

- Communication protocol: MODBUS-RTU
- MODBUS TCP/IP Ethernet port (on request)
- BACnet-IP over Ethernet port (on request)
- BACnet MS/TP over RS485, BTL approved (on request)
- Profibus DP V0 port, PROFIBUS Nutzerorganisation e.V. approved (on request)
- Up to 2 digital outputs (pulse, alarm, remote control) (on request)
- Up to 4 freely configurable virtual alarms
- Up to 2 analogue outputs (+20mA, +10VDC) (on request)

Product Description

Three-phase smart power either for pulse proportional to the analyzer with built-in advanced active and reactive energy being configuration system and LCD measured or/and for alarm outputs. data displaying. Particularly The instrument can be equipped recommended for the with the following modules: RS485/ measurement of the main RS232, Ethernet, BACnet-IP, electrical variables. WM30 is BACnet MS/TP or Profibus DP based on a modular housing for V0 communication ports, pulse panel mounting with IP65 (front) and alarm outputs. Parameters protection degree. Moreover, programming and data reading the analyzer can be provided can be easily performed by means with digital outputs that can be of UCS (Universal Configuration Software).

- Class $0.5 \mathrm{~S}(\mathrm{kWh})$ according to EN62053-22
- Class 2 (kvarh) according to EN62053-23
- Accuracy $\pm 0.2 \%$ RDG (current/voltage)
- Instantaneous variables readout: 4x4 DGT
- Energies readout: 9+1 DGT
- System variables: VLL, VLN, A, VA, W, var, PF, Hz, Phase-sequence-asymmetry-loss.
- Single phase variables: VLL, VLN, AL, An (calculated), VA, W, var, PF
- Both system and single phase variables with average and max calculation
- Harmonic analysis (FFT) up to the 32nd harmonic (current and voltage)
- Energy measurements (imported/exported): total and partial kWh and kvarh
- Energy measurements according to ANSI C12.20 CA 0.5, ANSI C12.1
- Run hours counter (8+2 DGT)
- Real time clock function
- Application adaptable display and programming procedure (Easyprog function)
- Universal power supply: 24-48 VDC/AC, 100-240 VDC/AC
- Front dimensions: 96x96 mm
- Front protection degree: IP65, NEMA4X, NEMA12
- One RS232 and RS485 port (on request)

How to order wM30-96 AV5 3 HR2 A2 S1 XX
 Range code
System \qquad
Power Supply
A Outputs
B Outputs
Communication
Option

Position of modules and combination

Ref	Description	Main features	Part number	Pos. A	Pos. B	Pos. C
1	WM30 base provided with display, power supply, measuring inputs	- Inputs/system: AV5.3 - Power supply: H	WM30 AV5 3 H			
2		- Inputs/system: AV6.3 - Power supply: H	WM30 AV6 3 H			
3		- Inputs/system: AV4.3 - Power supply: H	WM30 AV4 3 H			
4		- Inputs/system: AV7. 3 - Power supply: H	WM30 AV7 3 H			
		- Inputs/system: AV5.3 - Power supply: L	WM30 AV5 3 L			
		- Inputs/system: AV6.3 - Power supply: L	WM30 AV6 3 L			
		- Inputs/system: AV4.3 - Power supply: L	WM30 AV4 3 L			
		- Inputs/system: AV7. 3 - Power supply: L	WM30 AV7 3 L			
5	Dual relay output (SPDT)	- 2-channel - Alarm or/and pulse output	M O R2	X		
6	Dual static output (AC/DC Opto-Mos)	- 2-channel - Alarm or/and pulse output	M O O2	X		
7	Dual analogue output (+20mADC)	- 2-channel	M O A2		X	
8	Dual analogue output (+10VDC)	- 2-channel	M O V2		X	
9	RS485 / RS232 port module	- Max. 115.2 Kbps	M C 485232			X
10	Ethernet port module	- RJ45 10/100 BaseT	M C ETH			X
11	BACnet-IP port module	- Based on Ethernet bus	M C BAC IP			X
12	BACnet-MS/TP port module	- Over RS485	M C BAC MS			X
13	Profibus module	- Profibus DP V0 - Over RS485	M C P B			X

NOTE:

The position of the modules shall respect the sequence $A-B-C$.
Possible arrangements are $M, M-A, M-B, M-C, M-A-B, M-A-C$,
$M-B-C$ and $M-A-B-C$ where " M " is the basic module (WM30-96).
It is possible to use the WM30-96 without any additional module as a simple indicator.

