Data Sheet

FEATURES

4.5Ω typical on resistance
1Ω on-resistance flatness
Up to 470 mA continuous current
$\pm 3.3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual-supply operation
3.3 V to 16 V single-supply operation
No VL supply required
3 V logic-compatible inputs
Rail-to-rail operation
16-lead TSSOP and 16-lead, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP

APPLICATIONS

Communication systems

Medical systems

Audio signal routing
Video signal routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Relay replacements

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

GENERAL DESCRIPTION

The ADG1608/ADG1609 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1608 switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2. The ADG1609 switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines, A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

ADG1608/ADG1609

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 5 V Dual Supply 3
12 V Single Supply 4
5 V Single Supply 5
3.3 V Single Supply 6
REVISION HISTORY
9/15—Rev. 0 to Rev. A
Change to Table 7 8
Updated Outline Dimensions 18
Continuous Current per Channel, S or D7
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics 11
Test Circuits 14
Terminology 17
Outline Dimensions 18
Ordering Guide 18

SPECIFICATIONS

± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V ${ }_{\text {dD }}$ to $\mathrm{V}_{\text {SS }}$	V	
On Resistance (RoN)	4.5			Ω typ	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; see Figure 25
	5	7	8	Ω max	$\mathrm{V}_{\mathrm{DD}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{S S}= \pm 4.5 \mathrm{~V}$
On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\circ \mathrm{N}}$)	0.12			Ω typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
	0.25	0.3	0.35	Ω max	
On-Resistance Flatness (Rflat(on)	1			Ω typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
	1.3	1.7	2	Ω max	
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V}$
Source Off Leakage, I_{s} (Off)	± 0.02			nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 26
	± 0.1	± 0.5	± 3	nA max	
Drain Off Leakage, l_{D} (Off)	± 0.03			nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V}$; see Figure 26
ADG1608	± 0.15	± 2	± 14	$n A$ max	
ADG1609	± 0.15	± 1	± 7	nA max	
Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	± 0.03			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}$; see Figure 27
	± 0.15	± 2	± 14	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH	± 1		2.0	V min	
Input Low Voltage, VINL Input Current, linL or $\mathrm{l}_{\mathrm{INH}}$			0.8	V max	
				nA typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	4			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, $\mathrm{t}_{\text {transition }}$	150			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	182	230	258	ns max	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$; see Figure 28
ton (EN)	106			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	132	150	160	ns max	$\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}$; see Figure 30
$\mathrm{t}_{\text {OFF }}$ (EN)	113			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	144	178	202	ns max	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$; see Figure 30
Break-Before-Make Time Delay, to	47			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			30	ns min	$\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2.5 \mathrm{~V}$; see Figure 29
Charge Injection	24			pC typ	$\mathrm{V}_{S}=0 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$; see Figure 31
Off Isolation	-64			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 32
Channel-to-Channel Crosstalk	-64			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 34
Total Harmonic Distortion + Noise (THD + N)	0.04			\% typ	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz ; see Figure 35
-3 dB Bandwidth					$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 33
ADG1608	40			MHz typ	
ADG1609	71			MHz typ	
C_{s} (Off)	20			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)					
ADG1608	120			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG1609	61			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{On}) \quad$ -					
ADG1608	153			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG1609	85			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS ldo	0.001				$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V}$
				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {dD }}$
			1.0	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 3.3 / \pm 8$	\checkmark min/max	

[^0]
ADG1608/ADG1609

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance (Ron)	4			Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$; see Figure 25
	4.5	6.5	7.5	Ω max	$V_{\text {DD }}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
On-Resistance Match Between Channels (Δ Ron)	0.12			Ω typ	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.25	0.3	0.35	Ω max	
On-Resistance Flatness (RFLAt(On)	0.9			Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$
	1.2	1.6	1.9	Ω max	
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 0.02			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 26
	± 0.1	± 0.5	± 3	$n A \max$	
Drain Off Leakage, l_{D} (Off)	± 0.03			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 26
ADG1608	± 0.15	± 2	± 14	nA max	
ADG1609	± 0.15	± 1	± 7	nA max	
Channel On Leakage, $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{On})$	± 0.03			nA typ	$V_{S}=V_{D}=1 \mathrm{~V}$ or 10 V ; see Figure 27
	± 0.15	± 2	± 14	nA max	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2.0	V min	
Input Current, line or linh			0.8	V max	
	± 1			nA typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	4			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	113			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF}$
	141	172	196	ns max	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 28
ton (EN)	80			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	94	101	110	ns max	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 30
toff (EN)	77			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	93	117	140	ns max	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 30
Break-Before-Make Time Delay, t_{D}	47			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			30	ns min	$\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 29
Charge Injection	29			pC typ	$\mathrm{V}_{S}=6 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, C_{L}=1 \mathrm{nF}$; see Figure 31
Off Isolation	-64			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 32
Channel-to-Channel Crosstalk	-64			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 34
Total Harmonic Distortion + Noise (THD + N)	0.04			\% typ	$\mathrm{R}_{\mathrm{L}}=110 \Omega, \mathrm{~V}_{S}=5 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz ; see Figure 35
-3 dB Bandwidth					$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 33
ADG1608	40			MHz typ	
ADG1609	78			MHz typ	
C_{S} (Off)	19			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)					
ADG1608	117			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG1609	59			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\text {S }}(\mathrm{On})$					
ADG1608	149			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG1609	84			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS IDD					$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$
	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1.0	$\mu \mathrm{A}$ max	
ADG1608	300			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			480	$\mu \mathrm{A}$ max	
ADG1609	225			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			360	$\mu \mathrm{A}$ max	
$V_{\text {DD }}$			3.3/16	V min/max	

