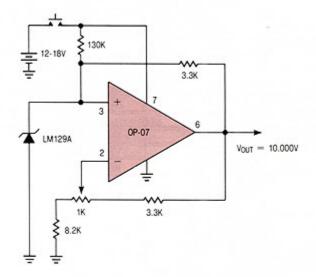


Precision Operational **Amplifier**

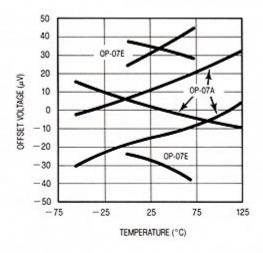
FEATURES

- Guaranteed 25μV max. Offset Voltage
- Guaranteed 0.6µV/°C max. Offset Voltage **Drift with Temperature**
- Excellent 1.0 µV/Month max. Long Term Stability
- Guaranteed 0.6µV_{p-p} max. Noise
 Guaranteed 2.0nA max. Input Bias Current


APPLICATIONS

- Thermocouple Amplifiers
- Strain Gauge Amplifiers
- Low Level Signal Processing
- Medical Instrumentation

DESCRIPTION


The OP-07 offers excellent performance in applications requiring low offset voltage, low drift with time and temperature and very low noise. Linear's OP-07 is interchangeable with many of the precision op-amp device types. The OP-07 also offers a wide input voltage range, high common mode rejection and low input bias current. These features result in optimum performance for small signal level and low frequency applications. Use of advanced design, processing and testing techniques make Linear's OP-07 a superior choice over similar products. A buffered reference application is shown below. For single op amp applications requiring higher performance, see the LT1001 and for matched dual precision applications see the LT1002.

Precision Buffered Single Supply Reference

The OP-07 contributes less than 5% of the total drift with temperature, noise and long term drift of the reference application.

Offset Voltage Drift With Temperature Of Representative Units

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

TOP VIEW OFFSET ADJUST	ORDER PART NO.	OFFSET VOLTAGE (MAX)		
- IN 3 4 NC V- (CASE) METAL CAN H PACKAGE	OP-07AH OP-07H OP-07EH OP-07CH	25μV 75μV 75μV 150μV		
TOP VIEW VOS TRIM 1 8 TRIM -IN 2 7 V+ +IN 3 6 OUT V- 4 5 NC HERMETIC DIP JS PACKAGE PLASTIC DIP NS PACKAGE	OP-07AJ8 OP-07J8 OP-07EJ8 OP-07CJ8 OP-07EN8 OP-07CN8	25μV 75μV 75μV 150μV 75μV 150μV		

ELECTRICAL CHARACTERISTICS $v_s=\pm 15$ V, $T_A=25$ °C, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	OP-07A TYP	MAX	MIN	OP-07 TYP	MAX	UNITS
Vos	Input Offset Voltage	(Note 1)	The Tay Comment	10	25		30	75	μV
ΔV _{OS} ΔTime	Long Term Input Offset Voltage Stability	(Notes 2 and 3)		0.2	1.0		0.2	1.0	μV/Month
los	Input Offset Current			0.3	2.0		0.4	2.8	nA
l _B	Input Bias Current			±0.7	±2.0		± 1.0	±3.0	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz (Note 2)		0.35	0.6		0.35	0.6	μV _{p-p}
	Input Noise Voltage Density	f ₀ = 10Hz f ₀ = 100Hz (Note 2) f ₀ = 1000Hz		10.3 10.0 9.6	18.0 13.0 11.0		10.3 10.0 9.6	18.0 13.0 11.0	nV/√Hz
i _n	Input Noise Current	0.1Hz to 10Hz (Note 2)		14	30	Section - Control	14	30	pA _{p-p}
	Input Noise Current Density	f ₀ = 10Hz f ₀ = 100Hz (Note 2) f ₀ = 1000Hz		0.32 0.14 0.12	0.80 0.23 0.17		0.32 0.14 0.12	0.80 0.23 0.17	pA/√Hz
Rin	Input Resistance Differential Mode	(Note 4)	30	80		20	60		MΩ
	Input Resistance Common Mode			200			200		GΩ
	Input Voltage Range		± 13.5	± 14.0		± 13.5	± 14.0		V
CMRR	Common Mode Rejection Ratio	V _{CM} = ± 13V	110	126		110	126		dB
PSRR	Power Supply Rejection Ratio	V _S = ±3V to ±18V	100	108		100	108		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$ $R_L \ge 500\Omega$, $V_0 = \pm 0.5V$ $V_S = \pm 3V$ (Note 4)	300 150	500 400		200 150	500 400		V/mV
V _{OUT}	Maximum Output Voltage Swing	$\begin{array}{l} R_L \geq 10 k \Omega \\ R_L \geq 2 k \Omega \\ R_L \geq 1 k \Omega \end{array}$	± 12.5 ± 12.0 ± 10.5	± 13.0 ± 12.8 ± 12.0		± 12.5 ± 12.0 ± 10.5	± 13.0 ± 12.8 ± 12.0		v
SR	Slew Rate	R _L ≥ 2kΩ (Note 4)	0.1	0.25		0.1	0.25		V/µS
GBW	Closed Loop Bandwidth	A _{VCL} = +1 (Note 4)	0.4	0.6	0.00	0.4	0.6		MHz
Z _o	Open Loop Output Impedance	$V_0 = 0$, $I_0 = 0$, $f = 10Hz$		60			60		Ω
P _d	Power Dissipation	$V_S = \pm 15V V_S = \pm 3V$		75 4	120 6		75 4	120 6	mW
	Offset Adjustment Range	Null Pot = 20kΩ		±4			±4		mV

