

KEY FEATURES

- Resistances from 51k Ohms
- High Stability Film Resistance Elements
- Rated Power of 35, 50 and 100 Watts
- TO-220 and TO-247 Housing
- Resistance tolerance of ± 0.1% or ± 1%
- Low Inductance of < 10nH for RHXH1 and RHXH2, <50nH for RHXH3

APPLICATIONS

- Power Inverters
- Engine Sensors
- Power Supplies
- Temperature Sensors

PRODUCT SUMMARY

	RESISTANCE RANGE (Ω) ³		POWER RATING (W)		THERMAN	
(RHX)	MIN	MAX	HEATSINK 1	FREE AIR ²	RESISTANCE	TOLERANCES
RHXH1	0.02	51K	35	1	3.3°C/W	± 1% (R≥0.1Ω) ± 5%
RHXH2	0.02	51K	50	1	2.3°C/W	± 1% (R≥0.1Ω) ± 5%
RHXH3	0.02	51K	100	3	1.3°C/W	± 1% (R≥0.10Ω) ± 5%

Power Rating based on 25°C Flange Temperature
Power Rating based on 25°C Ambient Temperature

³ Contact Factory for Higher or Lower Values

TEMPERATURE COEFFICIENTS:

- ± 50ppm/°C (R≥10Ω)
- \pm 100ppm/°C ($0.1\Omega \le R < 10\Omega$)

4

PACKING

4 = Tube

• ± 250 ppm/°C (R < 0.1 Ω)

How to Order

RHX H2 F Q 038K0 RESISTOR HIGH POWER PACKAGE CODE TEMPERATURE COEFFICIENT RESISTANCE TOLERANCE LOW INDUCTANCE OF RESISTANCE (TCR) $\begin{array}{l} Q=\pm 50 ppm/^{\circ}C \\ N=\pm 100 ppm/^{\circ}C \\ K=\pm 250 ppm/^{\circ}C \end{array}$ H1, 35W, TO-220 0R038 = 0.038Ω $F = \pm 1.0\% \ (R \ge 0.1\Omega)$ 003K8 = 3.8KΩ 038K0 = 38.0KΩ 380K0 = 380.0KΩ H2, 50W, TO-220 $J = \pm 5.0\%$ H3, 100W, TO-247 003M8 = 3.8MΩ Letter denotes decimal place. R = decimal., "K" 10³, "M" 10⁶ Remaining 4 digits are significant or placeholders.

Tin/Lead coated leads, add "- Pb" on part number.

AVAILABLE OPTIONS (Consult Factory)

Special Testing Requirements

Standard Termination Finish: Matte Tin (Sn) Example P/N: RHXH2Q038K0F4 is Resistor High Power Low Inductance, 50W TO-220, ±50ppm/°C, 38.0KΩ, ±1.0%, tube

RESISTOR HIGH POWER LOW INDUCTANCE RHX SERIES

ENVIRONMENTAL CHARACTERISTICS

Electrical Characteristics	RHXHI & RHXH2 values	RHXH3 value		
Maxiumum Current	25A	-		
Inductance	<10nH (At the Standoff)	-		
Insulation Resistance	>1000 Megohm	>1000 Megohm		
Dielectric Strength	2000 VAC	2500 VAC		
Temperature Range	-55°C to +155°C	-55°C to +155°C		
Maximum Working Volt- age	√ Power x Resistance (500V MAX)	700 V or $\sqrt{\textit{Power x Resistance}}$, whichever is less		

RHXH1 & RHXH2 POWER RATING NOTES:

- H1 and H2 High Power Low Inductance Resistors must be attached to a suitable heatsink. Without a heatsink, the maximum power rating is 1W.
- The maximum internal resistor temperature is 155°C.
- Use the following formula to specify an appropriate heatsink:

RHXH3 POWER RATING NOTES:

- H3 High Power Low Inductance Resistors must be attached to a suitable heatsink.
- The maximum internal resistor temperature is 155°C.
- Use the following formula to specify appropriate heatsink:

$$R_{\Theta H} = \frac{T_{MAX} - (P * R_{\Theta R}) - T_A}{P}$$

 $\begin{array}{ll} \mbox{Where:} & \mbox{R}_{\theta H} = \mbox{Thermal Resistance of Heatsink (^{\circ}C/W) } \\ & \mbox{R}_{\theta R} = \mbox{Thermal Resistance of Resistor (^{\circ}C/W) } \\ & \mbox{T}_{MAX} = \mbox{Maximum Temperature of Resistor (^{\circ}C) } \\ & \mbox{T}_{A} = \mbox{Ambient Temperature of Heatsink (^{\circ}C) } \\ & \mbox{P} = \mbox{Power Through Resistor (W) } \end{array}$

www.johansondielectrics.com

RESISTOR HIGH POWER LOW INDUCTANCE **RHX SERIES**

Mechanical Characteristics

MOUNTING NOTES:

 H1 and H2 High Power Low Inductance Resistors must

be attached to a suitable heatsink.

- Use thermal grease to mount resistor to a clean, flat surface.
- Use a compression washer to provide 150 to 300 ٠ pounds (665 to 1330N) of mounting force.
- Torque mounting screw to 8 in-lbs (0.9 N-m).
- Mounting tab is isolated from both pins.

MOUNTING NOTES:

- H3 High Power Low Inductance Resistors must be ٠ attached to a suitable heatsink.
- Use thermal grease to mount resistor to a clean, flat surface.
- Use a compression washer to provide 150 to 300 pounds (665 to 1330N) of mounting force.
- Torque mounting screw to 8 in-lbs (0.9 N-m).
- Back plate is isolated from both pins.

ENVIRONMENTAL CHARACTERISTICS

	ΔR			
Environmental Performance	RHXH1	RHXH2	RHXH3	Test Conditions
Humidity Resistance	$\pm 1\% + 0.05\Omega$			40°C, 90-95% RH, DC 0.1W, 1000 hr
Load Life	±1% + 0.05Ω			25°C, 90 min ON, 30 min OFF, 1000 hr
Temperature Cycle	±0.25% + 0.05Ω			-55°C for 30 min, +155°C for 30 min, 1000 hr
Vibration	$\pm 0.25\% + 0.05\Omega$			IEC60068-2-6
Solder Heat	±0.1% + 0.05Ω			+350°C, 3s

Moisture Sensitivity Level: MSL-1

