

STB5N52K3, STD5N52K3, STF5N52K3 STP5N52K3, STU5N52K3

N-channel 525 V, 1.2 Ω 4.4 A SuperMESH3TM Power MOSFET D²PAK, DPAK, TO-220FP, TO-220, IPAK

Features

Order codes	V _{DSS}	R _{DS(on)} max	I _D	P_{w}
STB5N52K3				70 W
STD5N52K3				70 W
STF5N52K3	525 V	< 1.5 Ω	4.4 A	25 W
STP5N52K3				70 W
STU5N52K3				70 W

- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitance
- Improved diode reverse recovery characteristics
- Zener-protected

Application

Switching applications

Description

These devices are made using the SuperMESH3™ Power MOSFET technology that is obtained via improvements applied to STMicroelectronics' SuperMESH™ technology combined with a new optimized vertical structure. The resulting product has an extremely low on resistance, superior dynamic performance and high avalanche capability, making it especially suitable for the most demanding applications.

TO-220 DPAK TO-220FP

IPAK

D2PAK

Figure 1. Internal schematic diagram

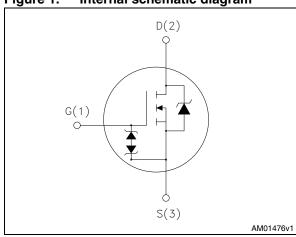


Table 1. Device summary

Order codes	Marking	Package	Packaging
STB5N52K3		D²PAK	Tano and rool
STD5N52K3		DPAK	Tape and reel
STF5N52K3	5N52K3	TO-220FP	
STP5N52K3		TO-220	Tube
STU5N52K3		IPAK	

December 2010 Doc ID 16952 Rev 2 1/23

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	. 4
	2.1 Electrical characteristics (curves)	. 6
3	Test circuits	. 9
4	Package mechanical data	10
5	Package mechanical data	19
6	Revision history	22

1 Electrical ratings

Table 2. Absolute maximum ratings

			Value				
Symbol	Parameter	TO-220 D²PAK	DPAK IPAK	TO-220FP	Unit		
V _{DS}	Drain- source voltage		525		V		
V _{GS}	Gate- source voltage		± 30		٧		
I _D	Drain current (continuous) at T _C = 25 °C	4	1.4	4.4 ⁽¹⁾	Α		
I _D	Drain current (continuous) at T _C = 100 °C	2.77		2.77 2.77 ⁽¹⁾		2.77 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	17.6		17.6 ⁽¹⁾	Α		
P _{TOT}	Total dissipation at T _C = 25 °C	70		25	W		
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _J max)	2.2			Α		
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	100		100		mJ	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	12		V/ns			
V _{ISO}	Insulation withstand voltage (AC)	2500		٧			
T _J T _{stg}	Operating junction temperature Storage temperature	- 55 to 150		- 55 to 150		°C	

- 1. Limited only by maximum temperature allowed
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq 4.4 \text{ A, di/dt} \leq 100 \text{ A/}\mu\text{s,V}_{DS} \text{ peak} \leq V_{(BR)DSS}, V_{DD} = 80\% V_{(BR)DSS}.$

Table 3. Thermal data

Ob. al	D	Value					11
Symbol	Symbol Parameter		D ² PAK	TO-220FP	IPAK	DPAK	Unit
R _{thj-case}	Thermal resistance junction-case max.	1.79		5	1.79		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max		62.5		100		°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max.		30			50	°C/W
TJ	Maximum lead temperature for soldering purpose	300		300			°C/W

2 Electrical characteristics

(Tcase =25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	525			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = Max rating V _{DS} = Max rating, T _C =125 °C			1 50	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0$			10	μА
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 2.2 \text{ A}$		1.2	1.5	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 100 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0$	-	545 45 8	-	pF pF pF
C _{oss eq.} (1)	Equivalent output capacitance	V _{DS} = 0 to 420 V, V _{GS} = 0	-	33	-	pF
Rg	Gate input resistance	f=1 MHz open drain	-	4.7	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 420 V, I_D = 4.4 A, V_{GS} = 10 V (see Figure 19)	-	17 3 10	-	nC nC nC

^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 420 \text{ V}, I_{D} = 4.4 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 18)	1	9 11 29 16	-	ns ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current				4.4	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		17.6	Α
V _{SD} (2)	Forward on voltage	$I_{SD} = 4.4 \text{ A}, V_{GS} = 0$	-		1.6	٧
t _{rr}	Reverse recovery time	$I_{SD} = 4.4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		210		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V	-	1.3		μC
I _{RRM}	Reverse recovery current	(see Figure 20)		12		Α
t _{rr}	Reverse recovery time	$I_{SD} = 4.4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		240		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 60 V T _J = 150 °C	-	1.6		μC
I _{RRM}	Reverse recovery current	(see Figure 20)		13		Α

