

Optocoupler, Phototransistor Output, Low Input Current, 4 Pin LSOP, Long Creepage Mini-Flat Package

DESCRIPTION

The VOL618A has a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a 4 pin LSOP wide body package.

It features a high current transfer ratio, low coupling capacitance, and high isolation voltage.

The coupling device is designed for signal transmission between two electrically separated circuits.

FEATURES

- Low profile package
- High collector emitter voltage, V_{CEO} = 80 V
- Isolation test voltage, 5000 V_{RMS}
- Isolation voltage V_{IORM} = 1050 V_{peak}
- · Low coupling capacitance
- High common mode transient immunity
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

HALOGEN FREE GREEN (5-2008)

APPLICATIONS

- Telecom
- Industrial controls
- · Battery powered equipment
- · Office machines
- · Programmable controllers

AGENCY APPROVALS

(All parts are certified under base model VOL618A)

- UL1577, file no. E76222
- cUL CSA 22.2 bulletin 5A, double protection
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- BSI: EN 60065:2002, EN 60950-1:2006
- FIMKO EN60950-1
- CQC: GB8898-2011, GB4943.1-2011

ORDERING INFORMATION						
V O L 6 1 8 PART NUMBER		0 0 1 T KAGE OPTION TAPE AND REEL	LSOP-5			
AGENCY CERTIFIED/PACKAGE	CTR (%)					
AGENCY CENTIFIED/PACKAGE	1 mA					
UL, cUL, BSI, FIMKO, CQC	50 to 600	63 to 125	100 to 200			
4 pin LSOP, mini-flat, long creepage	VOL618AT	VOL618A-2T	VOL618A-3T			
UL, cUL, BSI, FIMKO, CQC, VDE (option 1)	50 to 600	63 to 125	100 to 200			
4 pin LSOP, mini-flat, long creepage	_	VOL618A-2X001T	VOL618A-3X001T			

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
INPUT	·				
Reverse voltage		V _R	6	V	
Power dissipation		P _{diss}	100	mW	
Forward current		I _F	60	mA	
Forward surge current	t _p < 10 μs	I _{FSM}	1.5	Α	
Junction temperature		T _j	125	°C	
OUTPUT	·				
Collector emitter voltage		V_{CEO}	80	V	
Emitter collector voltage		V _{ECO}	7	V	
Collector current		I _C	50	mA	
Collector current	$t_p/T = 0.5, t_p < 10 \text{ ms}$	Ic	100	mA	
Power dissipation		P _{diss}	150	mW	
Junction temperature		Tj	125	°C	
COUPLER					
Total power dissipation		P _{tot}	250	mW	
Storage temperature range		T _{stg}	-55 to +125	°C	
Ambient temperature range		T _{amb}	-55 to +110	°C	
Soldering temperature (1)	≤ 10 s	T _{sld}	260	°C	

Notes

(1) Refer to reflow profile for soldering conditions for surface mounted devices.

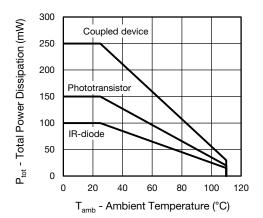


Fig. 1 - Total Power Dissipation vs. Ambient Temperature

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT					•	•	
Forward voltage	$I_F = 5 \text{ mA}$		V_{F}	-	1.16	1.5	V
Capacitance	$V_R = 0 V, f = 1 MHz$		Co	-	45	-	pF
Reverse current	V _R = 6 V		I _R	-	-	100	μA
OUTPUT							
Collector emitter leakage current	$V_{CE} = 10 \text{ V}, I_F = 0 \text{ A}$		I _{CEO}	-	10	200	nA
Collector emitter capacitance	V _{CE} = 5 V, f = 1 MHz		C _{CE}	-	7	-	pF
COUPLER							
Oallanda a sailla a a la sailla a	$I_C = 0.32 \text{ mA}, I_F = 1 \text{ mA}$	VOL618A-2	V _{CEsat}	-	0.25	0.4	V
Collector emitter saturation voltage	$I_C = 0.5 \text{ mA}, I_F = 1 \text{ mA}$	VOL618A-3	V _{CEsat}	-	0.25	0.4	V
voitage	$I_C = 0.8 \text{ mA}, I_F = 1 \text{ mA}$	VOL618A-4	V _{CEsat}	-	0.25	0.4	V
Coupling capacitance	f = 1 MHz		C _C	-	0.25		pF