${ }^{1}$ Guaranteed by design, but not subject to production test.

5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& \(25^{\circ} \mathrm{C}\) \& \[
\begin{aligned}
\& -40^{\circ} \mathrm{Cto} \\
\& +85^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& -40^{\circ} \mathrm{C} \text { to } \\
\& +125^{\circ} \mathrm{C}
\end{aligned}
\] \& Unit \& Test Conditions/Comments \\
\hline \begin{tabular}{l}
ANALOG SWITCH \\
Analog Signal Range \\
On Resistance (Ros) \\
On-Resistance Match Between Channels (\(\Delta\) Ron) \\
On-Resistance Flatness (Rflat(on))
\end{tabular} \& \[
\begin{aligned}
\& 8.5 \\
\& 10 \\
\& 0.15 \\
\& 0.3 \\
\& 1.7 \\
\& 2.3
\end{aligned}
\] \& 12.5
0.35

2.7 \& \begin{tabular}{l}
0 V to V D

14

0.4

3

 \&

V

Ω typ

Ω max

Ω typ

Ω max

Ω typ

Ω max

\end{tabular} \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 25 \\
& \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V} \mathrm{SS}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}
\end{aligned}
$$
\]

\hline | LEAKAGE CURRENTS |
| :--- |
| Source Off Leakage, I (Off) |
| Drain Off Leakage, I_{D} (Off) |
| ADG1608 |
| ADG1609 |
| Channel On Leakage, $I_{D}, I_{S}(O n)$ | \& \[

$$
\begin{aligned}
& \pm 0.01 \\
& \pm 0.1 \\
& \pm 0.01 \\
& \pm 0.15 \\
& \pm 0.15 \\
& \pm 0.01 \\
& \pm 0.15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 0.5 \\
& \pm 2 \\
& \pm 1 \\
& \pm 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \pm 3 \\
& \pm 14 \\
& \pm 7 \\
& \pm 14
\end{aligned}
$$

\] \& | nA typ |
| :--- |
| nA max |
| nA typ |
| nA max |
| nA max |
| nA typ |
| nA max | \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 26 \\
& \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 26 \\
& \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 27
\end{aligned}
$$
\]

\hline | DIGITAL INPUTS |
| :--- |
| Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ |
| Input Low Voltage, $\mathrm{V}_{\text {INL }}$ |
| Input Current, $\mathrm{l}_{\mathrm{INL}}$ or $\mathrm{l}_{\mathrm{INH}}$ |
| Digital Input Capacitance, CIN | \& ± 1

4 \& \& \[
$$
\begin{gathered}
2.0 \\
0.8 \\
\pm 0.1
\end{gathered}
$$

\] \& | $V_{\text {min }}$ |
| :--- |
| V max |
| nA typ |
| $\mu \mathrm{A}$ max |
| pF typ | \& $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}

\hline DYNAMIC CHARACTERISTICS ${ }^{1}$ \& \& \& \& \&

\hline | Transition Time, ttransition |
| :--- |
| ton (EN) | \& \[

$$
\begin{aligned}
& 193 \\
& 251 \\
& 115 \\
& 152
\end{aligned}
$$
\] \& 301

171 \& 339

184 \& | ns typ |
| :--- |
| ns max |
| ns typ |
| ns max | \& \[

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\
& \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V} \text {; see Figure } 28 \\
& \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\
& \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V} \text {; see Figure } 30
\end{aligned}
$$
\]