^{1.} Pulse width limited by safe operating area

Table 8. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	Igs=± 1 mA (open drain)	30		-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

^{2.} Pulsed: pulse duration = $300 \mu s$, duty cycle 1.5%

2.1 **Electrical characteristics (curves)**

Safe operating area TO-220, D2PAK Figure 3. Figure 2. Thermal impedance TO-220, D2PAK

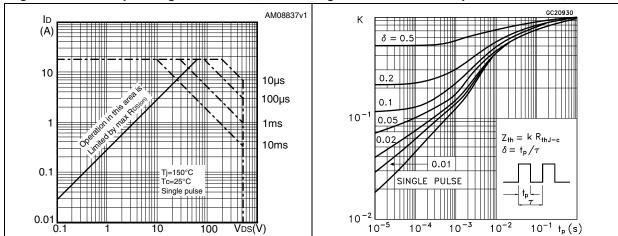


Figure 4. Safe operating area TO-220FP

Figure 5. Thermal impedance TO-220FP

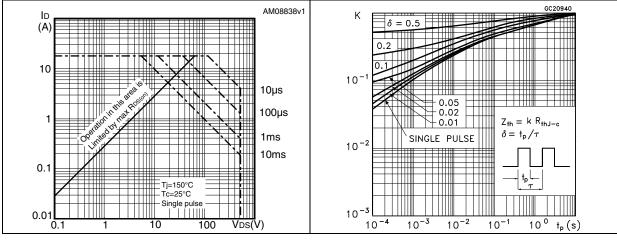
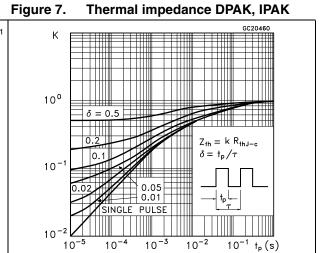



Figure 6. Safe operating area DPAK, IPAK

AM08839v1 ID (A) 10µs 10 100µs 1ms 10ms Tj=150°C Tc=25°C Single pulse 0.01 V_{DS}(V)

Doc ID 16952 Rev 2

6/23

Figure 8. Output characteristics

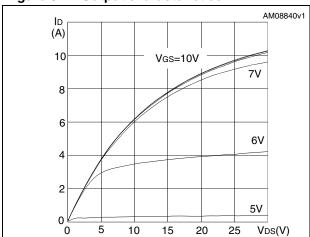


Figure 9. Transfer characteristics

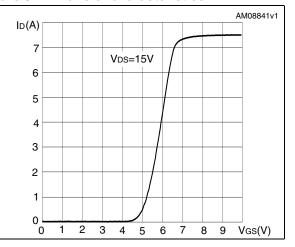
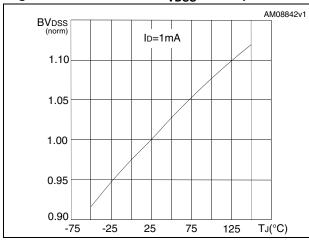



Figure 10. Normalized B_{VDSS} vs temperature

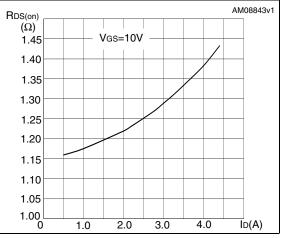
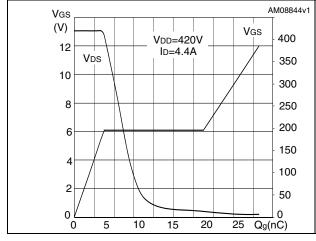



Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations

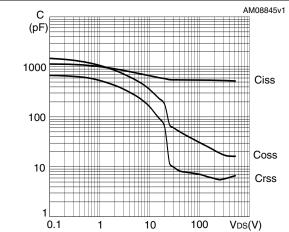
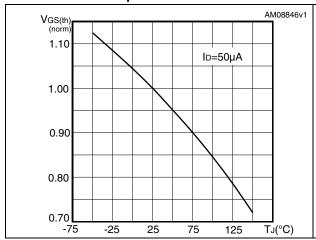



Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature temperature

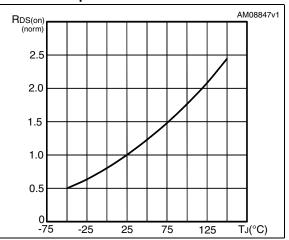
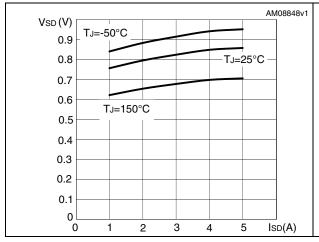
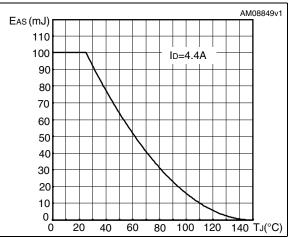