See Notes on page 4.

ELECTRICAL CHARACTERISTICS $v_s=\pm 15 V, -55 ^{\circ}C \leqslant T_A \leqslant 125 ^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	OP-07A TYP	MAX	MIN	OP-07 TYP	MAX	UNITS
Vos	Input Offset Voltage	(Note 1)			25	60		60	200	μV
ΔV _{QS} ΔTemp	Average Input Offset Voltage Drift Without External Trim With External Trim	Null Pot = 20kΩ (Note 2)	•		0.2 0.2	0.6 0.6		0.3 0.3	1.3 1.3	μV/°C
los	Input Offset Current		•		0.8	4.0		1.2	5.6	nA
Δl _{OS} ΔTemp	Average Input Offset Current Drift	(Note 2)	•		5	25		8	50	pA/°C
I _B	Input Bias Current		•		± 1.0	±4.0		±2.0	±6.0	nA
Δl _B ΔTemp	Average Input Bias Current Drift	(Note 2)	•		8	25		13	50	pA/°C
	Input Voltage Range			± 13.0	± 13.5		± 13.0	± 13.5		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13V$	•	106	123		106	123		dB
PSRR	Power Supply Rejection Ratio	V _S = ±3V to ± 18V	•	94	106		94	106		dB
A _{VOL}	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	•	200	400		150	400		V/mV
V _{out}	Output Voltage Swing	$R_L \ge 2k\Omega$	•	± 12.0	± 12.6		± 12.0	± 12.6		V

ELECTRICAL CHARACTERISTICS $v_{\text{s}}=\pm\,15\text{V},\,T_{\text{A}}=25^{\circ}\text{C},\,\text{unless otherwise noted}.$

