

Stereo PDM-to-I²S or TDM Conversion IC

Data Sheet ADAU7002

FEATURES

64× decimation of a stereo pulse density modulation (PDM) bit stream to pulse code modulation (PCM) audio data Slave I²S or time division multiplexed (TDM) output interface Configurable TDM slots

I/O supply operation: 1.62 V to 3.6 V 64× output sample rate PDM clock

64×/128×/192×/256×/384×/512× output sample rate BCLK

Automatic BCLK ratio detection Output sample rate: 4 kHz to 96 kHz

Automatic PDM CLK drive at 64× the sample rate

Automatic power down with BCLK removal

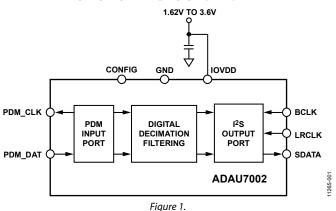
0.67 mA operating current at 48 kHz and 1.8 V IOVDD supply

Shutdown current: <1 μA

8-ball, 1.56 mm \times 0.76 mm, 0.4 mm pitch WLCSP

Power-on reset

APPLICATIONS


Mobile computing
Portable electronics
Consumer electronics

GENERAL DESCRIPTION

The ADAU7002 converts a stereo PDM bit stream into a PCM output. The source for the PDM data can be two microphones or other PDM sources. The PCM audio data is output on a serial audio interface port in either I²S or TDM format.

The ADAU7002 is specified over the commercial temperature range (-40° C to +85°C). It is available in a halide-free, 8-ball, 1.56 mm × 0.76 mm, wafer level chip scale package (WLCSP).

FUNCTIONAL BLOCK DIAGRAM

TABLE OF CONTENTS

Features	Pin Configuration and Function Descriptions5
Applications1	Typical Performance Characteristics6
General Description	Typical Application Circuit8
Functional Block Diagram1	Applications Information9
Revision History	Overview9
Specifications	Clocking9
Absolute Maximum Ratings4	Serial Audio Output Interface9
Thermal Resistance4	Outline Dimensions
ESD Caution4	Ordering Guide
REVISION HISTORY	
11/2019—Rev. B to Rev. C	7/2013—Rev. 0 to Rev. A
Changes to Figure 129	Changes to Supply Current Test Conditions/Comments3
	Changes to Figure 56
11/2016—Rev. A to Rev. B	Added Figure 6; Renumbered Sequentially6
Change to Serial Port Timing Section and Time From BCLK	Changes to Figure 14 and Figure 15 10
Falling Parameter; Table 7	Changes to Figure 16, Figure 17, and Figure 1811
Changes to Figure 19 Caption and Figure 21 Caption	Changes to Figure 19, Figure 20, and Figure 21

1/2013—Revision 0: Initial Version

SPECIFICATIONS

 $IOVDD = 1.8 \ V, T_A = 25 ^{\circ}C, BCLK = 3.072 \ MHz, output = 48 \ kHz, I^2S \ format, unless \ otherwise \ noted.$

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DIGITAL INPUT/OUTPUT					
High Level Input Voltage (V _H)			$0.7 \times IOVDD$		V
Low Level Input Voltage (V _{IL})			$0.3 \times IOVDD$		V
Input Leakage, High (I _{IH})	BCLK and LRCLK pins			1	μΑ
Input Leakage, Low (I⊥)	BCLK and LRCLK pins			1	μΑ
Input Capacitance				5	pF
SDATA			4.5		mA
PDM_CLK			9		mA
PERFORMANCE					
Dynamic Range	20 Hz to 20 kHz, -60 dB input				
With A-Weighted Filter (RMS)			110		dB
Signal-to-Noise-Ratio	A-weighted, fourth-order input		110		dB
Decimation Ratio			64×		
Frequency Response	DC to 0.45 output fs	-0.1		+0.01	dB
Stop Band			0.566		fs
Stop-Band Attenuation		60			dB
Group Delay	0.02 f _s input signal		3.31		LRCLK cycles
Gain	PDM to PCM		0		dB
Start-Up Time			48		LRCLK cycles
Bit Width	Internal and output		20		Bits
Interchannel Phase			0		Degrees
CLOCKING					
Output Sampling Rate	f _s LRCLK pulse rate	4	48	96	kHz
BCLK Frequency	f _{BCLK}	0.256	3.072	24.576	MHz
POWER SUPPLIES					
Supply Voltage Range	IOVDD	1.62		3.6	V
Supply Current	IOVDD = 1.8 V		0.67		mA
	IOVDD = 3.3 V		1.33		mA
	IOVDD = 1.8 V, 16 kHz output		0.21		mA
	IOVDD = 3.3 V, 16 kHz output		0.41		mA
Shutdown Current	IOVDD _{SD} , no input clocks		1		μΑ

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings apply at 25°C, unless otherwise noted.

