KSZ8081RNA/KSZ8081RND

10Base-T/100Base-TX PHY with RMII Support

Revision 1.3

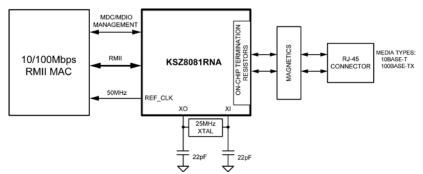
General Description

The KSZ8081RNA is a single-supply 10Base-T/100Base-TX Ethernet physical-layer transceiver for transmission and reception of data over standard CAT-5 unshielded twisted pair (UTP) cable.

The KSZ8081RNA is a highly-integrated PHY solution. It reduces board cost and simplifies board layout by using onchip termination resistors for the differential pairs and by integrating a low-noise regulator to supply the 1.2V core, and by offering 1.8/2.5/3.3V digital I/O interface support.

The KSZ8081RNA offers the Reduced Media Independent Interface (RMII) for direct connection to RMII-compliant MACs in Ethernet processors and switches.

As the power-up default, the KSZ8081RNA uses a 25MHz crystal to generate all required clocks, including the 50MHz RMII reference clock output for the MAC. The KSZ8081RND is the version that takes in the 50MHz RMII reference clock as the power-up default.


To facilitate system bring-up and debugging in production testing and in product deployment, parametric NAND tree support enables fault detection between KSZ8081RNA I/Os and the board. Micrel's LinkMD[®] TDR-based cable diagnostics identify faulty copper cabling.

The KSZ8081RNA and KSZ8081RND are available in 24pin, lead-free QFN packages (see "Ordering Information"). Datasheets and support documentation are available on the Micrel website at: <u>www.micrel.com</u>.

Features

- Single-chip 10Base-T/100Base-TX IEEE 802.3 compliant Ethernet transceiver
- RMII v1.2 Interface support with a 50MHz reference clock output to MAC, and an option to input a 50MHz reference clock
- RMII back-to-back mode support for a 100Mbps copper repeater
- MDC/MDIO management interface for PHY register configuration
- Programmable interrupt output
- · LED outputs for link and activity status indication
- · On-chip termination resistors for the differential pairs
- Baseline wander correction
- HP Auto MDI/MDI-X to reliably detect and correct straight-through and crossover cable connections with disable and enable option
- Auto-negotiation to automatically select the highest linkup speed (10/100Mbps) and duplex (half/full)
- · Power-down and power-saving modes
- LinkMD TDR-based cable diagnostics to identify faulty copper cabling
- Parametric NAND Tree support for fault detection between chip I/Os and the board
- HBM ESD rating (6kV)

Functional Diagram

LinkMD is a registered trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

August 19, 2015

Features (Continued)

- Loopback modes for diagnostics
- Single 3.3V power supply with VDD I/O options for 1.8V, 2.5V, or 3.3V
- Built-in 1.2V regulator for core
- Available in 24-pin 4mm x 4mm QFN package

Applications

- Game consoles
- IP phones
- IP set-top boxes
- IP TVs
- LOM
- Printers

Ordering Information

Ordering Part Number	Temperature Range	Package	Lead Finish	Description	
KSZ8081RNACA	0°C to 70°C	24-Pin QFN	Pb-Free	RMII with 25MHz crystal/clock input and 50MHz RMII REF_CLK output, Commercial Temperature.	
KSZ8081RNAIA ⁽¹⁾	-40°C to 85°C	24-Pin QFN	Pb-Free	RMII with 25MHz crystal/clock input and 50MHz RMII REF_CLK output, Industrial Temperature.	
KSZ8081RNDCA	0°C to 70°C	24-Pin QFN	Pb-Free	RMII normal mode with 50MHz clock input, Commercial Temperature.	
KSZ8081RNDIA ⁽¹⁾	-40°C to 85°C	24-Pin QFN	Pb-Free	RMII normal mode with 50MHz clock input, Industrial Temperature.	
KSZ8081RNA-EVAL				KSZ8081RNA Evaluation Board (Mounted with KSZ8081RNA device in commercial temperature)	
KSZ8081RND-EVAL				KSZ8081RND Evaluation Board (Mounted with KSZ8081RND device in commercial temperature)	

Note:

1. Contact factory for lead time.

Revision History

Date	Summary of Changes	Revision
11/5/12	Initial release of datasheet.	1.0
2/6/14	Removed copper wire bonding part numbers from Ordering Information. Added note for RXER (Pin 17) and Register 16h, Bit [15] regarding a Reserved Factory Mode. Added series resistance and load capacitance for the 25MHz crystal selection criteria.	1.1
12/10/14	Added industrial temperature part number KSZ8081RNDIA to Ordering Information. Added silver wire bonding part numbers to Ordering Information. Updated Ordering Information to include Ordering Part Number and Device Marking.	1.2
08/19/15	Updated descriptions in local loopback section. Updated Ordering Information Table. Updated pin 17 RXER and register 16h bit [15] description. Updated description and add an equation in LinkMD section. Updated Table 13. Add a note for Table 15. Updated description for Figure 16. Add a note for Figure 17. Add HBM ESD rating in Features.	1.3

Contents

List of Figures	6
List of Tables	7
Pin Configuration	
Pin Description	9
Strapping Options	
Functional Description: 10Base-T/100Base-TX Transceiver	
100Base-TX Transmit	13
100Base-TX Receive	
Scrambler/De-Scrambler (100Base-TX Only)	
10Base-T Transmit	
10Base-T Receive	
PLL Clock Synthesizer	
Auto-Negotiation	
RMII Interface	
RMII Signal Definition	
Reference Clock (REF_CLK)	
Transmit Enable (TXEN)	
Transmit Data[1:0] (TXD[1:0])	
Carrier Sense / Receive Data Valid (CRS_DV)	
Receive Data[1:0] (RXD[1:0])	
Receive Error (RXER)	
Collision Detection (COL)	
RMII Signal Diagram – 25/50MHz Clock Mode RMII – 25MHz Clock Mode	17
RMII – 25MHZ Clock Mode RMII – 50MHz Clock Mode	
Back-to-Back Mode – 100Mbps Copper Repeater	19
RMII Back-to-Back Mode	
Interrupt (INTRP)	
HP Auto MDI/MDI-X	
Straight Cable	
Crossover Cable	
Loopback Mode	
Local (Digital) Loopback	
Remote (Analog) Loopback	
LinkMD [®] Cable Diagnostic	
Usage	
NAND Tree Support	
NAND Tree I/O Testing	
Power Management	
Power-Saving Mode	
Energy-Detect Power-Down Mode	
Power-Down Mode	27
Slow-Oscillator Mode	27
Reference Circuit for Power and Ground Connections	28
Typical Current/Power Consumption	29
Register Map	31
Register Description	
Absolute Maximum Ratings	
Operating Ratings	41
Electrical Characteristics	
Timing Diagrams	
RMII Timing	
Auto-Negotiation Timing	
MDC/MDIO Timing	45

46
47
48
49
50
52
•

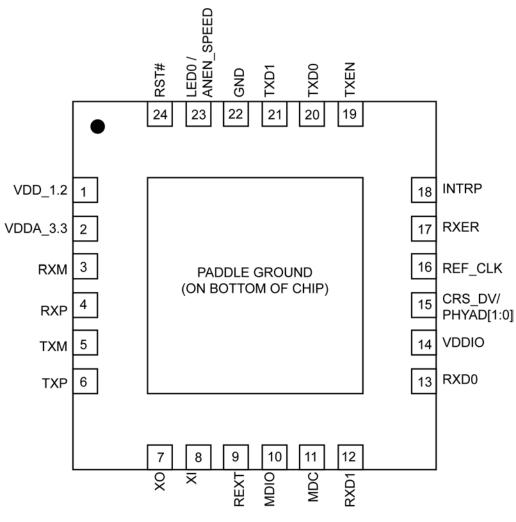

List of Figures

Figure 1. Auto-Negotiation Flow Chart	15
Figure 2. KSZ8081RNA/RND RMII Interface (RMII – 25MHz Clock Mode)	
Figure 3. KSZ8081RNA/RND RMII Interface (RMII – 50MHz Clock Mode)	
Figure 4. KSZ8081RNA/RND and KSZ8081RNA/RND RMII Back-to-Back Copper Repeater	
Figure 5. Typical Straight Cable Connection	
Figure 6. Typical Crossover Cable Connection	
Figure 7. Local (Digital) Loopback	
Figure 8. Remote (Analog) Loopback	
Figure 9. KSZ8081RNA/RND Power and Ground Connections	
Figure 10. RMII Timing – Data Received from RMII	
Figure 11. RMII Timing – Data Input to RMII	
Figure 12. Auto-Negotiation Fast Link Pulse (FLP) Timing	
Figure 13. MDC/MDIO Timing	45
Figure 14. Power-Up/Reset Timing	
Figure 15. Recommended Reset Circuit	
Figure 16. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output	47
Figure 17. Reference Circuits for LED Strapping Pins	
Figure 18. 25MHz Crystal/Oscillator Reference Clock Connection	
Figure 19. 50MHz Oscillator Reference Clock Connection	
Figure 20. Typical Magnetic Interface Circuit	50

List of Tables

Table 1. RMII Signal Definition	16
Table 2. RMII Signal Connection for RMII Back-to-Back Mode (100Base-TX Copper Repeater)	19
Table 3. MII Management Frame Format for the KSZ8081RNA/RND	20
Table 4. MDI/MDI-X Pin Description	21
Table 5. NAND Tree Test Pin Order for KSZ8081RNA/RND	26
Table 6. KSZ8081RNA/RND Power Pin Description	28
Table 7. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)	29
Table 8. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)	
Table 9. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)	30
Table 10. RMII Timing Parameters – KSZ8081RNA/RND (25MHz input to XI pin, 50MHz output from REF_CLK pin)	43
Table 11. RMII Timing Parameters – KSZ8081RNA/RND (50MHz input to XI pin)	
Table 12. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters	
Table 13. MDC/MDIO Timing Parameters	45
Table 14. Power-Up/Reset Timing Parameters	
Table 15. 25MHz Crystal / Reference Clock Selection Criteria	
Table 16. 50MHz Oscillator / Reference Clock Selection Criteria	
Table 17. Magnetics Selection Criteria	
Table 18. Compatible Single-Port 10/100 Magnetics	51

Pin Configuration

24-Pin 4mm × 4mm QFN

Pin Description

Pin Number	Pin Name	Type ⁽²⁾	Pin Function	
1	VDD_1.2	Р	1.2V Core V_{DD} (power supplied by KSZ8081RNA/KSZ8081RND). Decouple with 2.2µF and 0.1µF capacitors to ground.	
2	VDDA_3.3	Р	3.3V Analog V _{DD} .	
3	RXM	I/O	Physical Receive or Transmit Signal (– differential).	
4	RXP	I/O	Physical Receive or Transmit Signal (+ differential).	
5	ТХМ	I/O	Physical Transmit or Receive Signal (– differential).	
6	TXP	I/O	Physical Transmit or Receive Signal (+ differential).	
7	ХО	0	Crystal Feedback for 25MHz Crystal. This pin is a no connect if an oscillator or external clock source is used.	
8	XI	I	 RMII – 25MHz Mode: 25MHz ±50ppm Crystal / Oscillator / External Clock Input RMII – 50MHz Mode: 50MHz ±50ppm Oscillator / External Clock Input For unmanaged mode (power-up default setting): KSZ8081RNA takes in the 25MHz crystal/clock on this pin. KSZ8081RND takes in the 50MHz clock on this pin. After power-up, both the KSZ8081RNA and KSZ8081RND can be programmed to either the 25MHz mode or 50MHz mode using PHY Register 1Fh Bit [7]. See also REF_CLK (Pin 16). 	
9	REXT	I	Set PHY Transmit Output Current. Connect a 6.49k Ω resistor to ground on this pin.	
10	MDIO	lpu/Opu	Management Interface (MII) Data I/O. This pin has a weak pull-up, is open-drain, and requires an external $1.0k\Omega$ pull-up resistor.	
11	MDC	lpu	Management Interface (MII) Clock Input. This clock pin is synchronous to the MDIO data pin.	
12	RXD1	lpd/O	RMII Receive Data Output[1] ⁽³⁾ .	
13	RXD0	lpu/O	RMII Receive Data Output[0] ⁽³⁾ .	

