \\ \text { TIM1_CC3 \#18 LE- } \\ \text { TIM0_OUT0 \#21 } \\ \text { LETIM0_OUT1 \#20 } \\ \text { PCNT0_SOIN \#21 } \\ \text { PCNT0_S1IN \#20 } \end{gathered}$	USO_TX \#21 USO_RX \#20 USO_CLK \#19 US0_CS \#18 USO_CTS \#17 USO_RTS \#16 US1_TX \#21 US1_RX \#20 US1_CLK \#19 US1_CS \#18 US1_CTS \#17 US1_RTS \#16 LEUO_TX \#21 LEUO_RX \#20 I2C0_SDA \#21 12C0_SCL \#20	FRC_DCLK \#21 FRC_DOUT \#20 FRC_DFRAME \#19 MODEM_DCLK \#21 MODEM_DIN \#20 MODEM_DOUT \#19 MODEM_ANT0 \#18 MODEM_ANT1 \#17	PRS_CH3 \#12 PRS_CH4 \#4 PRS_CH5 \#3 PRS_CH6 \#15 ACMPO_O \#21 ACMP1_O \#21
23	PD14	BUSDY BUSCX	$\begin{gathered} \text { TIMO_CC0 \#22 } \\ \text { TIM0_CC1 \#21 } \\ \text { TIM0_CC2 \#20 } \\ \text { TIM0_CDTIO \#19 } \\ \text { TIM0_CDTI1 \#18 } \\ \text { TIM0_CDTI2 \#17 } \\ \text { TIM1_CC0 \#22 } \\ \text { TIM1_CC1 \#21 } \\ \text { TIM1_CC2 \#20 } \\ \text { TIM1_CC3 \#19 LE- } \\ \text { TIM0_OUT0 \#22 } \\ \text { LETIM0_OUT1 \#21 } \\ \text { PCNT0_SOIN \#22 } \\ \text { PCNT0_S1IN \#21 } \end{gathered}$	USO_TX \#22 USO_RX \#21 USO_CLK \#20 US0_CS \#19 USO_CTS \#18 USO_RTS \#17 US1_TX \#22 US1_RX \#21 US1_CLK \#20 US1_CS \#19 US1_CTS \#18 US1_RTS \#17 LEU0_TX \#22 LEUO_RX \#21 12C0_SDA \#22 12C0_SCL \#21	FRC_DCLK \#22 FRC_DOUT \#21 FRC_DFRAME \#20 MODEM_DCLK \#22 MODEM_DIN \#21 MODEM_DOUT \#20 MODEM_ANT0 \#19 MODEM_ANT1 \#18	CMU_CLK0 \#5 PRS_CH3 \#13 PRS_CH4 \#5 PRS_CH5 \#4 PRS_CH6 \#16 ACMPO_O \#22 ACMP1_O \#22 GPIO_EM4WU4
24	PD15	BUSCY BUSDX	$\begin{gathered} \text { TIMO_CC0 \#23 } \\ \text { TIM0_CC1 \#22 } \\ \text { TIM0_CC2 \#21 } \\ \text { TIM0_CDTIO \#20 } \\ \text { TIM0_CDTI1 \#19 } \\ \text { TIM0_CDTI2 \#18 } \\ \text { TIM1_CC0 \#23 } \\ \text { TIM1_CC1 \#22 } \\ \text { TIM1_CC2 \#21 } \\ \text { TIM1_CC3 \#20 LE- } \\ \text { TIM0_OUT0 \#23 } \\ \text { LETIM0_OUT1 \#22 } \\ \text { PCNT0_SOIN \#23 } \\ \text { PCNT0_S1IN \#22 } \end{gathered}$	USO_TX \#23 USO_RX \#22 USO_CLK \#21 USO_CS \#20 USO_CTS \#19 USO_RTS \#18 US1_TX \#23 US1_RX \#22 US1_CLK \#21 US1_CS \#20 US1_CTS \#19 US1_RTS \#18 LEU0_TX \#23 LEUO_RX \#22 I2CO_SDA \#23 12C0_SCL \#22	FRC_DCLK \#23 FRC_DOUT \#22 FRC_DFRAME \#21 MODEM DCLK \#23 MODEM_DIN \#22 MODEM_DOUT \#21 MODEM_ANT0 \#20 MODEM_ANT1 \#19	CMU_CLK1 \#5 PRS_CH3 \#14 PRS_CH4 \#6 PRS_CH5 \#5 PRS_CH6 \#17 ACMPO_O \#23 ACMP1_O \#23 DBG_SWO \#2

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
25	PA0	$\begin{aligned} & \text { BUSDY BUSCX } \\ & \text { ADCO_EXTN } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#0 } \\ \text { TIM0_CC1 \#31 } \\ \text { TIM0_CC2 \#30 } \\ \text { TIM0_CDTIO \#29 } \\ \text { TIM0_CDTI1 \#28 } \\ \text { TIM0_CDTI2 \#27 } \\ \text { TIM1_CC0 \#0 } \\ \text { TIM1_CC1 \#31 } \\ \text { TIM1_CC2 \#30 } \\ \text { TIM1_CC3 \#29 LE- } \\ \text { TIM0_OUT0 \#0 LE- } \\ \text { TIM0_OUT1 \#31 } \\ \text { PCNT0_SOIN \#0 } \\ \text { PCNT0_S1IN \#31 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#0 } \\ \text { USO_RX \#31 } \\ \text { USO_CLK \#30 } \\ \text { USO_CS \#29 } \\ \text { USO_CTS \#28 } \\ \text { USO_RTS \#27 } \\ \text { US1_TX \#0 } \\ \text { US1_RX \#31 } \\ \text { US1_CLK \#30 } \\ \text { US1_CS \#29 } \\ \text { US1_CTS \#28 } \\ \text { US1_RTS \#27 } \\ \text { LEUO_TX \#0 } \\ \text { LEUO_RX \#31 } \\ \text { I2CO_SDA \#0 } \\ \text { I2CO_SCL \#31 } \end{gathered}$	FRC_DCLK \#0 FRC_DOUT \#31 FRC_DFRAME \#30 MODEM_DCLK \#0 MODEM_DIN \#31 MODEM_DOUT \#30 MODEM_ANT0 \#29 MODEM_ANT1 \#28	CMU_CLK1 \#0 PRS_CH6 \#0 PRS_CH7 \#10 PRS_CH8 \#9 PRS_CH9 \#8 ACMPO_O \#0 ACMP1_O \#0
26	PA1	BUSCY BUSDX ADCO_EXTP	$\begin{gathered} \text { TIMO_CC0 \#1 } \\ \text { TIM0_CC1 \#0 } \\ \text { TIM0_CC2 \#31 } \\ \text { TIM0_CDTIO \#30 } \\ \text { TIM0_CDTI1 \#29 } \\ \text { TIM0_CDTI2 \#28 } \\ \text { TIM1_CC0 \#1 } \\ \text { TIM1_CC1 \#0 } \\ \text { TIM1_CC2 \#31 } \\ \text { TIM1_CC3 \#30 LE- } \\ \text { TIM0_OUT0 \#1 LE- } \\ \text { TIM0_OUT1 \#0 } \\ \text { PCNT0_SOIN \#1 } \\ \text { PCNT0_S1IN \#0 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#1 } \\ \text { USO_RX \#0 } \\ \text { USO_CLK \#31 } \\ \text { US0_CS \#30 } \\ \text { US0_CTS \#29 } \\ \text { US0_RTS \#28 } \\ \text { US1_TX \#1 } \\ \text { US1_RX \#0 } \\ \text { US1_CLK \#31 } \\ \text { US1_CS \#30 } \\ \text { US1_CTS \#29 } \\ \text { US1_RTS \#28 } \\ \text { LEU0_TX\#1 } \\ \text { LEU0_RX \#0 } \\ \text { I2C0_SDA \#1 } \\ \text { I2C0_SCL \#0 } \end{gathered}$	FRC_DCLK \#1 FRC_DOUT \#0 FRC_DFRAME \#31 MODEM_DCLK \#1 MODEM_DIN \#0 MODEM_DOUT \#31 MODEM_ANT0 \#30 MODEM_ANT1 \#29	CMU_CLKO \#0 PRS_CH6 \#1 PRS_CH7 \#0 PRS_CH8 \#10 PRS_CH9 \#9 ACMPO_O \#1 ACMP1_O \#1
27	PA2	BUSDY BUSCX	TIMO_CCO \#2 TIM0_CC1 \#1 TIM0_CC2 \#0 TIM0_CDTIO \#31 TIMO_CDTI1 \#30 TIMO_CDTI2 \#29 TIM1_CC0 \#2 TIM1_CC1 \#1 TIM1_CC2 \#0 TIM1_CC3 \#31 LE- TIM0_OUT0 \#2 LE- TIMO_OUT1 \#1 PCNTO_SOIN \#2 PCNT0_S1IN \#1	$\begin{gathered} \text { USO_TX \#2 } \\ \text { USO_RX \#1 } \\ \text { US0_CLK \#0 } \\ \text { US0_CS \#31 } \\ \text { US0_CTS \#30 } \\ \text { US0_RTS \#29 } \\ \text { US1_TX \#2 } \\ \text { US1_RX \#1 } \\ \text { US1_CLK \#0 } \\ \text { US1_CS \#31 } \\ \text { US1_CTS \#30 } \\ \text { US1_RTS \#29 } \\ \text { LEU0_TX \#2 } \\ \text { LEU0_RX \#1 } \\ \text { I2C0_SDA \#2 } \\ \text { I2C0_SCL \#1 } \end{gathered}$	FRC_DCLK \#2 FRC_DOUT \#1 FRC_DFRAME \#0 MODEM_DCLK \#2 MODEM_DIN \#1 MODEM_DOUT \#0 MODEM_ANT0 \#31 MODEM_ANT1 \#30	PRS CH6 \#2 PRS_CH7 \#1 PRS_CH8 \#0 PRS_CH9 \#10 ACMPO_O \#2 ACMP1_O \#2

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
28	PA3	BUSCY BUSDX	TIMO_CCO \#3 TIM0_CC1 \#2 TIMO_CC2 \#1 TIMO_CDTIO \#0 TIM0_CDTI1 \#31 TIMO_CDTI2 \#30 TIM1_CC0 \#3 TIM1_CC1 \#2 TIM1_CC2 \#1 TIM1_CC3 \#0 LETIMO_OUTO \#3 LETIMO_OUT1 \#2 PCNTO_SOIN \#3 PCNTO_S1IN \#2	$\begin{gathered} \text { USO_TX \#3 } \\ \text { USO_RX \#2 } \\ \text { US0_CLK \#1 } \\ \text { US0_CS \#0 } \\ \text { US0_CTS \#31 } \\ \text { USO_RTS \#30 } \\ \text { US1_TX \#3 } \\ \text { US1_RX \#2 } \\ \text { US1_CLK \#1 } \\ \text { US1_CS \#0 } \\ \text { US1_CTS \#31 } \\ \text { US1_RTS \#30 } \\ \text { LEU0_TX \#3 } \\ \text { LEU0_RX \#2 } \\ \text { I2C0_SDA \#3 } \\ \text { I2C0_SCL \#2 } \end{gathered}$	FRC_DCLK \#3 FRC_DOUT \#2 FRC_DFRAME \#1 MODEM_DCLK \#3 MODEM_DIN \#2 MODEM_DOUT \#1 MODEM_ANTO \#0 MODEM_ANT1 \#31	PRS CH6 \#3 PRS_CH7 \#2 PRS_CH8 \#1 PRS_CH9 \#0 ACMPO_O \#3 ACMP1_O \#3 GPIO_EM4WU8
29	PA4	BUSDY BUSCX	TIMO_CCO \#4 TIM0_CC1 \#3 TIMO_CC2 \#2 TIMO_CDTIO \#1 TIMO_CDTI1 \#0 TIMO_CDTI2 \#31 TIM1_CC0 \#4 TIM1_CC1 \#3 TIM1_CC2 \#2 TIM1_CC3 \#1 LE- TIMO_OUTO \#4 LE- TIM0_OUT1 \#3 PCNTO_SOIN \#4 PCNT0_S1IN \#3	USO_TX\#4 USO_RX \#3 USO_CLK \#2 USO_CS \#1 USO_CTS \#0 USO_RTS \#31 US1_TX \#4 US1_RX \#3 US1_CLK \#2 US1_CS \#1 US1_CTS \#0 US1_RTS \#31 LEUO_TX \#4 LEUO_RX \#3 I2C0_SDA \#4 12C0_SCL \#3	FRC_DCLK \#4 FRC_DOUT \#3 FRC_DFRAME \#2 MODEM_DCLK \#4 MODEM_DIN \#3 MODEM_DOUT \#2 MODEM_ANTO \#1 MODEM_ANT1 \#0	PRS_CH6 \#4 PRS_CH7 \#3 PRS_CH8 \#2 PRS_CH9 \#1 ACMPO_O \#4 ACMP1_O \#4
30	PA5	BUSCY BUSDX	TIMO_CCO \#5 TIMO_CC1 \#4 TIMO_CC2 \#3 TIMO_CDTIO \#2 TIMO_CDTI1 \#1 TIMO_CDTI2 \#0 TIM1_CC0 \#5 TIM1_CC1 \#4 TIM1_CC2 \#3 TIM1_CC3 \#2 LE- TIMO_OUTO \#5 LE- TIM0_OUT1 \#4 PCNTO_SOIN \#5 PCNT0_S1IN \#4	USO_TX \#5 USO_RX \#4 USO_CLK \#3 USO_CS \#2 USO_CTS \#1 USO_RTS \#0 US1_TX \#5 US1_RX\#4 US1_CLK \#3 US1_CS \#2 US1_CTS \#1 US1_RTS \#0 LEUO_TX \#5 LEUO_RX \#4 12C0_SDA \#5 12C0_SCL \#4	FRC_DCLK \#5 FRC_DOUT \#4 FRC_DFRAME \#3 MODEM_DCLK \#5 MODEM_DIN \#4 MODEM_DOUT \#3 MODEM_ANTO \#2 MODEM_ANT1 \#1	PRS_CH6 \#5 PRS_CH7 \#4 PRS_CH8 \#3 PRS_CH9 \#2 ACMPO_O \#5 ACMP1_O \#5

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
31	PB11	BUSCY BUSDX	TIMO_CCO \#6 TIMO_CC1 \#5 TIMO_CC2 \#4 TIMO_CDTIO \#3 TIMO_CDTI1 \#2 TIMO_CDTI2 \#1 TIM1_CC0 \#6 TIM1_CC1 \#5 TIM1_CC2 \#4 TIM1_CC3 \#3 LETIMO_OUT0 \#6 LETIM0_OUT1 \#5 PCNTO_SOIN \#6 PCNTO_S1IN \#5	USO_TX \#6 USO_RX \#5 USO_CLK \#4 USO_CS \#3 USO_CTS \#2 USO_RTS \#1 US1_TX \#6 US1_RX \#5 US1_CLK \#4 US1_CS \#3 US1_CTS \#2 US1_RTS \#1 LEUO_TX \#6 LEUO_RX \#5 12C0_SDA \#6 12C0_SCL \#5	FRC_DCLK \#6 FRC_DOUT \#5 FRC_DFRAME \#4 MODEM DCLK \#6 MODEM_DIN \#5 MODEM_DOUT \#4 MODEM_ANT0 \#3 MODEM_ANT1 \#2	PRS_CH6 \#6 PRS_CH7 \#5 PRS_CH8 \#4 PRS_CH9 \#3 ACMPO O \#6 ACMP1_O \#6
32	PB12	BUSDY BUSCX	TIMO_CCO \#7 TIM0_CC1 \#6 TIMO_CC2 \#5 TIMO_CDTIO \#4 TIM0_CDTI1 \#3 TIMO_CDTI2 \#2 TIM1_CC0 \#7 TIM1_CC1 \#6 TIM1_CC2 \#5 TIM1_CC3 \#4 LE- TIM0_OUT0 \#7 LE- TIM0_OUT1 \#6 PCNTO_SOIN \#7 PCNT0_S1IN \#6	USO_TX \#7 USO_RX \#6 USO_CLK \#5 USO_CS \#4 USO_CTS \#3 USO_RTS \#2 US1_TX \#7 US1_RX \#6 US1_CLK \#5 US1_CS \#4 US1_CTS \#3 US1_RTS \#2 LEUO_TX \#7 LEUO_RX \#6 12C0_SDA \#7 12C0_SCL \#6	FRC_DCLK \#7 FRC_DOUT \#6 FRC_DFRAME \#5 MODEM_DCLK \#7 MODEM_DIN \#6 MODEM_DOUT \#5 MODEM_ANTO \#4 MODEM_ANT1 \#3	PRS_CH6 \#7 PRS_CH7 \#6 PRS_CH8 \#5 PRS_CH9 \#4 ACMPO_O \#7 ACMP1_O \#7
33	PB13	BUSCY BUSDX	TIMO_CCO \#8 TIM0_CC1 \#7 TIMO_CC2 \#6 TIMO_CDTIO \#5 TIMO_CDTI1 \#4 TIMO_CDTI2 \#3 TIM1_CC0 \#8 TIM1_CC1 \#7 TIM1_CC2 \#6 TIM1_CC3 \#5 LETIMO_OUT0 \#8 LETIM0_OUT1 \#7 PCNTO_SOIN \#8 PCNT0_S1IN \#7	USO_TX \#8 USO_RX \#7 USO_CLK \#6 USO_CS \#5 USO_CTS \#4 USO_RTS \#3 US1_TX \#8 US1-RX \#7 US1_CLK \#6 US1_CS \#5 US1_CTS \#4 US1_RTS \#3 LEUO_TX \#8 LEUO_RX \#7 12C0_SDA \#8 12C0_SCL \#7	FRC_DCLK \#8 FRC_DOUT \#7 FRC_DFRAME \#6 MODEM_DCLK \#8 MODEM_DIN \#7 MODEM_DOUT \#6 MODEM_ANTO \#5 MODEM_ANT1 \#4	PRS_CH6 \#8 PRS_CH7 \#7 PRS_CH8 \#6 PRS_CH9 \#5 ACMPO_O \#8 ACMP1_O \#8 DBG_SWO \#1 GPIO_EM4WU9
34	AVDD	Analog power supp				

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
35	PB14	BUSDY BUSCX LFXTAL_N	$\begin{gathered} \text { TIMO_CC0 \#9 } \\ \text { TIM0_CC1 \#8 } \\ \text { TIMO_CC2 \#7 } \\ \text { TIMO_CDTIO \#6 } \\ \text { TIMO_CDTI1 \#5 } \\ \text { TIMO_CDTI2 \#4 } \\ \text { TIM1_CC0 \#9 } \\ \text { TIM1_CC1 \#8 } \\ \text { TIM1_CC2 \#7 } \end{gathered}$ TIM1_CC3 \#6 LETIMO_OUTO \#9 LETIM0_OUT1 \#8 PCNTO_SOIN \#9 PCNT0_S1IN \#8	USO_TX \#9 USO_RX \#8 USO_CLK \#7 USO_CS \#6 USO_CTS \#5 USO_RTS \#4 US1_TX \#9 US1_RX \#8 US1_CLK \#7 US1_CS \#6 US1_CTS \#5 US1_RTS \#4 LEUO_TX \#9 LEU0_RX \#8 I2C0_SDA \#9 12C0_SCL \#8	FRC_DCLK \#9 FRC_DOUT \#8 FRC_DFRAME \#7 MODEM_DCLK \#9 MODEM_DIN \#8 MODEM_DOUT \#7 MODEM_ANT0 \#6 MODEM_ANT1 \#5	CMU_CLK1 \#1 PRS_CH6 \#9 PRS_CH7 \#8 PRS_CH8 \#7 PRS_CH9 \#6 ACMPO_O \#9 ACMP1_O \#9
36	PB15	BUSCY BUSDX LFXTAL_P	$\begin{gathered} \text { TIMO_CC0 \#10 } \\ \text { TIM0_CC1 \#9 } \\ \text { TIM0_CC2 \#8 } \\ \text { TIM0_CDTIO \#7 } \\ \text { TIM0_CDTI1 \#6 } \\ \text { TIMO_CDTI2 \#5 } \\ \text { TIM1_CC0 \#10 } \\ \text { TIM1_CC1 \#9 } \\ \text { TIM1_CC2 \#8 } \\ \text { TIM1_CC3 \#7 LE- } \\ \text { TIM0_OUT0 \#10 } \\ \text { LETIM0_OUT1 \#9 } \\ \text { PCNT0_SOIN \#10 } \\ \text { PCNT0_S1IN \#9 } \end{gathered}$	$\begin{gathered} \text { USO_TX\#10 } \\ \text { USO_RX \#9 } \\ \text { USO_CLK \#8 } \\ \text { USO_CS \#7 } \\ \text { USO_CTS \#6 } \\ \text { USO_RTS \#5 } \\ \text { US1_TX\#10 } \\ \text { US1_RX\#9 } \\ \text { US1_CLK \#8 } \\ \text { US1_CS\#7 } \\ \text { US1_CTS \#6 } \\ \text { US1_RTS \#5 } \\ \text { LEU0_TX\#10 } \\ \text { LEUO_RX \#9 } \\ \text { I2C0_SDA \#10 } \\ \text { I2CO_SCL \#9 } \end{gathered}$	FRC_DCLK \#10 FRC_DOUT \#9 FRC_DFRAME \#8 MODEM_DCLK \#10 MODEM_DIN \#9 MODEM_DOUT \#8 MODEM_ANT0 \#7 MODEM_ANT1 \#6	CMU_CLKO \#1 PRS_CH6 \#10 PRS_CH7 \#9 PRS_CH8 \#8 PRS_CH9 \#7 ACMPO_O \#10 ACMP1_O \#10
37	VREGVSS	Voltage regulator VSS				
38	VREGSW	DCDC regulator switching node				
39	VREGVDD	Voltage regulator VDD input				
40	DVDD	Digital power supply				
41	DECOUPLE	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.				
42	IOVDD	Digital IO power supply .				
43	PC6	BUSBY BUSAX	TIMO_CCO \#11 TIM0_CC1 \#10 TIMO_CC2 \#9 TIMO_CDTIO \#8 TIMO_CDTI1 \#7 TIMO_CDTI2 \#6 TIM1_CC0 \#11 TIM1_CC1 \#10 TIM1_CC2 \#9 TIM1_CC3 \#8 LE- TIMO_OUT0 \#11 LETIMO_OUT1 \#10 PCNTO_SOIN \#11 PCNT0_S1IN \#10	$\begin{aligned} & \hline \text { US0_TX \#11 } \\ & \text { US0_RX \#10 } \\ & \text { US0_CLK \#9 } \\ & \text { US0_CS \#8 } \\ & \text { US0_CTS \#7 } \\ & \text { US0_RTS \#6 } \\ & \text { US1_TX \#11 } \\ & \text { US1_RX \#10 } \\ & \text { US1_CLK \#9 } \\ & \text { US1_CS \#8 } \\ & \text { US1_CTS \#7 } \\ & \text { US1_RTS \#6 } \\ & \text { LEU0_TX \#11 } \\ & \text { LEU0_RX \#10 } \\ & \text { I2C0_SDA \#11 } \\ & \text { I2C0_SCL \#10 } \end{aligned}$	FRC_DCLK \#11 FRC_DOUT \#10 FRC_DFRAME \#9 MODEM_DCLK \#11 MODEM_DIN \#10 MODEM_DOUT \#9 MODEM_ANT0 \#8 MODEM_ANT1 \#7	CMU_CLK0 \#2 PRS_CH0 \#8 PRS_CH9 \#11 PRS_CH10 \#0 PRS_CH11 \#5 ACMPO_O \#11 ACMP1_O \#11