Input specifications

Rated inputs	System type: 1, 2 or 3-phase
Input type	Galvanic insulation by means of built-in CT's
Current range (by CT)	AV5 and AV6: 5(6)A
	AV4 and AV7: 1(2)A
Voltage (by direct connection or VT/PT)	AV4, AV5: $3 \times 220(380) . . .3 \times 400(690) \mathrm{V}$ AV6, AV7: $3 \times 57.7(100) . . .3 \times 133(230) \mathrm{V}$
Accuracy (Display + RS485) (@23 ${ }^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$,	$\begin{aligned} & 0.01 \mathrm{n}=0.05 \mathrm{~A}(\mathrm{AV} 5, \mathrm{AV} 6-\mathrm{kWh}, \mathrm{PF}=1) \\ & 0.01 \mathrm{ln}=0.01 \mathrm{~A}(\mathrm{AV} 4, \mathrm{AV7}-\mathrm{kWh}, \mathrm{PF}=1) \\ & 0.05 \mathrm{n} \mathrm{n}=0.25 \mathrm{~A}(\mathrm{AV} 5, \mathrm{AV} 6-\mathrm{kWh}, \mathrm{PF}=1) \\ & 0.05 \mathrm{n} \mathrm{n}=0.05 \mathrm{~A}(\mathrm{AV} 4, \mathrm{AV} 7-\mathrm{kWh}, \mathrm{PF}=1) \end{aligned}$
	In: see below, Un: see below
AV4 model	In: 1A, Imax: 2A; Un: 220 to 400 VLN (380 to 690 VLL)
AV5 model	In: 5A, Imax: 6A; Un: 220 to 400 VLN (380 to 690 VLL)
AV6 model	In: 5A, Imax: 6A; Un: 57.7 to 133 VLN (100 to 230VLL)
AV7 model	In: 1A, Imax: 2A; Un: 57.7 to 133 VLN (100 to 230 VLL
Current AV4, AV5, AV6, AV7 models	From 0.01In to 0.05 In : $\pm(0.5 \%$ RDG +2DGT) From 0.05In to Imax: $\pm(0.2 \%$ RDG $+2 \mathrm{DGT})$
Phase-neutral voltage	In the range Un: $\pm(0,2 \%$ RDG +1DGT)
Phase-phase voltage	In the range Un: $\pm(0.5 \%$ RDG +1DGT)
Voltage tolerance	Un -20\%, Un +15\%
Frequency	From 40 to $65 \mathrm{~Hz} \pm(0.02 \%$ RDG + 1 DGT), From 65 to $340 \mathrm{~Hz} \pm(0.05 \% \mathrm{RDG}+$ 1 DGT). From 340 to $440 \mathrm{~Hz} \pm(0.1 \%$ RDG + 1 DGT)
Active and Apparent power	From 0.01 In to 0.05In, PF 1: $\pm(1 \% R D G+1$ DGT) From 0.05In to Imax PF 0.5L, PF1, PF0.8C: $\pm(0.5 \% R D G+1 D G T)$
Power Factor	$\begin{aligned} & \pm[0.001+0.5 \% ~(1.000-\text { "PF } \\ & R D G ")] \end{aligned}$
Reactive power	From 0.02In to $0.05 \mathrm{In}, \operatorname{sen} \varphi 1$: $\pm(1.5 \% R D G+1$ DGT) From 0.05In to Imax, sen φ 1: $\pm(1 \% R D G+1 D G T)$ From 0.05 In to $0.1 \mathrm{In}, \operatorname{sen} \varphi$ 0.5L/C: $\pm(1.5 \% R D G+1 D G T)$ From 0.1In to Imax, $\operatorname{sen} \varphi$ 0.5L/C: $\pm(1 \% R D G+1 D G T)$
Active energy	Class 0.5 S according to EN62053-22, ANSI C12.20
Reactive energy	Class 2 according to EN62053-23, ANSI C12.1.