Figure 16. Source-drain diode forward characteristics

Figure 17. Maximum avalanche energy vs starting Tj

3 Test circuits

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

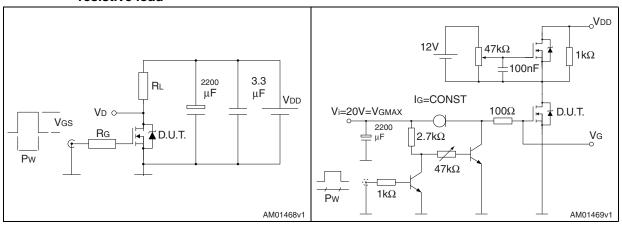


Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped inductive load test circuit

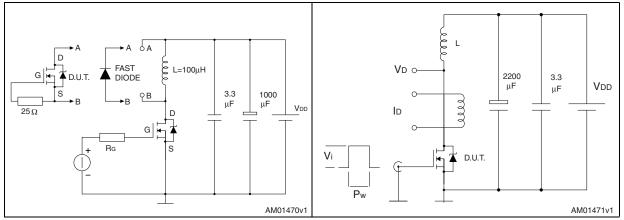
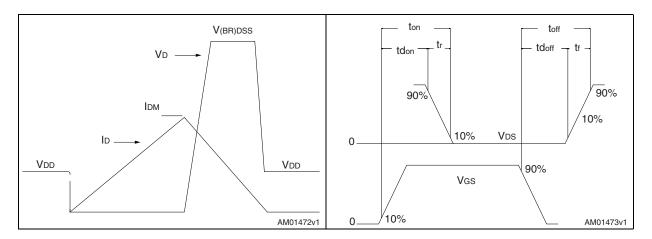



Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform

477

Doc ID 16952 Rev 2

9/23

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 9. TO-220FP mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
Α	4.4		4.6			
В	2.5		2.7			
D	2.5		2.75			
Е	0.45		0.7			
F	0.75		1			
F1	1.15		1.70			
F2	1.15		1.70			
G	4.95		5.2			
G1	2.4		2.7			
Н	10		10.4			
L2		16				
L3	28.6		30.6			
L4	9.8		10.6			
L5	2.9		3.6			
L6	15.9		16.4			
L7	9		9.3			
Dia	3		3.2			

Figure 24. TO-220FP drawing

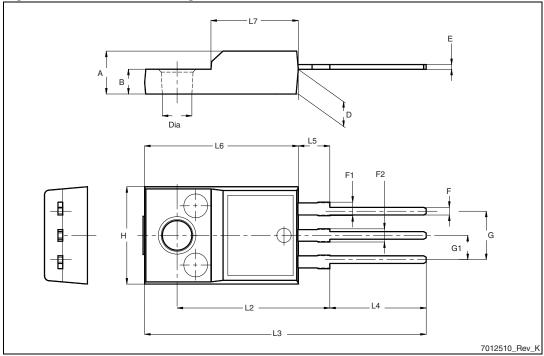


Table 10. DPAK (TO-252) mechanical data

Dim	, ,	mm					
Dim.	Min.	Тур.	Max.				
А	2.20		2.40				
A1	0.90		1.10				
A2	0.03		0.23				
b	0.64		0.90				
b4	5.20		5.40				
С	0.45		0.60				
c2	0.48		0.60				
D	6.00		6.20				
D1		5.10					
E	6.40		6.60				
E1		4.70					
е		2.28					
e1	4.40		4.60				
Н	9.35		10.10				
L	1						
L1		2.80					
L2		0.80					
L4	0.60		1				
R		0.20					
V2	0°		8°				

THERMAL PAD

E1

OCAUGE PLANE

A1

C2

D4

A2

L2

L4

H

O068772_G

Figure 25. DPAK (TO-252) drawing

Table 11. TO-220 type A mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
Α	4.40		4.60		
b	0.61		0.88		
b1	1.14		1.70		
С	0.48		0.70		
D	15.25		15.75		
D1		1.27			
E	10		10.40		
е	2.40		2.70		
e1	4.95		5.15		
F	1.23		1.32		
H1	6.20		6.60		
J1	2.40		2.72		
L	13		14		
L1	3.50		3.93		
L20		16.40			
L30		28.90			
ØP	3.75		3.85		
Q	2.65		2.95		