Notes:

2. P = Power supply.

GND = Ground.

I = Input.

O = Output.

I/O = Bi-directional.

Ipu = Input with internal pull-up (see *Electrical Characteristics* for value).

Ipu/O = Input with internal pull-up (see *Electrical Characteristics* for value) during power-up/reset; output pin otherwise.

Ipd/O = Input with internal pull-down (see *Electrical Characteristics* for value) during power-up/reset; output pin otherwise.

Ipu/Opu = Input with internal pull-up (see *Electrical Characteristics* for value) and output with internal pull-up (see *Electrical Characteristics* for value).

3. RMII RX Mode: The RXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which CRS_DV is asserted, two bits of recovered data are sent by the PHY to the MAC.

Pin Description (Continued)

Pin Number	Pin Name	Type ⁽²⁾	Pin Function	
14	VDDIO	Р	3.3V, 2.5V, or 1.8V Digital V _{DD} .	
15	CRS_DV / PHYAD[1:0]	lpd/O	 RMII Mode: Carrier Sense/Receive Data Valid Output. Config. Mode: The pull-up/pull-down value is latched as PHYAD[1:0] at the deassertion of reset. See the Strapping Options section for details. 	
16	REF_CLK	lpd/O	 RMII – 25MHz Mode: This pin provides the 50MHz RMII reference clock output to the MAC. RMII – 50MHz Mode: This pin is a no connect. For unmanaged mode (power-up default setting), KSZ8081RNA is in RMII – 25MHz mode and outputs the 50MHz RMII reference clock on this pin. KSZ8081RND is in RMII – 50MHz mode and does not use this pin. After power-up, both KSZ8081RNA and KSZ8081RND can be programmed to either 25MHz mode or 50MHz mode using PHY Register 1Fh Bit [7]. See also XI (Pin 8). 	
17	RXER	lpd/O	RMII Receive Error Output. At the de-assertion of reset, this pin needs to latch in a pull-down value for normal operation. If MAC side pulls this pin high, see Register 16h, Bit [15] for solution. It is better having an external pull-down resistor to avoid MAC side pulls this pin high.	
18	INTRP	lpu/Opu	Interrupt Output: Programmable interrupt output. This pin has a weak pull-up, is open drain, and requires an external $1.0 k\Omega$ pull-up resistor.	
19	TXEN	I	RMII Transmit Enable Input.	
20	TXD0	I	RMII Transmit Data Input [0] ⁽⁴⁾ .	
21	TXD1	I/O	RMII Transmit Data Input [1] ⁽⁴⁾ . NAND Tree Mode: NAND Tree output pin.	
22	GND	GND	Ground.	

Note:

4. RMII TX Mode: The TXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which TXEN is asserted, two bits of data are received by the PHY from the MAC.

Pin Description (Continued)

Pin Number	Pin Name	Type ⁽²⁾	Pin Function			
23	LED0 / ANEN_SPEED	LED0 / Ipu/Q	LED Output: Programmable LED0 Output. Config. Mode: Latched as auto-negotiation enable (Register 0h, Bit [12]) and Speed (Register 0h, Bit [13]) at the de-assertion of reset. See the Strapping Options section for details. The LED0 pin is programmable using Register 1Fh bits [5:4], and is defined as follows: LED mode = [00] Link/Activity Pin State LED Definition No link High OFF Link Low ON Activity Toggle			
			Link	Pin State	LED Definition	
			No link	High	OFF	
			Link	Low	ON	
			LED Mode = [10], [11] Reserve	d	-
24	RST#	lpu	Chip Reset (active low).			
PADDLE	GND	GND	Ground.			

Strapping Options

Pin Number	Pin Name	Type ⁽⁵⁾	Pin Function
			The PHY Address is latched at the de-assertion of reset and is configurable to either one of the following two values:
45			Pull-up = PHY Address is set to 00011b (0x3h)
15	PHYAD[1:0]	lpd/O	Pull-down (default) = PHY Address is set to 00000b (0x0h)
			PHY Address Bits [4:2] are set to 000 by default.
			Auto-Negotiation Enable and SPEED Mode
			Pull-up (default) = Enable Auto-Negotiation and set 100Mbps Speed
23	ANEN_SPEED	lpu/O	Pull-down = Disable Auto-Negotiation and set 10Mbps Speed
			At the de-assertion of reset, this pin value is latched into Register 0h Bit [12] for Auto- negotiation enable/disable, Register 0h Bit [13] for the Speed select, and Register 4h (Auto-Negotiation Advertisement) for the Speed capability support.

Note:

5. Ipu/O = Input with internal pull-up (see *Electrical Characteristics* for value) during power-up/reset; output pin otherwise.

Ipd/O = Input with internal pull-down (see *Electrical Characteristics* for value) during power-up/reset; output pin otherwise.

The PHYAD[1:0] strap-in pin is latched at the de-assertion of reset. In some systems, the RMII MAC receive input pins may drive high/low during power-up or reset, and consequently cause the PHYAD[1:0] strap-in pin, a shared pin with the RMII CRS_DV signal, to be latched to the unintended high/low state. In this case an external pull-up ($4.7k\Omega$) or pull-down ($1.0k\Omega$) should be added on the PHYAD[1:0] strap-in pin to ensure that the intended value is strapped-in correctly.

Functional Description: 10Base-T/100Base-TX Transceiver

The KSZ8081RNA is an integrated single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3 Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two differential pairs and by integrating the regulator to supply the 1.2V core.

On the copper media side, the KSZ8081RNA supports 10Base-T and 100Base-TX for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP) cable, and HP Auto MDI/MDI-X for reliable detection of and correction for straight-through and crossover cables.

On the MAC processor side, the KSZ8081RNA offers the Reduced Media Independent Interface (RMII) for direct connection with RMII-compliant Ethernet MAC processors and switches

The MII management bus option gives the MAC processor complete access to the KSZ8081RNA control and status registers. Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.

As the power-up default, the KSZ8081RNA uses a 25MHz crystal to generate all required clocks, including the 50MHz RMII reference clock output for the MAC. The KSZ8081RND version uses the 50MHz RMII reference clock as the power-up default.

The KSZ8081RNA/RND is used to refer to both KSZ8081RNA and KSZ8081RND versions in this data sheet.

100Base-TX Transmit

The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI conversion, and MLT3 encoding and transmission.

The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by an external $6.49k\Omega$ 1% resistor for the 1:1 transformer ratio.

The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX transmitter.

100Base-TX Receive

The 100Base-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.

The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair cable. Because the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization. This is an ongoing process and self-adjusts against environmental changes such as temperature variations.

Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit compensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit converts MLT3 format back to NRZI. The slicing threshold is also adaptive.

The clock-recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used to convert the NRZI signal to NRZ format. This signal is sent through the de-scrambler, then the 4B/5B decoder. Finally, the NRZ serial data is converted to MII format and provided as the input data to the MAC.

Scrambler/De-Scrambler (100Base-TX Only)

The scrambler spreads the power spectrum of the transmitted signal to reduce electromagnetic interference (EMI) and baseline wander. The de-scrambler recovers the scrambled signal.

10Base-T Transmit

The 10Base-T drivers are incorporated with the 100Base-TX drivers to allow for transmission using the same magnetic. The drivers perform internal wave-shaping and pre-emphasis, and output 10Base-T signals with typical amplitude of 2.5V peak. The 10Base-T signals have harmonic contents that are at least 27dB below the fundamental frequency when driven by an all-ones Manchester-encoded signal.

10Base-T Receive

On the receive side, input buffer and level detecting squelch circuits are used. A differential input receiver circuit and a phase-locked loop (PLL) performs the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch circuit rejects signals with levels less than 400mV, or with short pulse widths, to prevent noise at the RXP and RXM inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ8081RNA/RND decodes a data frame. The receive clock is kept active during idle periods between data receptions.

PLL Clock Synthesizer

The KSZ8081RNA/RND in RMII – 25MHz Clock mode generates all internal clocks and all external clocks for system timing from an external 25MHz crystal, oscillator, or reference clock. For the KSZ8081RNA/RND in RMII – 50MHz clock mode, these clocks are generated from an external 50MHz oscillator or system clock.

Auto-Negotiation

The KSZ8081RNA/RND conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.

Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.

During auto-negotiation, link partners advertise capabilities across the UTP link to each other and then compare their own capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the mode of operation.

The following list shows the speed and duplex operation mode from highest to lowest priority.

- Priority 1: 100Base-TX, full-duplex
- Priority 2: 100Base-TX, half-duplex
- Priority 3: 10Base-T, full-duplex
- Priority 4: 10Base-T, half-duplex

If auto-negotiation is not supported or the KSZ8081RNA/RND link partner is forced to bypass auto-negotiation, then the KSZ8081RNA/RND sets its operating mode by observing the signal at its receiver. This is known as parallel detection, which allows the KSZ8081RNA/RND to establish a link by listening for a fixed signal protocol in the absence of the auto-negotiation advertisement protocol.

Auto-negotiation is enabled by either hardware pin strapping (ANEN_SPEED, Pin 23) or software (Register 0h, Bit [12]).

By default, auto-negotiation is enabled after power-up or hardware reset. After that, auto-negotiation can be enabled or disabled by Register 0h, Bit [12]. If auto-negotiation is disabled, the speed is set by Register 0h, Bit [13], and the duplex is set by Register 0h, Bit [8].

The auto-negotiation link-up process is shown in Figure 1.

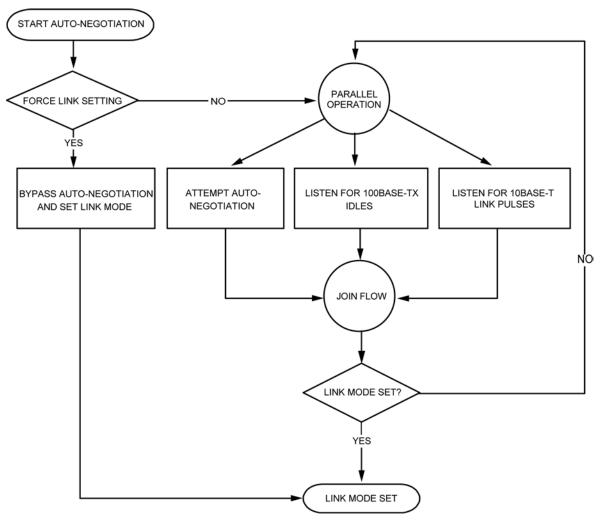


Figure 1. Auto-Negotiation Flow Chart

RMII Interface

The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It provides a common interface between physical layer and MAC layer devices, and has the following key characteristics:

- Pin count is 8 pins (3 pins for data transmission, 4 pins for data reception, and 1 pin for the 50MHz reference clock).
- 10Mbps and 100Mbps data rates are supported at both half- and full-duplex.
- Data transmission and reception are independent and belong to separate signal groups.
- Transmit data and receive data are each 2 bits wide, a dibit.