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
44	PC7	BUSAY BUSBX	TIMO CCO \#12 TIM0_CC1 \#11 TIMO_CC2 \#10 TIMO_CDTIO \#9 TIMO_CDTI1 \#8 TIMO_CDTI2 \#7 TIM1_CC0 \#12 TIM1_CC1 \#11 TIM1_CC2 \#10 TIM1_CC3 \#9 LE- TIMO_OUT0 \#12 LETIMO_OUT1 \#11 PCNTO_SOIN \#12 PCNTO_S1IN \#11	$\begin{gathered} \text { USO_TX \#12 } \\ \text { US0_RX \#11 } \\ \text { USO_CLK \#10 } \\ \text { US0_CS \#9 } \\ \text { US0_CTS \#8 } \\ \text { US0_RTS \#7 } \\ \text { US1_TX \#12 } \\ \text { US1_RX\#11 } \\ \text { US1_CLK \#10 } \\ \text { US1_CS \#9 } \\ \text { US1_CTS \#8 } \\ \text { US1_RTS \#7 } \\ \text { LEU0_TX\#12 } \\ \text { LEU0_RX \#11 } \\ \text { I2C0_SDA \#12 } \\ \text { I2C0_SCL \#11 } \end{gathered}$	FRC_DCLK \#12 FRC_DOUT \#11 FRC_DFRAME \#10 MODEM_DCLK \#12 MODEM_DIN \#11 MODEM_DOUT \#10 MODEM_ANT0 \#9 MODEM_ANT1 \#8	CMU_CLK1 \#2 PRS_CHO \#9 PRS_CH9 \#12 PRS_CH10 \#1 PRS_CH11 \#0 ACMP0_O \#12 ACMP1_O \#12
45	PC8	BUSBY BUSAX	TIMO_CCO \#13 TIM0_CC1 \#12 TIMO_CC2 \#11 TIMO_CDTIO \#10 TIMO_CDTI1 \#9 TIMO_CDTI2 \#8 TIM1_CC0 \#13 TIM1_CC1 \#12 TIM1_CC2 \#11 TIM1_CC3 \#10 LETIMO_OUT0 \#13 LETIMO_OUT1 \#12 PCNTO_SOIN \#13 PCNT0_S1IN \#12	USO_TX \#13 USO_RX \#12 USO_CLK \#11 USO_CS \#10 USO_CTS \#9 USO_RTS \#8 US1_TX \#13 US1_RX \#12 US1_CLK \#11 US1_CS \#10 US1_CTS \#9 US1_RTS \#8 LEUO_TX \#13 LEUO_RX \#12 I2CO_SDA \#13 12C0_SCL \#12	FRC_DCLK \#13 FRC_DOUT \#12 FRC_DFRAME \#11 MODEM_DCLK \#13 MODEM_DIN \#12 MODEM_DOUT \#11 MODEM_ANT0 \#10 MODEM_ANT1 \#9	PRS_CH0 \#10 PRS_CH9 \#13 PRS_CH10 \#2 PRS_CH11 \#1 ACMP0_O \#13 ACMP1_O \#13
46	PC9	BUSAY BUSBX	TIMO_CCO \#14 TIM0_CC1 \#13 TIMO_CC2 \#12 TIMO_CDTIO \#11 TIMO_CDTI1 \#10 TIMO_CDTI2 \#9 TIM1_CC0 \#14 TIM1_CC1 \#13 TIM1_CC2 \#12 TIM1_CC3 \#11 LE- TIM0_OUT0 \#14 LETIMO_OUT1 \#13 PCNTO_SOIN \#14 PCNTO_S1IN \#13	$\begin{aligned} & \text { USO_TX \#14 } \\ & \text { USO_RX \#13 } \\ & \text { USO_CLK \#12 } \\ & \text { USO_CS \#11 } \\ & \text { USO_CTS \#10 } \\ & \text { USO_RTS \#9 } \\ & \text { US1_TX \#14 } \\ & \text { US1_RX \#13 } \\ & \text { US1_CLK \#12 } \\ & \text { US1_CS \#11 } \\ & \text { US1_CTS \#10 } \\ & \text { US1_RTS \#9 } \\ & \text { LEU0_TX\#14 } \\ & \text { LEUO_RX \#13 } \\ & \text { I2CO_SDA \#14 } \\ & \text { I2CO_SCL \#13 } \end{aligned}$	FRC_DCLK \#14 FRC_DOUT \#13 FRC_DFRAME \#12 MODEM_DCLK \#14 MODEM_DIN \#13 MODEM_DOUT \#12 MODEM_ANT0 \#11 MODEM_ANT1 \#10	PRS CH0 \#11 PRS_CH9 \#14 PRS_CH10 \#3 PRS_CH11 \#2 ACMPO_O \#14 ACMP1_O \#14

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
47	PC10	BUSBY BUSAX	$\begin{gathered} \text { TIM0_CC0 \#15 } \\ \text { TIM0_CC1 \#14 } \\ \text { TIM0_CC2 \#13 } \\ \text { TIM0_CDTIO \#12 } \\ \text { TIM0_CDTI1 \#11 } \\ \text { TIM0_CDTI2 \#10 } \\ \text { TIM1_CC0 \#15 } \\ \text { TIM1_CC1 \#14 } \\ \text { TIM1_CC2 \#13 } \\ \text { TIM1_CC3 \#12 LE- } \\ \text { TIM0_OUT0 \#15 } \\ \text { LETIM0_OUT1 \#14 } \\ \text { PCNT0_SOIN \#15 } \\ \text { PCNT0_S1IN \#14 } \end{gathered}$	USO_TX \#15 USO_RX \#14 USO_CLK \#13 USO_CS \#12 USO_CTS \#11 USO_RTS \#10 US1_TX \#15 US1_RX \#14 US1_CLK \#13 US1_CS \#12 US1_CTS \#11 US1_RTS \#10 LEUO_TX\#15 LEUO_RX \#14 I2CO_SDA \#15 I2C0_SCL \#14	FRC_DCLK \#15 FRC_DOUT \#14 FRC_DFRAME \#13 MODEM_DCLK \#15 MODEM_DIN \#14 MODEM_DOUT \#13 MODEM_ANT0 \#12 MODEM_ANT1 \#11	CMU_CLK1 \#3 PRS_CH0 \#12 PRS_CH9 \#15 PRS_CH10 \#4 PRS_CH11 \#3 ACMP0_O \#15 ACMP1_O \#15 GPIO_EM4WU12
48	PC11	BUSAY BUSBX	$\begin{gathered} \text { TIM0_CC0 \#16 } \\ \text { TIM0_CC1 \#15 } \\ \text { TIM0_CC2 \#14 } \\ \text { TIM0_CDTI0 \#13 } \\ \text { TIM0_CDTI1 \#12 } \\ \text { TIM0_CDTI2 \#11 } \\ \text { TIM1_CC0 \#16 } \\ \text { TIM1_CC1 \#15 } \\ \text { TIM1_CC2 \#14 } \\ \text { TIM1_CC3 \#13 LE- } \\ \text { TIM0_OUT0 \#16 } \\ \text { LETIM0_OUT1 \#15 } \\ \text { PCNT0_SOIN \#16 } \\ \text { PCNT0_S1IN \#15 } \end{gathered}$	$\begin{aligned} & \text { USO_TX \#16 } \\ & \text { USO_RX \#15 } \\ & \text { USO_CLK \#14 } \\ & \text { USO_CS \#13 } \\ & \text { USO_CTS \#12 } \\ & \text { USO_RTS \#11 } \\ & \text { US1_TX\#16 } \\ & \text { US1_RX \#15 } \\ & \text { US1_CLK \#14 } \\ & \text { US1_CS \#13 } \\ & \text { US1_CTS \#12 } \\ & \text { US1_RTS \#11 } \\ & \text { LEU0_TX\#16 } \\ & \text { LEUO_RX \#15 } \\ & \text { I2C0_SDA \#16 } \\ & \text { I2CO_SCL \#15 } \end{aligned}$	FRC_DCLK \#16 FRC_DOUT \#15 FRC_DFRAME \#14 MODEM_DCLK \#16 MODEM_DIN \#15 MODEM_DOUT \#14 MODEM_ANT0 \#13 MODEM_ANT1 \#12	CMU_CLKO \#3 PRS CH0 \#13 PRS_CH9 \#16 PRS_CH10 \#5 PRS_CH11 \#4 ACMP0 O \#16 ACMP1_O \#16 DBG_SWO \#3

6.1.1 QFN48 2.4 GHz and Sub-GHz GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number from 15 down to 0 .

Table 6.2. QFN48 2.4 GHz and Sub-GHz GPIO Pinout

Port	$\begin{gathered} \text { Pin } \\ 15 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 14 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 12 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 11 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { PA5 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PA4 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PA3 } \\ & \text { (5V) } \end{aligned}$	$\begin{aligned} & \text { PA2 } \\ & (5 \mathrm{~V}) \end{aligned}$	PA1	PAO
Port B	PB15	PB14	$\begin{aligned} & \text { PB13 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PB12 } \\ & (5 \mathrm{~V}) \end{aligned}$	PB11 (5V)	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	$\begin{gathered} \text { PC11 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PC10 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { PC9 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{PC8} \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{PC} 7 \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PC6 } \\ & (5 \mathrm{~V}) \end{aligned}$	-	-	-	-	-	-
Port D	$\begin{aligned} & \text { PD15 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PD14 } \\ & (5 \mathrm{~V}) \end{aligned}$	PD13 (5V)	-	-	-	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { PF7 } \\ & (5 \mathrm{~V}) \end{aligned}$	PF6 (5V)	PF5 (5V)	PF4 (5V)	PF3 (5V)	PF2 (5V)	PF1 (5V)	$\begin{aligned} & \text { PFO } \\ & \text { (5V) } \end{aligned}$

Note:

1. GPIO with 5 V tolerance are indicated by $(5 \mathrm{~V})$.
2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5 V domains.

Figure 6.2. QFN48 2.4 GHz Device Pinout

Table 6.3. QFN48 2.4 GHz Device Pinout

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
0	VSS	Ground				
1	PF0	BUSBY BUSAX	TIMO_CCO \#24 TIMO_CC1 \#23 TIMO_CC2 \#22 TIMO_CDTIO \#21 TIMO_CDTI1 \#20 TIMO_CDTI2 \#19 TIM1_CC0 \#24 TIM1_CC1 \#23 TIM1_CC2 \#22 TIM1_CC3 \#21 LE- TIMO_OUT0 \#24 LETIMO_OUT1 \#23 PCNTO_SOIN \#24 PCNTO_S1IN \#23	$\begin{aligned} & \text { USO_TX \#24 } \\ & \text { USO_RX \#23 } \\ & \text { USO_CLK \#22 } \\ & \text { USO_CS \#21 } \\ & \text { USO_CTS \#20 } \\ & \text { USO_RTS \#19 } \\ & \text { US1_TX \#24 } \\ & \text { US1_RX \#23 } \\ & \text { US1_CLK \#22 } \\ & \text { US1_CS \#21 } \\ & \text { US1_CTS \#20 } \\ & \text { US1_RTS \#19 } \\ & \text { LEU0_TX \#24 } \\ & \text { LEUO_RX \#23 } \\ & \text { I2CO_SDA \#24 } \\ & \text { I2CO_SCL \#23 } \end{aligned}$	FRC_DCLK \#24 FRC_DOUT \#23 FRC_DFRAME \#22 MODEM_DCLK \#24 MODEM_DIN \#23 MODEM_DOUT \#22 MODEM_ANT0 \#21 MODEM_ANT1 \#20	PRS_CHO \#0 PRS_CH1 \#7 PRS_CH2 \#6 PRS_CH3 \#5 ACMPO O \#24 ACMP1_O \#24 DBG_SWCLKTCK
2	PF1	BUSAY BUSBX	$\begin{gathered} \text { TIMO_CC0 \#25 } \\ \text { TIM0_CC1 \#24 } \\ \text { TIM0_CC2 \#23 } \\ \text { TIM0_CDTIO \#22 } \\ \text { TIM0_CDTI1 \#21 } \\ \text { TIM0_CDTI2 \#20 } \\ \text { TIM1_CC0 \#25 } \\ \text { TIM1_CC1 \#24 } \\ \text { TIM1_CC2 \#23 } \\ \text { TIM1_CC3 \#22 LE- } \\ \text { TIM0_OUT0 \#25 } \\ \text { LETIM0_OUT1 \#24 } \\ \text { PCNT0_SOIN \#25 } \\ \text { PCNT0_S1IN \#24 } \end{gathered}$	USO_TX \#25 USO_RX \#24 USO_CLK \#23 USO_CS \#22 USO_CTS \#21 USO_RTS \#20 US1_TX \#25 US1_RX \#24 US1_CLK \#23 US1_CS \#22 US1_CTS \#21 US1_RTS \#20 LEUO_TX \#25 LEUO_RX \#24 12C0_SDA \#25 12C0_SCL \#24	FRC_DCLK \#25 FRC_DOUT \#24 FRC_DFRAME \#23 MODEM_DCLK \#25 MODEM_DIN \#24 MODEM_DOUT \#23 MODEM_ANTO \#22 MODEM_ANT1 \#21	PRS_CHO \#1 PRS_CH1 \#0 PRS_CH2 \#7 PRS_CH3 \#6 ACMP0_O \#25 ACMP1_O \#25 DBG_SWDIOTMS
3	PF2	BUSBY BUSAX	$\begin{gathered} \text { TIMO_CC0 \#26 } \\ \text { TIM0_CC1 \#25 } \\ \text { TIM0_CC2 \#24 } \\ \text { TIM0_CDTIO \#23 } \\ \text { TIM0_CDTI1 \#22 } \\ \text { TIM0_CDTI2 \#21 } \\ \text { TIM1_CC0 \#26 } \\ \text { TIM1_CC1 \#25 } \\ \text { TIM1_CC2 \#24 } \\ \text { TIM1_CC3 \#23 LE- } \\ \text { TIM0_OUT0 \#26 } \\ \text { LETIM0_OUT1 \#25 } \\ \text { PCNT0_SOIN \#26 } \\ \text { PCNT0_S1IN \#25 } \end{gathered}$	$\begin{gathered} \hline \text { USO_TX \#26 } \\ \text { USO_RX \#25 } \\ \text { USO_CLK \#24 } \\ \text { US0_CS \#23 } \\ \text { USO_CTS \#22 } \\ \text { US0_RTS \#21 } \\ \text { US1_TX \#26 } \\ \text { US1_RX \#25 } \\ \text { US1_CLK \#24 } \\ \text { US1_CS \#23 } \\ \text { US1_CTS \#22 } \\ \text { US1_RTS \#21 } \\ \text { LEU0_TX \#26 } \\ \text { LEU0_RX \#25 } \\ \text { I2C0_SDA \#26 } \\ \text { I2C0_SCL \#25 } \end{gathered}$	FRC_DCLK \#26 FRC_DOUT \#25 FRC_DFRAME \#24 MODEM DCLK \#26 MODEM DIN \#25 MODEM_DOUT \#24 MODEM_ANT0 \#23 MODEM_ANT1 \#22	CMU_CLK0 \#6 PRS_CHO \#2 PRS_CH1 \#1 PRS_CH2 \#0 PRS_CH3 \#7 ACMPO_O \#26 ACMP1_O \#26 DBG_TDO DBG_SWO \#0 GPIO_EM4WU0

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
4	PF3	BUSAY BUSBX	TIMO_CCO \#27 TIM0_CC1 \#26 TIMO_CC2 \#25 TIMO_CDTIO \#24 TIMO_CDTI1 \#23 TIMO_CDTI2 \#22 TIM1_CC0 \#27 TIM1_CC1 \#26 TIM1_CC2 \#25 TIM1_CC3 \#24 LE- TIMO_OUT0 \#27 LETIMO_OUT1 \#26 PCNTO_SOIN \#27 PCNTO_S1IN \#26	$\begin{gathered} \text { USO_TX \#27 } \\ \text { USO_RX \#26 } \\ \text { USO_CLK \#25 } \\ \text { USO_CS \#24 } \\ \text { USO_CTS \#23 } \\ \text { USO_RTS \#22 } \\ \text { US1_TX \#27 } \\ \text { US1_RX \#26 } \\ \text { US1_CLK \#25 } \\ \text { US1_CS \#24 } \\ \text { US1_CTS \#23 } \\ \text { US1_RTS \#22 } \\ \text { LEU0_TX \#27 } \\ \text { LEUO_RX \#26 } \\ \text { I2CO_SDA \#27 } \\ \text { I2CO_SCL \#26 } \end{gathered}$	FRC_DCLK \#27 FRC_DOUT \#26 FRC_DFRAME \#25 MODEM_DCLK \#27 MODEM_DIN \#26 MODEM_DOUT \#25 MODEM_ANT0 \#24 MODEM_ANT1 \#23	CMU_CLK1 \#6 PRS_CHO \#3 PRS_CH1 \#2 PRS_CH2 \#1 PRS CH3 \#0 ACMP0_O \#27 ACMP1_O \#27 DBG_TDI
5	PF4	BUSBY BUSAX	$\begin{gathered} \text { TIMO_CC0 \#28 } \\ \text { TIM0_CC1 \#27 } \\ \text { TIM0_CC2 \#26 } \\ \text { TIM0_CDTIO \#25 } \\ \text { TIM0_CDTII \#24 } \\ \text { TIM0_CDTI2 \#23 } \\ \text { TIM1_CC0 \#28 } \\ \text { TIM1_CC1 \#27 } \\ \text { TIM1_CC2 \#26 } \\ \text { TIM1_CC3 \#25 LE- } \\ \text { TIM0_OUT0 \#28 } \\ \text { LETIM0_OUT1 \#27 } \\ \text { PCNT0_SOIN \#28 } \\ \text { PCNT0_S1IN \#27 } \end{gathered}$	USO_TX \#28 USO_RX \#27 USO_CLK \#26 USO_CS \#25 USO_CTS \#24 USO_RTS \#23 US1_TX \#28 US1_RX \#27 US1_CLK \#26 US1_CS \#25 US1_CTS \#24 US1_RTS \#23 LEUO_TX \#28 LEUO_RX \#27 I2CO_SDA \#28 12C0_SCL \#27	FRC_DCLK \#28 FRC_DOUT \#27 FRC_DFRAME \#26 MODEM_DCLK \#28 MODEM_DIN \#27 MODEM_DOUT \#26 MODEM_ANT0 \#25 MODEM_ANT1 \#24	PRS CHO \#4 PRS_CH1 \#3 PRS_CH2 \#2 PRS_CH3 \#1 ACMPO_O \#28 ACMP1_O \#28
6	PF5	BUSAY BUSBX	$\begin{gathered} \text { TIMO_CC0 \#29 } \\ \text { TIM0_CC1 \#28 } \\ \text { TIM0_CC2 \#27 } \\ \text { TIM0_CDTIO \#26 } \\ \text { TIM0_CDTII \#25 } \\ \text { TIM0_CDTI2 \#24 } \\ \text { TIM1_CC0 \#29 } \\ \text { TIM1_CC1 \#28 } \\ \text { TIM1_CC2 \#27 } \\ \text { TIM1_CC3 \#26 LE- } \\ \text { TIM0_OUT0 \#29 } \\ \text { LETIM0_OUT1 \#28 } \\ \text { PCNT0_SOIN \#29 } \\ \text { PCNT0_S1IN \#28 } \end{gathered}$	USO_TX \#29 USO_RX \#28 USO_CLK \#27 USO_CS \#26 USO_CTS \#25 USO_RTS \#24 US1_TX \#29 US1_RX \#28 US1_CLK \#27 US1_CS \#26 US1_CTS \#25 US1_RTS \#24 LEUO_TX \#29 LEUO_RX \#28 I2C0_SDA \#29 12C0_SCL \#28	FRC_DCLK \#29 FRC_DOUT \#28 FRC_DFRAME \#27 MODEM DCLK \#29 MODEM_DIN \#28 MODEM_DOUT \#27 MODEM_ANT0 \#26 MODEM_ANT1 \#25	PRS CHO \#5 PRS_CH1 \#4 PRS_CH2 \#3 PRS CH3 \#2 ACMPO O \#29 ACMP1_O \#29