SYMBOL	PARAMETER	CONDITIONS	MIN	OP-07E TYP	MAX	MIN	OP-07C TYP	MAX	UNITS
Vos	Input Offset Voltage	(Note 1)		30	75		60	150	μV
ΔV _{0S} ΔTime	Long Term Input Offset Voltage Stability	(Notes 2 and 3)		0.3	1.5		0.4	2.0	μV/Month
Ios	Input Offset Current			0.5	3.8	To the second	0.8	6.0	nA
l ₈	Input Bias Current			± 1.2	±4.0	3	± 1.8	±7.0	nA
en	Input Noise Voltage	0.1Hz to 10Hz (Note 2)		0.35	0.6	1	0.35	0.65	μV _{p-3}
	Input Noise Voltage Density	$f_0 = 10Hz$ $f_0 = 100Hz$ (Note 2) $f_0 = 1000Hz$		10.3 10.0 9.6	18.0 13.0 11.0		10.5 10.2 9.8	20.0 13.5 11.5	nV/√Hz
I _n	Input Noise Current	0.1Hz to 10Hz (Note 2)		14	30		15	35	pA _{p-s}
	Input Noise Current Density	f _o = 10Hz f _o = 100Hz (Note 2) f _o = 1000Hz		0.32 0.14 0.12	0.80 0.23 0.17		0.32 0.15 0.13	0.90 0.27 0.18	pA/√Hz
Rin	Input Resistance Differential Mode	(Note 4)	15	50		8	33		MΩ
	Input Resistance Common Mode			160			120		GΩ
	Input Voltage Range		± 13.5	± 14.0	- mag-	± 13.0	± 14.0		١ ١
CMRR	Common Mode Rejection Ratio	V _{CM} = ± 13V	106	123		100	120		dE
PSRR	Power Supply Rejection Ratio	$V_S = \pm 3V$ to $\pm 18V$	94	106		90	104		dE
AvoL	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$ $R_L \ge 500\Omega$, $V_0 = \pm 0.5V$ $V_S = \pm 3V$ (Note 4)	200 150	500 400		120 100	400 400		V/m\
V ₀	Maximum Output Voltage Swing	$R_L \ge 10k\Omega$ $R_L \ge 2k\Omega$ $R_L \ge 1k\Omega$	± 12.5 ± 12.0 ± 10.5			± 12.5 ± 11.5	± 13.0 ± 12.8 ± 12.0		V
SR	Slewing Rate	$R_L \ge 2k\Omega$ (Note 2)	0.1	0.25		0.1	0.25		V/µS
GBW	Closed Loop Bandwidth	A _{VCL} = +1 (Note 2)	0.4	0.6		0.4	0.6		MHz
Z _o	Open Loop Output Impedance	V ₀ = 0, I ₀ = 0, f = 10Hz		60			60		2
P _d	Power Dissipation	$V_S = \pm 15V.$ $V_S = \pm 3V.$		75 4	120 6		80 4	150 8	Wm Wm
Part - Carlo	Offset Adjustment Range	Null Pot = 20kΩ		±4		7-7-7-	±4		m\

See Notes on page 4.

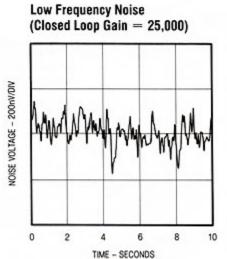
ELECTRICAL CHARACTERISTICS $v_s=\pm 15 V$, $0^{\circ}C \leqslant T_A \leqslant 70^{\circ}C$, unless otherwise noted.

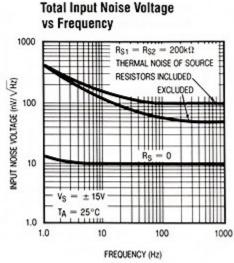
SYMBOL	PARAMETER	CONDITIONS		MIN	OP-07E	MAX	MIN	OP-07C TYP	MAX	UNITS
Vos	Input Offset Voltage			19-11	45	130		85	250	μV
ΔV _{QS} ΔTemp	Average Input Offset Voltage Drift Without External Trim With External Trim	Null Pot = 20kΩ (Note 2)	•		0.3 0.3	1.3 1.3		0.5 0.4	1.8 1.6	μV/°C
Ios	Input Offset Current				0.9	5.3		1.6	8.0	nA
Δl _{QS} ΔTemp	Average Input Offset Current Drift	(Note 2)	•		8	35		12	50	pA/°C
IB	Input Bias Current				± 1.5	±5.5		±2.2	±9.0	nA
Δl _B ΔTemp	Average Input Bias Current Drift	(Note 2)	•		13	35		18	50	pA/°C
	Input Voltage Range		•	± 13.0	± 13.5		± 13.0	± 13.5		٧
CMRR	Common Mode Rejection Ratio	V _{CM} = ± 13V	•	103	123		97	120		dB
PSRR	Power Supply Rejection Ratio	V _S = ±3V to ±18V		90	104		86	100		dB
AvoL	Large Signal Voltage Gain	$R_L \ge 2k\Omega$, $V_o = \pm 10V$		180	450		100	400		V/mV
Vout	Output Voltage Swing	$R_L \ge 2k\Omega$		± 12.0	± 12.6		± 11.0	± 12.6		٧

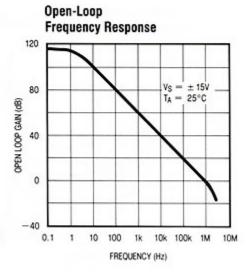
The • denotes the specifications which apply over full operating temperature range.

