

N-channel 600 V, 0.135 Ω typ., 20 A MDmesh[™] II Power MOSFET in a TO-220FP package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	VDS	R _{DS(on)} max	ΙD
STF26NM60N	600 V	0.165 Ω	20 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using the second generation of MDmesh[™] technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code Marking		Package	Packaging	
STF26NM60N	26NM60N	TO-220FP	Tube	

DocID030178 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V _{GS}	Gate-source voltage	±30	V
I _D ⁽¹⁾	Drain current (continuous) at Tc = 25 °C	20	А
ID ⁽¹⁾	Drain current (continuous) at Tc = 100 °C	12.6	А
IDM ⁽¹⁾⁽²⁾	Drain current (pulsed)	80	А
Ртот	Total dissipation at $T_C = 25 \ ^{\circ}C$	35	W
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink $(t = 1 \text{ s}; T_C = 25 \text{ °C})$	2500	V
Tstg	Storage temperature range	55 to 150	ാം
Tj	Operating junction temperature range	-55 to 150	

Notes:

⁽¹⁾Limited by package.

 $^{(2)}\mbox{Pulse}$ width limited by safe operating area.

 $^{(3)}I_{SD} \leq 20$ A, di/dt ≤ 400 A/µs, V_DS(peak) $\leq V_{(BR)DSS},$ V_DD $\leq 80\%$ V(BR)DSS

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	3.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
las	Single pulse avalanche current (pulse width limited by T_{jmax})	6	А
Eas	Single pulse avalanche energy (starting TJ=25 °C, ID=IAR, VDD=50 V)	610	mJ

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table	5:	On/off	states
-------	----	--------	--------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V(BR)DSS	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, \text{ V}_{GS} = 0 \text{ V}$	600			V
Zoro goto voltago drain	$V_{GS} = 0 V, V_{DS} = 600 V$			1		
IDSS	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 600 V,$ T _C = 125 °C ⁽¹⁾			100	μA
lgss	Gate-body leakage current	$V_{DS} = 0 V, V_{GS} = \pm 25 V$			±0.1	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS}=10~V,~I_{D}=10~A$		0.135	0.165	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1800	-	pF
Coss	Output capacitance	$V_{DS} = 50 V, f = 1 MHz,$	-	115	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V	-	6	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0 V$, $V_{DS} = 0$ to 480 V	-	310	-	рF
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, \text{ I}_{D} = 20 \text{ A},$	-	60	-	nC
Q_gs	Gate-source charge	$V_{GS} = 10 V$	-	8.5	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	30	-	nC
Rg	Gate input resistance	f=1 MHz, I _D =0 A	-	2.8	-	Ω

Table 6: Dynamic

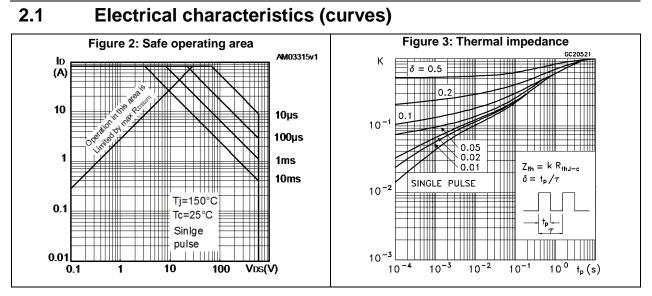
Notes:

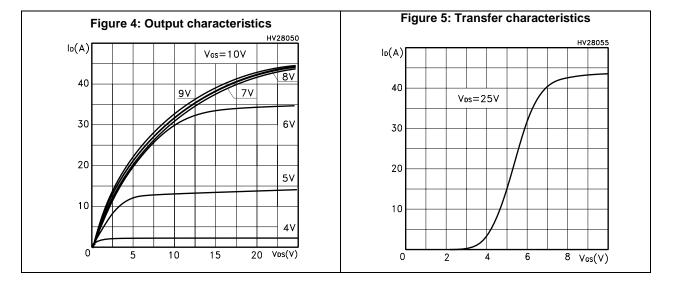
 $^{(1)}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

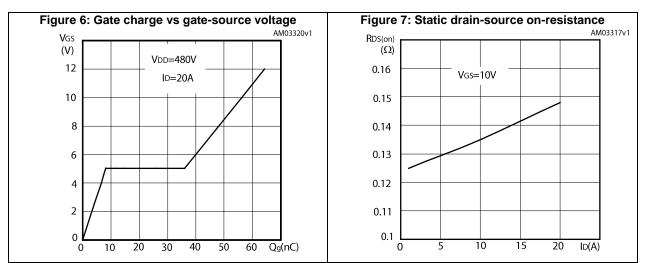
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 10 \text{ A},$	-	13	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	25	-	ns
td(off)	Turn-off delay time	resistive load switching times"	-	85	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	-	50	-	ns