Not

 Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

www.vishay.com

Vishay Semiconductors

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
I _C /I _F	I _F = 1 mA, V _{CE} = 5 V	VOL618A	CTR	50	-	600	%
		VOL618A-2	CTR	63	-	125	%
		VOL618A-3	CTR	100	-	200	%

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn on time	$V_{CC} = 5 \text{ V}, I_{C} = 2 \text{ mA}, R_{L} = 100 \Omega$	t _{on}	-	6	-	μs
Rise time	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω	t _r	-	3.5	-	μs
Turn off time	$V_{CC} = 5 \text{ V}, I_{C} = 2 \text{ mA}, R_{L} = 100 \Omega$	t _{off}	-	5.5	-	μs
Fall time	$V_{CC} = 5 \text{ V}, I_{C} = 2 \text{ mA}, R_{L} = 100 \Omega$	t _f	-	5	-	μs

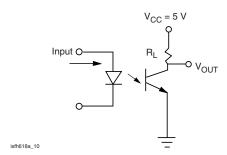


Fig. 2 - Test Circuit

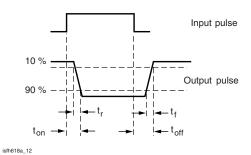


Fig. 3 - Test Circuit and Waveforms

SAFETY AND INSULATION RATINGS				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	2	kV _{peak}
Partial discharge test voltage -	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$	V_{IOTM}	8	kV _{peak}
lot test (sample test)	(see figure 4)	V_{pd}	1.68	kV _{peak}
Isolation test voltage between emitter and detector	t = 1 min	V _{ISO}	5000	V_{RMS}
Insulation voltage		V_{IORM}	1050	V_{peak}
	$V_{IO} = 500 V_{DC}, T_{amb} = 25 °C$	R _{IO}	10 ¹²	Ω
Insulation resistance	$V_{IO} = 500 V_{DC}, T_{amb} = 100 °C$	R _{IO}	10 ¹¹	Ω
	V _{IO} = 500 V _{DC} , T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹	Ω
Safety rating - maximum input current		I _{si}	130	mA
Safety rating - maximum power dissipation		P _{SO}	265	mW
Rated impulse voltage		V_{IOTM}	8	kV
Safety rating - maximum ambient temperature		T _{si}	150	°C
Comparative tracking index		CTI	275	mm
Clearance distance			8	mm
Creepage distance			8	mm
Insulation distance (internal)			0.4	mm

Note

According to DIN EN 60747-5-5 (VDE 0884), § 7.4.3.8.2, (see figure 4). This optocoupler is suitable for safe electrical isolation only within the
safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

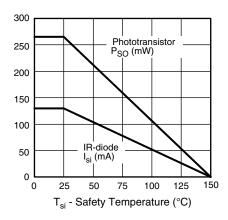


Fig. 4 - Derating Diagram

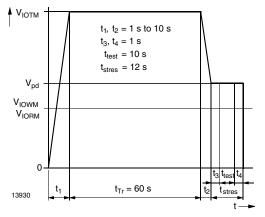


Fig. 5 - Test Pulse Diagram for Sample Test according to DIN EN 60747-5-5

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

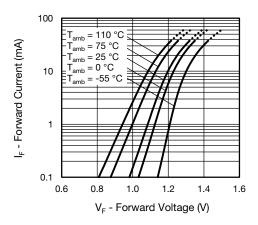


Fig. 6 - Forward Voltage vs. Forward Current

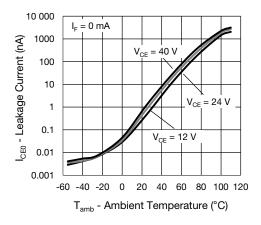


Fig. 8 - Collector Emitter Current vs. Ambient Temperature

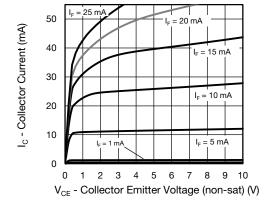


Fig. 7 - Collector Current vs. Collector Emitter Voltage (non-saturated)

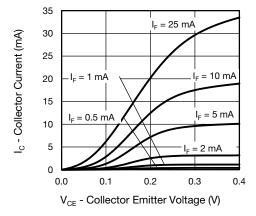


Fig. 9 - Collector Current vs. Collector Emitter Voltage (saturated)

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

www.vishay.com Vishay Semiconductors

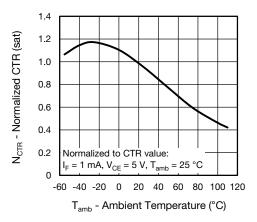


Fig. 10 - Normalized Current Transfer Ratio vs. Ambient Temperature (saturated)