Table 2.

Parameter	Rating
IOVDD Supply Voltage	3.6 V
Input Voltage	3.6 V
ESD Susceptibility	4 kV
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−40°C to +85°C
Junction Temperature Range	−65°C to +165°C
Lead Temperature (Soldering, 60 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} (junction to air) is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. θ_{JA} is determined according to JESD51-9 on a 4-layer printed circuit board (PCB) with natural convection cooling.

Table 3. Thermal Resistance

Package Type		Unit
8-ball, 1.56 mm × 0.76 mm WLCSP	90	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

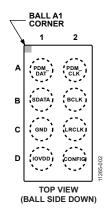


Figure 2. Pin Configuration (Top Side View)

Table 4. Pin Function Descriptions

14010 1. 1 111	Tuble 11 in 1 unetion Determine				
Pin No.	Mnemonic	Туре	Description		
A1	PDM_DAT	Input	PDM Data Input		
A2	PDM_CLK	Output	PDM Clock Output		
B1	SDATA	Output	Serial Data Output for I ² S/TDM		
B2	BCLK	Input	Bit Clock for I ² S/TDM		
C1	GND	Ground	Ground		
C2	LRCLK	Input	Left/Right Clock for I ² S/Frame Sync for TDM		
D1	IOVDD	Supply	Input/Output and Digital Supply		
D2	CONFIG	Input	Configuration Pin		

TYPICAL PERFORMANCE CHARACTERISTICS

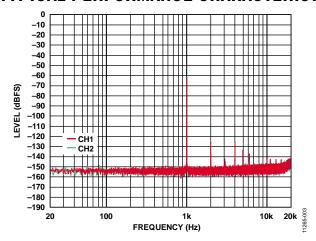


Figure 3. FFT, $f_s = 48 \text{ kHz}$, -60 dBFS Input

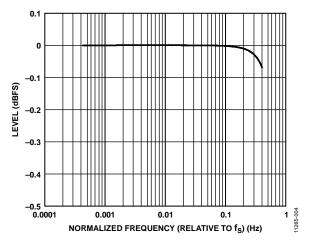


Figure 4. Frequency Response

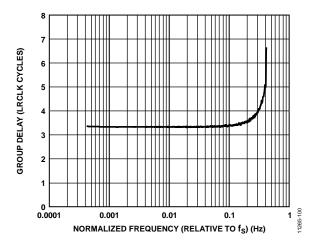


Figure 5. Group Delay vs. Normalized Frequency (Relative to f_s)

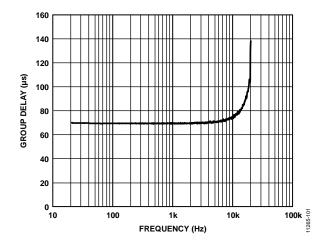


Figure 6. Group Delay vs. Frequency, $f_s = 48 \text{ kHz}$

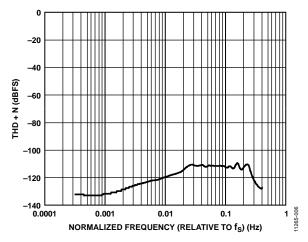


Figure 7. Total Harmonic Distortion + Noise (THD + N) vs. Normalized Frequency (Relative to f_S)

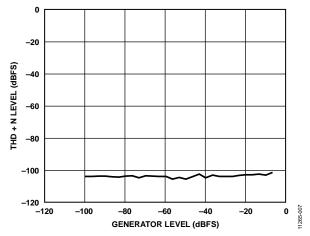


Figure 8. THD + N Level vs. Generator Level

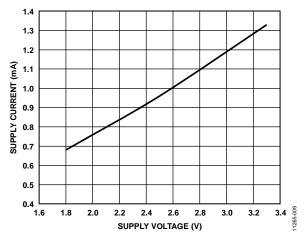


Figure 9. Supply Current vs. Supply Voltage

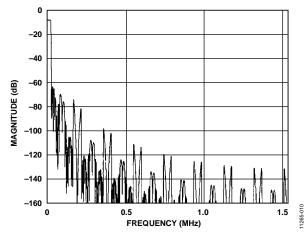


Figure 10. Out-of-Band Frequency Response (48 kHz Output)