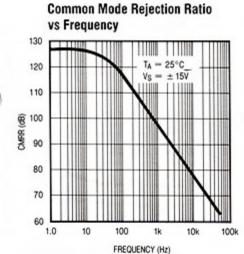
For MIL-STD components, please refer to LTC 883C data sheet for test listing and parameters.

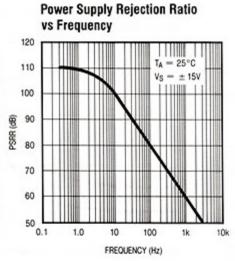
Note 1: Offset voltage for the OP-07A is measured 60 seconds after power is applied. All other grades are measured with high speed test equipment, approximately 1 second after power is applied.

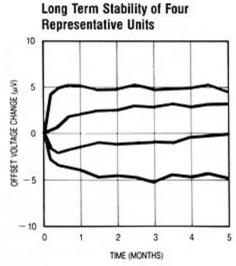

Note 2: This parameter is tested on a sample basis only.

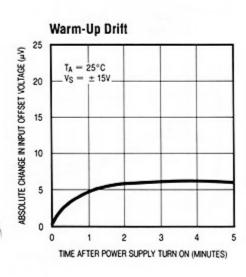

Note 3: Long term Input Offset Voltage Stability refers to the averaged trend line of V_{0S} versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{0S} during the first 30 operating days are typically $2.5\mu V$.

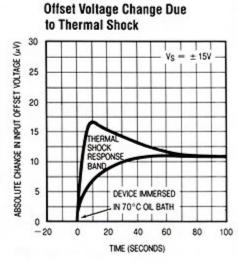

Note 4: This parameter is guaranteed by design.

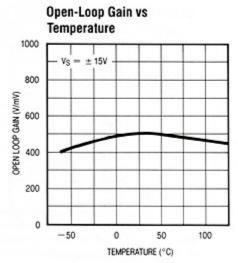

Note 5: The OP-07D is available by special request.

