FEATURES

1.8 V to 5.5 V single supply

2.5Ω (typical) on resistance
Low on-resistance flatness
Guaranteed leakage performance over $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- $\mathbf{3}$ dB bandwidth $\mathbf{>} \mathbf{2 0 0} \mathbf{~ M H z}$

Rail-to-rail operation
10-lead MSOP package
Fast switching times
ton 16 ns
toff 8 ns
Typical power consumption ($<0.01 \mu \mathrm{~W}$)
TTL/CMOS compatible

APPLICATIONS

USB 1.1 signal switching circuits

Cell phones

PDAs

Battery-powered systems

Communication systems

Sample-and-hold systems
Audio signal routing
Audio and video switching
Mechanical reed relay replacement

GENERAL DESCRIPTION

The ADG736L is a monolithic device comprising two independently selectable CMOS single pole, double throw (SPDT) switches. The switches are designed using a submicron process that provides low power dissipation, yet gives high switching speed, low on resistance, low leakage currents, and wide input signal bandwidth.
The on resistance profile is very flat over the full analog signal range. This ensures excellent linearity and low distortion when switching audio signals. Fast switching speed also makes the part suitable for video signal switching.
The ADG736L operates from a single 1.8 V to 5.5 V supply, making it ideally suited to portable and battery-powered instruments.

Each switch conducts equally well in both directions when on; each has an input signal range that extends to the power supplies. The ADG736L exhibits break-before-make switching action.
The ADG736L is available in a 10 -lead MSOP.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. 1.8 V to 5.5 V Single-Supply Operation.
2. Guaranteed Leakage Performance.
3. Very Low Ron $(4.5 \Omega$ Maximum at 5 V , 8Ω Maximum at 3 V).
4. Low On Resistance Flatness.
5. -3 dB Bandwidth $>200 \mathrm{MHz}$.
6. Low Power Dissipation.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADG736L* Product Page Quick Links

Last Content Update: 08/30/2016

Comparable Parts \square

View a parametric search of comparable parts

Evaluation Kits

- Evaluation Board for 10-Lead MSOP Devices in the Switches and Multiplexers Portfolio

Documentation

Data Sheet

- ADG736L: CMOS Low Voltage 2.5Ω Dual SPDT Switch Data Sheet

User Guides

- UG-1037: Evaluation Board for 10-Lead MSOP Devices in the Switches and Multiplexers Portfolio

Reference Materials

Product Selection Guide

- Switches and Multiplexers Product Selection Guide

Design Resources ㄴ

- ADG736L Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

Discussions
View all ADG736L EngineerZone Discussions

Sample and Buy

Visit the product page to see pricing options

Technical Support느

Submit a technical question or find your regional support number

[^0]
ADG736L

TABLE OF CONTENTS

REVISION HISTORY

1/07—Revision 0: Initial Version

ESD Caution... 5
Pin Configuration and Function Descriptions6
Typical Performance Characteristics 7
Test Circuits 9
Terminology 10
Applications Information 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$; all specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

[^1]
ADG736L

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 3.

Parameter	Rating
VDD to GND	-0.3 V to +6 V
Analog, Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Continuous Current, S or D	30 mA
Peak Current, S or D	100 mA (Pulsed at 1 ms , 10% duty cycle maximum)
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP Package, Power Dissipation	315 mW
θ_{JA} Thermal Impedance	$205^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow (Peak Temperature, $<20 \mathrm{sec})$	$235^{\circ} \mathrm{C}$
Lead-Free Reflow	
Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec
ESD	2 kV

[^3]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG736L

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	S1A	Source Terminal. May be an input or an output.
3	GND	Ground (0 V) Reference.
4	S2A	Source Terminal. May be an input or an output.
5	IN2	Logic Control Input.
6	D2	Drain Terminal. May be an input or an output.
7	S2B	Source Terminal. May be an input or an output.
8	VDD	Most Positive Power Supply Potential.
9	S1B	Source Terminal. May be an input or an output.
10	D1	Drain Terminal. May be an input or an output.

Table 5. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies

Figure 4. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures $V_{D D}=3 \mathrm{~V}$

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures $V_{D D}=5 \mathrm{~V}$

Figure 6. Supply Current vs. Input Switching Frequency

Figure 7. Bandwidth

Figure 8. Off Isolation vs. Frequency

ADG736L

Figure 9. Crosstalk vs. Frequency

TEST CIRCUITS

Figure 13. Switching Times

Figure 14. Break-Before-Make Time Delay, t_{D}

Figure 15. Off Isolation

Figure 16. Channel-to-Channel Crosstalk

ADG736L

TERMINOLOGY

Ron
Ohmic resistance between D and S.

Δ Ron

On resistance match between any two channels, such as Ron maximum - Ron minimum.
$\mathbf{R}_{\text {flat (ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (OFF)

Source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$
Channel leakage current with the switch on.
V_{D} (Vs)
Analog voltage on Terminal D and Terminal S.
Cs (OFF)
Off switch source capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{ON})$
On switch capacitance.
ton
Delay between applying the digital control input and the output switching on (see Figure 13).
toff
Delay between applying the digital control input and the output switching off.
$t_{\text {D }}$
Off time or on time measured between the 90% points of both switches, when switching from one address state to another (see Figure 14).
Crosstalk
A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

The frequency at which the output is attenuated by -3 dB .

On Response

The frequency response of the on switch.

On Loss

The voltage drop across the on switch, seen on the On Response vs. Frequency plot (see Figure 7) as how many decibels the signal is away from 0 dB at very low frequencies.

APPLICATIONS INFORMATION

Figure 18. Using the ADG736L to Select Between Two Video Signals

ADG736L

OUTLINE DIMENSIONS

Figure 19. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADG736LBRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead Mini Small Outline Package (MSOP)	RM-10	SOY
ADG736LBRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead Mini Small Outline Package (MSOP)	RM-10	SOY
ADG736LBRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10-$ Lead Mini Small Outline Package (MSOP)	RM-10	SOY
ADG736LBRMZ 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 -Lead Mini Small Outline Package (MSOP)	RM-10	SOZ
ADG736LBRMZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10-$ Lead Mini Small Outline Package (MSOP)	RM-10	SOZ
${\text { ADG736LBRMZ-REEL } 7^{1}}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10-$ Lead Mini Small Outline Package (MSOP)	RM-10	SOZ

[^4]
[^0]: * This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

[^1]: ${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the B version.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for the B version.
 ${ }^{2}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^4]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