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
7	PF6	BUSBY BUSAX	$\begin{gathered} \text { TIMO_CC0 \#30 } \\ \text { TIM0_CC1 \#29 } \\ \text { TIM0_CC2 \#28 } \\ \text { TIM0_CDTIO \#27 } \\ \text { TIM0_CDTI1 \#26 } \\ \text { TIM0_CDTI2 \#25 } \\ \text { TIM1_CC0 \#30 } \\ \text { TIM1_CC1 \#29 } \\ \text { TIM1_CC2 \#28 } \\ \text { TIM1_CC3 \#27 LE- } \\ \text { TIM0_OUT0 \#30 } \\ \text { LETIM0_OUT1 \#29 } \\ \text { PCNT0_SOIN \#30 } \\ \text { PCNT0_S1IN \#29 } \end{gathered}$	USO_TX \#30 USO_RX \#29 USO_CLK \#28 USO_CS \#27 USO_CTS \#26 USO_RTS \#25 US1_TX \#30 US1_RX \#29 US1_CLK \#28 US1_CS \#27 US1_CTS \#26 US1_RTS \#25 LEŪ_TX \#30 LEUO_RX \#29 I2C0_SDA \#30 12C0-SCL \#29	FRC_DCLK \#30 FRC_DOUT \#29 FRC_DFRAME \#28 MODEM_DCLK \#30 MODEM DIN \#29 MODEM_DOUT \#28 MODEM_ANT0 \#27 MODEM_ANT1 \#26	CMU_CLK1 \#7 PRS_CH0 \#6 PRS_CH1 \#5 PRS CH2 \#4 PRS_CH3 \#3 ACMP0_O \#30 ACMP1_O \#30
8	PF7	BUSAY BUSBX	$\begin{gathered} \text { TIMO_CC0 \#31 } \\ \text { TIMO_CC1 \#30 } \\ \text { TIMO_CC2 \#29 } \\ \text { TIM0_CDTIO \#28 } \\ \text { TIM0_CDTI1 \#27 } \\ \text { TIM0_CDTI2 \#26 } \\ \text { TIM1_CC0 \#31 } \\ \text { TIM1_CC1 \#30 } \\ \text { TIM1_CC2 \#29 } \\ \text { TIM1_CC3 \#28 LE- } \\ \text { TIM0_OUT0 \#31 } \\ \text { LETIM0_OUT1 \#30 } \\ \text { PCNT0_SOIN \#31 } \\ \text { PCNT0_S1IN \#30 } \end{gathered}$	USO_TX \#31 USO_RX \#30 USO_CLK \#29 USO_CS \#28 USO_CTS \#27 USO_RTS \#26 US1_TX \#31 US1_RX \#30 US1_CLK \#29 US1_CS \#28 US1_CTS \#27 US1_RTS \#26 LEUO_TX \#31 LEUO_RX \#30 I2CO_SDA \#31 I2CO_SCL \#30	FRC_DCLK \#31 FRC_DOUT \#30 FRC_DFRAME \#29 MODEM_DCLK \#31 MODEM_DIN \#30 MODEM_DOUT \#29 MODEM_ANT0 \#28 MODEM_ANT1 \#27	CMU_CLK0 \#7 PRS_CH0 \#7 PRS_CH1 \#6 PRS_CH2 \#5 PRS CH3 \#4 ACMP0_O \#31 ACMP1_O \#31 GPIO_EM4WU1
9	RFVDD	Radio power supply				
10	HFXTAL_N	High Frequency Crystal input pin.				
11	HFXTAL_P	High Frequency Crystal output pin.				
12	RESETn	Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.				
13	NC	No Connect.				
14	RFVSS	Radio Ground				
15	PAVSS	Power Amplifier (PA) voltage regulator VSS				
16	2G4RF_ION	2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.				
17	2G4RF_IOP	2.4 GHz Differential RF input/output, positive path.				
18	PAVDD	Power Amplifier (PA) voltage regulator VDD input				

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
19	PD10	BUSDY BUSCX	$\begin{gathered} \text { TIMO_CC0 \#18 } \\ \text { TIM0_CC1 \#17 } \\ \text { TIM0_CC2 \#16 } \\ \text { TIM0_CDTIO \#15 } \\ \text { TIM0_CDTI1 \#14 } \\ \text { TIM0_CDTI2 \#13 } \\ \text { TIM1_CC0 \#18 } \\ \text { TIM1_CC1 \#17 } \\ \text { TIM1_CC2 \#16 } \\ \text { TIM1_CC3 \#15 LE- } \\ \text { TIM0_OUT0 \#18 } \\ \text { LETIM0_OUT1 \#17 } \\ \text { PCNT0_SOIN \#18 } \\ \text { PCNT0_S1IN \#17 } \end{gathered}$	$\begin{aligned} & \text { USO_TX \#18 } \\ & \text { USO_RX \#17 } \\ & \text { USO_CLK \#16 } \\ & \text { USO_CS \#15 } \\ & \text { USO_CTS \#14 } \\ & \text { USO_RTS \#13 } \\ & \text { US1_TX \#18 } \\ & \text { US1_RX \#17 } \\ & \text { US1_CLK \#16 } \\ & \text { US1_CS \#15 } \\ & \text { US1_CTS \#14 } \\ & \text { US1_RTS \#13 } \\ & \text { LEU0_TX\#18 } \\ & \text { LEUO_RX \#17 } \\ & \text { I2CO_SDA \#18 } \\ & \text { I2CO_SCL \#17 } \end{aligned}$	FRC_DCLK \#18 FRC_DOUT \#17 FRC_DFRAME \#16 MODEM_DCLK \#18 MODEM_DIN \#17 MODEM_DOUT \#16 MODEM_ANT0 \#15 MODEM_ANT1 \#14	CMU_CLK1 \#4 PRS_CH3 \#9 PRS_CH4 \#1 PRS_CH5 \#0 PRS_CH6 \#12 ACMP0_O \#18 ACMP1_O \#18
20	PD11	BUSCY BUSDX	$\begin{gathered} \text { TIMO_CC0 \#19 } \\ \text { TIM0_CC1 \#18 } \\ \text { TIM0_CC2 \#17 } \\ \text { TIM0_CDTIO \#16 } \\ \text { TIM0_CDTII \#15 } \\ \text { TIM0_CDTI2 \#14 } \\ \text { TIM1_CC0 \#19 } \\ \text { TIM1_CC1 \#18 } \\ \text { TIM1_CC2 \#17 } \\ \text { TIM1_CC3 \#16 LE- } \\ \text { TIM0_OUT0 \#19 } \\ \text { LETIM0_OUT1 \#18 } \\ \text { PCNT0_SOIN \#19 } \\ \text { PCNT0_S1IN \#18 } \end{gathered}$	USO_TX \#19 USO_RX \#18 USO_CLK \#17 USO_CS \#16 USO_CTS \#15 USO_RTS \#14 US1_TX \#19 US1_RX \#18 US1_CLK \#17 US1_CS \#16 US1_CTS \#15 US1_RTS \#14 LEUO_TX \#19 LEUO_RX \#18 I2CO_SDA \#19 12C0_SCL \#18	FRC_DCLK \#19 FRC_DOUT \#18 FRC_DFRAME \#17 MODEM_DCLK \#19 MODEM_DIN \#18 MODEM_DOUT \#17 MODEM_ANT0 \#16 MODEM_ANT1 \#15	PRS_CH3 \#10 PRS_CH4 \#2 PRS_CH5 \#1 PRS_CH6 \#13 ACMP0_O \#19 ACMP1_O \#19
21	PD12	BUSDY BUSCX	$\begin{gathered} \text { TIMO_CC0 \#20 } \\ \text { TIM0_CC1 \#19 } \\ \text { TIM0_CC2 \#18 } \\ \text { TIM0_CDTIO \#17 } \\ \text { TIM0_CDTI1 \#16 } \\ \text { TIM0_CDTI2 \#15 } \\ \text { TIM1_CC0 \#20 } \\ \text { TIM1_CC1 \#19 } \\ \text { TIM1_CC2 \#18 } \\ \text { TIM1_CC3 \#17 LE- } \\ \text { TIM0_OUT0 \#20 } \\ \text { LETIM0_OUT1 \#19 } \\ \text { PCNT0_SOIN \#20 } \\ \text { PCNT0_S1IN \#19 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#20 } \\ \text { USO_RX \#19 } \\ \text { USO_CLK \#18 } \\ \text { USO_CS \#17 } \\ \text { USO_CTS \#16 } \\ \text { USO_RTS \#15 } \\ \text { US1_TX \#20 } \\ \text { US1_RX \#19 } \\ \text { US1_CLK \#18 } \\ \text { US1_CS \#17 } \\ \text { US1_CTS \#16 } \\ \text { US1_RTS \#15 } \\ \text { LEU0_TX\#20 } \\ \text { LEUO_RX \#19 } \\ \text { I2CO_SDA \#20 } \\ \text { I2CO_SCL \#19 } \end{gathered}$	FRC_DCLK \#20 FRC_DOUT \#19 FRC_DFRAME \#18 MODEM_DCLK \#20 MODEM_DIN \#19 MODEM_DOUT \#18 MODEM_ANT0 \#17 MODEM_ANT1 \#16	PRS_CH3 \#11 PRS_CH4 \#3 PRS_CH5 \#2 PRS_CH6 \#14 ACMPO_O \#20 ACMP1_O \#20

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
22	PD13	BUSCY BUSDX	$\begin{gathered} \text { TIMO_CC0 \#21 } \\ \text { TIM0_CC1 \#20 } \\ \text { TIM0_CC2 \#19 } \\ \text { TIM0_CDTIO \#18 } \\ \text { TIM0_CDTI1 \#17 } \\ \text { TIM0_CDTI2 \#16 } \\ \text { TIM1_CC0 \#21 } \\ \text { TIM1_CC1 \#20 } \\ \text { TIM1_CC2 \#19 } \\ \text { TIM1_CC3 \#18 LE- } \\ \text { TIM0_OUT0 \#21 } \\ \text { LETIM0_OUT1 \#20 } \\ \text { PCNT0_SOIN \#21 } \\ \text { PCNT0_S1IN \#20 } \end{gathered}$	USO_TX \#21 USO_RX \#20 USO_CLK \#19 US0_CS \#18 USO_CTS \#17 USO_RTS \#16 US1_TX \#21 US1_RX \#20 US1_CLK \#19 US1_CS \#18 US1_CTS \#17 US1_RTS \#16 LEUO_TX \#21 LEUO_RX \#20 I2C0_SDA \#21 12C0_SCL \#20	FRC_DCLK \#21 FRC_DOUT \#20 FRC_DFRAME \#19 MODEM_DCLK \#21 MODEM_DIN \#20 MODEM_DOUT \#19 MODEM_ANT0 \#18 MODEM_ANT1 \#17	PRS_CH3 \#12 PRS_CH4 \#4 PRS_CH5 \#3 PRS_CH6 \#15 ACMPO_O \#21 ACMP1_O \#21
23	PD14	BUSDY BUSCX	$\begin{gathered} \text { TIMO_CC0 \#22 } \\ \text { TIM0_CC1 \#21 } \\ \text { TIM0_CC2 \#20 } \\ \text { TIM0_CDTIO \#19 } \\ \text { TIM0_CDTI1 \#18 } \\ \text { TIM0_CDTI2 \#17 } \\ \text { TIM1_CC0 \#22 } \\ \text { TIM1_CC1 \#21 } \\ \text { TIM1_CC2 \#20 } \\ \text { TIM1_CC3 \#19 LE- } \\ \text { TIM0_OUT0 \#22 } \\ \text { LETIM0_OUT1 \#21 } \\ \text { PCNT0_SOIN \#22 } \\ \text { PCNT0_S1IN \#21 } \end{gathered}$	USO_TX \#22 USO_RX \#21 USO_CLK \#20 US0_CS \#19 USO_CTS \#18 USO_RTS \#17 US1_TX \#22 US1_RX \#21 US1_CLK \#20 US1_CS \#19 US1_CTS \#18 US1_RTS \#17 LEU0_TX \#22 LEUO_RX \#21 12C0_SDA \#22 12C0_SCL \#21	FRC_DCLK \#22 FRC_DOUT \#21 FRC_DFRAME \#20 MODEM_DCLK \#22 MODEM_DIN \#21 MODEM_DOUT \#20 MODEM_ANT0 \#19 MODEM_ANT1 \#18	CMU_CLK0 \#5 PRS_CH3 \#13 PRS_CH4 \#5 PRS_CH5 \#4 PRS_CH6 \#16 ACMPO_O \#22 ACMP1_O \#22 GPIO_EM4WU4
24	PD15	BUSCY BUSDX	$\begin{gathered} \text { TIMO_CC0 \#23 } \\ \text { TIM0_CC1 \#22 } \\ \text { TIM0_CC2 \#21 } \\ \text { TIM0_CDTIO \#20 } \\ \text { TIM0_CDTI1 \#19 } \\ \text { TIM0_CDTI2 \#18 } \\ \text { TIM1_CC0 \#23 } \\ \text { TIM1_CC1 \#22 } \\ \text { TIM1_CC2 \#21 } \\ \text { TIM1_CC3 \#20 LE- } \\ \text { TIM0_OUT0 \#23 } \\ \text { LETIM0_OUT1 \#22 } \\ \text { PCNT0_SOIN \#23 } \\ \text { PCNT0_S1IN \#22 } \end{gathered}$	USO_TX \#23 USO_RX \#22 USO_CLK \#21 USO_CS \#20 USO_CTS \#19 USO_RTS \#18 US1_TX \#23 US1_RX \#22 US1_CLK \#21 US1_CS \#20 US1_CTS \#19 US1_RTS \#18 LEU0_TX \#23 LEUO_RX \#22 I2CO_SDA \#23 12C0_SCL \#22	FRC_DCLK \#23 FRC_DOUT \#22 FRC_DFRAME \#21 MODEM DCLK \#23 MODEM_DIN \#22 MODEM_DOUT \#21 MODEM_ANT0 \#20 MODEM_ANT1 \#19	CMU_CLK1 \#5 PRS_CH3 \#14 PRS_CH4 \#6 PRS_CH5 \#5 PRS_CH6 \#17 ACMPO_O \#23 ACMP1_O \#23 DBG_SWO \#2

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
25	PA0	$\begin{aligned} & \text { BUSDY BUSCX } \\ & \text { ADCO_EXTN } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#0 } \\ \text { TIM0_CC1 \#31 } \\ \text { TIM0_CC2 \#30 } \\ \text { TIM0_CDTIO \#29 } \\ \text { TIM0_CDTI1 \#28 } \\ \text { TIM0_CDTI2 \#27 } \\ \text { TIM1_CC0 \#0 } \\ \text { TIM1_CC1 \#31 } \\ \text { TIM1_CC2 \#30 } \\ \text { TIM1_CC3 \#29 LE- } \\ \text { TIM0_OUT0 \#0 LE- } \\ \text { TIM0_OUT1 \#31 } \\ \text { PCNT0_SOIN \#0 } \\ \text { PCNT0_S1IN \#31 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#0 } \\ \text { USO_RX \#31 } \\ \text { USO_CLK \#30 } \\ \text { USO_CS \#29 } \\ \text { USO_CTS \#28 } \\ \text { USO_RTS \#27 } \\ \text { US1_TX \#0 } \\ \text { US1_RX \#31 } \\ \text { US1_CLK \#30 } \\ \text { US1_CS \#29 } \\ \text { US1_CTS \#28 } \\ \text { US1_RTS \#27 } \\ \text { LEUO_TX \#0 } \\ \text { LEUO_RX \#31 } \\ \text { I2CO_SDA \#0 } \\ \text { I2CO_SCL \#31 } \end{gathered}$	FRC_DCLK \#0 FRC_DOUT \#31 FRC_DFRAME \#30 MODEM_DCLK \#0 MODEM_DIN \#31 MODEM_DOUT \#30 MODEM_ANT0 \#29 MODEM_ANT1 \#28	CMU_CLK1 \#0 PRS_CH6 \#0 PRS_CH7 \#10 PRS_CH8 \#9 PRS_CH9 \#8 ACMPO_O \#0 ACMP1_O \#0
26	PA1	BUSCY BUSDX ADCO_EXTP	$\begin{gathered} \text { TIMO_CC0 \#1 } \\ \text { TIM0_CC1 \#0 } \\ \text { TIM0_CC2 \#31 } \\ \text { TIM0_CDTIO \#30 } \\ \text { TIM0_CDTI1 \#29 } \\ \text { TIM0_CDTI2 \#28 } \\ \text { TIM1_CC0 \#1 } \\ \text { TIM1_CC1 \#0 } \\ \text { TIM1_CC2 \#31 } \\ \text { TIM1_CC3 \#30 LE- } \\ \text { TIM0_OUT0 \#1 LE- } \\ \text { TIM0_OUT1 \#0 } \\ \text { PCNT0_SOIN \#1 } \\ \text { PCNT0_S1IN \#0 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#1 } \\ \text { USO_RX \#0 } \\ \text { USO_CLK \#31 } \\ \text { US0_CS \#30 } \\ \text { US0_CTS \#29 } \\ \text { US0_RTS \#28 } \\ \text { US1_TX \#1 } \\ \text { US1_RX \#0 } \\ \text { US1_CLK \#31 } \\ \text { US1_CS \#30 } \\ \text { US1_CTS \#29 } \\ \text { US1_RTS \#28 } \\ \text { LEU0_TX\#1 } \\ \text { LEU0_RX \#0 } \\ \text { I2C0_SDA \#1 } \\ \text { I2C0_SCL \#0 } \end{gathered}$	FRC_DCLK \#1 FRC_DOUT \#0 FRC_DFRAME \#31 MODEM_DCLK \#1 MODEM_DIN \#0 MODEM_DOUT \#31 MODEM_ANT0 \#30 MODEM_ANT1 \#29	CMU_CLKO \#0 PRS_CH6 \#1 PRS_CH7 \#0 PRS_CH8 \#10 PRS_CH9 \#9 ACMPO_O \#1 ACMP1_O \#1
27	PA2	BUSDY BUSCX	TIMO_CCO \#2 TIM0_CC1 \#1 TIM0_CC2 \#0 TIM0_CDTIO \#31 TIMO_CDTI1 \#30 TIMO_CDTI2 \#29 TIM1_CC0 \#2 TIM1_CC1 \#1 TIM1_CC2 \#0 TIM1_CC3 \#31 LE- TIM0_OUT0 \#2 LE- TIMO_OUT1 \#1 PCNTO_SOIN \#2 PCNT0_S1IN \#1	$\begin{gathered} \text { USO_TX \#2 } \\ \text { USO_RX \#1 } \\ \text { US0_CLK \#0 } \\ \text { US0_CS \#31 } \\ \text { US0_CTS \#30 } \\ \text { US0_RTS \#29 } \\ \text { US1_TX \#2 } \\ \text { US1_RX \#1 } \\ \text { US1_CLK \#0 } \\ \text { US1_CS \#31 } \\ \text { US1_CTS \#30 } \\ \text { US1_RTS \#29 } \\ \text { LEU0_TX \#2 } \\ \text { LEU0_RX \#1 } \\ \text { I2C0_SDA \#2 } \\ \text { I2C0_SCL \#1 } \end{gathered}$	FRC_DCLK \#2 FRC_DOUT \#1 FRC_DFRAME \#0 MODEM_DCLK \#2 MODEM_DIN \#1 MODEM_DOUT \#0 MODEM_ANT0 \#31 MODEM_ANT1 \#30	PRS CH6 \#2 PRS_CH7 \#1 PRS_CH8 \#0 PRS_CH9 \#10 ACMPO_O \#2 ACMP1_O \#2

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
28	PA3	BUSCY BUSDX	TIMO_CCO \#3 TIM0_CC1 \#2 TIMO_CC2 \#1 TIMO_CDTIO \#0 TIM0_CDTI1 \#31 TIMO_CDTI2 \#30 TIM1_CC0 \#3 TIM1_CC1 \#2 TIM1_CC2 \#1 TIM1_CC3 \#0 LETIMO_OUTO \#3 LETIMO_OUT1 \#2 PCNTO_SOIN \#3 PCNTO_S1IN \#2	$\begin{gathered} \text { USO_TX \#3 } \\ \text { USO_RX \#2 } \\ \text { US0_CLK \#1 } \\ \text { US0_CS \#0 } \\ \text { US0_CTS \#31 } \\ \text { USO_RTS \#30 } \\ \text { US1_TX \#3 } \\ \text { US1_RX \#2 } \\ \text { US1_CLK \#1 } \\ \text { US1_CS \#0 } \\ \text { US1_CTS \#31 } \\ \text { US1_RTS \#30 } \\ \text { LEU0_TX \#3 } \\ \text { LEU0_RX \#2 } \\ \text { I2C0_SDA \#3 } \\ \text { I2C0_SCL \#2 } \end{gathered}$	FRC_DCLK \#3 FRC_DOUT \#2 FRC_DFRAME \#1 MODEM_DCLK \#3 MODEM_DIN \#2 MODEM_DOUT \#1 MODEM_ANTO \#0 MODEM_ANT1 \#31	PRS CH6 \#3 PRS_CH7 \#2 PRS_CH8 \#1 PRS_CH9 \#0 ACMPO_O \#3 ACMP1_O \#3 GPIO_EM4WU8
29	PA4	BUSDY BUSCX	TIMO_CCO \#4 TIM0_CC1 \#3 TIMO_CC2 \#2 TIMO_CDTIO \#1 TIMO_CDTI1 \#0 TIMO_CDTI2 \#31 TIM1_CC0 \#4 TIM1_CC1 \#3 TIM1_CC2 \#2 TIM1_CC3 \#1 LE- TIMO_OUTO \#4 LE- TIM0_OUT1 \#3 PCNTO_SOIN \#4 PCNT0_S1IN \#3	USO_TX\#4 USO_RX \#3 USO_CLK \#2 USO_CS \#1 USO_CTS \#0 USO_RTS \#31 US1_TX \#4 US1_RX \#3 US1_CLK \#2 US1_CS \#1 US1_CTS \#0 US1_RTS \#31 LEUO_TX \#4 LEUO_RX \#3 I2C0_SDA \#4 12C0_SCL \#3	FRC_DCLK \#4 FRC_DOUT \#3 FRC_DFRAME \#2 MODEM_DCLK \#4 MODEM_DIN \#3 MODEM_DOUT \#2 MODEM_ANTO \#1 MODEM_ANT1 \#0	PRS_CH6 \#4 PRS_CH7 \#3 PRS_CH8 \#2 PRS_CH9 \#1 ACMPO_O \#4 ACMP1_O \#4
30	PA5	BUSCY BUSDX	TIMO_CCO \#5 TIMO_CC1 \#4 TIMO_CC2 \#3 TIMO_CDTIO \#2 TIMO_CDTI1 \#1 TIMO_CDTI2 \#0 TIM1_CC0 \#5 TIM1_CC1 \#4 TIM1_CC2 \#3 TIM1_CC3 \#2 LE- TIMO_OUTO \#5 LE- TIM0_OUT1 \#4 PCNTO_SOIN \#5 PCNT0_S1IN \#4	USO_TX \#5 USO_RX \#4 USO_CLK \#3 USO_CS \#2 USO_CTS \#1 USO_RTS \#0 US1_TX \#5 US1_RX\#4 US1_CLK \#3 US1_CS \#2 US1_CTS \#1 US1_RTS \#0 LEUO_TX \#5 LEUO_RX \#4 12C0_SDA \#5 12C0_SCL \#4	FRC_DCLK \#5 FRC_DOUT \#4 FRC_DFRAME \#3 MODEM_DCLK \#5 MODEM_DIN \#4 MODEM_DOUT \#3 MODEM_ANTO \#2 MODEM_ANT1 \#1	PRS_CH6 \#5 PRS_CH7 \#4 PRS_CH8 \#3 PRS_CH9 \#2 ACMPO_O \#5 ACMP1_O \#5