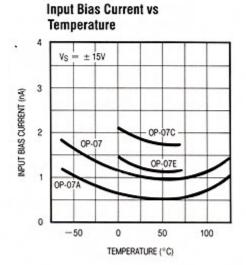

TYPICAL PERFORMANCE CHARACTERISTICS

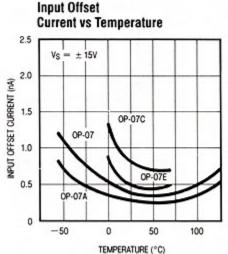


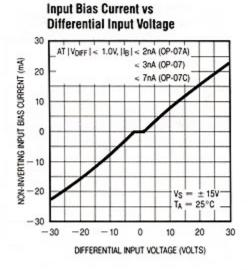


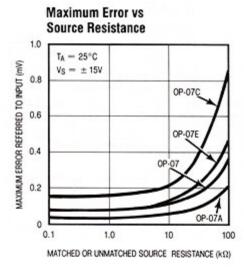


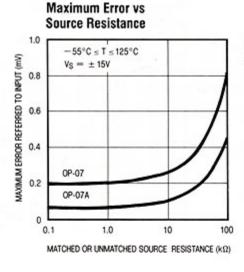


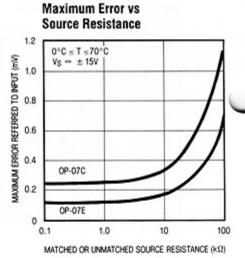


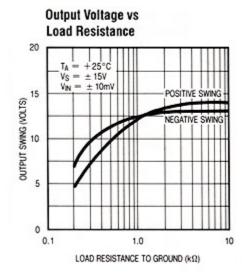


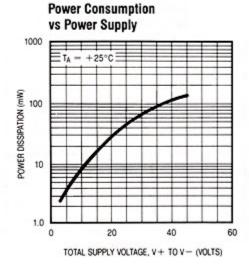


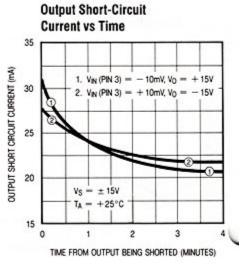


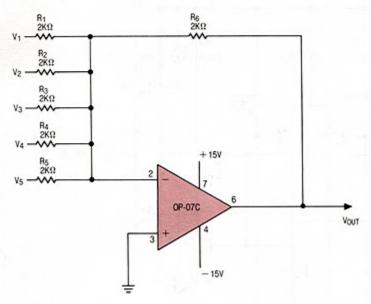

TYPICAL PERFORMANCE CHARACTERISTICS

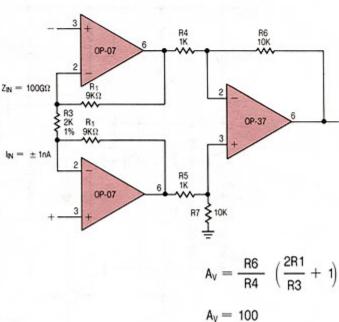






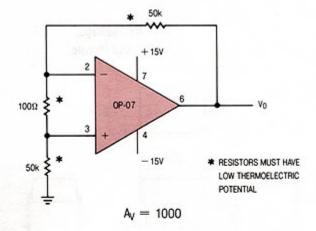




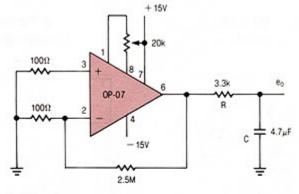


TYPICAL APPLICATIONS

Precision Summing Amplifier



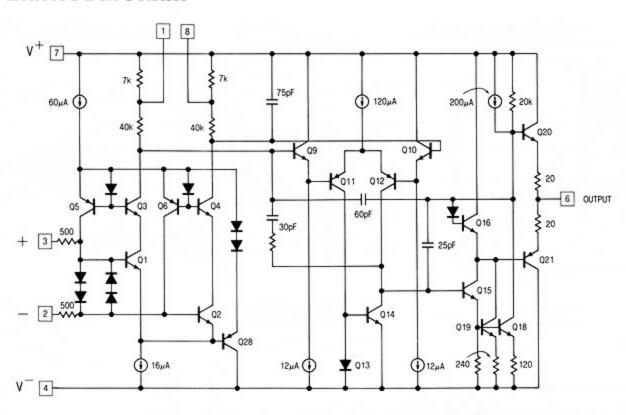
Instrumentation Amplifier


TEST CIRCUIT DIAGRAMS

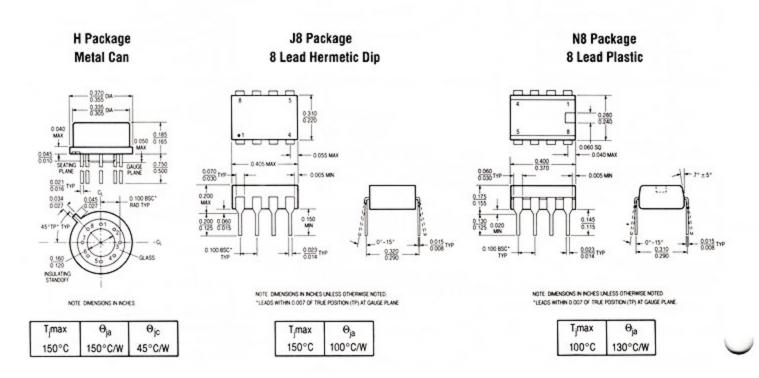
Offset Voltage Test Circuit †

† This circuit is also used as the burn-in configuration with supply voltages changed to ±20 Volts.

Offset Nulling and Low Frequency Noise Test Circuit


NOTES:

- 1) RC APPROXIMATELY 10Hz FILTER
- OBSERVE OUTPUT FOR 10 SECONDS A_V = 25000


Application Tip:

When the OP-07 is used as a replacement in 725, 108/108A, 308/308A applications, removal of external compensation is optional. For conventionally nulled 741 type applications, external trimming should be removed. Care should taken to avoid thermocouple voltages caused by temperature variations between the input terminals or dissimilar metals.

SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

OP07CPZ OP07CSZ OP07EPZ OP07CSZ-REEL7 OP07CSZ-REEL