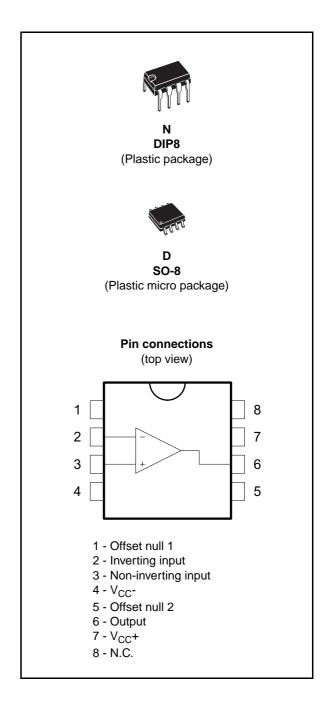


Wide bandwidth single JFET operational amplifiers


Features

- Internally adjustable input offset voltage
- Low power consumption
- Wide common-mode (up to V_{CC}⁺) and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate 16 V/µs (typical)

Description

These circuits are high speed JFET input single operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient.

Schematics LF351

1 Schematics

Figure 1. Schematic diagram

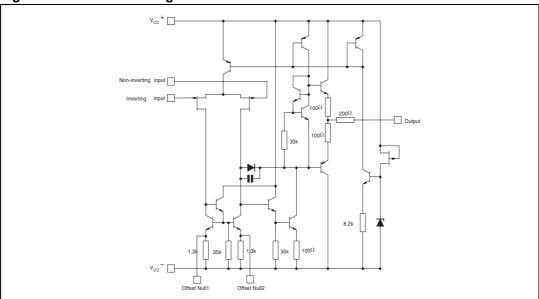
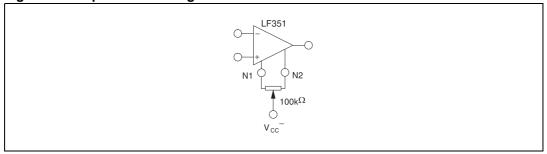



Figure 2. Input offset voltage null circuit

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	±18	V
V _i	Input voltage ⁽²⁾	±15	V
V _{id}	Differential input voltage ⁽³⁾	±30	V
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾ SO-8 DIP8	125 85	°C/W
R _{thjc}	Thermal resistance junction to case ⁽⁴⁾ SO-8 DIP8	40 41	°C/W
	Output short-circuit duration ⁽⁵⁾	Infinite	
T _{stg}	Storage temperature range	-65 to +150	°C
	HBM: human body model ⁽⁶⁾	500	V
ESD	MM: machine model ⁽⁷⁾	200	V
	CDM: charged device model ⁽⁸⁾	1.5	kV

All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.

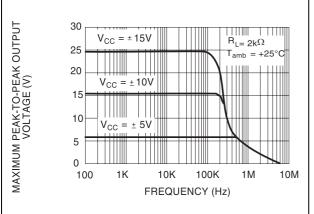
- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
- 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded
- Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	LF151 LF251		LF351	Unit
V _{CC}	Supply voltage		6 to 32		V
T _{oper}	Operating free-air temperature range	-55 to +125	-40 to +105	0 to +70	°C

Electrical characteristics LF351

3 Electrical characteristics


Table 3. Electrical characteristics at $V_{CC} = \pm 15 \text{ V}$, $T_{amb} = +25^{\circ}\text{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ($R_s = 10k\Omega$) $T_{min} \le T_{amb} \le T_{max}$		3	10 13	mV
DV _{io}	Input offset voltage drift		10		μV/°C
I _{io}	Input offset current ⁽¹⁾ T _{min} ≤ T _{amb} ≤ T _{max}		5	100 4	pA nA
I _{ib}	Input bias current $^{(1)}$ $T_{min} \le T_{amb} \le T_{max}$		20	200 20	pA nA
A _{vd}	Large signal voltage gain $(R_L = 2k\Omega, V_0 = \pm 10V)$ $T_{min} \le T_{amb} \le T_{max}$	50 25	200		V/mV
SVR	Supply voltage rejection ratio ($R_S = 10k\Omega$) $T_{min} \le T_{amb} \le T_{max}$	80 80	86		dB
I _{CC}	Supply current, no load $T_{min} \le T_{amb} \ \le T_{max}$				mA
V _{icm}	Input common mode voltage range	±11	+15 -12		V
CMR	Common mode rejection ratio ($R_S = 10k\Omega$) $T_{min} \le T_{amb} \le T_{max}$	70 70	86		dB
I _{OS}	Output short-circuit current $T_{min} \leq T_{amb} \ \leq T_{max}$			60 60	mA
±V _{opp}	Output voltage swing $R_L = 2k\Omega$ $R_L = 10k\Omega$ $T_{min} \le T_{amb} \le T_{max}$ $R_L = 2k\Omega$ $R_L = 10k\Omega$	10 12 10 12	12 13.5		٧
SR	Slew rate, $V_i = 10V$, $R_L = 2k\Omega$, $C_L = 100pF$, unity gain	12	16		V/µs
t _r	Rise time, $V_i = 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, unity gain		0.1		μs
K _{ov}	Overshoot, $V_i = 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, unity gain		10		%
GBP	Gain bandwidth product, f = 100kHz, V_{in} = 10mV, R_L = 2k Ω C_L = 100pF	2.5	4		MHz
R _i	Input resistance		10 ¹²		Ω
THD	Total harmonic distortion f= 1kHz, A_v = 20dB, R_L = 2k Ω , C_L =100pF, V_o = 2 V_{pp}		0.01		%
e _n	Equivalent input noise voltage				$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Øm	Phase margin		45		Degrees

^{1.} The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature.