CARLO GAVAZZI

Output specifications

Relay outputs (M O R2)	
Physical outputs	2 (max. 1 module per instrument)
Purpose	For either alarm output or pulse output
Type	Relay, SPDT type AC 1-5A @ 250VAC; AC 15-1.5A @ 250VAC
Configuration	By means of the front keypad or UCS software
Function	The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in any other combination.
Alarms	Up alarm and down alarm linked to the virtual alarms, other details see Virtual alarms
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".
Pulse	
Signal retransmission	```Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh, +kvarh, -kvarh.```
Pulse type	Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse. The above listed variables can be connected to any output.
Pulse duration	30 ms (ON), $\geq 30 \mathrm{~ms}$ (OFF), according to EN62053-31
Remote controlled outputs	The activation of the outputs is managed through the serial communication port
Insulation	See "Insulation between inputs and outputs" table
Static outputs (M O O2)	Opto-Mos type
Physical outputs	2 (max. 1 module per instrument)
Purpose	For either pulse output or alarm output
Signal	Von: 2.5VAC/DC/max. 100 mA
Configuration	$V_{\text {off: }}$ 42VDC max. By means of the front key-
Function	pad or UCS software The outputs can work as alarm outputs but also as pulse outputs, remote controlled outputs, or in any other combination.
Alarms	Up alarm and down alarm linked to the virtual alarms, other details see Virtual alarms
Min. response time	$\leq 200 \mathrm{~ms}$, filters excluded. Set-point on-time delay: "0 s".
Pulse	
Signal retransmission	Total: +kWh, -kWh, +kvarh, -kvarh. Partial: +kWh, -kWh, +kvarh, -kvarh.

Pulse type	Programmable from 0.001 to $10.00 \mathrm{kWh} / \mathrm{kvarh}$ per pulse. The above listed variables can be connected to any output.
Pulse duration	30 ms (ON), $\geq 30 \mathrm{~ms}$ (OFF), according to EN62053-31
Remote controlled outputs	The activation of the outputs is managed through the serial communication port
Insulation	See "Insulation between inputs and outputs" table
20 mA analogue outputs (M O A2)	
Number of outputs	2 per module (max. 1 module per instrument)
Accuracy (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	$\pm 0.2 \%$ FS
Range	0 to 20 mA
Configuration	By means of the front keypad or UCS software
Signal retransmission	The signal output can be connected to any instantaneous variable available in the table "List of the variables that can be connected to".
Scaling factor	Programmable within the whole range of retransmission.
Response time	$\leq 400 \mathrm{~ms}$ typical (filter excluded)
Ripple	$\leq 1 \%$ (according to IEC 60688-1, EN 60688-1)
Total temperature drift	$\leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Load	$\leq 600 \Omega$
Insulation	See "Insulation between inputs and outputs" table
10VDC analogue outputs (M O V2)	
Number of outputs	2 (max. 1 module per instrument)
Accuracy (@ $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	$\pm 0.2 \%$ FS
Range	0 to 10 VDC
Configuration	By means of the front keypad or UCS software
Signal retransmission	The signal output can be connected to any instantaneous variable available in the table "List of the variables that can be connected to".
Scaling factor	Programmable within the whole range of retransmission;
Response time	$\leq 400 \mathrm{~ms}$ typical (filter excluded)
Ripple	$\leq 1 \%$ (according to IEC 60688, EN 60688)
Total temperature drift	$\leq 350 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Load	$\geq 10 \mathrm{k} \Omega$
Insulation	See "Insulation between inputs and outputs" table

Output specifications (cont.)

Output specifications (cont.)