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
31	PB11	BUSCY BUSDX	TIMO_CCO \#6 TIMO_CC1 \#5 TIMO_CC2 \#4 TIMO_CDTIO \#3 TIMO_CDTI1 \#2 TIMO_CDTI2 \#1 TIM1_CC0 \#6 TIM1_CC1 \#5 TIM1_CC2 \#4 TIM1_CC3 \#3 LETIMO_OUT0 \#6 LETIM0_OUT1 \#5 PCNTO_SOIN \#6 PCNTO_S1IN \#5	USO_TX \#6 USO_RX \#5 USO_CLK \#4 USO_CS \#3 USO_CTS \#2 USO_RTS \#1 US1_TX \#6 US1_RX \#5 US1_CLK \#4 US1_CS \#3 US1_CTS \#2 US1_RTS \#1 LEUO_TX \#6 LEUO_RX \#5 12C0_SDA \#6 12C0_SCL \#5	FRC_DCLK \#6 FRC_DOUT \#5 FRC_DFRAME \#4 MODEM DCLK \#6 MODEM_DIN \#5 MODEM_DOUT \#4 MODEM_ANT0 \#3 MODEM_ANT1 \#2	PRS_CH6 \#6 PRS_CH7 \#5 PRS_CH8 \#4 PRS_CH9 \#3 ACMPO O \#6 ACMP1_O \#6
32	PB12	BUSDY BUSCX	TIMO_CCO \#7 TIM0_CC1 \#6 TIMO_CC2 \#5 TIMO_CDTIO \#4 TIM0_CDTI1 \#3 TIMO_CDTI2 \#2 TIM1_CC0 \#7 TIM1_CC1 \#6 TIM1_CC2 \#5 TIM1_CC3 \#4 LE- TIM0_OUT0 \#7 LE- TIM0_OUT1 \#6 PCNTO_SOIN \#7 PCNT0_S1IN \#6	USO_TX \#7 USO_RX \#6 USO_CLK \#5 USO_CS \#4 USO_CTS \#3 USO_RTS \#2 US1_TX \#7 US1_RX \#6 US1_CLK \#5 US1_CS \#4 US1_CTS \#3 US1_RTS \#2 LEUO_TX \#7 LEUO_RX \#6 12C0_SDA \#7 12C0_SCL \#6	FRC_DCLK \#7 FRC_DOUT \#6 FRC_DFRAME \#5 MODEM_DCLK \#7 MODEM_DIN \#6 MODEM_DOUT \#5 MODEM_ANTO \#4 MODEM_ANT1 \#3	PRS_CH6 \#7 PRS_CH7 \#6 PRS_CH8 \#5 PRS_CH9 \#4 ACMPO_O \#7 ACMP1_O \#7
33	PB13	BUSCY BUSDX	TIMO_CCO \#8 TIM0_CC1 \#7 TIMO_CC2 \#6 TIMO_CDTIO \#5 TIMO_CDTI1 \#4 TIMO_CDTI2 \#3 TIM1_CC0 \#8 TIM1_CC1 \#7 TIM1_CC2 \#6 TIM1_CC3 \#5 LETIMO_OUT0 \#8 LETIM0_OUT1 \#7 PCNTO_SOIN \#8 PCNT0_S1IN \#7	USO_TX \#8 USO_RX \#7 USO_CLK \#6 USO_CS \#5 USO_CTS \#4 USO_RTS \#3 US1_TX \#8 US1-RX \#7 US1_CLK \#6 US1_CS \#5 US1_CTS \#4 US1_RTS \#3 LEUO_TX \#8 LEUO_RX \#7 12C0_SDA \#8 12C0_SCL \#7	FRC_DCLK \#8 FRC_DOUT \#7 FRC_DFRAME \#6 MODEM_DCLK \#8 MODEM_DIN \#7 MODEM_DOUT \#6 MODEM_ANTO \#5 MODEM_ANT1 \#4	PRS_CH6 \#8 PRS_CH7 \#7 PRS_CH8 \#6 PRS_CH9 \#5 ACMPO_O \#8 ACMP1_O \#8 DBG_SWO \#1 GPIO_EM4WU9
34	AVDD	Analog power supp				

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
35	PB14	BUSDY BUSCX LFXTAL_N	$\begin{gathered} \text { TIMO_CC0 \#9 } \\ \text { TIM0_CC1 \#8 } \\ \text { TIMO_CC2 \#7 } \\ \text { TIMO_CDTIO \#6 } \\ \text { TIMO_CDTI1 \#5 } \\ \text { TIMO_CDTI2 \#4 } \\ \text { TIM1_CC0 \#9 } \\ \text { TIM1_CC1 \#8 } \\ \text { TIM1_CC2 \#7 } \end{gathered}$ TIM1_CC3 \#6 LETIMO_OUTO \#9 LETIM0_OUT1 \#8 PCNTO_SOIN \#9 PCNT0_S1IN \#8	USO_TX \#9 USO_RX \#8 USO_CLK \#7 USO_CS \#6 USO_CTS \#5 USO_RTS \#4 US1_TX \#9 US1_RX \#8 US1_CLK \#7 US1_CS \#6 US1_CTS \#5 US1_RTS \#4 LEUO_TX \#9 LEU0_RX \#8 I2C0_SDA \#9 12C0_SCL \#8	FRC_DCLK \#9 FRC_DOUT \#8 FRC_DFRAME \#7 MODEM_DCLK \#9 MODEM_DIN \#8 MODEM_DOUT \#7 MODEM_ANT0 \#6 MODEM_ANT1 \#5	CMU_CLK1 \#1 PRS_CH6 \#9 PRS_CH7 \#8 PRS_CH8 \#7 PRS_CH9 \#6 ACMPO_O \#9 ACMP1_O \#9
36	PB15	BUSCY BUSDX LFXTAL_P	$\begin{gathered} \text { TIMO_CC0 \#10 } \\ \text { TIM0_CC1 \#9 } \\ \text { TIM0_CC2 \#8 } \\ \text { TIM0_CDTIO \#7 } \\ \text { TIM0_CDTI1 \#6 } \\ \text { TIMO_CDTI2 \#5 } \\ \text { TIM1_CC0 \#10 } \\ \text { TIM1_CC1 \#9 } \\ \text { TIM1_CC2 \#8 } \\ \text { TIM1_CC3 \#7 LE- } \\ \text { TIM0_OUT0 \#10 } \\ \text { LETIM0_OUT1 \#9 } \\ \text { PCNT0_SOIN \#10 } \\ \text { PCNT0_S1IN \#9 } \end{gathered}$	$\begin{gathered} \text { USO_TX\#10 } \\ \text { USO_RX \#9 } \\ \text { USO_CLK \#8 } \\ \text { USO_CS \#7 } \\ \text { USO_CTS \#6 } \\ \text { USO_RTS \#5 } \\ \text { US1_TX\#10 } \\ \text { US1_RX\#9 } \\ \text { US1_CLK \#8 } \\ \text { US1_CS\#7 } \\ \text { US1_CTS \#6 } \\ \text { US1_RTS \#5 } \\ \text { LEU0_TX\#10 } \\ \text { LEUO_RX \#9 } \\ \text { I2C0_SDA \#10 } \\ \text { I2CO_SCL \#9 } \end{gathered}$	FRC_DCLK \#10 FRC_DOUT \#9 FRC_DFRAME \#8 MODEM_DCLK \#10 MODEM_DIN \#9 MODEM_DOUT \#8 MODEM_ANT0 \#7 MODEM_ANT1 \#6	CMU_CLKO \#1 PRS_CH6 \#10 PRS_CH7 \#9 PRS_CH8 \#8 PRS_CH9 \#7 ACMPO_O \#10 ACMP1_O \#10
37	VREGVSS	Voltage regulator VSS				
38	VREGSW	DCDC regulator switching node				
39	VREGVDD	Voltage regulator VDD input				
40	DVDD	Digital power supply				
41	DECOUPLE	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.				
42	IOVDD	Digital IO power supply .				
43	PC6	BUSBY BUSAX	TIMO_CCO \#11 TIM0_CC1 \#10 TIMO_CC2 \#9 TIMO_CDTIO \#8 TIMO_CDTI1 \#7 TIMO_CDTI2 \#6 TIM1_CC0 \#11 TIM1_CC1 \#10 TIM1_CC2 \#9 TIM1_CC3 \#8 LE- TIMO_OUT0 \#11 LETIMO_OUT1 \#10 PCNTO_SOIN \#11 PCNT0_S1IN \#10	$\begin{aligned} & \hline \text { US0_TX \#11 } \\ & \text { US0_RX \#10 } \\ & \text { US0_CLK \#9 } \\ & \text { US0_CS \#8 } \\ & \text { US0_CTS \#7 } \\ & \text { US0_RTS \#6 } \\ & \text { US1_TX \#11 } \\ & \text { US1_RX \#10 } \\ & \text { US1_CLK \#9 } \\ & \text { US1_CS \#8 } \\ & \text { US1_CTS \#7 } \\ & \text { US1_RTS \#6 } \\ & \text { LEU0_TX \#11 } \\ & \text { LEU0_RX \#10 } \\ & \text { I2C0_SDA \#11 } \\ & \text { I2C0_SCL \#10 } \end{aligned}$	FRC_DCLK \#11 FRC_DOUT \#10 FRC_DFRAME \#9 MODEM_DCLK \#11 MODEM_DIN \#10 MODEM_DOUT \#9 MODEM_ANT0 \#8 MODEM_ANT1 \#7	CMU_CLK0 \#2 PRS_CH0 \#8 PRS_CH9 \#11 PRS_CH10 \#0 PRS_CH11 \#5 ACMPO_O \#11 ACMP1_O \#11

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
44	PC7	BUSAY BUSBX	TIMO CCO \#12 TIM0_CC1 \#11 TIMO_CC2 \#10 TIMO_CDTIO \#9 TIMO_CDTI1 \#8 TIMO_CDTI2 \#7 TIM1_CC0 \#12 TIM1_CC1 \#11 TIM1_CC2 \#10 TIM1_CC3 \#9 LE- TIMO_OUT0 \#12 LETIMO_OUT1 \#11 PCNTO_SOIN \#12 PCNTO_S1IN \#11	$\begin{gathered} \text { USO_TX \#12 } \\ \text { US0_RX \#11 } \\ \text { USO_CLK \#10 } \\ \text { US0_CS \#9 } \\ \text { US0_CTS \#8 } \\ \text { US0_RTS \#7 } \\ \text { US1_TX \#12 } \\ \text { US1_RX\#11 } \\ \text { US1_CLK \#10 } \\ \text { US1_CS \#9 } \\ \text { US1_CTS \#8 } \\ \text { US1_RTS \#7 } \\ \text { LEU0_TX\#12 } \\ \text { LEU0_RX \#11 } \\ \text { I2C0_SDA \#12 } \\ \text { I2C0_SCL \#11 } \end{gathered}$	FRC_DCLK \#12 FRC_DOUT \#11 FRC_DFRAME \#10 MODEM_DCLK \#12 MODEM_DIN \#11 MODEM_DOUT \#10 MODEM_ANT0 \#9 MODEM_ANT1 \#8	CMU_CLK1 \#2 PRS_CHO \#9 PRS_CH9 \#12 PRS_CH10 \#1 PRS_CH11 \#0 ACMP0_O \#12 ACMP1_O \#12
45	PC8	BUSBY BUSAX	TIMO_CCO \#13 TIM0_CC1 \#12 TIMO_CC2 \#11 TIMO_CDTIO \#10 TIMO_CDTI1 \#9 TIMO_CDTI2 \#8 TIM1_CC0 \#13 TIM1_CC1 \#12 TIM1_CC2 \#11 TIM1_CC3 \#10 LETIMO_OUT0 \#13 LETIMO_OUT1 \#12 PCNTO_SOIN \#13 PCNT0_S1IN \#12	USO_TX \#13 USO_RX \#12 USO_CLK \#11 USO_CS \#10 USO_CTS \#9 USO_RTS \#8 US1_TX \#13 US1_RX \#12 US1_CLK \#11 US1_CS \#10 US1_CTS \#9 US1_RTS \#8 LEUO_TX \#13 LEUO_RX \#12 I2CO_SDA \#13 12C0_SCL \#12	FRC_DCLK \#13 FRC_DOUT \#12 FRC_DFRAME \#11 MODEM_DCLK \#13 MODEM_DIN \#12 MODEM_DOUT \#11 MODEM_ANT0 \#10 MODEM_ANT1 \#9	PRS_CH0 \#10 PRS_CH9 \#13 PRS_CH10 \#2 PRS_CH11 \#1 ACMP0_O \#13 ACMP1_O \#13
46	PC9	BUSAY BUSBX	TIMO_CCO \#14 TIM0_CC1 \#13 TIMO_CC2 \#12 TIMO_CDTIO \#11 TIMO_CDTI1 \#10 TIMO_CDTI2 \#9 TIM1_CC0 \#14 TIM1_CC1 \#13 TIM1_CC2 \#12 TIM1_CC3 \#11 LE- TIM0_OUT0 \#14 LETIMO_OUT1 \#13 PCNTO_SOIN \#14 PCNTO_S1IN \#13	$\begin{aligned} & \text { USO_TX \#14 } \\ & \text { USO_RX \#13 } \\ & \text { USO_CLK \#12 } \\ & \text { USO_CS \#11 } \\ & \text { USO_CTS \#10 } \\ & \text { USO_RTS \#9 } \\ & \text { US1_TX \#14 } \\ & \text { US1_RX \#13 } \\ & \text { US1_CLK \#12 } \\ & \text { US1_CS \#11 } \\ & \text { US1_CTS \#10 } \\ & \text { US1_RTS \#9 } \\ & \text { LEU0_TX\#14 } \\ & \text { LEUO_RX \#13 } \\ & \text { I2CO_SDA \#14 } \\ & \text { I2CO_SCL \#13 } \end{aligned}$	FRC_DCLK \#14 FRC_DOUT \#13 FRC_DFRAME \#12 MODEM_DCLK \#14 MODEM_DIN \#13 MODEM_DOUT \#12 MODEM_ANT0 \#11 MODEM_ANT1 \#10	PRS CH0 \#11 PRS_CH9 \#14 PRS_CH10 \#3 PRS_CH11 \#2 ACMPO_O \#14 ACMP1_O \#14

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
47	PC10	BUSBY BUSAX	$\begin{gathered} \text { TIM0_CC0 \#15 } \\ \text { TIM0_CC1 \#14 } \\ \text { TIM0_CC2 \#13 } \\ \text { TIM0_CDTIO \#12 } \\ \text { TIM0_CDTI1 \#11 } \\ \text { TIM0_CDTI2 \#10 } \\ \text { TIM1_CC0 \#15 } \\ \text { TIM1_CC1 \#14 } \\ \text { TIM1_CC2 \#13 } \\ \text { TIM1_CC3 \#12 LE- } \\ \text { TIM0_OUT0 \#15 } \\ \text { LETIM0_OUT1 \#14 } \\ \text { PCNT0_SOIN \#15 } \\ \text { PCNT0_S1IN \#14 } \end{gathered}$	USO_TX \#15 USO_RX \#14 USO_CLK \#13 USO_CS \#12 USO_CTS \#11 USO_RTS \#10 US1_TX \#15 US1_RX \#14 US1_CLK \#13 US1_CS \#12 US1_CTS \#11 US1_RTS \#10 LEUO_TX\#15 LEUO_RX \#14 I2CO_SDA \#15 I2C0_SCL \#14	FRC_DCLK \#15 FRC_DOUT \#14 FRC_DFRAME \#13 MODEM_DCLK \#15 MODEM_DIN \#14 MODEM_DOUT \#13 MODEM_ANT0 \#12 MODEM_ANT1 \#11	CMU_CLK1 \#3 PRS_CH0 \#12 PRS_CH9 \#15 PRS_CH10 \#4 PRS_CH11 \#3 ACMP0_O \#15 ACMP1_O \#15 GPIO_EM4WU12
48	PC11	BUSAY BUSBX	$\begin{gathered} \text { TIM0_CC0 \#16 } \\ \text { TIM0_CC1 \#15 } \\ \text { TIM0_CC2 \#14 } \\ \text { TIM0_CDTI0 \#13 } \\ \text { TIM0_CDTI1 \#12 } \\ \text { TIM0_CDTI2 \#11 } \\ \text { TIM1_CC0 \#16 } \\ \text { TIM1_CC1 \#15 } \\ \text { TIM1_CC2 \#14 } \\ \text { TIM1_CC3 \#13 LE- } \\ \text { TIM0_OUT0 \#16 } \\ \text { LETIM0_OUT1 \#15 } \\ \text { PCNT0_SOIN \#16 } \\ \text { PCNT0_S1IN \#15 } \end{gathered}$	$\begin{aligned} & \text { USO_TX \#16 } \\ & \text { USO_RX \#15 } \\ & \text { USO_CLK \#14 } \\ & \text { USO_CS \#13 } \\ & \text { USO_CTS \#12 } \\ & \text { USO_RTS \#11 } \\ & \text { US1_TX\#16 } \\ & \text { US1_RX \#15 } \\ & \text { US1_CLK \#14 } \\ & \text { US1_CS \#13 } \\ & \text { US1_CTS \#12 } \\ & \text { US1_RTS \#11 } \\ & \text { LEU0_TX\#16 } \\ & \text { LEUO_RX \#15 } \\ & \text { I2C0_SDA \#16 } \\ & \text { I2CO_SCL \#15 } \end{aligned}$	FRC_DCLK \#16 FRC_DOUT \#15 FRC_DFRAME \#14 MODEM_DCLK \#16 MODEM_DIN \#15 MODEM_DOUT \#14 MODEM_ANT0 \#13 MODEM_ANT1 \#12	CMU_CLKO \#3 PRS CH0 \#13 PRS_CH9 \#16 PRS_CH10 \#5 PRS_CH11 \#4 ACMP0 O \#16 ACMP1_O \#16 DBG_SWO \#3

6.2.1 QFN48 2.4 GHz GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number from 15 down to 0 .

Table 6.4. QFN48 2.4 GHz GPIO Pinout

Port	$\begin{gathered} \text { Pin } \\ 15 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 14 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 13 \end{gathered}$	$\begin{gathered} \text { Pin } \\ 12 \end{gathered}$	Pin	$\begin{gathered} \text { Pin } \\ 10 \end{gathered}$	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { PA5 } \\ & \text { (5V) } \end{aligned}$	$\begin{aligned} & \text { PA4 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PA3 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PA2 } \\ & (5 \mathrm{~V}) \end{aligned}$	PA1	PA0
Port B	PB15	PB14	$\begin{gathered} \text { PB13 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PB12 } \\ (5 \mathrm{~V}) \end{gathered}$	PB11 (5V)	-	-	-	-	-	-	-	-	-	-	-
Port C	-	-	-	-	$\begin{gathered} \text { PC11 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PC10 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{aligned} & \text { PC9 } \\ & \text { (5V) } \end{aligned}$	$\begin{aligned} & \text { PC8 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{PC} 7 \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PC6 } \\ & (5 \mathrm{~V}) \end{aligned}$	-	-	-	-	-	-
Port D	$\begin{gathered} \text { PD15 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PD14 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PD13 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PD12 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PD11 } \\ (5 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \text { PD10 } \\ (5 \mathrm{~V}) \end{gathered}$	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { PF7 } \\ & \text { (5V) } \end{aligned}$	PF6 (5V)	PF5 (5V)	$\begin{aligned} & \text { PF4 } \\ & (5 \mathrm{~V}) \end{aligned}$	PF3 (5V)	$\begin{aligned} & \text { PF2 } \\ & (5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { PF1 } \\ & \text { (5V) } \end{aligned}$	$\begin{aligned} & \text { PFO } \\ & \text { (5V) } \end{aligned}$

Note:

1. GPIO with 5 V tolerance are indicated by (5 V).
2. The pins PA2, PA3, PA4, PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5 V domains.