RMII Signal Definition

Table 1 describes the RMII signals. Refer to RMII Specification v1.2 for detailed information.

Table 1. RMII Signal Definition

RMII Signal Name	Direction (with respect to PHY, KSZ8081RNA/RND signal)	Direction (with respect to MAC)	Description
REF_CLK	Output (25MHz clock mode) / <no connect=""> (50MHz clock mode)</no>	Input/ Input or <no connect=""></no>	Synchronous 50MHz reference clock for receive, transmit, and control interface
TXEN	Input	Output	Transmit Enable
TXD[1:0]	Input	Output	Transmit Data[1:0]
CRS_DV	Output	Input	Carrier Sense/Receive Data Valid
RXD[1:0]	Output	Input	Receive Data[1:0]
RXER	Output	Input, or (not required)	Receive Error

Reference Clock (REF_CLK)

REF_CLK is a continuous 50MHz clock that provides the timing reference for TXEN, TXD[1:0], CRS_DV, RXD[1:0], and RX_ER.

For RMII – 25MHz Clock Mode, the KSZ8081RNA/RND generates and outputs the 50MHz RMII REF_CLK to the MAC at REF_CLK (Pin 16).

For RMII – 50MHz Clock Mode, the KSZ8081RNA/RND takes in the 50MHz RMII REF_CLK from the MAC or system board at XI (Pin 8) and leaves the REF_CLK (Pin 16) as no connect.

Transmit Enable (TXEN)

TXEN indicates that the MAC is presenting dibits on TXD[1:0] for transmission. It is asserted synchronously with the first dibit of the preamble and remains asserted while all dibits to be transmitted are presented on the RMII. It is negated before the first REF_CLK following the final dibit of a frame.

TXEN transitions synchronously with respect to REF_CLK.

Transmit Data[1:0] (TXD[1:0])

TXD[1:0] transitions synchronously with respect to REF_CLK. When TXEN is asserted, the PHY accepts TXD[1:0] for transmission.

TXD[1:0] is 00 to indicate idle when TXEN is de-asserted. The PHY ignores values other than 00 on TXD[1:0] while TXEN is de-asserted.

Carrier Sense / Receive Data Valid (CRS_DV)

The PHY asserts CRS_DV when the receive medium is non-idle. It is asserted asynchronously when a carrier is detected. This happens when squelch is passed in 10Mbps mode, and when two non-contiguous 0s in 10 bits are detected in 100Mbps mode. Loss of carrier results in the de-assertion of CRS_DV.

While carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered dibit of the frame through the final recovered dibit. It is negated before the first REF_CLK that follows the final dibit. The data on RXD[1:0] is considered valid after CRS_DV is asserted. However, because the assertion of CRS_DV is asynchronous relative to REF_CLK, the data on RXD[1:0] is 00 until receive signals are properly decoded.

Receive Data[1:0] (RXD[1:0])

RXD[1:0] transitions synchronously with respect to REF_CLK. For each clock period in which CRS_DV is asserted, RXD[1:0] transfers two bits of recovered data from the PHY.

RXD[1:0] is 00 to indicate idle when CRS_DV is de-asserted. The MAC ignores values other than 00 on RXD[1:0] while CRS_DV is de-asserted.

Receive Error (RXER)

RXER is asserted for one or more REF_CLK periods to indicate that a symbol error (for example, a coding error that a PHY can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being transferred from the PHY.

RXER transitions synchronously with respect to REF_CLK. While CRS_DV is de-asserted, RXER has no effect on the MAC.

Collision Detection (COL)

The MAC regenerates the COL signal of the MII from TXEN and CRS_DV.

RMII Signal Diagram – 25/50MHz Clock Mode

The KSZ8081RNA/RND RMII pin connections to the MAC for 25MHz clock mode are shown in Figure 2. The connections for 50MHz clock mode are shown in Figure 3.

RMII – 25MHz Clock Mode

The KSZ8081RNA is configured to RMII – 25MHz clock mode after it is powered up or hardware reset with the following:

• A 25MHz crystal connected to XI, XO (Pins 8, 7), or an external 25MHz clock source (oscillator) connected to XI

The KSZ8081RND can optionally be configured to RMII – 25MHz clock mode after it is powered up or hardware reset and software programmed with the following:

- A 25MHz crystal connected to XI, XO (Pins 8, 7), or an external 25MHz clock source (oscillator) connected to XI
- Register 1Fh, Bit [7] programmed to '1' to select RMII 25MHz clock mode

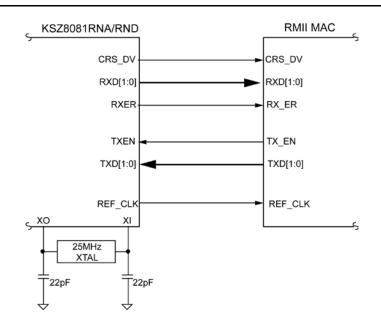


Figure 2. KSZ8081RNA/RND RMII Interface (RMII – 25MHz Clock Mode)

RMII – 50MHz Clock Mode

The KSZ8081RND is configured to RMII – 50MHz clock mode after it is powered up or hardware reset with the following:

An external 50MHz clock source (oscillator) connected to XI (Pin 8)

The KSZ8081RNA can optionally be configured to RMII – 50MHz clock mode after it is powered up or hardware reset and software programmed with the following:

- An external 50MHz clock source (oscillator) connected to XI (Pin 8)
- Register 1Fh, Bit [7] programmed to '1' to select RMII 50MHz clock mode

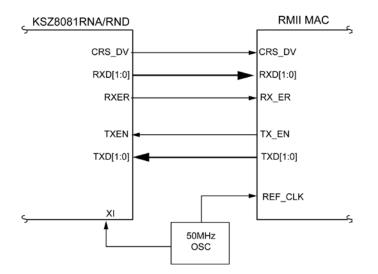


Figure 3. KSZ8081RNA/RND RMII Interface (RMII – 50MHz Clock Mode)

Back-to-Back Mode – 100Mbps Copper Repeater

Two KSZ8081RNA/RND devices can be connected back-to-back to form a managed 100Base-TX copper repeater.

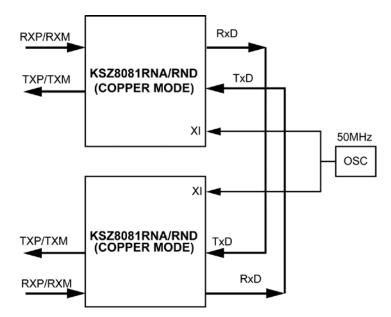


Figure 4. KSZ8081RNA/RND and KSZ8081RNA/RND RMII Back-to-Back Copper Repeater

RMII Back-to-Back Mode

In RMII back-to-back mode, a KSZ8081RNA/RND interfaces with another KSZ8081RNA/RND to provide a 100Mbps copper repeater solution.

The KSZ8081RNA/RND devices are configured to RMII back-to-back mode after power-up or reset, and software programming, with the following:

- A common 50MHz reference clock connected to XI (Pin 8)
- Register 1Fh, Bit [7] programmed to '1' to select RMII 50MHz clock mode for KSZ8081RNA (KSZ8081RND is set to RMII – 50MHz clock mode as the default after power up or hardware reset)
- Register 16h, Bits [6] and [1] programmed to '1' and '1', respectively, to enable RMII back-to-back mode.
- RMII signals connected as shown in Table 2

KSZ8081RNA/RND (100Base-TX copper) [Device 1]			KSZ8081RNA/RND (100Base-TX copper) [Device 2]		
Pin Name	Pin Number	Pin Type	Pin Name	Pin Number	Pin Type
CRS_DV	15	Output	TXEN	19	Input
RXD1	12	Output	TXD1	21	Input
RXD0	13	Output	TXD0	20	Input
TXEN	19	Input	CRS_DV	15	Output
TXD1	21	Input	RXD1	12	Output
TXD0	20	Input	RXD0	13	Output

Table 2. RMII Signal Connection for RMII Back-to-Back Mode (100Base-TX Copper Repeater)

MII Management (MIIM) Interface

The KSZ8081RNA/RND supports the IEEE 802.3 MII management interface, also known as the Management Data Input/Output (MDIO) interface. This interface allows an upper-layer device, such as a MAC processor, to monitor and control the state of the KSZ8081RNA/RND. An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 Specification.

The MIIM interface consists of the following:

- A physical connection that incorporates the clock line (MDC) and the data line (MDIO).
- A specific protocol that operates across the physical connection mentioned earlier, which allows the external controller to communicate with one or more PHY devices.
- A set of 16-bit MDIO registers. Registers [0:8] are standard registers, and their functions are defined in the IEEE 802.3 Specification. The additional registers are provided for expanded functionality. See the *Register Map* section for details.

The KSZ8081RNA/RND supports only two unique PHY addresses. The PHYAD[1:0] strapping pin is used to select either 0h or 3h as the unique PHY address for the KSZ8081RNA/RND device.

PHY address 0h is defined as the broadcast PHY address according to the IEEE 802.3 Specification, and can be used to read/write to a single PHY device, or write to multiple PHY devices simultaneously. For the KSZ8081RNA/RND, PHY address 0h defaults to the broadcast PHY address after power-up, but PHY address 0h can be disabled as the broadcast PHY address using software to assign it as a unique PHY address.

For applications that require two KSZ8081RNA/RND PHYs to share the same MDIO interface with one PHY set to address 0h and the other PHY set to address 3h, use PHY address 0h (defaults to broadcast after power-up) to set both PHYs' Register 16h, Bit [9] to '1' to assign PHY address 0h as a unique (non-broadcast) PHY address.

Table 3 shows the MII management frame format for the KSZ8081RNA/RND.

	Preamble	Start of Frame	Read/Write OP Code	PHY Address Bits [4:0]	REG Address Bits [4:0]	ТА	Data Bits [15:0]	Idle
Read	32 1's	01	10	000AA	RRRRR	Z0	DDDDDDD_DDDDDDDD	Z
Write	32 1's	01	01	000AA	RRRRR	10	DDDDDDD_DDDDDDD	Z

Table 3. MII Management Frame Format for the KSZ8081RNA/RND

Interrupt (INTRP)

INTRP (Pin 18) is an optional interrupt signal that is used to inform the external controller that there has been a status update to the KSZ8081RNA/RND PHY register. Bits [15:8] of Register 1Bh are the interrupt control bits to enable and disable the conditions for asserting the INTRP signal. Bits [7:0] of Register 1Bh are the interrupt status bits to indicate which interrupt conditions have occurred. The interrupt status bits are cleared after reading Register 1Bh.

Bit [9] of Register 1Fh sets the interrupt level to active high or active low. The default is active low.

The MII management bus option gives the MAC processor complete access to the KSZ8081RNA/RND control and status registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.

HP Auto MDI/MDI-X

HP Auto MDI/MDI-X configuration eliminates the need to decide whether to use a straight cable or a crossover cable between the KSZ8081RNA/RND and its link partner. This feature allows the KSZ8081RNA/RND to use either type of cable to connect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and receive pairs from the link partner and assigns transmit and receive pairs to the KSZ8081RNA/RND accordingly.

HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a '1' to Register 1Fh, Bit [13]. MDI and MDI-X mode is selected by Register 1Fh, Bit [14] if HP Auto MDI/MDI-X is disabled.

An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.

Table 4 shows how the IEEE 802.3 Standard defines MDI and MDI-X.

Table 4. MDI/MDI-X Pin Description

	MDI	MDI-X		
RJ-45 Pin	Signal	RJ-45 Pin	Signal	
1	TX+	1	RX+	
2	TX-	2	RX-	
3	RX+	3	TX+	
6	RX-	6	TX–	

Straight Cable

A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 5 shows a typical straight cable connection between a NIC card (MDI device) and a switch or hub (MDI-X device).

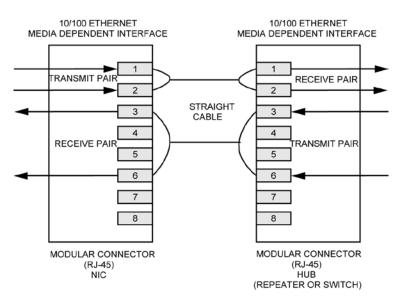


Figure 5. Typical Straight Cable Connection

Crossover Cable

A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device. Figure 6 shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).

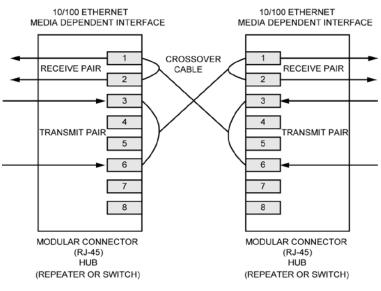


Figure 6. Typical Crossover Cable Connection

Loopback Mode

The KSZ8081RNA/RND supports the following loopback operations to verify analog and/or digital data paths.

- Local (digital) loopback
- Remote (analog) loopback

Local (Digital) Loopback

This loopback mode checks the RMII transmit and receive data paths between the KSZ8081RNA/RND and the external MAC, and is supported for both speeds (10/100Mbps) at full-duplex.

The loopback data path is shown in Figure 7.

- 1. The RMII MAC transmits frames to the KSZ8081RNA/RND.
- 2. Frames are wrapped around inside the KSZ8081RNA/RND.
- 3. The KSZ8081RNA/RND transmits frames back to the RMII MAC.
- 4. Except the frames back to the RMII MAC, the transmit frames also go out from the copper port.

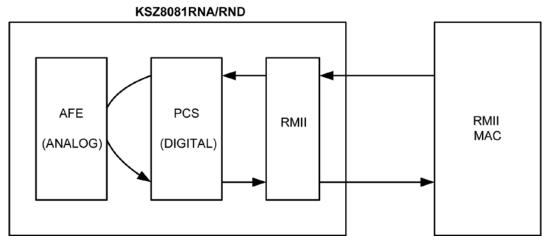


Figure 7. Local (Digital) Loopback

The following programming action and register settings are used for local loopback mode:

For 10/100Mbps loopback:

Set Register 0h,

- Bit [14] = 1 // Enable local loopback mode
- Bit [13] = 0/1 // Select 10Mbps/100Mbps speed
- Bit [12] = 0 // Disable auto-negotiation
- Bit [8] = 1 // Select full-duplex mode

If don't want the frames go out from the copper port in the local loopback, please follow the steps as below.

- 1. Set register 1Fh bit [3] to '1' to disable the transmitter.
- 2. Run local loopback test as above.
- 3. Set register 1Fh bit [3] to '0' to enable the transmitter.

Remote (Analog) Loopback

This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and receive data paths between the KSZ8081RNA/RND and its link partner, and is supported for 100Base-TX full-duplex mode only.

The loopback data path is shown in Figure 8.

- 1. The Fast Ethernet (100Base-TX) PHY link partner transmits frames to the KSZ8081RNA/RND.
- 2. Frames are wrapped around inside the KSZ8081RNA/RND.
- 3. The KSZ8081RNA/RND transmits frames back to the Fast Ethernet (100Base-TX) PHY link partner.

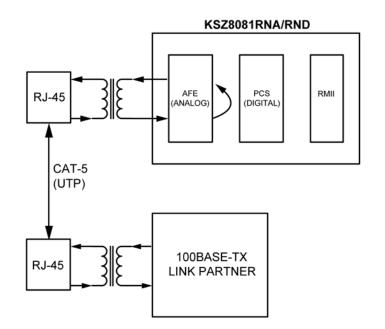


Figure 8. Remote (Analog) Loopback

The following programming steps and register settings are used for remote loopback mode:

1. Set Register 0h,

Bits [13] = 1	// Select 100Mbps speed
---------------	-------------------------

- Bit [12] = 0 // Disable auto-negotiation
- Bit [8] = 1 // Select full-duplex mode

Or just auto-negotiate and link up at 100Base-TX full-duplex mode with the link partner.

2. Set Register 1Fh,

Bit [2] = 1 // Enable remote loopback mode

LinkMD[®] Cable Diagnostic

The LinkMD function uses time-domain reflectometry (TDR) to analyze the cabling plant for common cabling problems. These include open circuits, short circuits, and impedance mismatches.

LinkMD works by sending a pulse of known amplitude and duration down the MDI or MDI-X pair, then analyzing the shape of the reflected signal to determine the type of fault. The time duration for the reflected signal to return provides the approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as a numerical value that can be translated to a cable distance.

LinkMD is initiated by accessing Register 1Dh, the LinkMD Control/Status register, in conjunction with Register 1Fh, the PHY Control 2 register. The latter register is used to disable Auto MDI/MDI-X and to select either MDI or MDI-X as the cable differential pair for testing.

Usage

The following is a sample procedure for using LinkMD with Registers 1Dh and 1Fh:

- 3. Disable auto MDI/MDI-X by writing a '1' to Register 1Fh, bit [13].
- 4. Start cable diagnostic test by writing a '1' to Register 1Dh, bit [15]. This enable bit is self-clearing.
- 5. Wait (poll) for Register 1Dh, bit [15] to return a '0', and indicating cable diagnostic test is completed.
- 6. Read cable diagnostic test results in Register 1Dh, bits [14:13]. The results are as follows:
 - 00 = normal condition (valid test)
 - 01 = open condition detected in cable (valid test)
 - 10 = short condition detected in cable (valid test)
 - 11 = cable diagnostic test failed (invalid test)

The '11' case, invalid test, occurs when the device is unable to shut down the link partner. In this instance, the test is not run, since it would be impossible for the device to determine if the detected signal is a reflection of the signal generated or a signal from another source.

7. Get distance to fault by concatenating Register 1Dh, bits [8:0] and multiplying the result by a constant of 0.38. The distance to the cable fault can be determined by the following formula:

D (distance to cable fault) = 0.38 x (Register 1Dh, bits [8:0])

D (distance to cable fault) is expressed in meters.

Concatenated value of Registers 1Dh bits [8:0] should be converted to decimal before multiplying by 0.38. The constant (0.38) may be calibrated for different cabling conditions, including cables with a velocity of propagation that varies significantly from the norm.

NAND Tree Support

The KSZ8081RNA/RND provides parametric NAND tree support for fault detection between chip I/Os and board. The NAND tree is a chain of nested NAND gates in which each KSZ8081RNA/RND digital I/O (NAND tree input) pin is an input to one NAND gate along the chain. At the end of the chain, the TXD1 pin provides the output for the nested NAND gates.

The NAND tree test process includes:

- Enabling NAND tree mode
- Pulling all NAND tree input pins high
- Driving each NAND tree input pin low, sequentially, according to the NAND tree pin order
- Checking the NAND tree output to make sure there is a toggle high-to-low or low-to-high for each NAND tree input driven low

Table 5 lists the NAND tree pin order.

Pin Number	Pin Name	NAND Tree Description	
10	MDIO	Input	
11	MDC	Input	
12	RXD1	Input	
13	RXD0	Input	
15	CRS_DV	Input	
16	REF_CLK	Input	
18	INTRP	Input	
19	TXEN	Input	
23	LED0	Input	
20	TXD0	Input	
21	TXD1	Output	

NAND Tree I/O Testing

Use the following procedure to check for faults on the KSZ8081RNA/RND digital I/O pin connections to the board:

- 1. Enable NAND tree mode by setting Register 16h, Bit [5] to '1'.
- 2. Use board logic to drive all KSZ8081RNA/RND NAND tree input pins high.
- 3. Use board logic to drive each NAND tree input pin, in KSZ8081RNA/RND tree pin order, as follows:
 - a. Toggle the first pin (MDIO) from high to low, and verify that the TDX1 pin switches from high to low to indicate that the first pin is connected properly.
 - b. Leave the first pin (MDIO) low.
 - c. Toggle the second pin (MDC) from high to low, and verify that the TXD1 pin switches from low to high to indicate that the second pin is connected properly.
 - d. Leave the first pin (MDIO) and the second pin (MDC) low.
 - e. Toggle the third pin from high to low, and verify that the TXD1 pin switches from high-to-low to indicate that the third pin is connected properly.
 - f. Continue with this sequence until all KSZ8081RNA/RND NAND tree input pins have been toggled.

Each KSZ8081RNA/RND NAND tree input pin must cause the TXD1 output pin to toggle high-to-low or low-to-high to indicate a good connection. If the TXD1 pin fails to toggle when the KSZ8081RNA/RND input pin toggles from high to low, the input pin has a fault.

Power Management

The KSZ8081RNA/RND incorporates a number of power-management modes and features that provide methods to consume less energy. These are discussed in the following sections.

Power-Saving Mode

Power-saving mode is used to reduce the transceiver power consumption when the cable is unplugged. It is enabled by writing a '1' to Register 1Fh, Bit [10], and is in effect when auto-negotiation mode is enabled and the cable is disconnected (no link).

In this mode, the KSZ8081RNA/RND shuts down all transceiver blocks except the transmitter, energy detect, and PLL circuits.

By default, power-saving mode is disabled after power-up.

Energy-Detect Power-Down Mode

Energy-detect power-down (EDPD) mode is used to further reduce transceiver power consumption when the cable is unplugged. It is enabled by writing a '0' to Register 18h, Bit [11], and is in effect when auto-negotiation mode is enabled and the cable is disconnected (no link).

EDPD mode works with the PLL off (set by writing a '1' to Register 10h, Bit [4] to automatically turn the PLL off in EDPD mode) to turn off all KSZ8081RNA/RND transceiver blocks except the transmitter and energy-detect circuits.

Power can be reduced further by extending the time interval between transmissions of link pulses to check for the presence of a link partner. The periodic transmission of link pulses is needed to ensure two link partners in the same low power state and with auto MDI/MDI-X disabled can wake up when the cable is connected between them.

By default, energy-detect power-down mode is disabled after power-up.

Power-Down Mode

Power-down mode is used to power down the KSZ8081RNA/RND device when it is not in use after power-up. It is enabled by writing a '1' to Register 0h, Bit [11].

In this mode, the KSZ8081RNA/RND disables all internal functions except the MII management interface. The KSZ8081RNA/RND exits (disables) power-down mode after Register 0h, Bit [11] is set back to '0'.

Slow-Oscillator Mode

Slow-oscillator mode is used to disconnect the input reference crystal/clock on XI (Pin 8) and select the on-chip slow oscillator when the KSZ8081RNA/RND device is not in use after power-up. It is enabled by writing a '1' to Register 11h, Bit [5].