TYPICAL APPLICATION CIRCUIT

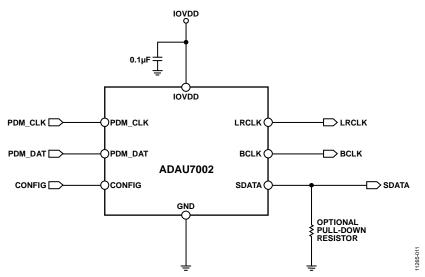


Figure 11. Typical Application Circuit

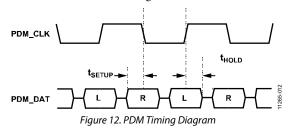
APPLICATIONS INFORMATION

OVERVIEW

The ADAU7002 provides stereo decimation from a 1-bit PDM source to a 20-bit PCM audio. The downsampling ratio is fixed at $64\times$. The 20-bit downsampled PCM audio is output via standard I²S or TDM formats.

The input source for the ADAU7002 can be any device that has a PDM output, such as a digital microphone. The output pins of these microphones can connect directly to the input pins of the ADAU7002.

CLOCKING


The ADAU7002 requires a BCLK rate that is a minimum of 64× the LRCLK sample rate. BCLK rates of 128×, 192×, 256×, 384×, and 512× the LRCLK rate are also supported. The ADAU7002 automatically detects the ratio between BCLK and LRCLK and generates a PDM clock output at 64× the LRCLK rate. The minimum sample rate is 4 kHz, and the maximum is 96 kHz, which correspond to a PDM clock range of 256 kHz to 6.144 MHz. Internally, all processing is done at the PDM_CLK rate.

When BCLK is removed, the ADAU7002 powers down automatically. When BCLK is not present, the PDM_CLK output stops.

Table 5. PDM Timing Parameters

Parameter	t _{MIN}	t _{MAX}	Unit
Data Setup Time, t _{SETUP}	10		ns
Data Hold Time, t _{HOLD}	7		ns

PDM data is latched on both edges of the clock.

SERIAL AUDIO OUTPUT INTERFACE

The ADAU7002 supports I²S and TDM serial output formats. Format selection and TDM slot placement is set with the CONFIG pin. The SDATA pin is in tristate mode, except when the port is driving serial data based on the CONFIG pin configuration.

Table 6. TDM Slot Selection

Device Setting	CONFIG Pin Configuration
I ² S Format	Tie to IOVDD
TDM Slot 1 to Slot 2 Used/Driven, 32-Bit Slots	Tie to GND
TDM Slot 3 to Slot 4 Used/Driven, 32-Bit Slots	Open
TDM Slot 5 to Slot 6 Used/Driven, 32-Bit Slots	Tie to IOVDD through a 47 k Ω resistor
TDM Slot 7 to Slot 8 Used/Driven, 32-Bit Slots	Tie to GND through a 47 kΩ resistor

Serial Port Timing

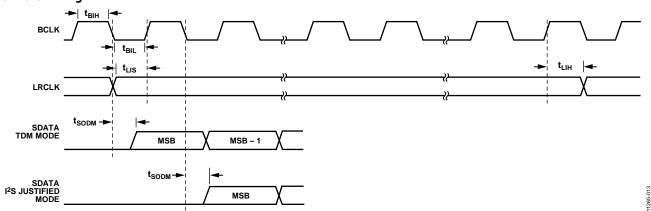


Figure 13. Serial Port Timing Diagram

IOVDD = 1.62 V to 3.63 V, load capacitance = 25 pF, unless otherwise noted.

Table 7. I²S/TDM Timing Parameters

Parameter	Symbol	t _{MIN}	t _{MAX}	Unit
BCLK Pulse Width High	t _{він}	10		ns
BCLK Pulse Width Low	t _{BIL}	10		ns
LRCLK Setup Time	t _{LIS}	10		ns
LRCLK Hold Time	tын	10		ns
Time from BCLK Falling	t _{SODM}		18	ns