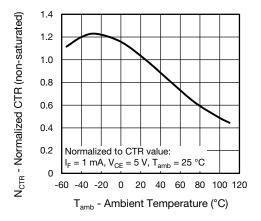


Fig. 11 - Normalized Current Transfer Ratio vs. Ambient Temperature (non-saturated)

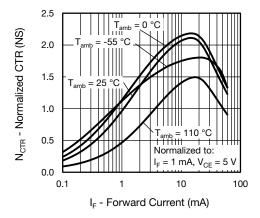


Fig. 12 - Current Transfer Ratio vs. Forward Current (saturated) Normalized to 1 mA at 25 °C

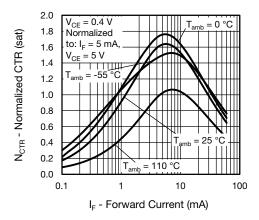


Fig. 13 - Current Transfer Ratio vs. Forward Current (non-saturated) Normalized to 1 mA at 25 $^{\circ}\text{C}$

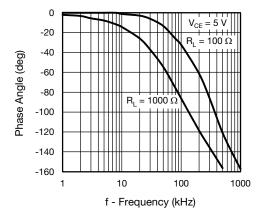


Fig. 14 - f_{CTR} vs. Phase Angle

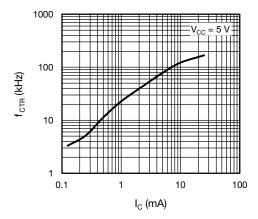


Fig. 15 - Frequency (-3 dB) vs. Collector Current

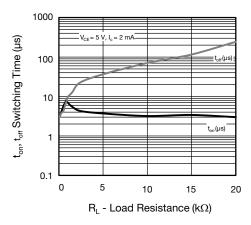


Fig. 16 - Switching Time vs. Load Resistance

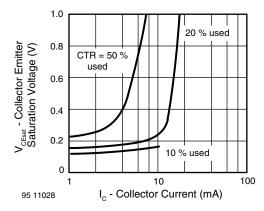


Fig. 17 - Collector Emitter Saturation Voltage vs. Collector Current

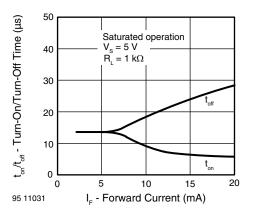


Fig. 18 - Turn-On/Turn-Off Time vs. Forward Current

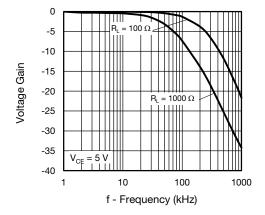
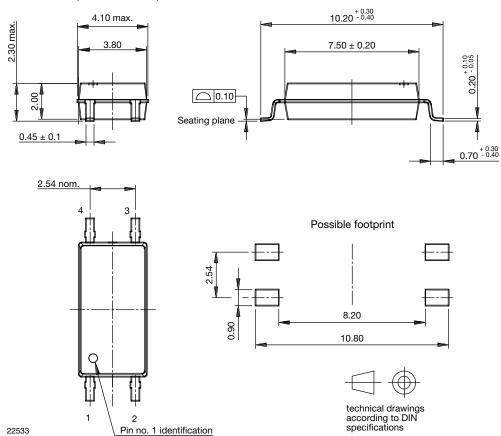



Fig. 19 - Voltage Gain vs. Cut-off Frequency

PACKAGE DIMENSIONS (in millimeters)

PACKAGE MARKING (example of VOL618A-3X001T)

Notes

- Only option 1 is reflected in the package marking with the characters "X1".
- Tape and reel suffix (T) is not part of the package marking.

TAPE AND REEL DIMENSIONS (in millimeters)

Fig. 20 - Reel Dimensions (3000 units per reel)

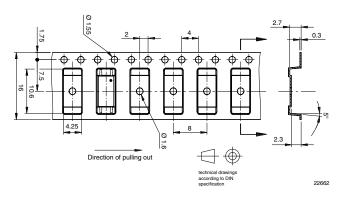


Fig. 21 - Tape Dimensions

SOLDER PROFILE

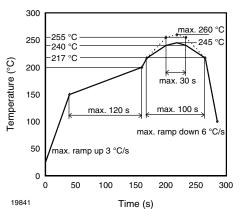


Fig. 22 - Lead (Pb)-free Reflow Solder Profile according to J-STD-020

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited

Conditions: T_{amb} < 30 °C, RH < 85 %

Moisture sensitivity level 1, according to J-STD-020

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.