Slow-oscillator mode works in conjunction with power-down mode to put the KSZ8081RNA/RND device in the lowest power state, with all internal functions disabled except the MII management interface. To properly exit this mode and return to normal PHY operation, use the following programming sequence:

- 1. Disable slow-oscillator mode by writing a '0' to Register 11h, Bit [5].
- 2. Disable power-down mode by writing a '0' to Register 0h, Bit [11].
- 3. Initiate software reset by writing a '1' to Register 0h, Bit [15].

Reference Circuit for Power and Ground Connections

The KSZ8081RNA/RND is a single 3.3V supply device with a built-in regulator to supply the 1.2V core. The power and ground connections are shown in Figure 9 and Table 6 for 3.3V VDDIO.

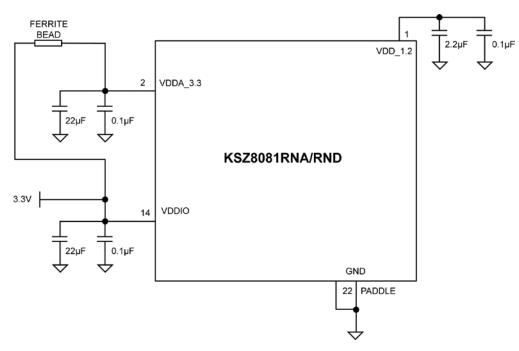


Figure 9. KSZ8081RNA/RND Power and Ground Connections

Table 6. KSZ8	081RNA/RND Po	ower Pin Description

Power Pin	Pin Number	Description	
VDD_1.2	D_1.2 1 Decouple with 2.2µF and 0.1µF capacitors to ground.		
VDDA_3.3	2	Connect to board's 3.3V supply through a ferrite bead. Decouple with 22 μ F and 0.1 μ F capacitors to ground.	
VDDIO	14	Connect to board's 3.3V supply for 3.3V VDDIO. Decouple with 22 μ F and 0.1 μ F capacitors to ground.	

Typical Current/Power Consumption

Table 7, Table 8, and Table 9 show typical values for current consumption by the transceiver (VDDA_3.3) and digital I/O (VDDIO) power pins and typical values for power consumption by the KSZ8081RNA/RND device for the indicated nominal operating voltage combinations. These current and power consumption values include the transmit driver current and on-chip regulator current for the 1.2V core.

Table 7. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)
--

Transceiver (3.3V), Digital I/Os (3.3V)					
Condition	3.3V Transceiver (VDDA_3.3)	3.3V Digital I/Os (VDDIO)	Total Chip Power		
	mA	mA	mW		
100Base-TX Link-up (no traffic)	34	12	152		
100Base-TX Full-duplex @ 100% utilization	34	13	155		
10Base-T Link-up (no traffic)	14	11	82.5		
10Base-T Full-duplex @ 100% utilization	30	11	135		
Power-saving mode (Reg. 1Fh, Bit [10] = 1)	14	10	79.2		
EDPD mode (Reg. 18h, Bit [11] = 0)	10	10	66.0		
EDPD mode (Reg. 18h, Bit [11] = 0) and PLL off (Reg. 10h, Bit [4] = 1)	3.77	1.54	17.5		
Software power-down mode (Reg. 0h, Bit [11] =1)	2.59	1.51	13.5		
Software power-down mode (Reg. 0h, Bit [11] =1) and slow-oscillator mode (Reg. 11h, Bit [5] =1)	1.36	0.45	5.97		

Table 8. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)

Transceiver (3.3V), Digital I/Os (2.5V)					
Condition	3.3V Transceiver (VDDA_3.3)	2.5V Digital I/Os (VDDIO)	Total Chip Power		
	mA	mA	mW		
100Base-TX Link-up (no traffic)	34	12	142		
100Base-TX Full-duplex @ 100% utilization	34	13	145		
10Base-T Link-up (no traffic)	15	11	77.0		
10Base-T Full-duplex @ 100% utilization	27	11	117		
Power-saving mode (Reg. 1Fh, Bit [10] = 1)	15	10	74.5		
EDPD mode (Reg. 18h, Bit [11] = 0)	11	10	61.3		
EDPD mode (Reg. 18h, Bit [11] = 0) and PLL off (Reg. 10h, Bit [4] = 1)	3.55	1.35	15.1		
Software power-down mode (Reg. 0h, Bit [11] =1)	2.29	1.34	10.9		
Software power-down mode (Reg. 0h, Bit [11] =1) and slow-oscillator mode (Reg. 11h, Bit [5] =1)	1.15	0.29	4.52		

Transceiver (3.3V), Digital I/Os (1.8V)					
Condition	3.3V Transceiver (VDDA_3.3)	1.8V Digital I/Os (VDDIO)	Total Chip Power		
	mA	mA	mW		
100Base-TX Link-up (no traffic)	34	11	132		
100Base-TX Full-duplex @ 100% utilization	34	12	134		
10Base-T Link-up (no traffic)	15	10	67.5		
10Base-T Full-duplex @ 100% utilization	27	10	107		
Power-saving mode (Reg. 1Fh, Bit [10] = 1)	15	9.0	65.7		
EDPD mode (Reg. 18h, Bit [11] = 0)	11	9.0	52.5		
EDPD mode (Reg. 18h, Bit [11] = 0) and PLL off (Reg. 10h, Bit [4] = 1)	4.05	1.21	15.5		
Software power-down mode (Reg. 0h, Bit [11] =1)	2.79	1.21	11.4		
Software power-down mode (Reg. 0h, Bit [11] =1) and slow-oscillator mode (Reg. 11h, Bit [5] =1)	1.65	0.19	5.79		

Table 9. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)

Register Map

Register Number (Hex)	Description	
Oh	Basic Control	
1h	Basic Status	
2h	PHY Identifier 1	
3h	PHY Identifier 2	
4h	Auto-Negotiation Advertisement	
5h	Auto-Negotiation Link Partner Ability	
6h	Auto-Negotiation Expansion	
7h	Auto-Negotiation Next Page	
8h	Link Partner Next Page Ability	
9h	Reserved	
10h	Digital Reserved Control	
11h	AFE Control 1	
12h – 14h	Reserved	
15h	RXER Counter	
16h	Operation Mode Strap Override	
17h	Operation Mode Strap Status	
18h	Expanded Control	
19h – 1Ah	Reserved	
1Bh	Interrupt Control/Status	
1Ch	Reserved	
1Dh	LinkMD Control/Status	
1Eh	PHY Control 1	
1Fh	PHY Control 2	

Register Description

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 0h	- Basic Control			
0.15	Reset	 1 = Software reset 0 = Normal operation This bit is self-cleared after a '1' is written to it. 	RW/SC	0
0.14	Loopback	1 = Loopback mode 0 = Normal operation	RW	0
0.13	Speed Select	1 = 100Mbps 0 = 10Mbps This bit is ignored if auto-negotiation is enabled (Register 0.12 = 1).	RW	Set by the ANEN_SPEED strapping pin. See the <i>Strapping</i> Options section for details.
0.12	Auto- Negotiation Enable	 1 = Enable auto-negotiation process 0 = Disable auto-negotiation process If enabled, the auto-negotiation result overrides the settings in Registers 0.13 and 0.8. 	RW	Set by the ANEN_SPEED strapping pin. See the <i>Strapping</i> Options section for details.
0.11	Power-Down	 1 = Power-down mode 0 = Normal operation If software reset (Register 0.15) is used to exit power-down mode (Register 0.11 = 1), two software reset writes (Register 0.15 = 1) are required. The first write clears power-down mode; the second write resets the chip and relatches the pin strapping pin values. 	RW	0
0.10	Isolate	1 = Electrical isolation of PHY from MII0 = Normal operation	RW	0
0.9	Restart Auto- Negotiation	1 = Restart auto-negotiation process0 = Normal operation.This bit is self-cleared after a '1' is written to it.	RW/SC	0
0.8	Duplex Mode	1 = Full-duplex 0 = Half-duplex	RW	1
0.7	Collision Test	1 = Enable COL test 0 = Disable COL test	RW	0
0.6:0	Reserved	Reserved	RO	000_0000
Register 1h	– Basic Status			
1.15	100Base-T4	1 = T4 capable 0 = Not T4 capable	RO	0
1.14	100Base-TX Full-Duplex	1 = Capable of 100Mbps full-duplex0 = Not capable of 100Mbps full-duplex	RO	1
1.13	100Base-TX Half-Duplex	1 = Capable of 100Mbps half-duplex0 = Not capable of 100Mbps half-duplex	RO	1

Note:

6. RW = Read/Write. RO = Read only. SC = Self-cleared. LH = Latch high.

LL = Latch low.

August 19, 2015

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 1h	– Basic Status			
1.12	10Base-T Full-Duplex	1 = Capable of 10Mbps full-duplex 0 = Not capable of 10Mbps full-duplex	RO	1
1.11	10Base-T Half-Duplex	1 = Capable of 10Mbps half-duplex0 = Not capable of 10Mbps half-duplex	RO	1
1.10:7	Reserved	Reserved	RO	000_0
1.6	No Preamble	1 = Preamble suppression0 = Normal preamble	RO	1
1.5	Auto- Negotiation Complete	1 = Auto-negotiation process completed0 = Auto-negotiation process not completed	RO	0
1.4	Remote Fault	1 = Remote fault 0 = No remote fault	RO/LH	0
1.3	Auto- Negotiation Ability	1 = Can perform auto-negotiation0 = Cannot perform auto-negotiation	RO	1
1.2	Link Status	1 = Link is up 0 = Link is down	RO/LL	0
1.1	Jabber Detect	1 = Jabber detected0 = Jabber not detected (default is low)	RO/LH	0
1.0	Extended Capability	1 = Supports extended capability registers	RO	1
Register 2h	– PHY Identifier 1			
2.15:0	PHY ID Number	Assigned to the 3rd through 18th bits of the Organizationally Unique Identifier (OUI). KENDIN Communication's OUI is 0010A1 (hex).	RO	0022h
Register 3h	– PHY Identifier 2	•		
3.15:10	PHY ID Number	Assigned to the 19th through 24th bits of the Organizationally Unique Identifier (OUI). KENDIN Communication's OUI is 0010A1 (hex).	RO	0001_01
3.9:4	Model Number	Six-bit manufacturer's model number	RO	01_0110
3.3:0	Revision Number	Four-bit manufacturer's revision number	RO	Indicates silicon revision
Register 4h	- Auto-Negotiation	n Advertisement		
4.15	Next Page	1 = Next page capable 0 = No next page capability	RW	0
4.14	Reserved	Reserved	RO	0
4.13	Remote Fault	1 = Remote fault supported 0 = No remote fault	RW	0
4.12	Reserved	Reserved	RO	0