Figure 3. Maximum peak-to-peak output voltage versus frequency

Figure 4. Maximum peak-to-peak output voltage versus frequency

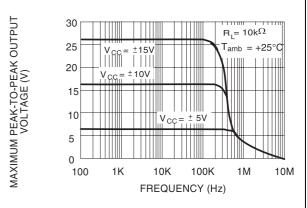
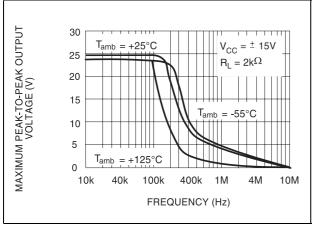



Figure 5. Maximum peak-to-peak output voltage versus frequency

Figure 6. Maximum peak-to-peak output voltage versus free air temp.

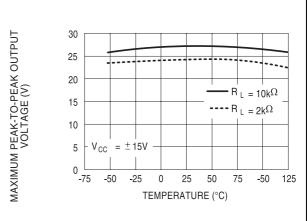
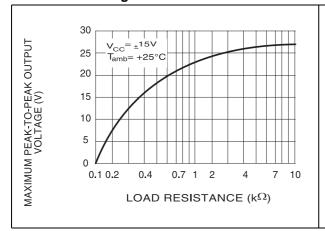
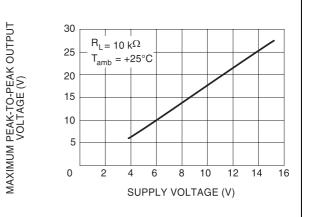
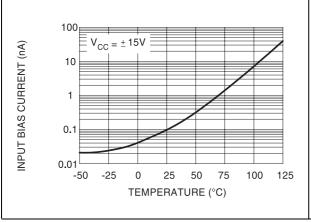




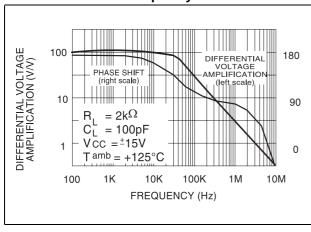
Figure 7. Maximum peak-to-peak output voltage versus load resistance

Figure 8. Maximum peak-to-peak output voltage versus supply voltage



Electrical characteristics LF351

Figure 9. Input bias current versus free air temperature


Figure 10. Large signal differential voltage amplification versus free air temp.

1000 400 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) 200 100 40 20 $V_{CC} = \pm 15V$ 10 $V_0 = \pm 10V$ 4 $R_1 = 2k\Omega$ 2 -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C)

Figure 11. Large signal differential voltage amplification and phase shift versus frequency

Figure 12. Total power dissipation versus free air temperature

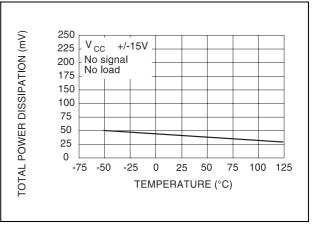
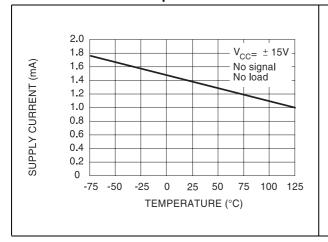
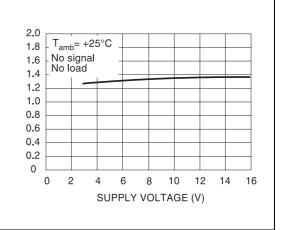




Figure 13. Supply current per amplifier versus Figure 14. Supply current per amplifier versus free air temperature supply voltage

SUPPLY CURRENT (mA)