Figure 6.3. QFN32 2.4 GHz Device Pinout

Table 6.5. QFN32 2.4 GHz Device Pinout

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
0	VSS	Ground				
1	PF0	BUSBY BUSAX	$\begin{gathered} \text { TIM0_CC0 \#24 } \\ \text { TIM0_CC1 \#23 } \\ \text { TIM0_CC2 \#22 } \\ \text { TIM0_CDTIO \#21 } \\ \text { TIM0_CDTI1 \#20 } \\ \text { TIM0_CDTI2 \#19 } \\ \text { TIM1_CC0 \#24 } \\ \text { TIM1_CC1 \#23 } \\ \text { TIM1_CC2 \#22 } \\ \text { TIM1_CC3 \#21 LE- } \\ \text { TIM0_OUT0 \#24 } \\ \text { LETIM0_OUT1 \#23 } \\ \text { PCNT0_SOIN \#24 } \\ \text { PCNT0_S1IN \#23 } \end{gathered}$	USO_TX \#24 USO_RX \#23 USO_CLK \#22 USO_CS \#21 USO_CTS \#20 USO_RTS \#19 US1_TX \#24 US1_RX \#23 US1_CLK \#22 US1_CS \#21 US1_CTS \#20 US1_RTS \#19 LEUO_TX \#24 LEUO_RX \#23 I2C0_SDA \#24 12C0_SCL \#23	FRC_DCLK \#24 FRC_DOUT \#23 FRC_DFRAME \#22 MODEM DCLK \#24 MODEM_DIN \#23 MODEM_DOUT \#22 MODEM_ANT0 \#21 MODEM_ANT1 \#20	PRS_CHO \#0 PRS_CH1 \#7 PRS_CH2 \#6 PRS_CH3 \#5 ACMP0_O \#24 ACMP1_O \#24 DBG_SWCLKTCK
2	PF1	BUSAY BUSBX	$\begin{gathered} \text { TIM0_CC0 \#25 } \\ \text { TIM0_CC1 \#24 } \\ \text { TIM0_CC2 \#23 } \\ \text { TIM0_CDTIO \#22 } \\ \text { TIM0_CDTI1 \#21 } \\ \text { TIM0_CDTI2 \#20 } \\ \text { TIM1_CC0 \#25 } \\ \text { TIM1_CC1 \#24 } \\ \text { TIM1_CC2 \#23 } \\ \text { TIM1_CC3 \#22 LE- } \\ \text { TIM0_OUT0 \#25 } \\ \text { LETIM0_OUT1 \#24 } \\ \text { PCNT0_SOIN \#25 } \\ \text { PCNT0_S1IN \#24 } \end{gathered}$	$\begin{aligned} & \text { USO_TX \#25 } \\ & \text { USO_RX \#24 } \\ & \text { USO_CLK \#23 } \\ & \text { USO_CS \#22 } \\ & \text { USO_CTS \#21 } \\ & \text { USO_RTS \#20 } \\ & \text { US1_TX \#25 } \\ & \text { US1_RX \#24 } \\ & \text { US1_CLK \#23 } \\ & \text { US1_CS \#22 } \\ & \text { US1_CTS \#21 } \\ & \text { US1_RTS \#20 } \\ & \text { LEU0_TX \#25 } \\ & \text { LEUO_RX \#24 } \\ & \text { I2C0_SDA \#25 } \\ & \text { I2CO_SCL \#24 } \end{aligned}$	FRC_DCLK \#25 FRC_DOUT \#24 FRC_DFRAME \#23 MODEM DCLK \#25 MODEM_DIN \#24 MODEM_DOUT \#23 MODEM_ANT0 \#22 MODEM_ANT1 \#21	PRS_CHO \#1 PRS_CH1 \#0 PRS_CH2 \#7 PRS_CH3 \#6 ACMPO O \#25 ACMP1_O \#25 DBG_SWDIOTMS
3	PF2	BUSBY BUSAX	$\begin{gathered} \text { TIM0_CC0 \#26 } \\ \text { TIM0_CC1 \#25 } \\ \text { TIM0_CC2 \#24 } \\ \text { TIM0_CDTIO \#23 } \\ \text { TIM0_CDTI1 \#22 } \\ \text { TIM0_CDTI2 \#21 } \\ \text { TIM1_CC0 \#26 } \\ \text { TIM1_CC1 \#25 } \\ \text { TIM1_CC2 \#24 } \\ \text { TIM1_CC3 \#23 LE- } \\ \text { TIM0_OUT0 \#26 } \\ \text { LETIM0_OUT1 \#25 } \\ \text { PCNT0_SOIN \#26 } \\ \text { PCNT0_S1IN \#25 } \end{gathered}$	$\begin{aligned} & \text { USO_TX \#26 } \\ & \text { USO_RX \#25 } \\ & \text { USO_CLK \#24 } \\ & \text { USO_CS \#23 } \\ & \text { USO_CTS \#22 } \\ & \text { USO_RTS \#21 } \\ & \text { US1_TX \#26 } \\ & \text { US1_RX \#25 } \\ & \text { US1_CLK \#24 } \\ & \text { US1_CS \#23 } \\ & \text { US1_CTS \#22 } \\ & \text { US1_RTS \#21 } \\ & \text { LEU0_TX \#26 } \\ & \text { LEUO_RX \#25 } \\ & \text { I2C0_SDA \#26 } \\ & \text { I2C0_SCL \#25 } \end{aligned}$	FRC DCLK \#26 FRC_DOUT \#25 FRC_DFRAME \#24 MODEM_DCLK \#26 MODEM DIN \#25 MODEM_DOUT \#24 MODEM_ANT0 \#23 MODEM_ANT1 \#22	CMU CLKO \#6 PRS_CHO \#2 PRS_CH1 \#1 PRS_CH2 \#0 PRS_CH3 \#7 ACMPO_O \#26 ACMP1_O \#26 DBG_TDO DBG_SWO \#0 GPIO_EM4WU0

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
4	PF3	BUSAY BUSBX	TIMO CCO \#27 TIM0_CC1 \#26 TIMO_CC2 \#25 TIMO_CDTIO \#24 TIM0_CDTI1 \#23 TIMO_CDTI2 \#22 TIM1_CC0 \#27 TIM1_CC1 \#26 TIM1_CC2 \#25 TIM1_CC3 \#24 LE- TIMO_OUTO \#27 LETIMO_OUT1 \#26 PCNTO_SOIN \#27 PCNTO_S1IN \#26	USO_TX \#27 USO_RX \#26 USO_CLK \#25 USO_CS \#24 USO_CTS \#23 USO_RTS \#22 US1_TX \#27 US1_RX \#26 US1_CLK \#25 US1_CS \#24 US1_CTS \#23 US1_RTS \#22 LEUO_TX \#27 LEUO_RX \#26 I2C0_SDA \#27 I2CO_SCL \#26	FRC_DCLK \#27 FRC_DOUT \#26 FRC_DFRAME \#25 MODEM_DCLK \#27 MODEM_DIN \#26 MODEM_DOUT \#25 MODEM_ANT0 \#24 MODEM_ANT1 \#23	CMU_CLK1 \#6 PRS_CHO \#3 PRS_CH1 \#2 PRS_CH2 \#1 PRS_CH3 \#0 ACMPO_O \#27 ACMP1_O \#27 DBG_TDI
5	RFVDD	Radio power supply				
6	HFXTAL_N	High Frequency Crystal input pin.				
7	HFXTAL_P	High Frequency Crystal output pin.				
8	RESETn	Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.				
9	RFVSS	Radio Ground				
10	PAVSS	Power Amplifier (PA) voltage regulator VSS				
11	2G4RF_ION	2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.				
12	2G4RF_IOP	2.4 GHz Differential RF input/output, positive path.				
13	PAVDD	Power Amplifier (PA) voltage regulator VDD input				
14	PD13	BUSCY BUSDX	TIMO CCO \#21 TIM0_CC1 \#20 TIMO_CC2 \#19 TIMO_CDTIO \#18 TIMO_CDTI1 \#17 TIMO_CDTI2 \#16 TIM1_CC0 \#21 TIM1_CC1 \#20 TIM1_CC2 \#19 TIM1_CC3 \#18 LE- TIMO_OUTO \#21 LETIMO_OUT1 \#20 PCNTO_SOIN \#21 PCNTO_S1IN \#20	$\begin{gathered} \text { USO_TX \#21 } \\ \text { US0_RX \#20 } \\ \text { USO_CLK \#19 } \\ \text { US0_CS \#18 } \\ \text { US0_CTS \#17 } \\ \text { USO_RTS \#16 } \\ \text { US1_TX \#21 } \\ \text { US1_RX \#20 } \\ \text { US1_CLK \#19 } \\ \text { US1_CS \#18 } \\ \text { US1_CTS \#17 } \\ \text { US1_RTS \#16 } \\ \text { LEU0_TX \#21 } \\ \text { LEU0_RX \#20 } \\ \text { I2C0_SDA \#21 } \\ \text { I2C0_SCL \#20 } \end{gathered}$	FRC DCLK \#21 FRC_DOUT \#20 FRC_DFRAME \#19 MODEM_DCLK \#21 MODEM DIN \#20 MODEM_DOUT \#19 MODEM_ANT0 \#18 MODEM_ANT1 \#17	PRS_CH3 \#12 PRS_CH4 \#4 PRS_CH5 \#3 PRS_CH6 \#15 ACMP0_O \#21 ACMP1_O \#21

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
15	PD14	BUSDY BUSCX	$\begin{gathered} \text { TIMO_CC0 \#22 } \\ \text { TIM0_CC1 \#21 } \\ \text { TIM0_CC2 \#20 } \\ \text { TIM0_CDTIO \#19 } \\ \text { TIM0_CDTI1 \#18 } \\ \text { TIM0_CDTI2 \#17 } \\ \text { TIM1_CC0 \#22 } \\ \text { TIM1_CC1 \#21 } \\ \text { TIM1_CC2 \#20 } \\ \text { TIM1_CC3 \#19 LE- } \\ \text { TIM0_OUT0 \#22 } \\ \text { LETIM0_OUT1 \#21 } \\ \text { PCNT0_SOIN \#22 } \\ \text { PCNT0_S1IN \#21 } \end{gathered}$	$\begin{gathered} \text { USO_TX \#22 } \\ \text { US0_RX \#21 } \\ \text { USO_CLK \#20 } \\ \text { US0_CS \#19 } \\ \text { USO_CTS \#18 } \\ \text { US0_RTS \#17 } \\ \text { US1_TX \#22 } \\ \text { US1_RX \#21 } \\ \text { US1_CLK \#20 } \\ \text { US1_CS \#19 } \\ \text { US1_CTS \#18 } \\ \text { US1_RTS \#17 } \\ \text { LEU0_TX \#22 } \\ \text { LEU0_RX \#21 } \\ \text { I2C0_SDA \#22 } \\ \text { I2C0_SCL \#21 } \end{gathered}$	FRC_DCLK \#22 FRC_DOUT \#21 FRC_DFRAME \#20 MODEM_DCLK \#22 MODEM_DIN \#21 MODEM_DOUT \#20 MODEM_ANTO \#19 MODEM_ANT1 \#18	CMU_CLKO \#5 PRS_CH3 \#13 PRS_CH4 \#5 PRS_CH5 \#4 PRS_CH6 \#16 ACMP0_O \#22 ACMP1_O \#22 GPIO_EM4WU4
16	PD15	BUSCY BUSDX	$\begin{gathered} \text { TIMO_CC0 \#23 } \\ \text { TIM0_CC1 \#22 } \\ \text { TIM0_CC2 \#21 } \\ \text { TIM0_CDTIO \#20 } \\ \text { TIM0_CDTI1 \#19 } \\ \text { TIM0_CDTI2 \#18 } \\ \text { TIM1_CC0 \#23 } \\ \text { TIM1_CC1 \#22 } \\ \text { TIM1_CC2 \#21 } \\ \text { TIM1_CC3 \#20 LE- } \\ \text { TIM0_OUT0 \#23 } \\ \text { LETIM0_OUT1 \#22 } \\ \text { PCNT0_SOIN \#23 } \\ \text { PCNT0_S1IN \#22 } \end{gathered}$	$\begin{aligned} & \text { USO_TX \#23 } \\ & \text { USO_RX \#22 } \\ & \text { USO_CLK \#21 } \\ & \text { USO_CS \#20 } \\ & \text { USO_CTS \#19 } \\ & \text { USO_RTS \#18 } \\ & \text { US1_TX \#23 } \\ & \text { US1_RX \#22 } \\ & \text { US1_CLK \#21 } \\ & \text { US1_CS \#20 } \\ & \text { US1_CTS \#19 } \\ & \text { US1_RTS \#18 } \\ & \text { LEU0_TX \#23 } \\ & \text { LEUO_RX \#22 } \\ & \text { I2CO_SDA \#23 } \\ & \text { I2CO_SCL \#22 } \end{aligned}$	FRC_DCLK \#23 FRC_DOUT \#22 FRC_DFRAME \#21 MODEM_DCLK \#23 MODEM_DIN \#22 MODEM_DOUT \#21 MODEM_ANTO \#20 MODEM_ANT1 \#19	CMU_CLK1 \#5 PRS_CH3 \#14 PRS_CH4 \#6 PRS_CH5 \#5 PRS_CH6 \#17 ACMP0_O \#23 ACMP1_O \#23 DBG_SWO \#2
17	PA0	$\begin{aligned} & \text { BUSDY BUSCX } \\ & \text { ADCO_EXTN } \end{aligned}$	$\begin{gathered} \text { TIM0_CC0 \#0 } \\ \text { TIM0_CC1 \#31 } \\ \text { TIM0_CC2 \#30 } \\ \text { TIM0_CDTIO \#29 } \\ \text { TIM0_CDTI1 \#28 } \\ \text { TIM0_CDTI2 \#27 } \\ \text { TIM1_CC0 \#0 } \\ \text { TIM1_CC1 \#31 } \\ \text { TIM1_CC2 \#30 } \\ \text { TIM1_CC3 \#29 LE- } \\ \text { TIM0_OUT0 \#0 LE- } \\ \text { TIM0_OUT1 \#31 } \\ \text { PCNT0_SOIN \#0 } \\ \text { PCNT0_S1IN \#31 } \end{gathered}$	USO_TX \#0 USO_RX \#31 USO_CLK \#30 USO_CS \#29 USO_CTS \#28 USO_RTS \#27 US1_TX \#0 US1_RX \#31 US1_CLK \#30 US1_CS \#29 US1_CTS \#28 US1_RTS \#27 LEUO_TX \#0 LEU0_RX \#31 I2CO_SDA \#0 12C0_SCL \#31	FRC_DCLK \#0 FRC_DOUT \#31 FRC_DFRAME \#30 MODEM DCLK \#0 MODEM_DIN \#31 MODEM_DOUT \#30 MODEM_ANT0 \#29 MODEM_ANT1 \#28	CMU_CLK1 \#0 PRS_CH6 \#0 PRS_CH7 \#10 PRS_CH8 \#9 PRS_CH9 \#8 ACMPO_O \#0 ACMP1_O \#0

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
18	PA1	BUSCY BUSDX ADCO_EXTP	TIMO_CC0 \#1 TIMO_CC1 \#0 TIMO_CC2 \#31 TIMO_CDTIO \#30 TIMO_CDTI1 \#29 TIMO_CDTI2 \#28 TIM1_CC0 \#1 TIM1_CC1 \#0 TIM1_CC2 \#31 TIM1_CC3 \#30 LETIM0_OUT0 \#1 LETIM0_OUT1 \#0 PCNTO_SOIN \#1 PCNT0_S1IN \#0	$\begin{gathered} \text { USO_TX \#1 } \\ \text { USO_RX \#0 } \\ \text { USO_CLK \#31 } \\ \text { USO_CS \#30 } \\ \text { USO_CTS \#29 } \\ \text { USO_RTS \#28 } \\ \text { US1_TX\#1 } \\ \text { US1_RX \#0 } \\ \text { US1_CLK \#31 } \\ \text { US1_CS \#30 } \\ \text { US1_CTS \#29 } \\ \text { US1_RTS \#28 } \\ \text { LEUO_TX\#1 } \\ \text { LEUO_RX \#0 } \\ \text { I2CO_SDA \#1 } \\ \text { I2C0_SCL \#0 } \end{gathered}$	FRC_DCLK \#1 FRC_DOUT \#0 FRC_DFRAME \#31 MODEM_DCLK \#1 MODEM_DIN \#0 MODEM_DOUT \#31 MODEM_ANT0 \#30 MODEM_ANT1 \#29	CMU_CLKO \#0 PRS_CH6 \#1 PRS_CH7 \#0 PRS_CH8 \#10 PRS_CH9 \#9 ACMPO_O \#1 ACMP1_O \#1
19	PB11	BUSCY BUSDX	TIMO_CCO \#6 TIMO_CC1 \#5 TIMO_CC2 \#4 TIMO_CDTIO \#3 TIMO_CDTI1 \#2 TIMO_CDTI2 \#1 TIM1_CC0 \#6 TIM1_CC1 \#5 TIM1_CC2 \#4 TIM1_CC3 \#3 LE- TIMO_OUT0 \#6 LE- TIM0_OUT1 \#5 PCNTO_SOIN \#6 PCNT0_S1IN \#5	USO_TX \#6 USO_RX \#5 USO_CLK \#4 USO_CS \#3 USO_CTS \#2 USO_RTS \#1 US1_TX \#6 US1_RX \#5 US1_CLK \#4 US1_CS \#3 US1_CTS \#2 US1_RTS \#1 LEUO_TX \#6 LEUO_RX \#5 I2C0_SDA \#6 12CO_SCL \#5	FRC_DCLK \#6 FRC_DOUT \#5 FRC_DFRAME \#4 MODEM_DCLK \#6 MODEM_DIN \#5 MODEM_DOUT \#4 MODEM_ANTO \#3 MODEM_ANT1 \#2	PRS CH6 \#6 PRS_CH7 \#5 PRS_CH8 \#4 PRS_CH9 \#3 ACMPO_O \#6 ACMP1_O \#6
20	PB12	BUSDY BUSCX	TIMO_CCO \#7 TIM0_CC1 \#6 TIMO_CC2 \#5 TIMO_CDTIO \#4 TIMO_CDTI1 \#3 TIMO_CDTI2 \#2 TIM1_CC0 \#7 TIM1_CC1 \#6 TIM1_CC2 \#5 TIM1_CC3 \#4 LE- TIMO_OUT0 \#7 LE- TIM0_OUT1 \#6 PCNTO_SOIN \#7 PCNT0_S1IN \#6	USO_TX \#7 USO_RX \#6 USO_CLK \#5 USO_CS \#4 USO_CTS \#3 USO_RTS \#2 US1_TX \#7 US1_RX \#6 US1_CLK \#5 US1_CS \#4 US1_CTS \#3 US1_RTS \#2 LEUO_TX \#7 LEUO_RX \#6 I2C0_SDA \#7 12C0_SCL \#6	FRC_DCLK \#7 FRC_DOUT \#6 FRC_DFRAME \#5 MODEM_DCLK \#7 MODEM_DIN \#6 MODEM_DOUT \#5 MODEM_ANTO \#4 MODEM_ANT1 \#3	PRS_CH6 \#7 PRS_CH7 \#6 PRS_CH8 \#5 PRS_CH9 \#4 ACMPO_O \#7 ACMP1_O \#7

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
21	PB13	BUSCY BUSDX	TIMO_CCO \#8 TIM0_CC1 \#7 TIM0_CC2 \#6 TIMO_CDTIO \#5 TIMO_CDTI1 \#4 TIMO_CDTI2 \#3 TIM1_CC0 \#8 TIM1_CC1 \#7 TIM1_CC2 \#6 TIM1_CC3 \#5 LE- TIMO_OUT0 \#8 LE- TIM0_OUT1 \#7 PCNTO_SOIN \#8 PCNT0_S1IN \#7	USO_TX \#8 USO_RX \#7 USO_CLK \#6 USO_CS \#5 USO_CTS \#4 USO_RTS \#3 US1_TX \#8 US1_RX \#7 US1_CLK \#6 US1_CS \#5 US1_CTS \#4 US1_RTS \#3 LEUO_TX \#8 LEU0_RX \#7 I2C0_SDA \#8 12C0_SCL \#7	FRC_DCLK \#8 FRC_DOUT \#7 FRC_DFRAME \#6 MODEM_DCLK \#8 MODEM_DIN \#7 MODEM_DOUT \#6 MODEM_ANTO \#5 MODEM_ANT1 \#4	PRS_CH6 \#8 PRS_CH7 \#7 PRS_CH8 \#6 PRS_CH9 \#5 ACMPO_O \#8 ACMP1_O \#8 DBG_SWO \#1 GPIO_EM4WU9
22	AVDD	Analog power supply .				
23	PB14	BUSDY BUSCX LFXTAL_N	TIMO_CCO \#9 TIMO_CC1 \#8 TIMO_CC2 \#7 TIMO_CDTIO \#6 TIMO_CDTI1 \#5 TIMO_CDTI2 \#4 TIM1_CC0 \#9 TIM1_CC1 \#8 TIM1_CC2 \#7 TIM1_CC3 \#6 LE- TIMO_OUT0 \#9 LE- TIM0_OUT1 \#8 PCNTO_SOIN \#9 PCNT0_S1IN \#8	USO_TX \#9 USO_RX \#8 USO_CLK \#7 USO_CS \#6 USO_CTS \#5 USO_RTS \#4 US1_TX \#9 US1_RX \#8 US1_CLK \#7 US1_CS \#6 US1_CTS \#5 US1_RTS \#4 LEUO_TX \#9 LEU0_RX \#8 I2C0_SDA \#9 I2C0_SCL \#8	FRC_DCLK \#9 FRC_DOUT \#8 FRC_DFRAME \#7 MODEM_DCLK \#9 MODEM_DIN \#8 MODEM_DOUT \#7 MODEM_ANTO \#6 MODEM_ANT1 \#5	CMU_CLK1 \#1 PRS_CH6 \#9 PRS_CH7 \#8 PRS_CH8 \#7 PRS_CH9 \#6 ACMP0_O \#9 ACMP1_O \#9
24	PB15	BUSCY BUSDX LFXTAL_P	TIMO_CCO \#10 TIM0_CC1 \#9 TIMO_CC2 \#8 TIMO_CDTIO \#7 TIMO_CDTI1 \#6 TIMO_CDTI2 \#5 TIM1_CC0 \#10 TIM1_CC1 \#9 TIM1_CC2 \#8 TIM1_CC3 \#7 LE- TIM0_OUT0 \#10 LETIM0_OUT1 \#9 PCNTO_SOIN \#10 PCNT0_S1IN \#9	$\begin{gathered} \text { USO_TX \#10 } \\ \text { US0_RX \#9 } \\ \text { US0_CLK \#8 } \\ \text { US0_CS \#7 } \\ \text { USO_CTS \#6 } \\ \text { US0_RTS \#5 } \\ \text { US1_TX\#10 } \\ \text { US1_RX \#9 } \\ \text { US1_CLK \#8 } \\ \text { US1_CS \#7 } \\ \text { US1_CTS \#6 } \\ \text { US1_RTS \#5 } \\ \text { LEU0_TX\#10 } \\ \text { LEU0_RX \#9 } \\ \text { I2C0_SDA \#10 } \\ \text { I2C0_SCL \#9 } \end{gathered}$	FRC_DCLK \#10 FRC_DOUT \#9 FRC_DFRAME \#8 MODEM_DCLK \#10 MODEM_DIN \#9 MODEM_DOUT \#8 MODEM_ANT0 \#7 MODEM_ANT1 \#6	CMU_CLKO \#1 PRS_CH6 \#10 PRS_CH7 \#9 PRS_CH8 \#8 PRS_CH9 \#7 ACMPO_O \#10 ACMP1_O \#10
25	VREGVSS	Voltage regulator VSS				
26	VREGSW	DCDC regulator switching node				
27	VREGVDD	Voltage regulator VDD input				
28	DVDD	Digital power supply .				
29	DECOUPLE	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.				
30	IOVDD	Digital IO power supply .				