Figure 26. TO-220 type A drawing

Table 12. D²PAK (TO-263) mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
Α	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
С	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50				
Е	10		10.40		
E1	8.50				
е		2.54			
e1	4.88		5.28		
Н	15		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.4			
V2	0°		8°		

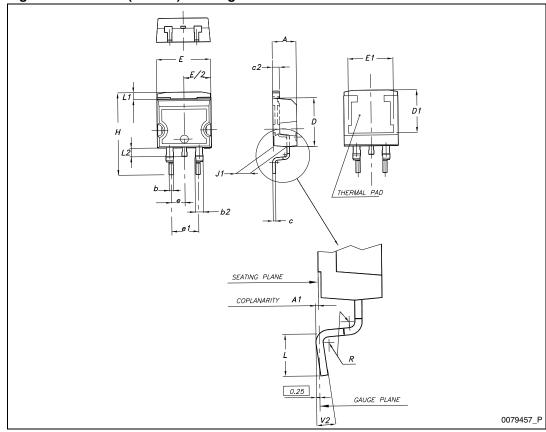
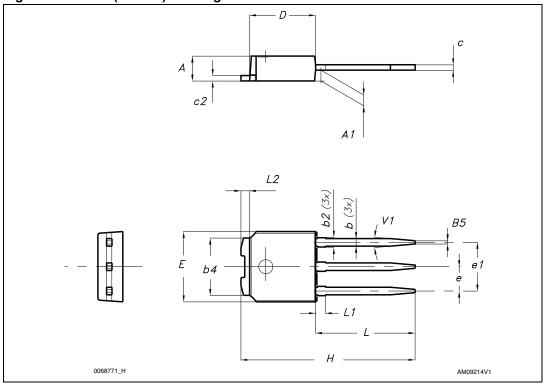


Figure 27. D2PAK (TO-263) drawing

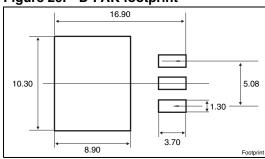

Table 13. IPAK (TO-251) mechanical data

DIM.	mm.				
	min.	typ	max.		
Α	2.20		2.40		
A1	0.90		1.10		
b	0.64		0.90		
b2			0.95		
b4	5.20		5.40		
B5		0.3			
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
Е	6.40		6.60		
е		2.28			
e1	4.40		4.60		

Table 13. IPAK (TO-251) mechanical data

Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10 °	

Figure 28. IPAK (TO-251) drawing

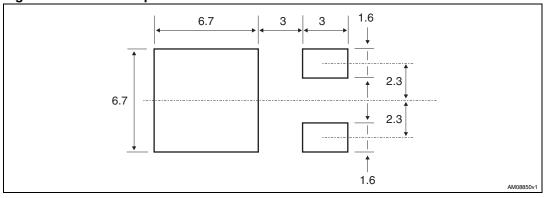


5 Package mechanical data

Table 14. D2PAK (TO-263) tape and reel mechanical data

Таре				Reel	
Dim.	mm		Dim	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	I	Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				•
Т	0.25	0.35			
W	23.7	24.3			

Figure 29. D²PAK footprint^(a)



a. All dimension are in millimeters

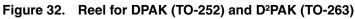
Table 15. DPAK (TO-252) tape and reel mechanical data

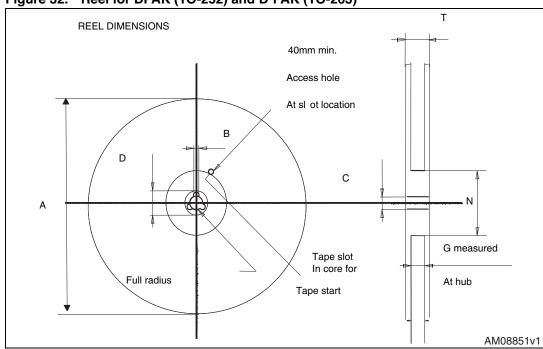
Таре				Reel	
Dim.	mm		Dim.	mm	
Diiii.	Min.	Max.	Diiii.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
T	0.25	0.35			
W	15.7	16.3			

Figure 30. DPAK footprint(b)

b. All dimension are in millimeters

To pitches cumulative tolerance on tape +/- 0.2 mm


For machine ref. only including draft and radii concentric around B0


User direction of feed

Liser direction of feed

AM08852v1

Figure 31. Tape for DPAK (TO-252) and D2PAK (TO-263)

6 Revision history

Table 16. Document revision history

Date	Revision	Changes	
05-Jan-2010	1	First release.	
14-Dec-2010	2	Document status promoted from preliminary data to datasheet.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577

Doc ID 16952 Rev 2

23/23