\hline toff (EN) \& $$
\begin{aligned}
& 140 \\
& 184
\end{aligned}
$$ \& 225 \& 259 \& ns typ ns max \& \[

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\
& \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V} \text {; see Figure } 30
\end{aligned}
$$
\]

\hline Break-Before-Make Time Delay, t_{D} \& 66 \& \& 37 \& ns typ ns min \& $$
\begin{aligned}
& \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\
& \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2.5 \mathrm{~V} \text {; see Figure } 29
\end{aligned}
$$

\hline Charge Injection \& 11 \& \& \& pC typ \& $\mathrm{V}_{S}=2.5 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{L}=1 \mathrm{nF}$; see Figure 31

\hline Off Isolation \& -64 \& \& \& dB typ \& $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 32

\hline Channel-to-Channel Crosstalk \& -64 \& \& \& dB typ \& $\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=100 \mathrm{kHz}$; see Figure 34

\hline Total Harmonic Distortion + Noise (THD + N) -3 dB Bandwidth \& 0.3 \& \& \& $$
\% \text { typ }
$$ \& $R_{L}=110 \Omega, f=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V} \mathrm{p}-\mathrm{p}$; see Figure 35 $R_{L}=50 \Omega, C_{L}=5 p F$; see Figure 33

\hline ADG1608 \& 37 \& \& \& MHz typ \&

\hline ADG1609 \& 72 \& \& \& MHz typ \&

\hline C_{S} (Off) \& 22 \& \& \& pF typ \& $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

\hline C_{D} (Off) \& \& \& \& \& $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

\hline ADG1608 \& 136 \& \& \& pF typ \&

\hline ADG1609 \& 68 \& \& \& pF typ \&

\hline $$
\begin{array}{r}
C_{D}, C_{S}(O n) \\
\text { ADG1608 } \\
\text { ADG1609 }
\end{array}
$$ \& \[

$$
\begin{aligned}
& 168 \\
& 94
\end{aligned}
$$

\] \& \& \& | pF typ |
| :--- |
| pF typ | \& $\mathrm{V}_{\mathrm{s}}=2.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

\hline | POWER REQUIREMENTS |
| :--- |
| IDD $V_{D D}$ | \& 0.001 \& \& \[

$$
\begin{aligned}
& 1.0 \\
& 3.3 / 16
\end{aligned}
$$

\] \& | $\mu \mathrm{A}$ typ |
| :--- |
| $\mu \mathrm{A}$ max |
| V min/max | \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\
& \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}}
\end{aligned}
$$
\]

\hline
\end{tabular}

[^1]
ADG1608/ADG1609

3.3 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

[^2]
ADG1608/ADG1609

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5. ADG1608

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, S OR D				
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	290	180	100	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	470	255	120	mA max
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	213	129	73	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	346	185	84	mA max
$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	157	101	63	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	252	150	77	mA max
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	126	87	56	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	206	129	73.5	mA max

Table 6. ADG1609

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, S OR D				
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	147	98	63	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	245	147	77	mA max
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	157	101	63	mA max
LFCSP ($\theta_{\text {JA }}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	255	150	77	mA max
$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	115	80	52	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	189	119	70	mA max
$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\left.\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	94	66	45	mA max
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	154	101	63	mA max

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	18 V
$V_{\text {DD }}$ to GND	-0.3 V to +18 V
$V_{\text {ss }}$ to GND	+0.3 V to -18 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	710 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, S or D^{2}	Data + 15\%
Operating Temperature Range Industrial	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP, θ_{JA} Thermal Impedance, 0 Airflow (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, θ_{AA} Thermal Impedance, 0 Airflow (4-Layer Board)	$48.7^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb -free	$260^{\circ} \mathrm{C}$

[^3]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG1608 Pin Configuration (TSSOP)

NOTES

1. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, $\mathrm{V}_{\text {SS }}$.

Figure 4. ADG1608 Pin Configuration (LFCSP)

Table 8. ADG1608 Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	AO	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, Ax logic inputs determine on switches.
3	1	V	
4	2	S1	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
5	3	S2	Source Terminal 1. Can be an input or an output.
6	4	S3	Source Terminal 2. Can be an input or an output.
7	5	S4	Source Terminal 3. Can be an input or an output.
8	6	D	Srain Terminal 4. Can be an input or an output.
9	7	S8	Source Terminal 8. Can be an input or an output.
10	8	S7	Source Terminal 7. Can be an input or an output.
11	9	S6	Source Terminal 6. Can be an input or an output.
12	10	S5	Source Terminal 5. Can be an input or an output.
13	11	VDD	Most Positive Power Supply Potential.
14	12	GND	Ground (0 V) Reference.
15	13	A2	Logic Control Input.
16	14	A1	Logic Control Input.
N/A	EP	EP	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and