Pin		Pin Alternate Functionality / Description				
Pin \#	Pin Name	Analog	Timers	Communication	Radio	Other
31	PC10	BUSBY BUSAX	TIMO CCO \#15 TIM0_CC1 \#14 TIMO_CC2 \#13 TIMO_CDTIO \#12 TIMO_CDTI1 \#11 TIMO_CDTI2 \#10 TIM1_CC0 \#15 TIM1_CC1 \#14 TIM1_CC2 \#13 TIM1_CC3 \#12 LE- TIMO_OUT0 \#15 LETIMO_OUT1 \#14 PCNTO_SOIN \#15 PCNTO_S1IN \#14	USO_TX \#15 USO_RX \#14 USO_CLK \#13 USO_CS \#12 USO_CTS \#11 USO_RTS \#10 US1_TX \#15 US1_RX \#14 US1_CLK \#13 US1_CS \#12 US1_CTS \#11 US1_RTS \#10 LEU0_TX \#15 LEU0_RX \#14 I2C0_SDA \#15 I2C0_SCL \#14	FRC_DCLK \#15 FRC_DOUT \#14 FRC_DFRAME \#13 MODEM_DCLK \#15 MODEM DIN \#14 MODEM_DOUT \#13 MODEM_ANT0 \#12 MODEM_ANT1 \#11	CMU_CLK1 \#3 PRS_CH0 \#12 PRS_CH9 \#15 PRS_CH10 \#4 PRS_CH11 \#3 ACMP0_O \#15 ACMP1_O \#15 GPIO_EM4WU12
32	PC11	BUSAY BUSBX	TIMO_CCO \#16 TIMO_CC1 \#15 TIMO_CC2 \#14 TIMO_CDTIO \#13 TIMO_CDTI1 \#12 TIMO_CDTI2 \#11 TIM1_CC0 \#16 TIM1_CC1 \#15 TIM1_CC2 \#14 TIM1_CC3 \#13 LE- TIMO_OUT0 \#16 LETIMO_OUT1 \#15 PCNTO_SOIN \#16 PCNTO_S1IN \#15	USO_TX \#16 USO_RX \#15 USO_CLK \#14 USO_CS \#13 USO_CTS \#12 USO_RTS \#11 US1_TX \#16 US1_RX \#15 US1_CLK \#14 US1_CS \#13 US1_CTS \#12 US1_RTS \#11 LEUO_TX\#16 LEUO_RX \#15 I2C0_SDA \#16 I2C0_SCL \#15	FRC_DCLK \#16 FRC_DOUT \#15 FRC_DFRAME \#14 MODEM_DCLK \#16 MODEM_DIN \#15 MODEM_DOUT \#14 MODEM_ANT0 \#13 MODEM_ANT1 \#12	CMU_CLK0 \#3 PRS_CH0 \#13 PRS_CH9 \#16 PRS_CH10 \#5 PRS_CH11 \#4 ACMPO_O \#16 ACMP1_O \#16 DBG_SWO \#3

6.3.1 QFN32 2.4 GHz GPIO Overview

The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), with individual pins on each port indicated by a number from 15 down to 0 .

Table 6.6. QFN32 2.4 GHz GPIO Pinout

| Port | Pin
 15 | Pin
 14 | Pin
 13 | Pin
 12 | Pin
 11 | Pin
 10 | Pin 9 | Pin 8 | Pin 7 | Pin 6 | Pin 5 | Pin 4 | Pin 3 | Pin 2 | Pin 1 | Pin 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Port A | - | - | - | - | - | - | - | - | - | - | - | - | - | - | PA1 | PA0 |
| Port B | PB15 | PB14 | PB13
 $(5 \mathrm{~V})$ | PB12
 $(5 \mathrm{~V})$ | PB11
 $(5 \mathrm{~V})$ | - | - | - | - | - | - | - | - | - | - | - |
| Port C | - | - | - | - | PC11
 $(5 \mathrm{~V})$ | PC10
 $(5 \mathrm{~V})$ | - | - | - | - | - | - | - | - | - | - |
| Port D | PD15
 $(5 \mathrm{~V})$ | PD14
 $(5 \mathrm{~V})$ | PD13
 $(5 \mathrm{~V})$ | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Port F | - | - | - | - | - | - | - | - | - | - | - | - | PF3
 $(5 \mathrm{~V})$ | PF2
 $(5 \mathrm{~V})$ | PF1
 $(5 \mathrm{~V})$ | PF0
 $(5 \mathrm{~V})$ |

Note:

1. GPIO with 5 V tolerance are indicated by (5 V).
2. The pins PB11, PB12, PB13, PD13, PD14, and PD15 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hardware compatibility, do not use these pins with 5 V domains.

6.4 Alternate Functionality Overview

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 6.7. Alternate Functionality Overview

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
ACMPO_O	$\begin{aligned} & \text { 0: PAO } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Analog comparator ACMP0, digital output.
ACMP1_O	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Analog comparator ACMP1, digital output.
ADCO_EXTN	0: PAO								Analog to digital converter ADCO external reference input negative pin
ADC0_EXTP	0: PA1								Analog to digital converter ADC0 external reference input positive pin
CMU_CLK0	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PB15 } \\ & \text { 2: PC6 } \\ & \text { 3: PC11 } \end{aligned}$	5: PD14 6: PF2 7: PF7							Clock Management Unit, clock output number 0 .
CMU_CLK1	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PB14 } \\ & \text { 2: PC7 } \\ & \text { 3: PC10 } \end{aligned}$	$\begin{aligned} & \text { 4: PD10 } \\ & \text { 5: PD15 } \\ & \text { 6: PF3 } \\ & \text { 7: PF6 } \end{aligned}$							Clock Management Unit, clock output number 1.
DBG_SWCLKTCK	0: PFO								Debug-interface Serial Wire clock input and JTAG Test Clock. Note that this function is enabled to the pin out of reset, and has a built-in pull down.
DBG_SWDIOTMS	0: PF1								Debug-interface Serial Wire data input / output and JTAG Test Mode Select. Note that this function is enabled to the pin out of reset, and has a built-in pull up.

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
DBG_SWO	$\begin{aligned} & \text { 0: PF2 } \\ & \text { 1: PB13 } \\ & \text { 2: PD15 } \\ & \text { 3: PC11 } \end{aligned}$								Debug-interface Serial Wire viewer Output. Note that this function is not enabled after reset, and must be enabled by software to be used.
DBG_TDI	0: PF3								Debug-interface JTAG Test Data In. Note that this function is enabled to pin out of reset, and has a built-in pull up.
DBG_TDO	0: PF2								Debug-interface JTAG Test Data Out. Note that this function is enabled to pin out of reset.
FRC_DCLK	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	$\begin{aligned} & \text { 16: PC11 } \\ & \text { 18: PD10 } \\ & \text { 19: PD11 } \end{aligned}$	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Frame Controller, Data Sniffer Clock.
FRC_DFRAME	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11 5: PB12 6: PB13 7: PB14	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PC6 } \\ & \text { 10: PC7 } \\ & \text { 11: PC8 } \end{aligned}$	12: PC9 13: PC10 14: PC11	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PFO 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	28: PF6 29: PF7 30: PAO 31: PA1	Frame Controller, Data Sniffer Frame active
FRC_DOUT	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	$\begin{aligned} & \text { 17: PD10 } \\ & \text { 18: PD11 } \\ & \text { 19: PD12 } \end{aligned}$	20: PD13 21: PD14 22: PD15 23: PFO	24: PF1 25: PF2 26: PF3 27: PF4	28: PF5 29: PF6 30: PF7 31: PA0	Frame Controller, Data Sniffer Output.
GPIO_EM4WU0	0: PF2								Pin can be used to wake the system up from EM4
GPIO_EM4WU1	0: PF7								Pin can be used to wake the system up from EM4
GPIO_EM4WU4	0: PD14								Pin can be used to wake the system up from EM4
GPIO_EM4WU8	$0: ~ P A 3$								Pin can be used to wake the system up from EM4

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
GPIO_EM4WU9	0: PB13								Pin can be used to wake the system up from EM4
GPIO_EM4WU12	0: PC10								Pin can be used to wake the system up from EM4
I2C0_SCL	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8 13: PC9 14: PC10 15: PC11	$\begin{aligned} & \text { 17: PD10 } \\ & \text { 18: PD11 } \\ & \text { 19: PD12 } \end{aligned}$	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	I2C0 Serial Clock Line input / output.
12C0_SDA	$\begin{aligned} & \text { 0: PAO } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	$\begin{aligned} & \text { 16: PC11 } \\ & \text { 18: PD10 } \\ & \text { 19: PD11 } \end{aligned}$	20: PD12 21: PD13 22: PD14 23: PD15	24: PF0 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	I2C0 Serial Data input / output.
LETIMO_OUT0	$\begin{aligned} & \text { 0: PAO } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	$\begin{aligned} & \text { 12: PC7 } \\ & \text { 13: PC8 } \\ & \text { 14: PC9 } \\ & \text { 15: PC10 } \end{aligned}$	$\begin{aligned} & \text { 16: PC11 } \\ & \text { 18: PD10 } \\ & \text { 19: PD11 } \end{aligned}$	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	$\begin{aligned} & \text { 12: PC8 } \\ & \text { 13: PC9 } \\ & \text { 14: PC10 } \\ & \text { 15: PC11 } \end{aligned}$	$\begin{aligned} & \text { 17: PD10 } \\ & \text { 18: PD11 } \\ & \text { 19: PD12 } \end{aligned}$	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	Low Energy Timer LETIM0, output channel 1.
LEU0_RX	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	$\begin{aligned} & \text { 17: PD10 } \\ & \text { 18: PD11 } \\ & \text { 19: PD12 } \end{aligned}$	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	LEUARTO Receive input.
LEU0_TX	$\begin{aligned} & \text { 0: PAO } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	$\begin{aligned} & \text { 12: PC7 } \\ & \text { 13: PC8 } \\ & \text { 14: PC9 } \\ & \text { 15: PC10 } \end{aligned}$	16: PC11 18: PD10 19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	$\begin{aligned} & \text { 24: PF0 } \\ & \text { 25: PF1 } \\ & \text { 26: PF2 } \\ & \text { 27: PF3 } \end{aligned}$	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	LEUARTO Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	0: PB14								Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	0: PB15								Low Frequency Crystal (typically 32.768 kHz) positive pin.
MODEM_ANT0	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12 5: PB13 6: PB14 7: PB15	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10 13: PC11 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	$\begin{aligned} & \text { 20: PD15 } \\ & \text { 21: PF0 } \\ & \text { 22: PF1 } \\ & \text { 23: PF2 } \end{aligned}$	24: PF3 25: PF4 26: PF5 27: PF6	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	MODEM antenna control output 0, used for antenna diversity.
MODEM_ANT1	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PB11 } \\ & \text { 3: PB12 } \end{aligned}$	4: PB13 5: PB14 6: PB15 7: PC6	$\begin{aligned} & \text { 8: PC7 } \\ & \text { 9: PC8 } \\ & \text { 10: PC9 } \\ & \text { 11: PC10 } \end{aligned}$	12: PC11 14: PD10 15: PD11	$\begin{aligned} & \text { 16: PD12 } \\ & \text { 17: PD13 } \\ & \text { 18: PD14 } \\ & \text { 19: PD15 } \end{aligned}$	$\begin{aligned} & \text { 20: PF0 } \\ & \text { 21: PF1 } \\ & \text { 22: PF2 } \\ & \text { 23: PF3 } \end{aligned}$	24: PF4 25: PF5 26: PF6 27: PF7	$\begin{aligned} & \text { 28: PA0 } \\ & \text { 29: PA1 } \\ & \text { 30: PA2 } \\ & \text { 31: PA3 } \end{aligned}$	MODEM antenna control output 1, used for antenna diversity.

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
MODEM_DCLK	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	MODEM data clock out.
MODEM_DIN	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	$\begin{aligned} & \text { 4: PA5 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PFO	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	MODEM data in.
MODEM_DOUT	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	$\begin{aligned} & \text { 4: PB11 } \\ & \text { 5: PB12 } \\ & \text { 6: PB13 } \\ & \text { 7: PB14 } \end{aligned}$	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PC6 } \\ & \text { 10: PC7 } \\ & \text { 11: PC8 } \end{aligned}$	12: PC9 13: PC10 14: PC11	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PFO 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	MODEM data out.
PCNTO_SOIN	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	$\begin{aligned} & \text { 16: PC11 } \\ & \text { 18: PD10 } \\ & \text { 19: PD11 } \end{aligned}$	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Pulse Counter PCNT0 input number 0.
PCNTO_S1IN	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	$\begin{aligned} & \text { 4: PA5 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8 13: PC9 14: PC10 15: PC11	17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PFO	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	Pulse Counter PCNT0 input number 1.
PRS_CH0	$\begin{aligned} & \text { 0: PF0 } \\ & \text { 1: PF1 } \\ & \text { 2: PF2 } \\ & \text { 3: PF3 } \end{aligned}$	$\begin{aligned} & \text { 4: PF4 } \\ & \text { 5: PF5 } \\ & \text { 6: PF6 } \\ & \text { 7: PF7 } \end{aligned}$	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	$\begin{aligned} & \text { 12: PC10 } \\ & \text { 13: PC11 } \end{aligned}$					Peripheral Reflex System PRS, channel 0.
PRS_CH1	$\begin{aligned} & \text { 0: PF1 } \\ & \text { 1: PF2 } \\ & \text { 2: PF3 } \\ & \text { 3: PF4 } \end{aligned}$	$\begin{aligned} & \text { 4: PF5 } \\ & \text { 5: PF6 } \\ & \text { 6: PF7 } \\ & \text { 7: PF0 } \end{aligned}$							Peripheral Reflex System PRS, channel 1.
PRS_CH2	$\begin{aligned} & \text { 0: PF2 } \\ & \text { 1: PF3 } \\ & \text { 2: PF4 } \\ & \text { 3: PF5 } \end{aligned}$	$\begin{aligned} & \text { 4: PF6 } \\ & \text { 5: PF7 } \\ & \text { 6: PF0 } \\ & \text { 7: PF1 } \end{aligned}$							Peripheral Reflex System PRS, channel 2.
PRS_CH3	$\begin{aligned} & \text { 0: PF3 } \\ & \text { 1: PF4 } \\ & \text { 2: PF5 } \\ & \text { 3: PF6 } \end{aligned}$	$\begin{aligned} & \text { 4: PF7 } \\ & \text { 5: PF0 } \\ & \text { 6: PF1 } \\ & \text { 7: PF2 } \end{aligned}$	9: PD10 10: PD11 11: PD12	12: PD13 13: PD14 14: PD15					Peripheral Reflex System PRS, channel 3.
PRS_CH4	$\begin{aligned} & \text { 1: PD10 } \\ & \text { 2: PD11 } \\ & \text { 3: PD12 } \end{aligned}$	$\begin{aligned} & \text { 4: PD13 } \\ & \text { 5: PD14 } \\ & \text { 6: PD15 } \end{aligned}$							Peripheral Reflex System PRS, channel 4.
PRS_CH5	$\begin{aligned} & \text { 0: PD10 } \\ & \text { 1: PD11 } \\ & \text { 2: PD12 } \\ & \text { 3: PD13 } \end{aligned}$	4: PD14 5: PD15							Peripheral Reflex System PRS, channel 5.
PRS_CH6	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \end{aligned}$	12: PD10 13: PD11 14: PD12 15: PD13	$\begin{aligned} & \text { 16: PD14 } \\ & \text { 17: PD15 } \end{aligned}$				Peripheral Reflex System PRS, channel 6.
PRS_CH7	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PA0 } \end{aligned}$						Peripheral Reflex System PRS, channel 7.

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
PRS_CH8	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11 5: PB12 6: PB13 7: PB14	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PA0 } \\ & \text { 10: PA1 } \end{aligned}$						Peripheral Reflex System PRS, channel 8.
PRS_CH9	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12 5: PB13 6: PB14 7: PB15	$\begin{aligned} & \text { 8: PA0 } \\ & \text { 9: PA1 } \\ & \text { 10: PA2 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11				Peripheral Reflex System PRS, channel 9.
PRS_CH10	$\begin{aligned} & \text { 0: PC6 } \\ & \text { 1: PC7 } \\ & \text { 2: PC8 } \\ & \text { 3: PC9 } \end{aligned}$	$\begin{aligned} & \text { 4: PC10 } \\ & \text { 5: PC11 } \end{aligned}$							Peripheral Reflex System PRS, channel 10.
PRS_CH11	$\begin{aligned} & \text { 0: PC7 } \\ & \text { 1: PC8 } \\ & \text { 2: PC9 } \\ & \text { 3: PC10 } \end{aligned}$	$\begin{aligned} & \text { 4: PC11 } \\ & \text { 5: PC6 } \end{aligned}$							Peripheral Reflex System PRS, channel 11.
TIMO_CC0	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	$\begin{aligned} & \text { 16: PC11 } \\ & \text { 18: PD10 } \\ & \text { 19: PD11 } \end{aligned}$	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{array}{\|l} \text { 28: PF4 } \\ \text { 29: PF5 } \\ \text { 30: PF6 } \\ \text { 31: PF7 } \end{array}$	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8 13: PC9 14: PC10 15: PC11	17: PD10 18: PD11 19: PD12	20: PD13 21: PD14 22: PD15 23: PFO	$\begin{aligned} & \text { 24: PF1 } \\ & \text { 25: PF2 } \\ & \text { 26: PF3 } \\ & \text { 27: PF4 } \end{aligned}$	$\begin{array}{\|l} \text { 28: PF5 } \\ \text { 29: PF6 } \\ \text { 30: PF7 } \\ \text { 31: PA0 } \end{array}$	Timer 0 Capture Compare input / output channel 1.
TIMO_CC2	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11 5: PB12 6: PB13 7: PB14	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PC6 } \\ & \text { 10: PC7 } \\ & \text { 11: PC8 } \end{aligned}$	$\begin{aligned} & \text { 12: PC9 } \\ & \text { 13: PC10 } \\ & \text { 14: PC11 } \end{aligned}$	$\begin{aligned} & \text { 16: PD10 } \\ & \text { 17: PD11 } \\ & \text { 18: PD12 } \\ & \text { 19: PD13 } \end{aligned}$	$\begin{aligned} & \text { 20: PD14 } \\ & \text { 21: PD15 } \\ & \text { 22: PF0 } \\ & \text { 23: PF1 } \end{aligned}$	24: PF2 25: PF3 26: PF4 27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12 5: PB13 6: PB14 7: PB15	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10 13: PC11 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	$\begin{aligned} & \text { 20: PD15 } \\ & \text { 21: PF0 } \\ & \text { 22: PF1 } \\ & \text { 23: PF2 } \end{aligned}$	$\begin{aligned} & \text { 24: PF3 } \\ & \text { 25: PF4 } \\ & \text { 26: PF5 } \\ & \text { 27: PF6 } \end{aligned}$	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	Timer 0 Complimentary Dead Time Insertion channel 0.
TIM0_CDTI1	0: PA4 1: PA5 2: PB11 3: PB12	4: PB13 5: PB14 6: PB15 7: PC6	$\begin{aligned} & \text { 8: PC7 } \\ & \text { 9: PC8 } \\ & \text { 10: PC9 } \\ & \text { 11: PC10 } \end{aligned}$	12: PC11 14: PD10 15: PD11	$\begin{aligned} & \text { 16: PD12 } \\ & \text { 17: PD13 } \\ & \text { 18: PD14 } \\ & \text { 19: PD15 } \end{aligned}$	20: PFO 21: PF1 22: PF2 23: PF3	24: PF4 25: PF5 26: PF6 27: PF7	$\begin{array}{\|l} \text { 28: PA0 } \\ \text { 29: PA1 } \\ \text { 30: PA2 } \\ \text { 31: PA3 } \end{array}$	Timer 0 Complimentary Dead Time Insertion channel 1.
TIMO_CDTI2	0: PA5 1: PB11 2: PB12 3: PB13	4: PB14 5: PB15 6: PC6 7: PC7	$\begin{aligned} & \text { 8: PC8 } \\ & \text { 9: PC9 } \\ & \text { 10: PC10 } \\ & \text { 11: PC11 } \end{aligned}$	13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	$\begin{aligned} & \text { 24: PF5 } \\ & \text { 25: PF6 } \\ & \text { 26: PF7 } \\ & \text { 27: PA0 } \end{aligned}$	$\begin{array}{\|l} \text { 28: PA1 } \\ \text { 29: PA2 } \\ \text { 30: PA3 } \\ \text { 31: PA4 } \end{array}$	Timer 0 Complimentary Dead Time Insertion channel 2.
TIM1_CC0	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	16: PC11 18: PD10 19: PD11	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Timer 1 Capture Compare input/ output channel 0.
TIM1_CC1	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8 13: PC9 14: PC10 15: PC11	$\begin{aligned} & \text { 17: PD10 } \\ & \text { 18: PD11 } \\ & \text { 19: PD12 } \end{aligned}$	20: PD13 21: PD14 22: PD15 23: PF0	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11 5: PB12 6: PB13 7: PB14	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PC6 } \\ & \text { 10: PC7 } \\ & \text { 11: PC8 } \end{aligned}$	$\begin{aligned} & \text { 12: PC9 } \\ & \text { 13: PC10 } \\ & \text { 14: PC11 } \end{aligned}$	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	$\begin{array}{\|l} \text { 28: PF6 } \\ \text { 29: PF7 } \\ \text { 30: PA0 } \\ \text { 31: PA1 } \end{array}$	Timer 1 Capture Compare input / output channel 2.