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 4h	- Auto-Negotiatio	n Advertisement		
4.11:10	Pause	 [00] = No pause [10] = Asymmetric pause [01] = Symmetric pause [11] = Asymmetric and symmetric pause 	RW	00
4.9	100Base-T4	1 = T4 capable 0 = No T4 capability	RO	0
4.8	100Base-TX Full-Duplex	1 = 100Mbps full-duplex capable 0 = No 100Mbps full-duplex capability	RW	Set by the ANEN_SPEED strapping pin. See the <i>Strapping Options</i> section for details.
4.7	100Base-TX Half-Duplex	1 = 100Mbps half-duplex capable 0 = No 100Mbps half-duplex capability	RW	Set by the ANEN_SPEED strapping pin. See the <i>Strapping Options</i> section for details.
4.6	10Base-T Full-Duplex	1 = 10Mbps full-duplex capable 0 = No 10Mbps full-duplex capability	RW	1
4.5	10Base-T Half-Duplex	1 = 10Mbps half-duplex capable 0 = No 10Mbps half-duplex capability	RW	1
4.4:0	Selector Field	[00001] = IEEE 802.3	RW	0_0001
Register 5h	– Auto-Negotiatio	n Link Partner Ability		·
5.15	Next Page	1 = Next page capable0 = No next page capability	RO	0
5.14	Acknowledge	1 = Link code word received from partner0 = Link code word not yet received	RO	0
5.13	Remote Fault	1 = Remote fault detected0 = No remote fault	RO	0
5.12	Reserved	Reserved	RO	0
5.11:10	Pause	 [00] = No pause [10] = Asymmetric pause [01] = Symmetric pause [11] = Asymmetric and symmetric pause 	RO	00
5.9	100Base-T4	1 = T4 capable 0 = No T4 capability	RO	0
5.8	100Base-TX Full-Duplex	1 = 100Mbps full-duplex capable 0 = No 100Mbps full-duplex capability	RO	0
5.7	100Base-TX Half-Duplex	1 = 100Mbps half-duplex capable 0 = No 100Mbps half-duplex capability	RO	0
5.6	10Base-T Full-Duplex	1 = 10Mbps full-duplex capable 0 = No 10Mbps full-duplex capability	RO	0
5.5	10Base-T Half-Duplex	1 = 10Mbps half-duplex capable 0 = No 10Mbps half-duplex capability	RO	0
5.4:0	Selector Field	[00001] = IEEE 802.3	RO	0_0001

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 6h	– Auto-Negotiatio	n Expansion		
6.15:5	Reserved	Reserved	RO	0000_0000_000
6.4	Parallel Detection Fault	1 = Fault detected by parallel detection0 = No fault detected by parallel detection	RO/LH	0
6.3	Link Partner Next Page Able	 1 = Link partner has next page capability 0 = Link partner does not have next page capability 	RO	0
6.2	Next Page Able	 1 = Local device has next page capability 0 = Local device does not have next page capability 	RO	1
6.1	Page Received	1 = New page received0 = New page not received yet	RO/LH	0
6.0	Link Partner Auto- Negotiation Able	 1 = Link partner has auto-negotiation capability 0 = Link partner does not have auto-negotiation capability 	RO	0
Register 7h	– Auto-Negotiatio	n Next Page		
7.15	Next Page	1 = Additional next pages will follow 0 = Last page	RW	0
7.14	Reserved	Reserved	RO	0
7.13	Message Page	1 = Message page 0 = Unformatted page	RW	1
7.12	Acknowledge2	1 = Will comply with message0 = Cannot comply with message	RW	0
7.11	Toggle	 1 = Previous value of the transmitted link code word equaled logic 1 0 = Logic 0 	RO	0
7.10:0	Message Field	11-bit wide field to encode 2048 messages	RW	000_0000_0001
Register 8h	- Link Partner Nex	tt Page Ability		
8.15	Next Page	1 = Additional next pages will follow 0 = Last page	RO	0
8.14	Acknowledge	1 = Successful receipt of link word0 = No successful receipt of link word	RO	0
8.13	Message Page	1 = Message page 0 = Unformatted page	RO	0
8.12	Acknowledge2	1 = Can act on the information0 = Cannot act on the information	RO	0
8.11	Toggle	 1 = Previous value of transmitted link code word equal to logic 0 0 = Previous value of transmitted link code word equal to logic 1 	RO	0
8.10:0	Message Field	11-bit wide field to encode 2048 messages	RO	000_0000_0000

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 10h	n – Digital Reserve	ed Control		
10.15:5	Reserved	Reserved	RW	0000_0000_000
10.4	PLL Off	 1 = Turn PLL off automatically in EDPD mode 0 = Keep PLL on in EDPD mode. See also Register 18h, Bit [11] for EDPD mode 	RW	0
10.3:0	Reserved	Reserved	RW	0000
Register 11h	n – AFE Control 1	•		·
11.15:6	Reserved	Reserved	RW	0000_0000_00
11.5	Slow-Oscillator Mode Enable	Slow-oscillator mode is used to disconnect the input reference crystal/clock on the XI pin and select the on-chip slow oscillator when the KSZ8081RNA/RND device is not in use after power-up. 1 = Enable 0 = Disable This bit automatically sets software power-down to the analog side when enabled.	RW	0
11.4:0	Reserved	Reserved	RW	0_000
Register 15h	n – RXER Counter			
15.15:0	RXER Counter	Receive error counter for symbol error frames	RO/SC	0000h
Register 16h	n – Operation Mod	e Strap Override		
16.15	Reserved Factory Mode	0 = Normal operation 1 = Factory test mode If RXER (Pin 17) latches in a pull-up value at the de-assertion of reset, write a '0' to this bit to clear Reserved Factory Mode.	RW	0 Set by the pull-up / pull-down value of RXER (Pin 17).
16.14:11	Reserved	Reserved	RW	000_0
16.10	Reserved	Reserved	RO	0
16.9	B-CAST_OFF Override	1 = Override strap-in for B-CAST_OFF If bit is '1', PHY Address 0 is non-broadcast.	RW	0
16.8:7	Reserved	Reserved	RW	0_0
16.6	RMII B-to-B Override	1 = Override strap-in for RMII back-to-back mode (also set Bit 1 of this register to '1')	RW	0
16.5	NAND Tree Override	1 = Override strap-in for NAND tree mode	RW	0
16.4:2	Reserved	Reserved	RW	0_00
16.1	RMII Override	1 = Override strap-in for RMII mode	RW	1
16.0	Reserved	Reserved	RW	0

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 17	h – Operation Mode	e Strap Status		
17.15:13	PHYAD[2:0] Strap-In Status	[000] = Strap to PHY Address 0 [011] = Strap to PHY Address 3 The KSZ8081RNA/RND supports only PHY addresses 0h and 3h.	RO	
17.12:2	Reserved	Reserved	RO	
17.1	RMII Strap-In Status	1 = Strap to RMII mode	RO	
17.0	Reserved	Reserved	RO	
Register 18	h – Expanded Cont	trol		
18.15:12	Reserved	Reserved	RW	0000
18.11	EDPD Disabled	Energy-detect power-down mode 1 = Disable 0 = Enable See also Register 10h, Bit [4] for PLL off.	RW	1
18.10:0	Reserved	Reserved	RW	000_0000_0000
Register 1B	h – Interrupt Contr	ol/Status		·
1B.15	Jabber Interrupt Enable	1 = Enable jabber interrupt 0 = Disable jabber interrupt	RW	0
1B.14	Receive Error Interrupt Enable	1 = Enable receive error interrupt 0 = Disable receive error interrupt	RW	0
1B.13	Page Received Interrupt Enable	1 = Enable page received interrupt 0 = Disable page received interrupt	RW	0
1B.12	Parallel Detect Fault Interrupt Enable	1 = Enable parallel detect fault interrupt 0 = Disable parallel detect fault interrupt	RW	0
1B.11	Link Partner Acknowledge Interrupt Enable	 1 = Enable link partner acknowledge interrupt 0 = Disable link partner acknowledge interrupt 	RW	0
1B.10	Link-Down Interrupt Enable	1= Enable link-down interrupt 0 = Disable link-down interrupt	RW	0
1B.9	Remote Fault Interrupt Enable	1 = Enable remote fault interrupt 0 = Disable remote fault interrupt	RW	0
1B.8	Link-Up Interrupt Enable	1 = Enable link-up interrupt 0 = Disable link-up interrupt	RW	0
1B.7	Jabber Interrupt	1 = Jabber occurred0 = Jabber did not occur	RO/SC	0

Address	Name	Description	Mode ⁽⁶⁾	Default
1B.6	Receive Error Interrupt	1 = Receive error occurred0 = Receive error did not occur	RO/SC	0
1B.5	Page Receive Interrupt	1 = Page receive occurred0 = Page receive did not occur	RO/SC	0
1B.4	Parallel Detect Fault Interrupt	1 = Parallel detect fault occurred0 = Parallel detect fault did not occur	RO/SC	0
1B.3	Link Partner Acknowledge Interrupt	1 = Link partner acknowledge occurred0 = Link partner acknowledge did not occur	RO/SC	0
1B.2	Link-Down Interrupt	1 = Link-down occurred 0 = Link-down did not occur	RO/SC	0
1B.1	Remote Fault Interrupt	1 = Remote fault occurred0 = Remote fault did not occur	RO/SC	0
1B.0	Link-Up Interrupt	1 = Link-up occurred 0 = Link-up did not occur	RO/SC	0
Register 1Dh	– LinkMD Contro	ol/Status		-
1D.15	Cable Diagnostic Test Enable	 1 = Enable cable diagnostic test. After test has completed, this bit is self-cleared. 0 = Indicates cable diagnostic test (if enabled) has completed and the status information is valid for read. 	RW/SC	0
1D.14:13	Cable Diagnostic Test Result	 [00] = Normal condition [01] = Open condition has been detected in cable [10] = Short condition has been detected in cable [11] = Cable diagnostic test has failed 	RO	00
1D.12	Short Cable Indicator	1 = Short cable (<10 meter) has been detected by LinkMD	RO	0
1D.11:9	Reserved	Reserved	RW	000
1D.8:0	Cable Fault Counter	Distance to fault	RO	0_0000_0000

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 1E	h – PHY Control 1			
1E.15:10	Reserved	Reserved	RO	0000_00
1E.9	Enable Pause (Flow Control)	1 = Flow control capable0 = No flow control capability	RO	0
1E.8	Link Status	1 = Link is up 0 = Link is down	RO	0
1E.7	Polarity Status	1 = Polarity is reversed0 = Polarity is not reversed	RO	
1E.6	Reserved	Reserved	RO	0
1E.5	MDI/MDI-X State	1 = MDI-X 0 = MDI	RO	
1E.4	Energy Detect	 1 = Signal present on receive differential pair 0 = No signal detected on receive differential pair 	RO	0
1E.3	PHY Isolate	1 = PHY in isolate mode0 = PHY in normal operation	RW	0
1E.2:0	Operation Mode Indication	 [000] = Still in auto-negotiation [001] = 10Base-T half-duplex [010] = 100Base-TX half-duplex [011] = Reserved [100] = Reserved [101] = 10Base-T full-duplex [110] = 100Base-TX full-duplex [111] = Reserved 	RO	000