Electrical characteristics

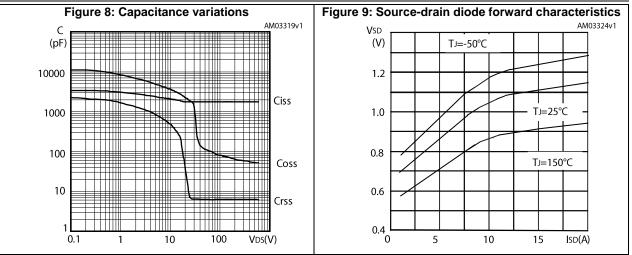
	Table 8: Source-drain diode							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
I _{SD} ⁽¹⁾	Source-drain current		-		20	А		
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		80	А		
Vsd ⁽³⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0 V	-		1.5	V		
trr	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/µs	-	370		ns		
Qrr	Reverse recovery charge	$V_{DD} = 60 V$	-	5.8		μC		
Irrm	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	31.6		A		
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/µs	-	450		ns		
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 \text{ °C}$ (see	-	7.5		μC		
Irrm	Reverse recovery current	Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	32.5		A		

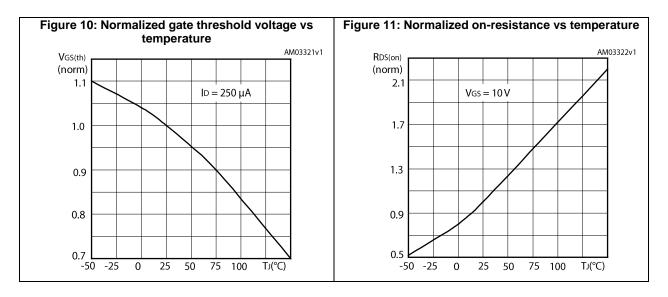

Notes:

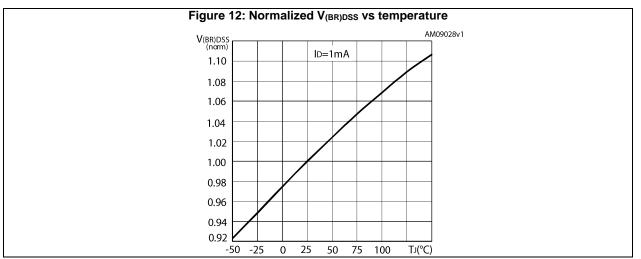

⁽¹⁾Pulse width limited by package.


 $\ensuremath{^{(2)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $^{(3)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

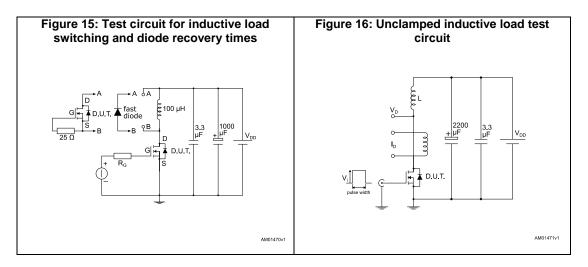


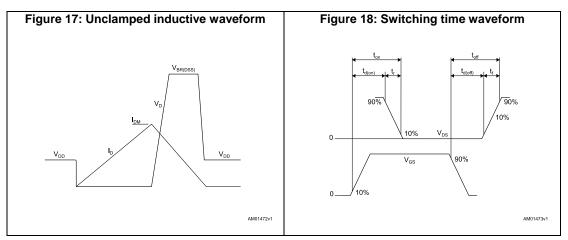

DocID030178 Rev 1



57

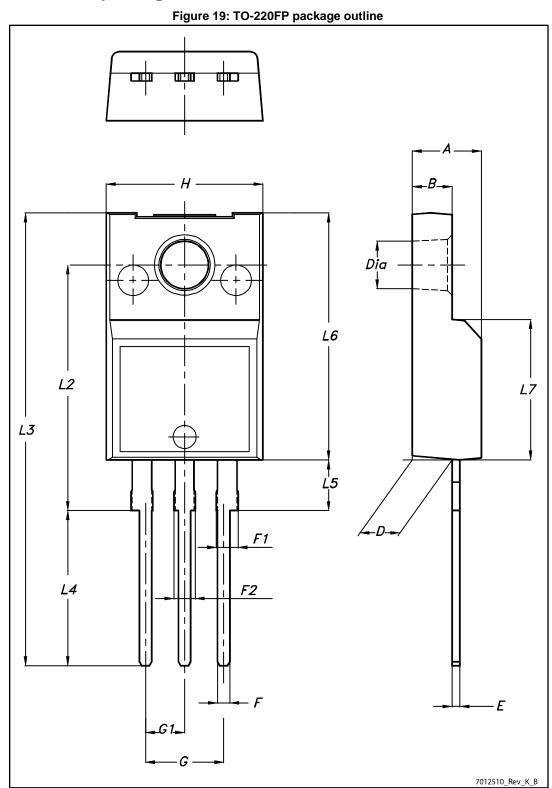
Electrical characteristics





DocID030178 Rev 1

3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

DocID030178 Rev 1

Package information

			Fackage information	
Table 9: TO-220FP package mechanical data				
Dim.	mm			
	Min.	Тур.	Max.	
А	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
E	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

Revision history 5

Table 10: Document revision history			
Date	Revision	Changes	
13-Dec-2016	1	First release. Part number previously included in datasheet DocID15642	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STF26NM60N