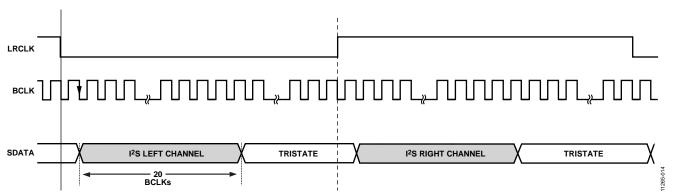


Figure 14. I²S, CONFIG Pin Tied to IOVDD

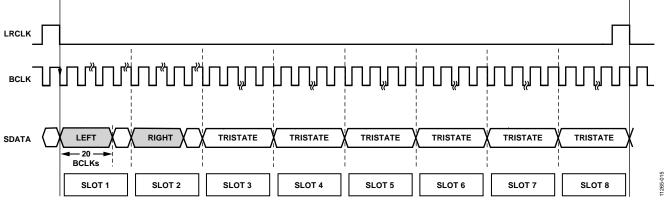


Figure 15. TDM8 Channel 1 and Channel 2, CONFIG Pin Tied to GND

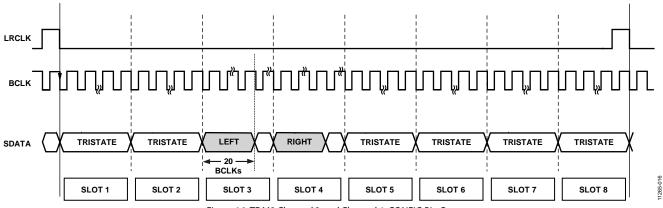


Figure 16. TDM8 Channel 3 and Channel 4, CONFIG Pin Open

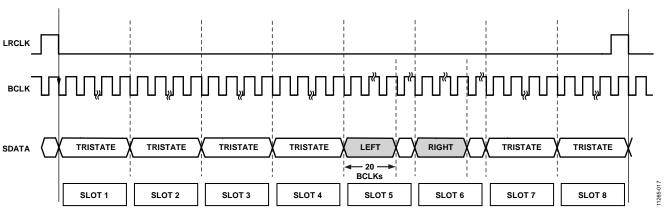


Figure 17. TDM8 Channel 5 to Channel 6, CONFIG Pin Tied to IOVDD Through a 47 k Ω Resistor

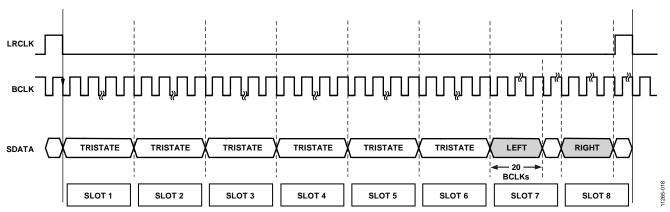


Figure 18. TDM8 Channel 7 and Channel 8, CONFIG Pin Tied to GND Through a 47 k Ω Resistor

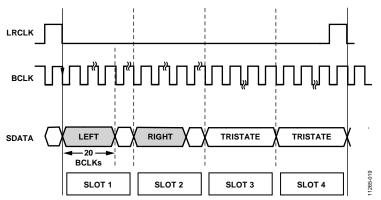


Figure 19. TDM4 Channel 1 and Channel 2, CONFIG Pin Tied to GND

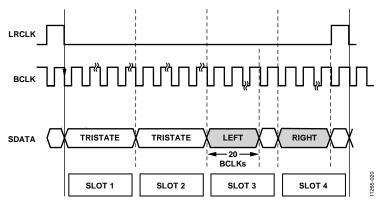


Figure 20. TDM4 Channel 3 and Channel 4, CONFIG Pin Open

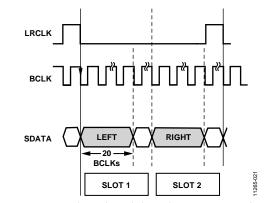


Figure 21. TDM2 Channel 1 and Channel 2, CONFIG Pin Tied to GND

OUTLINE DIMENSIONS

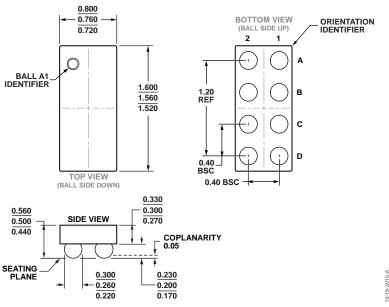


Figure 22. 8-Ball Wafer Level Chip Scale Package [WLCSP] (CB-8-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Marking Code
ADAU7002ACBZ-R7	−40°C to +85°C	8-Ball Wafer Level Chip Scale Package [WLCSP], 7"Tape and Reel	CB-8-6	BE
ADAU7002ACBZ-RL	−40°C to +85°C	8-Ball Wafer Level Chip Scale Package [WLCSP], 13"Tape and Reel	CB-8-6	BE
EVAL-ADAU7002Z		Evaluation Board		

¹ Z = RoHS Compliant Part.

NOTES

NOTES

NOTES