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
TIM1_CC3	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	$\begin{aligned} & \text { 4: PB12 } \\ & \text { 5: PB13 } \\ & \text { 6: PB14 } \\ & \text { 7: PB15 } \end{aligned}$	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10 13: PC11 15: PD10	$\begin{aligned} & \text { 16: PD11 } \\ & \text { 17: PD12 } \\ & \text { 18: PD13 } \\ & \text { 19: PD14 } \end{aligned}$	20: PD15 21: PFO 22: PF1 23: PF2	$\begin{aligned} & \text { 24: PF3 } \\ & \text { 25: PF4 } \\ & \text { 26: PF5 } \\ & \text { 27: PF6 } \end{aligned}$	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	Timer 1 Capture Compare input / output channel 3.
USO_CLK	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	$\begin{aligned} & \text { 4: PB11 } \\ & \text { 5: PB12 } \\ & \text { 6: PB13 } \\ & \text { 7: PB14 } \end{aligned}$	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PC6 } \\ & \text { 10: PC7 } \\ & \text { 11: PC8 } \end{aligned}$	$\begin{aligned} & \text { 12: PC9 } \\ & \text { 13: PC10 } \\ & \text { 14: PC11 } \end{aligned}$	$\begin{aligned} & \text { 16: PD10 } \\ & \text { 17: PD11 } \\ & \text { 18: PD12 } \\ & \text { 19: PD13 } \end{aligned}$	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	USARTO clock input / output.
US0_CS	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12 5: PB13 6: PB14 7: PB15	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10 13: PC11 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	20: PD15 21: PFO 22: PF1 23: PF2	$\begin{aligned} & \text { 24: PF3 } \\ & \text { 25: PF4 } \\ & \text { 26: PF5 } \\ & \text { 27: PF6 } \end{aligned}$	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	USARTO chip select input / output.
US0_CTS	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PB11 } \\ & \text { 3: PB12 } \end{aligned}$	4: PB13 5: PB14 6: PB15 7: PC6	$\begin{aligned} & \text { 8: PC7 } \\ & \text { 9: PC8 } \\ & \text { 10: PC9 } \\ & \text { 11: PC10 } \end{aligned}$	12: PC11 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	$\begin{aligned} & \text { 20: PF0 } \\ & \text { 21: PF1 } \\ & \text { 22: PF2 } \\ & \text { 23: PF3 } \end{aligned}$	$\begin{aligned} & \text { 24: PF4 } \\ & \text { 25: PF5 } \\ & \text { 26: PF6 } \\ & \text { 27: PF7 } \end{aligned}$	$\begin{aligned} & \text { 28: PA0 } \\ & \text { 29: PA1 } \\ & \text { 30: PA2 } \\ & \text { 31: PA3 } \end{aligned}$	USARTO Clear To Send hardware flow control input.
US0_RTS	$\begin{aligned} & \text { 0: PA5 } \\ & \text { 1: PB11 } \\ & \text { 2: PB12 } \\ & \text { 3: PB13 } \end{aligned}$	$\begin{aligned} & \text { 4: PB14 } \\ & \text { 5: PB15 } \\ & \text { 6: PC6 } \\ & \text { 7: PC7 } \end{aligned}$	$\begin{aligned} & \text { 8: PC8 } \\ & \text { 9: PC9 } \\ & \text { 10: PC10 } \\ & \text { 11: PC11 } \end{aligned}$	13: PD10 14: PD11 15: PD12	$\begin{aligned} & \text { 16: PD13 } \\ & \text { 17: PD14 } \\ & \text { 18: PD15 } \\ & \text { 19: PF0 } \end{aligned}$	20: PF1 21: PF2 22: PF3 23: PF4	$\begin{aligned} & \text { 24: PF5 } \\ & \text { 25: PF6 } \\ & \text { 26: PF7 } \\ & \text { 27: PA0 } \end{aligned}$	$\begin{aligned} & \text { 28: PA1 } \\ & \text { 29: PA2 } \\ & \text { 30: PA3 } \\ & \text { 31: PA4 } \end{aligned}$	USARTO Request To Send hardware flow control output.
US0_RX	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	$\begin{aligned} & \text { 17: PD10 } \\ & \text { 18: PD11 } \\ & \text { 19: PD12 } \end{aligned}$	20: PD13 21: PD14 22: PD15 23: PFO	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	USARTO Asynchronous Receive. USARTO Synchronous mode Master Input / Slave Output (MISO).
USO_TX	$\begin{aligned} & \text { 0: PAO } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	$\begin{aligned} & \text { 8: PB13 } \\ & \text { 9: PB14 } \\ & \text { 10: PB15 } \\ & \text { 11: PC6 } \end{aligned}$	12: PC7 13: PC8 14: PC9 15: PC10	$\begin{aligned} & \text { 16: PC11 } \\ & \text { 18: PD10 } \\ & \text { 19: PD11 } \end{aligned}$	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	USARTO Asynchronous Transmit. Also used as receive input in half duplex communication. USARTO Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11 5: PB12 6: PB13 7: PB14	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PC6 } \\ & \text { 10: PC7 } \\ & \text { 11: PC8 } \end{aligned}$	$\begin{aligned} & \text { 12: PC9 } \\ & \text { 13: PC10 } \\ & \text { 14: PC11 } \end{aligned}$	16: PD10 17: PD11 18: PD12 19: PD13	20: PD14 21: PD15 22: PF0 23: PF1	24: PF2 25: PF3 26: PF4 27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	USART1 clock input / output.
US1_CS	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12 5: PB13 6: PB14 7: PB15	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10 13: PC11 15: PD10	16: PD11 17: PD12 18: PD13 19: PD14	$\begin{aligned} & \text { 20: PD15 } \\ & \text { 21: PF0 } \\ & \text { 22: PF1 } \\ & \text { 23: PF2 } \end{aligned}$	$\begin{aligned} & \text { 24: PF3 } \\ & \text { 25: PF4 } \\ & \text { 26: PF5 } \\ & \text { 27: PF6 } \end{aligned}$	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	USART1 chip select input / output.
US1_CTS	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PB11 } \\ & \text { 3: PB12 } \end{aligned}$	4: PB13 5: PB14 6: PB15 7: PC6	$\begin{aligned} & \text { 8: PC7 } \\ & \text { 9: PC8 } \\ & \text { 10: PC9 } \\ & \text { 11: PC10 } \end{aligned}$	12: PC11 14: PD10 15: PD11	16: PD12 17: PD13 18: PD14 19: PD15	$\begin{aligned} & \text { 20: PF0 } \\ & \text { 21: PF1 } \\ & \text { 22: PF2 } \\ & \text { 23: PF3 } \end{aligned}$	$\begin{aligned} & \text { 24: PF4 } \\ & \text { 25: PF5 } \\ & \text { 26: PF6 } \\ & \text { 27: PF7 } \end{aligned}$	$\begin{aligned} & \text { 28: PA0 } \\ & \text { 29: PA1 } \\ & \text { 30: PA2 } \\ & \text { 31: PA3 } \end{aligned}$	USART1 Clear To Send hardware flow control input.
US1_RTS	$\begin{aligned} & \text { 0: PA5 } \\ & \text { 1: PB11 } \\ & \text { 2: PB12 } \\ & \text { 3: PB13 } \end{aligned}$	$\begin{aligned} & \text { 4: PB14 } \\ & \text { 5: PB15 } \\ & \text { 6: PC6 } \\ & \text { 7: PC7 } \end{aligned}$	$\begin{aligned} & \text { 8: PC8 } \\ & \text { 9: PC9 } \\ & \text { 10: PC10 } \\ & \text { 11: PC11 } \end{aligned}$	13: PD10 14: PD11 15: PD12	16: PD13 17: PD14 18: PD15 19: PF0	20: PF1 21: PF2 22: PF3 23: PF4	$\begin{aligned} & \text { 24: PF5 } \\ & \text { 25: PF6 } \\ & \text { 26: PF7 } \\ & \text { 27: PA0 } \end{aligned}$	$\begin{aligned} & \text { 28: PA1 } \\ & \text { 29: PA2 } \\ & \text { 30: PA3 } \\ & \text { 31: PA4 } \end{aligned}$	USART1 Request To Send hardware flow control output.

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
US1_RX	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5 5: PB11 6: PB12 7: PB13	8: PB14 9: PB15 10: PC6 11: PC7	12: PC8 13: PC9 14: PC10 15: PC11	$\begin{aligned} & \text { 17: PD10 } \\ & \text { 18: PD11 } \\ & \text { 19: PD12 } \end{aligned}$	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1 25: PF2 26: PF3 27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13 9: PB14 10: PB15 11: PC6	12: PC7 13: PC8 14: PC9 15: PC10	$\begin{aligned} & \text { 16: PC11 } \\ & \text { 18: PD10 } \\ & \text { 19: PD11 } \end{aligned}$	20: PD12 21: PD13 22: PD14 23: PD15	24: PFO 25: PF1 26: PF2 27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	USART1 Asynchronous Transmit. Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

6.5 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. A complete description of APORT functionality can be found in the Reference Manual.

Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT \qquad), and the channel identifier $(\mathrm{CH}$ \qquad). For example, if pin PF7 is available on port APORT2X as CH 23 , the register field enumeration to connect to PF7 would be APORT2XCH23. The shared bus used by this connection is indicated in the Bus column.

Table 6.8. ACMPO Bus and Pin Mapping

능	$\stackrel{\infty}{m}$	$\frac{\overline{\mathrm{m}}}{\frac{1}{O}}$	$\begin{aligned} & \text { O} \\ & \hline \frac{1}{1} \\ & \hline \end{aligned}$	$\frac{\text { I }}{\frac{1}{O}}$	$\begin{array}{\|l\|} \stackrel{\infty}{\top} \\ \mathbf{1} \end{array}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{I}} \\ & \hline \mathbf{0} \end{aligned}$	$\begin{array}{\|l} \text { R } \\ \frac{1}{0} \end{array}$	$\frac{\mathrm{N}}{\frac{1}{0}}$	$\frac{\mathbb{O}}{\frac{1}{0}}$	$\frac{\mathbb{N}}{\mathbf{N}}$	$\frac{\bar{N}}{\mathbf{N}}$	$\begin{array}{\|c} \text { 오 } \\ \hline \mathbf{1} \end{array}$	$\begin{array}{\|l} \text { 잎 } \\ \hline \mathbf{1} \end{array}$	$\frac{\infty}{\frac{\infty}{\top}}$	$\frac{\mathrm{N}}{\frac{1}{0}}$	$\left\lvert\, \begin{gathered} \circ \\ \frac{1}{\mathrm{~T}} \end{gathered}\right.$	$\begin{array}{\|l\|l} \text { 논 } \\ \hline \frac{1}{\prime} \end{array}$	$\frac{ \pm}{\frac{1}{\top}}$	$\begin{array}{\|c} \text { M } \\ \frac{1}{O} \end{array}$	$\frac{\mathrm{N}}{\frac{1}{O}}$		$\begin{aligned} & \text { 을 } \\ & \frac{1}{0} \end{aligned}$	$\frac{\text { o }}{1}$	$\frac{\infty}{1}$	$\frac{\mathrm{T}}{\mathbf{1}}$	$\left\lvert\, \begin{aligned} & \circ \\ & \hline \frac{1}{0} \end{aligned}\right.$	$\left\lvert\, \frac{\text { 노 }}{\mathbf{1}}\right.$	$\left\lvert\, \frac{\Psi}{\mathbf{U}}\right.$	$\left\lvert\, \frac{\text { m }}{1}\right.$	$\frac{\mathrm{N}}{\mathrm{O}}$	둥	웅
$\begin{aligned} & \underset{x}{\underset{r}{r}} \\ & \hline \underset{\sim}{\gamma} \\ & \underset{\alpha}{2} \end{aligned}$	$\begin{aligned} & \times \underset{~}{\times} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \underset{\sim}{2} \end{aligned}$										$\begin{aligned} & \stackrel{\circ}{4} \\ & \stackrel{1}{2} \end{aligned}$		$\frac{\text { t }}{\text { a }}$		$\underset{\text { 픈 }}{\text { I }}$		$\stackrel{\circ}{\mathrm{O}}$						은		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$						
$\begin{aligned} & \underset{\sim}{\underset{r}{2}} \\ & \underset{r}{r} \\ & \underset{O}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{c}{\text { ® }} \\ & \underset{\sim}{\infty} \end{aligned}$									$\stackrel{\text { 눈 }}{ }$		$\stackrel{\leftrightarrow}{\stackrel{1}{0}}$				$\overline{\stackrel{\rightharpoonup}{n}}$						$\stackrel{\Gamma}{\mathrm{U}}$		$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \hline \end{aligned}$							
$\begin{array}{\|l} \times \underset{\sim}{x} \\ \underset{\sim}{r} \\ \underset{O}{0} \\ \underset{\alpha}{2} \end{array}$	$\begin{aligned} & \times \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$									$\stackrel{\text { 늠 }}{ }$		$\stackrel{\leftrightarrow}{4}$				$\stackrel{\bar{H}}{\square}$						$\stackrel{\rightharpoonup}{\mathrm{N}}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \mathrm{Q} \end{aligned}$							
$\begin{array}{\|l} \underset{\rightharpoonup}{\lambda} \\ \stackrel{\rightharpoonup}{r} \\ \underset{\sim}{0} \\ \underset{\alpha}{2} \end{array}$	$\begin{aligned} & \underset{\sim}{c} \\ & \omega \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$										$\begin{aligned} & \text { e } \\ & \text { 는 } \end{aligned}$		$\stackrel{\text { t }}{\stackrel{4}{n}}$		$\underset{\text { Nㅡㄴ }}{\text { N }}$		음						인		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \hline \\ & \hline \end{aligned}$						
$\begin{array}{\|l} \hline \times \\ \underset{\sim}{r} \\ \underset{\sim}{r} \\ 0 \\ \underset{\alpha}{2} \end{array}$	$\begin{aligned} & \times \\ & \underset{U}{0} \\ & \underset{\sim}{0} \end{aligned}$		$\stackrel{\underset{\mathrm{m}}{\mathrm{~L}}}{ }$		$\stackrel{N}{\underset{\infty}{\mathrm{~N}}}$																$\underset{\square}{4}$		さ		인		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		음		
	$\begin{aligned} & \grave{U} \\ & 0 \\ & \\ & \hline \end{aligned}$	$\frac{\mathrm{n}}{\mathrm{~m}}$		$\stackrel{m}{\mathrm{~m}}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\mathrm{Q}}$														$\frac{1}{2}$		$\underset{\square}{\square}$		$\underset{\square}{\boxed{\alpha}}$		$\stackrel{n}{\mathrm{a}}$		$\stackrel{m}{\grave{a}}$		$\stackrel{\tau}{\mathrm{i}}$		옴	
$\begin{array}{\|l} \hline \times \\ \underset{r}{r} \\ \underset{\sim}{\gamma} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \times \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{~m} \\ & \hline \end{aligned}$		$\frac{m}{\mathrm{~m}}$		$\stackrel{\Gamma}{\mathrm{m}}$														$\frac{1}{2}$		$\stackrel{M}{\square}$		$\underset{\square}{\pi}$		$\frac{n}{\square}$		$\stackrel{m}{\grave{\alpha}}$		$\stackrel{\Gamma}{\mathrm{i}}$		or	
	$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \underset{\sim}{n} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{m}}$		$\underset{\underset{\sim}{\infty}}{\stackrel{N}{N}}$																$\frac{\pi}{a}$		$\underset{\Delta}{\text { IN}}$		$\frac{9}{\square}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\dot{Q}}$		음		

Table 6.9. ACMP1 Bus and Pin Mapping

능	$\stackrel{\infty}{m}$	$\frac{\overline{\mathrm{m}}}{\frac{1}{O}}$	$\begin{aligned} & \text { O} \\ & \hline \frac{1}{1} \\ & \hline \end{aligned}$	$\frac{\text { I }}{\frac{1}{O}}$	$\begin{array}{\|l\|} \stackrel{\infty}{\top} \\ \mathbf{1} \end{array}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\mathrm{I}} \\ & \hline \mathbf{0} \end{aligned}$	$\begin{array}{\|l} \text { R } \\ \frac{1}{0} \end{array}$	$\frac{\mathrm{N}}{\frac{1}{0}}$	$\frac{\mathbb{O}}{\frac{1}{0}}$	$\frac{\mathbb{N}}{\mathbf{N}}$	$\frac{\bar{N}}{\mathbf{N}}$	$\begin{array}{\|c} \text { 오 } \\ \hline \mathbf{1} \end{array}$	$\begin{array}{\|l} \text { 잎 } \\ \hline \mathbf{1} \end{array}$	$\frac{\infty}{\frac{\infty}{\top}}$	$\frac{\mathrm{N}}{\frac{1}{0}}$	$\left\lvert\, \begin{gathered} \circ \\ \frac{1}{\mathrm{~T}} \end{gathered}\right.$	$\begin{array}{\|l\|l} \text { 논 } \\ \hline \frac{1}{\prime} \end{array}$	$\frac{ \pm}{\frac{1}{\top}}$	$\begin{array}{\|c} \text { M } \\ \frac{1}{O} \end{array}$	$\frac{\mathrm{N}}{\frac{1}{O}}$		$\begin{aligned} & \text { 을 } \\ & \frac{1}{0} \end{aligned}$	$\frac{\text { o }}{1}$	$\frac{\infty}{1}$	$\frac{\mathrm{T}}{\mathbf{1}}$	$\left\lvert\, \begin{aligned} & \circ \\ & \hline \frac{1}{0} \end{aligned}\right.$	$\left\lvert\, \frac{\text { 노 }}{\mathbf{1}}\right.$	$\left\lvert\, \frac{\Psi}{\mathbf{U}}\right.$	$\left\lvert\, \frac{\text { m }}{1}\right.$	$\frac{\mathrm{N}}{\mathrm{O}}$	둥	웅
$\begin{aligned} & \underset{x}{\underset{r}{r}} \\ & \hline \underset{\sim}{\gamma} \\ & \underset{\alpha}{2} \end{aligned}$	$\begin{aligned} & \times \underset{~}{\times} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \underset{\sim}{2} \end{aligned}$										$\begin{aligned} & \stackrel{\circ}{4} \\ & \stackrel{1}{2} \end{aligned}$		$\frac{\text { t }}{\text { a }}$		$\underset{\text { 픈 }}{\text { I }}$		$\stackrel{\circ}{\mathrm{O}}$						은		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$						
$\begin{aligned} & \underset{\sim}{\underset{r}{2}} \\ & \underset{r}{r} \\ & \underset{O}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{c}{\text { ® }} \\ & \underset{\sim}{\infty} \end{aligned}$									$\stackrel{\text { 눈 }}{ }$		$\stackrel{\leftrightarrow}{\stackrel{1}{0}}$				$\overline{\stackrel{\rightharpoonup}{n}}$						$\stackrel{\Gamma}{\mathrm{U}}$		$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \hline \end{aligned}$							
$\begin{array}{\|l} \times \underset{\sim}{x} \\ \underset{\sim}{r} \\ \underset{O}{0} \\ \underset{\alpha}{2} \end{array}$	$\begin{aligned} & \times \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$									$\stackrel{\text { 늠 }}{ }$		$\stackrel{\leftrightarrow}{4}$				$\stackrel{\bar{H}}{\square}$						$\stackrel{\rightharpoonup}{\mathrm{N}}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \mathrm{Q} \end{aligned}$							
$\begin{array}{\|l} \underset{\rightharpoonup}{\lambda} \\ \stackrel{\rightharpoonup}{r} \\ \underset{\sim}{0} \\ \underset{\alpha}{2} \end{array}$	$\begin{aligned} & \underset{\sim}{c} \\ & \omega \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$										$\begin{aligned} & \text { e } \\ & \text { 는 } \end{aligned}$		$\stackrel{\text { t }}{\stackrel{4}{n}}$		$\underset{\text { Nㅡㄴ }}{\text { N }}$		음						인		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \hline \\ & \hline \end{aligned}$						
$\begin{array}{\|l} \hline \times \\ \underset{\sim}{r} \\ \underset{\sim}{r} \\ 0 \\ \underset{\alpha}{2} \end{array}$	$\begin{aligned} & \times \\ & \underset{U}{0} \\ & \underset{\sim}{0} \end{aligned}$		$\stackrel{\underset{\mathrm{m}}{\mathrm{~L}}}{ }$		$\stackrel{N}{\underset{\infty}{\mathrm{~N}}}$																$\underset{\square}{4}$		さ		인		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		음		
	$\begin{aligned} & \grave{U} \\ & 0 \\ & \\ & \hline \end{aligned}$	$\frac{\mathrm{n}}{\mathrm{~m}}$		$\stackrel{m}{\mathrm{~m}}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\mathrm{Q}}$														$\frac{1}{2}$		$\underset{\square}{\square}$		$\underset{\square}{\boxed{\alpha}}$		$\stackrel{n}{\mathrm{a}}$		$\stackrel{m}{\grave{a}}$		$\stackrel{\tau}{\mathrm{i}}$		옴	
$\begin{array}{\|l} \hline \times \\ \underset{r}{r} \\ \underset{\sim}{\gamma} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \times \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{~m} \\ & \hline \end{aligned}$		$\frac{m}{\mathrm{~m}}$		$\stackrel{\Gamma}{\mathrm{m}}$														$\frac{1}{2}$		$\stackrel{M}{\square}$		$\underset{\square}{\pi}$		$\frac{n}{\square}$		$\stackrel{m}{\grave{\alpha}}$		$\stackrel{\Gamma}{\mathrm{i}}$		or	
	$\begin{aligned} & \stackrel{\rightharpoonup}{c} \\ & \underset{\sim}{n} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{m}}$		$\underset{\underset{\sim}{\infty}}{\stackrel{N}{N}}$																$\frac{\pi}{a}$		$\underset{\Delta}{\text { IN}}$		$\frac{9}{\square}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\dot{Q}}$		음		