Table 9. ADG1608 Truth Table

A2	A1	A0	EN	On Switch
X^{1}	X^{1}	X^{1}	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	5
1	0	0	1	6
1	0	1	7	7
1	1	0	1	8
1	1	1		

[^4]

Table 10. ADG1609 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, Ax logic inputs determine on switches.
3	1	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
4	2	S1A	Source Terminal 1A. Can be an input or an output.
5	3	S2A	Source Terminal 2A. Can be an input or an output.
6	4	S3A	Source Terminal 3A. Can be an input or an output.
7	5	S4A	Source Terminal 4A. Can be an input or an output.
8	6	DA	Drain Terminal A. Can be an input or an output.
9	7	DB	Drain Terminal B. Can be an input or an output.
10	8	S4B	Source Terminal 4B. Can be an input or an output.
11	9	S3B	Source Terminal 3B. Can be an input or an output.
12	10	S2B	Source Terminal 2B. Can be an input or an output.
13	11	S1B	Source Terminal 1B. Can be an input or an output.
14	12	$V_{\text {DD }}$	Most Positive Power Supply Potential.
15	13	GND	Ground (0 V) Reference.
16	14	A1	Logic Control Input.
N/A	EP	EP	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{ss}.

Table 11. ADG1609 Truth Table

A1	A0	EN	On Switch Pair
X^{1}	X^{1}	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

[^5]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 7. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Dual Supply

Figure 8. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 9. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, ± 5 V Dual Supply

Figure 10. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, 12 V Single Supply

Figure 11. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, 5 V Single Supply

Figure 12. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures,
3.3 V Single Supply

Figure 13. ADG1608 Leakage Currents vs. Temperature, ± 5 V Dual Supply

Figure 14. ADG1608 Leakage Currents vs. Temperature, 12 V Single Supply

Figure 15. ADG1608 Leakage Currents vs. Temperature, 5 V Single Supply

Figure 16. ADG1608 Leakage Currents vs. Temperature,
3.3 V Single Supply

Figure 17. IDD vs. Logic Level

Figure 18. Charge Injection vs. Source Voltage

Figure 19. Transition Time vs. Temperature

Figure 20. Off Isolation vs. Frequency

Figure 21. Crosstalk vs. Frequency

Figure 22. On Response vs. Frequency

Figure 23. ACPSRR vs. Frequency

Figure 24. THD $+N$ vs. Frequency

TEST CIRCUITS

Figure 25. On Resistance

Figure 26. Off Leakage

Figure 27. On Leakage

Figure 28. Address to Output Switching Times, $t_{\text {transition }}$

Figure 29. Break-Before-Make Delay, $t_{B B M}$

Figure 30. Enable Delay, $t_{\text {on }}(E N), t_{\text {off }}$ (EN)

Figure 31. Charge Injection

Figure 32. Off Isolation

Figure 33. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{v}_{\text {OUT }}}{\mathrm{v}_{\mathrm{S}}}$

Figure 34. Channel-to-Channel Crosstalk

Figure 35. THD + Noise

TERMINOLOGY

IDD
The positive supply current.
Iss
The negative supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminal D and Terminal S.
Ron
The ohmic resistance between Terminal D and Terminal S.
$\mathrm{R}_{\text {Flat(ON) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
I_{s} (Off)
The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\mathrm{INH}}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
Cs (Off)
The off switch source capacitance, which is measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, which is measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

The on switch capacitance, which is measured with reference to ground.

$\mathrm{C}_{\text {IN }}$

The digital input capacitance.
$\mathbf{t}_{\text {transition }}$
The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.
$t_{\text {ON }}$ (EN)
The delay between applying the digital control input and the output switching on.
$t_{\text {off }}$ (EN)
The delay between applying the digital control input and the output switching off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)
The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

OUTLINE DIMENSIONS

Figure 36. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.

Figure 37. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 3 mm x 3 mm Body, Very Very Thin Quad
(CP-16-22)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
ADG1608BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1608BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1608BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-22	S38
ADG1609BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1609BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	
ADG1609BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-22	S39

[^6]Data Sheet ADG1608/ADG1609

NOTES

ADG1608/ADG1609

NOTES

[^0]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design, but not subject to production test.

[^3]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
 ${ }^{2}$ See Table 5 and Table 6.

[^4]: ${ }^{1} \mathrm{X}=$ don't care.

[^5]: ${ }^{1} \mathrm{X}=$ don't care.

[^6]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