Address	Name	Description	Mode ⁽⁶⁾	Default
Register 1F	h – PHY Control 2			
1F.15	HP_MDIX	1 = HP Auto MDI/MDI-X mode 0 = Micrel Auto MDI/MDI-X mode	RW	1
1F.14	MDI/MDI-X Select	When Auto MDI/MDI-X is disabled, 1 = MDI-X mode Transmit on RXP,RXM (Pins 4, 3) and Receive on TXP,TXM (Pins 6, 5) 0 = MDI mode Transmit on TXP,TXM (Pins 6, 5) and Receive on RXP,RXM (Pins 4, 3)	RW	0
1F.13	Pair Swap Disable	1 = Disable Auto MDI/MDI-X 0 = Enable Auto MDI/MDI-X	RW	0
1F.12	Reserved	Reserved	RW	0
1F.11	Force Link	 1 = Force link pass 0 = Normal link operation This bit bypasses the control logic and allows the transmitter to send a pattern even if there is no link. 	RW	0
1F.10	Power Saving	1 = Enable power saving 0 = Disable power saving	RW	0
1F.9	Interrupt Level	1 = Interrupt pin active high 0 = Interrupt pin active low	RW	0
1F.8	Enable Jabber	1 = Enable jabber counter 0 = Disable jabber counter	RW	1
1F.7	RMII Reference Clock Select	1 = For KSZ8081RNA, clock input to XI (Pin 8) is 50MHz for RMII – 50MHz clock mode. For KSZ8081RND, clock input to XI (Pin 8) is 25MHz for RMII – 25MHz clock code. 0 = For KSZ8081RNA, clock input to XI (Pin 8) is 25MHz for RMII – 25MHz clock code. For KSZ8081RND, clock input to XI (Pin 8) is 50MHz for RMII – 50MHz clock mode.	RW	0
1F.6	Reserved	Reserved	RW	0
1F.5:4	LED Mode	[00] = LED0: Link/Activity [01] = LED0: Link [10], [11] = Reserved	RW	00
1F.3	Disable Transmitter	1 = Disable transmitter0 = Enable transmitter	RW	0
1F.2	Remote Loopback	1 = Remote (analog) loopback is enabled 0 = Normal mode	RW	0
1F.1	Reserved	Reserved	RW	0
1F.0	Disable Data Scrambling	1 = Disable scrambler 0 = Enable scrambler	RW	0

Absolute Maximum Ratings⁽⁷⁾

Supply Voltage (V_{IN})

(V _{DD_1.2})	0.5V to +1.8V
(V _{DDIO} , V _{DDA_3.3})	0.5V to +5.0V
Input Voltage (all inputs)	0.5V to +5.0V
Output Voltage (all outputs)	–0.5V to +5.0V
Lead Temperature (soldering, 10s)	260°C
Storage Temperature (T _s)	–55°C to +150°C

Operating Ratings⁽⁸⁾

Supply Voltage	
(V _{DDIO_3.3} , V _{DDA_3.3})	+3.135V to +3.465V
(V _{DDIO_2.5})	+2.375V to +2.625V
(V _{DDIO_1.8})	+1.710V to +1.890V
Ambient Temperature	
(T _A , Commercial)	0°C to +70°C
(T _A , Industrial)	–40°C to +85°C
Maximum Junction Temperature (T	J maximum) 125°C
Thermal Resistance (θ_{JA})	49.22°C/W
Thermal Resistance (θ_{JC})	25.65°C/W

Electrical Characteristics⁽⁹⁾

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
Supply C	urrent (V _{DDIO} , V _{DDA_3.3} = 3.3V) ⁽¹⁰⁾		•			<u>.</u>
I _{DD1_3.3V}	10Base-T	Full-duplex traffic @ 100% utilization		41		mA
I _{DD2_3.3V}	100Base-TX	Full-duplex traffic @ 100% utilization		47		mA
I _{DD3_3.3V}	EDPD Mode	Ethernet cable disconnected (Reg. 18h.11 = 0)		20		mA
I _{DD4_3.3V}	Power-Down Mode	Software power-down (Reg. 0h.11 = 1)		4		mA
CMOS Le	evel Inputs					
		$V_{DDIO} = 3.3V$	2.0			V
VIH	Input High Voltage	V _{DDIO} = 2.5V	1.8			V
		V _{DDIO} = 1.8V	1.3			V
		$V_{DDIO} = 3.3V$			0.8	V
V _{IL}	Input Low Voltage	$V_{DDIO} = 2.5V$			0.7	V
		V _{DDIO} = 1.8V			0.5	V
I _{IN}	Input Current	$V_{IN} = GND \sim VDDIO$			10	μA
CMOS Le	evel Outputs					
		$V_{DDIO} = 3.3 V$	2.4			V
V _{OH}	Output High Voltage	$V_{DDIO} = 2.5 V$	2.0			V
		$V_{DDIO} = 1.8V$	1.5			V
		$V_{DDIO} = 3.3V$			0.4	V
V _{OL}	Output Low Voltage	$V_{DDIO} = 2.5 V$			0.4	V
		V _{DDIO} = 1.8V			0.3	V
I _{oz}	Output Tri-State Leakage				10	μA
LED Out	out					
I _{LED}	Output Drive Current	LED0 pin		8		mA

Notes:

 Exceeding the absolute maximum rating can damage the device. Stresses greater than the absolute maximum rating can cause permanent damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

8. The device is not guaranteed to function outside its operating rating.

9. $T_A = 25^{\circ}C$. Specification is for packaged product only.

10. Current consumption is for the single 3.3V supply KSZ8081RNA/RND device only, and includes the transmit driver current and the 1.2V supply voltage (V_{DD_1.2}) that are supplied by the KSZ8081RNA/RND.

Electrical Characteristics⁽⁹⁾ (Continued)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
All Pull-U	p/Pull-Down Pins (including Strap	pping Pins)				
		$V_{DDIO} = 3.3V$	30	45	73	kΩ
pu	Internal Pull-Up Resistance	$V_{DDIO} = 2.5V$	39	61	102	kΩ
		V _{DDIO} = 1.8V	48	99	178	kΩ
		$V_{DDIO} = 3.3V$	26	43	79	kΩ
pd	Internal Pull-Down Resistance	$V_{DDIO} = 2.5 V$	34	59	113	kΩ
		V _{DDIO} = 1.8V	53	99	200	kΩ
100Base-	TX Transmit (measured differentia	ally after 1:1 transformer)				
Vo	Peak Differential Output Voltage	100 Ω termination across differential output	0.95		1.05	V
VIMB	Output Voltage Imbalance	100 Ω termination across differential output			2	%
t _r , t _f	Rise/Fall Time		3		5	ns
	Rise/Fall Time Imbalance		0		0.5	ns
	Duty Cycle Distortion				±0.25	ns
	Overshoot				5	%
	Output Jitter	Peak-to-peak		0.7		ns
10Base-T	Transmit (measured differentially	/ after 1:1 transformer)				
VP	Peak Differential Output Voltage	100 Ω termination across differential output	2.2		2.8	V
	Jitter Added	Peak-to-peak			3.5	ns
t _r , t _f	Rise/Fall Time			25		ns
10Base-T	Receive					
V_{SQ}	Squelch Threshold	5MHz square wave		400		mV
Transmitt	ter – Drive Setting					
V _{SET}	Reference Voltage of ISET	$R(I_{SET}) = 6.49k\Omega$		0.65		V
REF_CLK	C Output					
	50MHz RMII Clock Output Jitter	Peak-to-peak		300		ps
4000		(Applies only to RMII – 25MHz clock mode)				
	Mode – Industrial Applications Pa			1		
	Link Loss Reaction (Indication)	Link loss detected at receive differential inputs to PHY signal indication time for each of the following:				
t _{llr}	Link Loss Reaction (Indication) Time	 For LED mode 01, Link LED output changes from low (link-up) to high (link-down). INTRP pin asserts for link-down status 		4.4		μs
		change.				

Timing Diagrams

RMII Timing

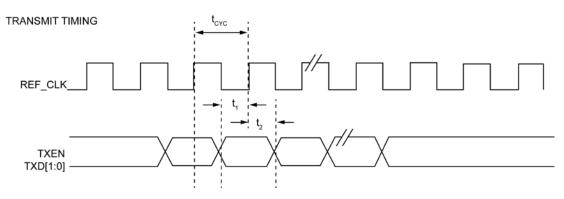


Figure 10. RMII Timing – Data Received from RMII

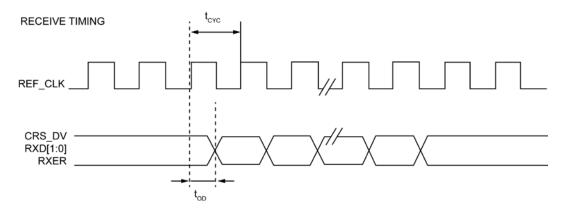


Figure 11. RMII Timing – Data Input to RMII

Table 10. RMII Timing Parameters – KSZ8081RNA/RND (25MHz input to XI pin, 50MHz output from REF_CLK pin)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _{CYC}	Clock cycle		20		ns
t ₁	Setup time	4			ns
t ₂	Hold time	2			ns
t _{OD}	Output delay	7	10	13	ns

Table 11. RMII Timing Parameters – KSZ8081RNA/RND (50MHz input to XI pin)

Timing Parameter	Description	Min.	Тур.	Max.	Unit
t _{CYC}	Clock cycle		20		ns
t ₁	Setup time	4			ns
t ₂	Hold time	2			ns
t _{OD}	Output delay	8	11	13	ns

Auto-Negotiation Timing

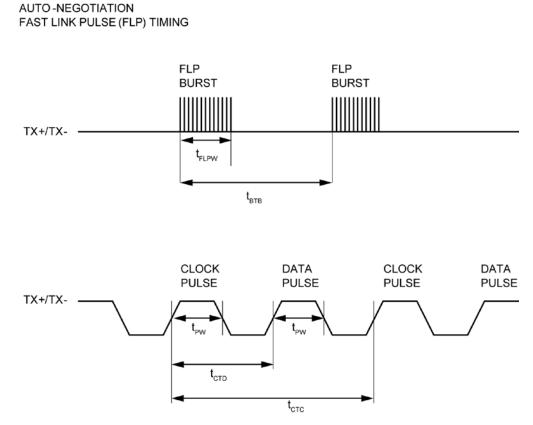
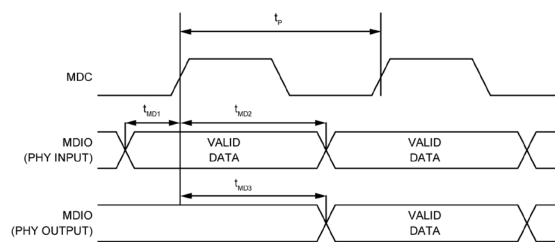


Figure 12. Auto-Negotiation Fast Link Pulse (FLP) Timing

Table 12. Auto-Negotiation Fast Link Pulse	e (FLP) Timing Parameters
--	---------------------------

Timing Parameter	Description	Min.	Тур.	Max.	Units
t _{втв}	FLP burst to FLP burst	8	16	24	ms
t _{FLPW}	FLP burst width		2		ms
t _{PW}	Clock/Data pulse width		100		ns
t _{стр}	Clock pulse to data pulse	55.5	64	69.5	μs
tстс	Clock pulse to clock pulse	111	128	139	μs
	Number of clock/data pulses per FLP burst	17		33	

MDC/MDIO Timing



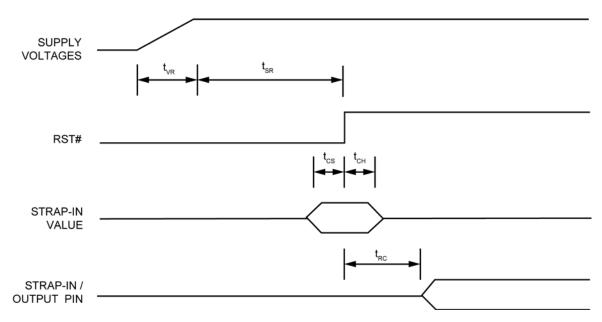

Figure 13. MDC/MDIO Timing

Table 13. MDC/MDIO Timing Parameters

Timing Parameter	Description	Min.	Тур.	Max.	Unit
fc	MDC Clock Frequency		2.5	10	MHz
t _P	MDC period		400		ns
t _{MD1}	MDIO (PHY input) setup to rising edge of MDC	10			ns
t _{MD2}	MDIO (PHY input) hold from rising edge of MDC	4			ns
t _{MD3}	MDIO (PHY output) delay from rising edge of MDC	5	222		ns

Power-Up/Reset Timing

The KSZ8081RNA/RND reset timing requirement is summarized in Figure 14 and Table 14.