LF351 Electrical characteristics

Figure 15. Common mode rejection ratio versus free air temperature

Figure 16. Voltage follower large signal pulse response

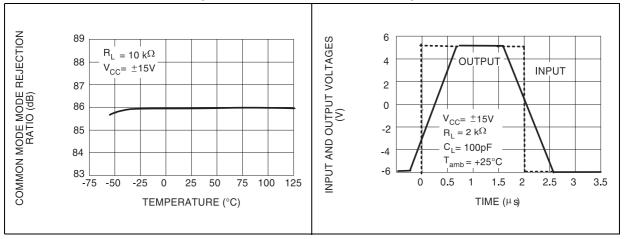
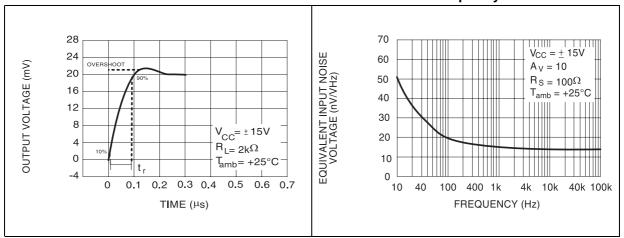
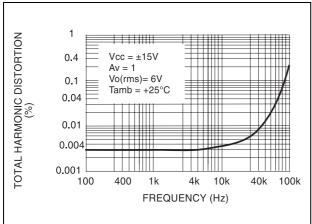
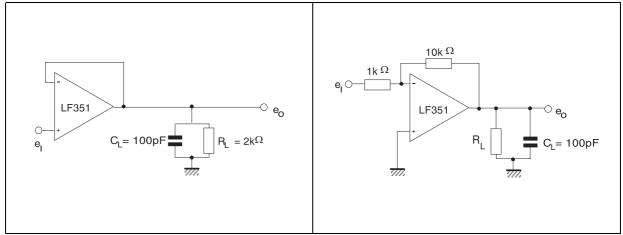


Figure 17. Output voltage versus elapsed time Figure 18. Equivalent input noise voltage versus frequency


Figure 19. Total harmonic distortion versus frequency

4 Parameter measurement information

Figure 20. Voltage follower

Figure 21. Gain-of-10 inverting amplifier

LF351 Typical application

5 Typical application

Figure 22. Square wave oscillator (0.5 Hz)

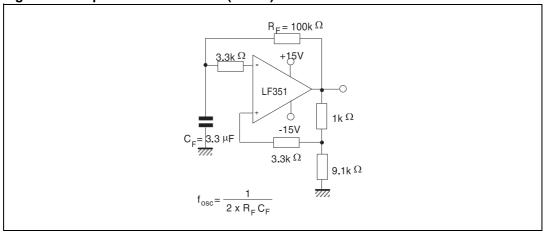
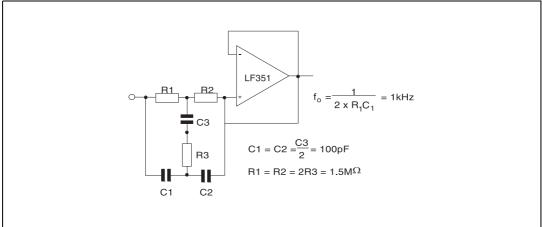



Figure 23. High Q notch filter

Package information LF351

6 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.

LF351 Package information

6.1 DIP8 package information

Figure 24. DIP8 package mechanical drawing

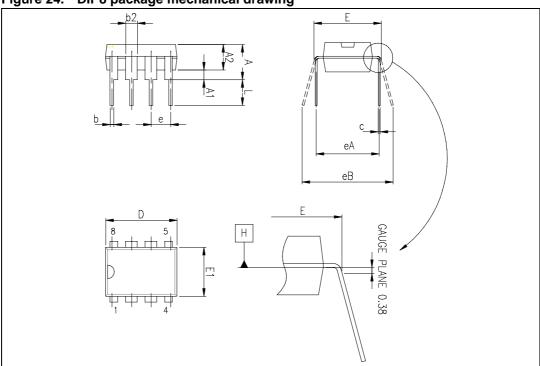


Table 4. DIP8 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
С	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

577

Package information LF351

6.2 SO-8 package information

Figure 25. SO-8 package mechanical drawing

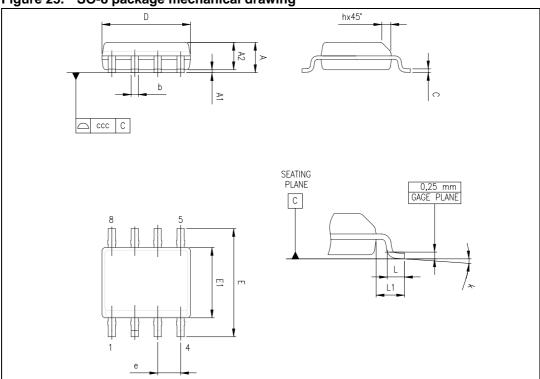


Table 5. SO-8 package mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	1°		8°	1°		8°
ccc			0.10			0.004

LF351 Ordering information

7 Ordering information

Table 6. Order codes

Order code	Temperature range	Package	Packing	Marking
LF151N		DIP8	Tape	LF151N
LF151D LF151DT	-55°C, +125°C	SO-8	Tape or Tape & reel	151
LF251N		DIP8	Tape	LF251N
LF251D LF251DT	-40°C, +105°C	SO-8	Tape or Tape & reel	251
LF351N		DIP8	Tape	LF351N
LF351D LF351DT	0°C, +70°C	SO-8	Tape or Tape & reel	351

8 Revision history

Table 7. Document revision history

Date	Revision	Changes	
17-May-2001	1	Initial release.	
28-April-2008	2	Jpdated document format.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

57