Table 6．10．ADCO Bus and Pin Mapping

to	$\stackrel{\infty}{\stackrel{0}{0}}$	$\overline{\bar{m}}$	$\begin{aligned} & \text { ⿳⿵人一⿰口口} \\ & \stackrel{y}{0} \end{aligned}$	$\frac{\mathbf{2}}{\frac{1}{0}}$	$\begin{aligned} & \infty \\ & \frac{\pi}{0} \\ & \hline \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \ddot{y} \\ & \stackrel{y}{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { R } \\ & \frac{1}{0} \end{aligned}$	$\frac{\mathrm{N}}{\frac{1}{0}}$	$\begin{aligned} & \mathbb{N} \\ & \frac{N}{0} \end{aligned}$	$\frac{\mathbb{N}}{\mathrm{N}}$	$\begin{array}{l\|l} \stackrel{\rightharpoonup}{c} \\ \\ \hline \end{array}$		$\frac{2}{5} \frac{\infty}{5} \underset{\frac{\infty}{5}}{\frac{\infty}{5}}$	$\stackrel{\text { N }}{\mathbf{5}}$	$\stackrel{\circ}{\frac{1}{3}}$	$\begin{array}{\|l\|l\|} \hline \frac{0}{5} \\ \hline 0 \end{array}$			$\begin{aligned} & \frac{y}{5} \\ & \frac{5}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \frac{5}{\top} \end{aligned}$	$\frac{9}{3}$	$\stackrel{\infty}{\frac{\infty}{0}}$	송	$\stackrel{\circ}{\circ}$	$\frac{f}{5}$	$\frac{\mathbf{\infty}}{\mathbf{O}}$	$\frac{\mathrm{N}}{\mathbf{O}}$	동	웅
											$\stackrel{\circ}{4}$		嵌	N		임					0		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$					
	$\begin{aligned} & \underset{\imath}{\gtrless} \\ & \mathfrak{\omega} \\ & \underset{\sim}{2} \end{aligned}$									$\frac{\mathrm{t}}{\mathrm{~L}}$		菦	区		듬					$\bar{\vdots}$		花		$\begin{aligned} & \hat{0} \\ & 0 \end{aligned}$						
	$\begin{aligned} & \times \\ & \infty \\ & 0 \\ & \underset{\infty}{2} \end{aligned}$									$\frac{\mathrm{t}}{\mathrm{~L}}$		䔎			砏					$\underset{\sim}{\mathrm{U}}$		O		$\begin{aligned} & \hat{0} \\ & \mathrm{~L} \end{aligned}$						
	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & 0 \\ & \underset{\infty}{2} \end{aligned}$										$\stackrel{\circ}{\stackrel{\circ}{\alpha}}$		혐	츰		을					\div		0		0					
	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \underset{\infty}{n} \end{aligned}$				$\begin{aligned} & \stackrel{N}{\mathrm{~m}} \\ & \mathrm{o} \end{aligned}$														0		$\underset{\alpha}{\text { I }}$		영		$\stackrel{t}{a}$			음		
	$\begin{aligned} & \text { d} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \stackrel{n}{\mathrm{~m}} \\ & \hline \end{aligned}$		$\frac{m}{\mathrm{~m}}$		$\underset{\mathrm{a}}{\mathrm{z}}$!	$\underset{\alpha}{\underset{\alpha}{0}}$		\bar{d}		$\frac{6}{2}$		$\stackrel{m}{a}$	0		옹	
	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \stackrel{n}{\mathrm{~m}} \end{aligned}$		$\frac{m}{\bar{m}}$		$\stackrel{\tau}{\dot{\alpha}}$													$\frac{8}{2}$	¢		¢		$\frac{6}{2}$		\bar{m}	$\overline{2}$		욤	
$\begin{array}{ll} \underset{y}{2} \\ \vdots \\ \underset{\alpha}{\infty} \end{array}$			$\underset{\underset{\alpha}{\alpha}}{\stackrel{t}{2}}$		$\stackrel{N}{\mathrm{~m}}$														¢		¢		영		$\stackrel{t}{a}$			$\stackrel{\circ}{0}$		

Table 6．11．IDACO Bus and Pin Mapping

$\stackrel{\rightharpoonup}{\circ}$	$\left\|\begin{array}{c} \infty \\ \stackrel{\infty}{\infty} \end{array}\right\|$	$\overline{\text { m }}$	$\begin{aligned} & \text { io } \\ & \text { 荅 } \end{aligned}$	$\begin{aligned} & \frac{2}{4} \\ & \frac{1}{0} \end{aligned}$	$\begin{array}{\|c} \infty \\ \stackrel{\infty}{\mathbf{~}} \\ \hline \end{array}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \stackrel{\varrho}{\pi} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & 4 \\ & \frac{1}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 和 } \\ & \frac{1}{0} \end{aligned}$	$\begin{array}{\|c} \mathbb{N} \\ \mathbf{N} \\ \hline \end{array}$	$\frac{\mathbb{N}}{\mathbf{N}}$	$\overline{\bar{N}}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \infty \\ & \hline \frac{I}{O} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \frac{1}{0} \end{aligned}$	$\stackrel{\circ}{\frac{1}{I}}$	$\begin{aligned} & \stackrel{10}{5} \\ & \hline 0 \end{aligned}$	$\frac{\stackrel{\rightharpoonup}{I}}{\frac{1}{O}}$	$\frac{\mathbf{M}}{\frac{1}{3}}$	$\frac{\mathrm{N}}{\frac{\mathrm{I}}{0}}$	$\underset{~ ㄷ ㅗ ㅇ ~}{~}$	$\begin{aligned} & \text { 을 } \\ & \frac{1}{3} \end{aligned}$	$\left\|\frac{9}{3}\right\|$	$\left\|\frac{\infty}{\frac{\infty}{0}}\right\|$	$\frac{1}{0}$	$\begin{array}{\|l\|} \hline \\ \hline \mathbf{y} \\ \hline \end{array}$	$\frac{5}{0}$	$\frac{\dot{7}}{\mathbf{~}}$	$\frac{\infty}{\mathrm{m}}$	$\frac{\mathrm{N}}{\mathbf{O}}$	동	웅
$$	$\begin{aligned} & \text { x } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{m}}$		$\stackrel{N}{\mathrm{~m}}$																$\frac{\mathrm{t}}{\mathrm{~d}}$		$\underset{\mathrm{d}}{\mathrm{~d}}$		$\frac{9}{\mathrm{a}}$		$\stackrel{ \pm}{\mathrm{a}}$		$\stackrel{N}{\mathrm{a}}$		음		
$\begin{aligned} & \underset{y}{r} \\ & \underset{y}{x} \\ & 0 \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \text { C} \\ & 0 \\ & \text { D} \end{aligned}$	$\begin{array}{\|l\|l} \hline \frac{n}{2} \\ \dot{x} \end{array}$		$\frac{m}{\dot{m}}$		$\stackrel{\overline{\mathrm{m}}}{\mathrm{o}}$														$\frac{8}{\square}$		$\underset{\Delta}{\underset{\alpha}{2}}$		$\underset{\alpha}{d}$		$\frac{n}{2}$		$\frac{m}{a}$		$\overline{\mathrm{a}}$		옴	

7. QFN48 Package Specifications

7.1 QFN48 Package Dimensions

Figure 7.1. QFN48 Package Drawing

Table 7.1. QFN48 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.18	0.25	0.30
D	6.90	7.00	7.10
E	6.90	7.00	7.10
D2	4.60	4.70	4.80
E2	4.60	4.70	4.80
e	0.50 BSC		
L	0.30	0.40	0.50
K	0.20	-	-
R	0.09	-	0.14
aaa	0.15		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		
Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.			

Figure 7.2. QFN48 PCB Land Pattern Drawing

Table 7.2. QFN48 PCB Land Pattern Dimensions

Dimension	Typ
S1	6.01
S	6.01
L1	4.70
W1	4.70
e	
W	
L	
Note:	0.50
1. All dimensions shown are in millimeters (mm) unless otherwise noted.	
2. This Land Pattern Design is based on the IPC-7351 guidelines.	
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 um	
minimum, all the way around the pad.	
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.	
5. The stencil thickness should be 0.125 mm (5 mils).	
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.	
7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.	
8. A No-Clean, Type-3 solder paste is recommended.	
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.	

7.3 QFN48 Package Marking

\longrightarrow

EFR32 PPPPPPPPP YYWWTTTTTT \#

Figure 7.3. QFN48 Package Marking

The package marking consists of:

- PPPPPPPPP - The part number designation.

1. Family Code (B|M|F)
2. G (Gecko)
3. Series (1, 2,...)
4. Performance Grade ($\mathrm{P}|\mathrm{B}| \mathrm{V}$)
5. Feature Code (1 to 7)
6. TRX Code ($3=\operatorname{TXRX}|2=\mathrm{RX}| 1=\mathrm{TX}$)
7. Band ($1=$ Sub-GHz | $2=2.4 \mathrm{GHz} \mid 3=$ Dual-band)
8. Flash ($\mathrm{E}=1024 \mathrm{~K}|\mathrm{~F}=512 \mathrm{~K}| \mathrm{G}=256 \mathrm{~K}|\mathrm{~F}=128 \mathrm{~K}| \mathrm{E}=64 \mathrm{~K} \mid \mathrm{D}=32 \mathrm{~K}$)
9. Temperature Grade ($G=-40$ to $85 \mid I=-40$ to 125)

- YY - The last 2 digits of the assembly year.
- WW - The 2-digit workweek when the device was assembled.
- TTTTTT - A trace or manufacturing code. The first letter is the device revision.
- \# - Bootloader revision number.

8. QFN32 Package Specifications

8.1 QFN32 Package Dimensions

Figure 8.1. QFN32 Package Drawing

Table 8.1. QFN32 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.18	0.25	0.30
D/E	4.90	5.00	5.10
D2/E2	3.40	3.50	3.60
E	0.50 BSC		
L	0.30	0.40	0.50
K	0.20	-	-
R	0.09	-	0.14
aaa	0.15		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		
Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.			

Figure 8.2. QFN32 PCB Land Pattern Drawing

Table 8.2. QFN32 PCB Land Pattern Dimensions

Dimension	Typ
S1	4.01
S	4.01
L1	3.50
W1	3.50
e	
W	
L	
Note:	0.50
1. All dimensions shown are in millimeters (mm) unless otherwise noted.	
2. This Land Pattern Design is based on the IPC-7351 guidelines.	
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 um	
minimum, all the way around the pad.	
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.	
5. The stencil thickness should be 0.125 mm (5 mils).	
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.	
7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.	
8. A No-Clean, Type-3 solder paste is recommended.	
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.	

8.3 QFN32 Package Marking

Figure 8.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPPPP - The part number designation.

1. Family Code ($B|M| F$)
2. G (Gecko)
3. Series (1, 2,...)
4. Performance Grade ($\mathrm{P}|\mathrm{B}| \mathrm{V}$)
5. Feature Code (1 to 7)
6. TRX Code ($3=$ TXRX | $2=$ RX $\mid 1=T X$)
7. Band ($1=$ Sub-GHz | $2=2.4 \mathrm{GHz} \mid 3=$ Dual-band)
8. Flash ($G=256 \mathrm{~K}|\mathrm{~F}=128 \mathrm{~K}| \mathrm{E}=64 \mathrm{~K} \mid \mathrm{D}=32 \mathrm{~K}$)
9. Temperature Grade ($\mathrm{G}=-40$ to $85 \mid \mathrm{I}=-40$ to 125)

- YY - The last 2 digits of the assembly year.
- WW - The 2-digit workweek when the device was assembled.
- TTTTTT - A trace or manufacturing code. The first letter is the device revision.

9. Revision History

9.1 Revision 1.1

2016-Oct-26

- Ordering Information: Removed Encryption column. All products in family include full encryption capabilites. Previously EFR32MG1V devices listed as "AES only".
- System Overview Sections: Minor wording and typographical error fixes.
- Electrical Characteristics: Minor wording and typographical error fixes.
- "Sub-GHz Receiver Characteristics for 433 MHz Band" table in Electrical Characteristics: Corrected Sensitivity spec error where data for 50 kbps and 2.4 kbps were swapped.
- "HFRCO and AUXHFRCO" table in Electrical Characteristics: f_HFRCO symbol changed to f_HFRCO_ACC.
- Pinout tables: APORT channel details removed from "Analog" column. This information is now found in the APORT client map sections.
- Updated APORT client map sections.

9.2 Revision 1.0

2016-Jul-22

- Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range.
- Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include:
- Absolute Maximum Ratings
- General Operating Conditions
- DC-DC Converter
- Current Consumption Using Radio 3.3V with DC-DC
- RF Transmitter General Characteristics for 2.4 GHz Band
- RF Receiver General Characteristics for 2.4 GHz Band
- RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band
- RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
- RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
- Sub-GHz RF Transmitter characteristics for 868 MHz Band
- Sub-GHz RF Transmitter characteristics for 490 MHz Band
- Sub-GHz RF Receiver characteristics for 490 MHz Band
- Sub-GHz RF Receiver characteristics for 433 MHz Band
- HFRCO and AUXHFRCO
- ADC
- IDAC
- Updated Typical Performance Graphs.
- Added external ground note to 2G4RF_ION pin descriptions.
- Added note for 5 V tolerance to pinout GPIO Overview sections.
- Updated OPN decoder with latest revision.
- Updated Package Marking text with latest descriptions.

9.3 Revision 0.97

2016-06-06

- Added dual-band and sub-GHz OPNs.

9.4 Revision 0.951

2016-06-03

- Electrical specification tables updated with additional characterization data.

9.5 Revision 0.95

2016-04-11

- All OPNs changed to rev C0. Note the following:
- All OPNs ending in -BO are Engineering Samples based on an older revision of silicon and are being removed from the OPN table. These older revisions should be used for evaluation only and will not be supported for production.
- OPNs ending in -C0 are the Current Revision of Silicon and are intended for production.
- Electrical specification tables updated with latest characterization data and production test limits.

9.6 Revision 0.9

2016-01-12

- Updated electrical specifications with latest characterization data.
- Added thermal characteristics table.
- Updated OPN decoder figure to include extended family options.

9.7 Revision 0.8

2015-12-01

- Engineering samples note added to ordering information table.
- Updated electrcal specifications with latest available data.

9.8 Revision 0.75

2015-11-3

- Consolidated individual device datasheets into single-family document.
- Re-formatted ordering information table and OPN decoder.
- Updated block diagrams for front page and system overview.
- Removed extraneous sections from DC-DC and wake-on-radio from system overview.
- Updated table formatting for electrical specifications to tech pubs standards.
- Updated electrcal specifications with latest available data.
- Added I2C and USART SPI timing tables.
- Moved DC-DC graph to typical performance curves.
- Updated APORT tables and APORT references to correct nomenclature.

9.9 Revision 0.7

2015-08-31
Outcome of comprehensive review cycle of EFR32BG Datasheets. Major changes span the following sections

- Section 2: Ordering Information
- Section 3.3.4: Receiver Architecture
- Section 3.3.5: Transmitter Architecture
- Section 4: Electrical Characteristics
- Section 4.3.1: General Operating Conditions
- Section 4.4: DC-DC Converter
- Section 4.5: Current Consumption
- Section 4.9.1: RF Transmitter Characteristics for 2.4 GHz Band
- Section 4.9.2: RF Receiver General Characteristics for 2.4 GHz Band
- Section 4.9.3: RF Transmitter Characteristics for Bluetooth Smart in 2.4 GHz Band
- Section 4.9.4: RF Receiver Characteristics for Bluetooth Smart in 2.4 GHz Band
- Section 4.11.1: LFXO
- Section 4.11.2: HFXO
- Section 4.12: GPIO
- Section 4.13: VMON
- Section 4.14: ADC
- Section 4.15: IDAC
- Section 4.16: Analog Comparator
- Section 5: Application Circuits
- Section 6.5: QFNxx Package
- Section 6.7: QFNxx Package Marking

Table of Contents

1. Feature List 1
2. Ordering Information 2
3. System Overview 4
3.1 Introduction. 4
3.2 Radio. 4
3.2.1 Antenna Interface 5
3.2.2 Fractional-N Frequency Synthesizer. 5
3.2.3 Receiver Architecture 5
3.2.4 Transmitter Architecture 5
3.2.5 Wake on Radio 5
3.2.6 RFSENSE 6
3.2.7 Flexible Frame Handling. 6
3.2.8 Packet and State Trace 6
3.2.9 Data Buffering 6
3.2.10 Radio Controller (RAC). 6
3.2.11 Random Number Generator 7
3.3 Power 8
3.3.1 Energy Management Unit (EMU) 8
3.3.2 DC-DC Converter 8
3.4 General Purpose Input/Output (GPIO). 8
3.5 Clocking. 8
3.5.1 Clock Management Unit (CMU) 8
3.5.2 Internal and External Oscillators 8
3.6 Counters/Timers and PWM 9
3.6.1 Timer/Counter (TIMER) 9
3.6.2 Real Time Counter and Calendar (RTCC) 9
3.6.3 Low Energy Timer (LETIMER). 9
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER) 9
3.6.5 Pulse Counter (PCNT) 9
3.6.6 Watchdog Timer (WDOG) 9
3.7 Communications and Other Digital Peripherals 9
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) 9
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) 10
3.7.3 Inter-Integrated Circuit Interface (${ }^{2} \mathrm{C}$) 10
3.7.4 Peripheral Reflex System (PRS) 10
3.8 Security Features. 10
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) 10
3.8.2 Crypto Accelerator (CRYPTO). 10
3.9 Analog 10
3.9.1 Analog Port (APORT) 10
3.9.2 Analog Comparator (ACMP) 10
3.9.3 Analog to Digital Converter (ADC) 11
3.9.4 Digital to Analog Current Converter (IDAC) 11
3.10 Reset Management Unit (RMU) 11
3.11 Core and Memory 11
3.11.1 Processor Core 11
3.11.2 Memory System Controller (MSC) 11
3.11.3 Linked Direct Memory Access Controller (LDMA) 11
3.12 Memory Map. 12
3.13 Configuration Summary 13
4. Electrical Specifications 14
4.1 Electrical Characteristics 14
4.1.1 Absolute Maximum Ratings 15
4.1.2 Operating Conditions 17
4.1.2.1 General Operating Conditions 17
4.1.3 Thermal Characteristics 18
4.1.4 DC-DC Converter 19
4.1.5 Current Consumption 21
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter 21
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter 22
4.1.5.3 Current Consumption 1.85 V without DC-DC Converter 24
4.1.5.4 Current Consumption Using Radio 25
4.1.6 Wake up times 27
4.1.7 Brown Out Detector 27
4.1.8 Frequency Synthesizer Characteristics 28
4.1.9 2.4 GHz RF Transceiver Characteristics 29
4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band 29
4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band 30
4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band 31
4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band. 33
4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band 35
4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band. 38
4.1.10 Sub-GHz RF Transceiver Characteristics 40
4.1.10.1 Sub-GHz RF Transmitter Characteristics in the 915 MHz Band 41
4.1.10.2 Sub-GHz RF Receiver Characteristics in the 915 MHz Band 45
4.1.10.3 Sub-GHz RF Transmitter Characteristics in the 868 MHz Band 48
4.1.10.4 Sub-GHz RF Receiver Characteristics in the 868 MHz Band 49
4.1.10.5 Sub-GHz RF Transmitter Characteristics in the 490 MHz Band 51
4.1.10.6 Sub-GHz RF Receiver Characteristics in the 490 MHz Band 52
4.1.10.7 Sub-GHz RF Transmitter Characteristics in the 433 MHz Band 54
4.1.10.8 Sub-GHz RF Receiver Characteristics in the 433 MHz Band 57
4.1.10.9 Sub-GHz RF Transmitter Characteristics in the 315 MHz Band 60
4.1.10.10 Sub-GHz RF Receiver Characteristics in the 315 MHz Band 63
4.1.10.11 Sub-GHz RF Transmitter Characteristics in the 169 MHz Band 65
4.1.10.12 Sub-GHz RF Receiver Characteristics in the 169 MHz Band 66
4.1.11 Modem Features 67
4.1.12 Oscillators 68
4.1.12.1 LFXO 68
4.1.12.2 HFXO 69
4.1.12.3 LFRCO 69
4.1.12.4 HFRCO and AUXHFRCO 70
4.1.12.5 ULFRCO 70
4.1.13 Flash Memory Characteristics 71
4.1.14 GPIO. 72
4.1.15 VMON 73
4.1.16 ADC 74
4.1.17 IDAC 77
4.1.18 Analog Comparator (ACMP) 79
4.1.19 I2C 81
4.1.20 USART SPI 84
4.2 Typical Performance Curves 85
4.2.1 Supply Current 86
4.2.2 DC-DC Converter 88
4.2.3 Internal Oscillators. 90
4.2.4 2.4 GHz Radio 96
5. Typical Connection Diagrams 98
5.1 Power 98
5.2 RF Matching Networks 100
5.3 Other Connections 101
6. Pin Definitions 102
6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout 102
6.1.1 QFN48 2.4 GHz and Sub-GHz GPIO Overview 113
6.2 QFN48 2.4 GHz Device Pinout 114
6.2.1 QFN48 2.4 GHz GPIO Overview 126
6.3 QFN32 2.4 GHz Device Pinout 127
6.3.1 QFN32 2.4 GHz GPIO Overview 134
6.4 Alternate Functionality Overview 135
6.5 Analog Port (APORT) Client Maps 141
7. QFN48 Package Specifications. 145
7.1 QFN48 Package Dimensions. 145
7.2 QFN48 PCB Land Pattern 147
7.3 QFN48 Package Marking 149
8. QFN32 Package Specifications. 150
8.1 QFN32 Package Dimensions 150
8.2 QFN32 PCB Land Pattern 152
8.3 QFN32 Package Marking 154
9. Revision History 155
9.1 Revision 1.1 155
9.2 Revision 1.0 155
9.3 Revision 0.97 155
9.4 Revision 0.951 155
9.5 Revision 0.95 156
9.6 Revision 0.9 156
9.7 Revision 0.8 156
9.8 Revision 0.75 156
9.9 Revision 0.7 157
Table of Contents 158

IoT Portfolio www.silabs.com/loT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember $®$, EZLink $®, E Z R a d i o ®, E Z R a d i o P R O ®$, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