Figure 14. Power-Up/Reset Timing

Table 14. Power-Up/Reset Timing Parameters

Parameter	Description	Min.	Max.	Units
t _{VR}	Supply voltage (V_{DDIO} , $V_{DDA_3.3}$) rise time	300		μs
t _{SR}	Stable supply voltage ($V_{DDIO,} V_{DDA_3.3}$) to reset high	10		ms
t _{cs}	Configuration setup time	5		ns
t _{CH}	Configuration hold time	5		ns
t _{RC}	Reset to strap-in pin output	6		ns

The supply voltage (V_{DDIO} and $V_{DDA_3.3}$) power-up waveform should be monotonic. The 300µs minimum rise time is from 10% to 90%.

For warm reset, the reset (RST#) pin should be asserted low for a minimum of 500µs. The strap-in pin values are read and updated at the de-assertion of reset.

After the de-assertion of reset, wait a minimum of 100µs before starting programming on the MIIM (MDC/MDIO) interface.

Reset Circuit

Figure 15 shows a reset circuit recommended for powering up the KSZ8081RNA/RND if reset is triggered by the power supply.

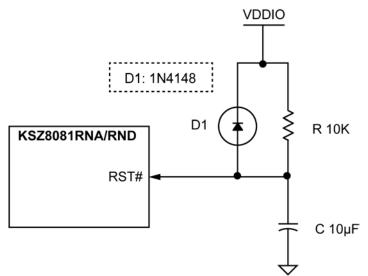


Figure 15. Recommended Reset Circuit

Figure 16 Shows a reset circuit recommended for applications where reset is driven by another device (for example, the CPU or an FPGA). The reset out RST_OUT_n from CPU/FPGA provides the warm reset after power up reset. D2 is used if using different VDDIO between the switch and CPU/FPGA, otherwise, the different VDDIO will fight each other. If different VDDIO have to use in a special case, a low VF (<0.3V) diode is required (For example, VISHAY's BAT54, MSS1P2L and so on), or a level shifter device can be used too. If Ethernet device and CPU/FPGA use same VDDIO voltage, D2 can be removed to connect both devices directly. Usually, Ethernet device and CPU/FPGA should use same VDDIO voltage.

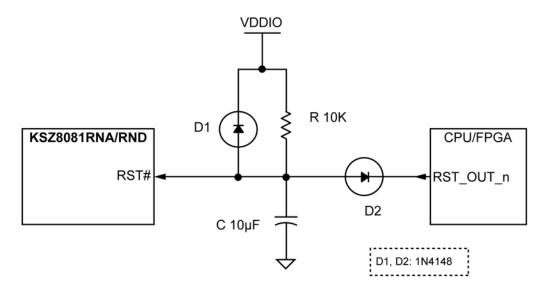
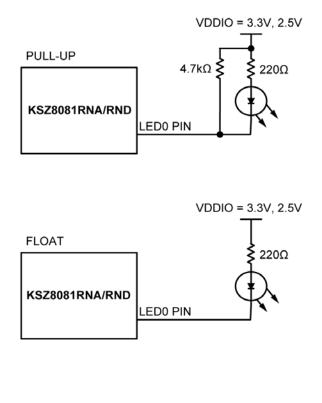



Figure 16. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output

Reference Circuits – LED Strap-In Pins

The pull-up, float, and pull-down reference circuits for the LED0/ANEN_SPEED strapping pin are shown in Figure 17 for 3.3V and 2.5V VDDIO.

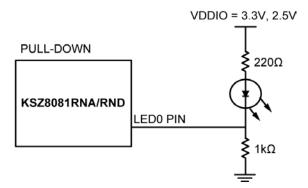


Figure 17. Reference Circuits for LED Strapping Pins

For 1.8V VDDIO, LED indication support is not recommended due to the low voltage. Without the LED indicator, the ANEN_SPEED strapping pin is functional with a $4.7k\Omega$ pull-up to 1.8V VDDIO or float for a value of '1', and with a $1.0k\Omega$ pull-down to ground for a value of '0'.

Note: If using RJ45 jacks with integrated LEDs and 1.8V VDDIO, a level shifting is required from LED 3.3V to 1.8V. For example, use a bipolar transistor or a level shift device.

Reference Clock – Connection and Selection

A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ8081RNA/RND. For the KSZ8081RNA/RND in RMII – 25MHz clock mode, the reference clock is 25MHz. The reference clock connections to XI (Pin 8) and XO (Pin 7), and the reference clock selection criteria, are provided in Figure 18 and Table 15.

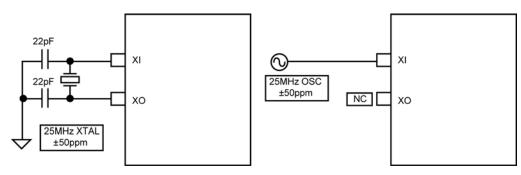


Figure 18. 25MHz Crystal/Oscillator Reference Clock Connection

Table 15. 25MHz Crystal / Reference Clock Selection Criteria

Characteristics	Value	Units
Frequency	25	MHz
Frequency tolerance (maximum) ⁽¹¹⁾	±50	ppm
Crystal series resistance (typical)	40	Ω
Crystal load capacitance (typical) 16		pF

Note:

11. ±60ppm for overtemperature crystal.

For the KSZ8081RNA/RND in RMII – 50MHz clock mode, the reference clock is 50MHz. The reference clock connection to XI (Pin 8), and the reference clock selection criteria are provided in Figure 19 and Table 16.

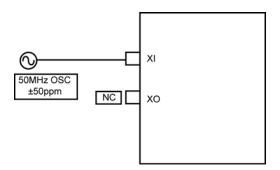


Figure 19. 50MHz Oscillator Reference Clock Connection

Table 16. 50MHz Oscillator / Reference Clock Selection Criteria

Characteristics	Value	Units
Frequency	50	MHz
Frequency tolerance (maximum)	±50	ppm

Magnetic – Connection and Selection

A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs exceeding FCC requirements.

The KSZ8081RNA/RND design incorporates voltage-mode transmit drivers and on-chip terminations.

With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the two differential pairs. Therefore, the two transformer center tap pins on the KSZ8081RNA/RND side should not be connected to any power supply source on the board; instead, the center tap pins should be separated from one another and connected through separate 0.1μ F common-mode capacitors to ground. Separation is required because the common-mode voltage is different between transmitting and receiving differential pairs.

Figure 20 shows the typical magnetic interface circuit for the KSZ8081RNA/RND.

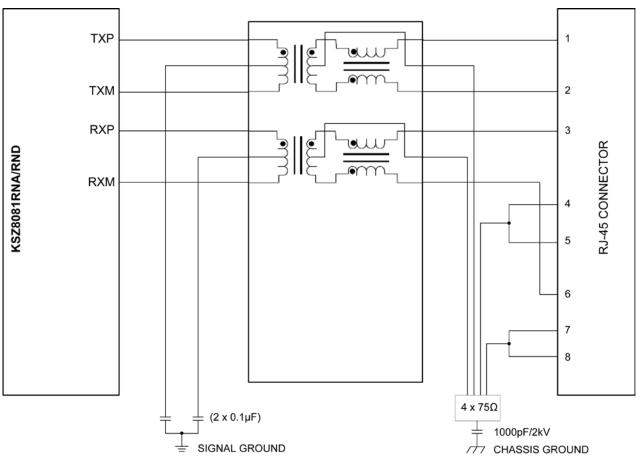


Figure 20. Typical Magnetic Interface Circuit

Table 17 lists recommended magnetic characteristics.

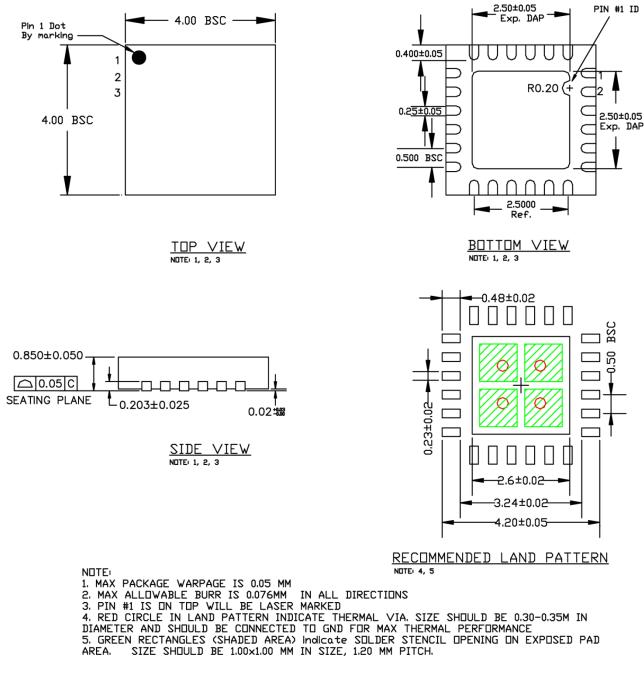

Parameter	Value	Test Condition	
Turns ratio	1 CT : 1 CT		
Open-circuit inductance (minimum)	350µH	100mV, 100kHz, 8mA	
Insertion loss (typical)	-1.1dB	100kHz to 100MHz	
HIPOT (minimum)	1500Vrms		

Table 18 is a list of compatible single-port magnetics with separated transformer center tap pins on the PHY chip side that can be used with the KSZ8081RNA/RND.

Table 18. Compatible Single-Port 10/100 Magnetics

Manufacturer	Part Number	Temperature Range	Magnetic + RJ-45
Bel Fuse	S558-5999-U7	0°C to 70°C	No
Bel Fuse	SI-46001-F	0°C to 70°C	Yes
Bel Fuse	SI-50170-F	0°C to 70°C	Yes
Delta	LF8505	0°C to 70°C	No
HALO	HFJ11-2450E	0°C to 70°C	Yes
HALO	TG110-E055N5	-40°C to 85°C	No
LANKom	LF-H41S-1	0°C to 70°C	No
Pulse	H1102	0°C to 70°C	No
Pulse	H1260	0°C to 70°C	No
Pulse	HX1188	–40°C to 85°C	No
Pulse	J00-0014	0°C to 70°C	Yes
Pulse	JX0011D21NL	–40°C to 85°C	Yes
TDK	TLA-6T718A	0°C to 70°C	Yes
Transpower	HB726	0°C to 70°C	No
Wurth/Midcom	000-7090-37R-LF1	-40°C to 85°C	No

Package Information and Recommended Land Pattern⁽¹²⁾

24-Pin 4mm × 4mm QFN (MM)

Note:

12. Package information is correct as of the publication date. For updates and most current information, go to <u>www.micrel.com</u>.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high performance linear and power, LAN, and timing & communications markets. The Company's products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products. Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network of distributors and reps worldwide.

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2012 Micrel, Incorporated.