Data Dynamic (reading only)	System and phase variables (BACnet-IP and Modbus): see table "List of variables	Ethernet port Protocol	Modbus TCP/IP (for programming parameter purpose) Static IP / Netmask /
Static (reading and writing only)	All the configuration parameters (Modbus only)	Modbus Port Client connections	Default gateway Selectable (default 502) Modbus only: max 5
Note	With the rotary switch (on the back of the basic unit) in lock position the modification of the	Connections	simultaneously RJ45 10/100 BaseTX Max. distance 100 m
	programming parameters and the reset command by means of the serial communication is not allowed anymore. In this case just the data reading	Dynamic (reading only) Static	System and phase variables: see table "List of variables..."
Insulation	case just the data reading is allowed. See "Insulation between inputs and outputs" table	Note	All the configuration parameters (Modbus only). With the rotary switch (on the back of the basic
BACnet MS/TP (on request) Available ports	2: RS485 and Ethernet		
			the modification of the programming parameters
Type	Multidrop, mono-directiona (dynamic variables)		and the reset command by means of the serial
Connections	2-wire Max. distance 1000m, termination directly on the module		communication is not allowed anymore. In this case just the data reading
Device object instance	0 to 9999 selectable by key-pad 0 to $2^{\wedge} 22-2=4.194 .302$, selectable by programming	Insulation Approval	is allowed. See "Insulation between inputs and outputs" table BTL
Protocol	software or by BACnet. BACnet MS/TP (for measurement reading purpose and to write object description)	Profibus (MCPB) Available ports USB Purpose	2: USB and Profibus DP V0 Programmable parameters setting
Supported services	"I have", "I am", "Who has" "Who is", "Read (multiple) Property"	Connector Protocol	USB micro B Modbus RTU
Supported objects	Type 2 (analogue value, including COV property), Type 5 (binary-value for up to 4 virtual alarm re-transmission) Type 8 (device)	Data format Baudrate Address	1 start bit, 8 data bit, no parity, 1 stop bit autorange depending on the master (max 115200 bps) 1
Data (mono-directional) Dynamic	System and phase variables: see table "List of variables..."	Profibus Purpose	Data reading (12 programmable profiles realtime selectable); remote output control;
Static Data format	Not available 1 start bit, 8 data bit, no parity, 1 stop bit	Modules Selectable:	remote tariff control; output up to 4 bytes, input
Baud-rate	Selectable: $9.6 \mathrm{k}, 19.2 \mathrm{k}$, 38.4 k or 76.8 k kbit/s	Data format (profiles)	totalizers : FLOAT or
Driver input capability	$1 / 5$ unit load. Maximum 160 transceivers on the same bus.		electrical variables: FLOAT or INT16; status variables: UINT16
MAC addresses	Selectable: 0 to 127	Connector	RS485 DB9

CARLO GAVAZZ

Output specifications (cont.)

Protocol
Baudrate

Address
Note

Profibus DP V0 slave 9.6 k to 12 Mbps (9.6, 19.2, 45.45, 93.75, 187.5, or $500 \mathrm{kbps} ; 1.5,3,6$, or 12 Mbps)
2-125 (default 126)
With the rotary switch (on the back of the basic unit) in lock position the modification of the programming parameters and the reset command by means of the serial communication is not allowed. In this case just the data reading is allowed

Insulation

Approval

See "Insulation between inputs and outputs" table PROFIBUS Nutzerorganisation e.V.

Energy meters

Meters Total Partial	$4(8+2,9+1,10$ digit $)$ $4(8+2,9+1,10$ digit)
Pulse output	Connectable to total and/or partial meters
Energy meter recording	Storage of total and partial energy meters. Energy meter storage format (EEPROM)

	Min. -9,999,999,999 kWh/ kvarh Max. 9,999,999,999 kWh/ kvarh.
Type	+kWh, +kvarh, -kWh, Total energy meters Partial energy meters $+k W h, ~+k v a r h, ~-k W h, ~$ $-k v a r h ~$

Harmonic distortion analysis

Analysis principle	FFT		The same for the other phases: L2, L3.
Harmonic measurement			
Current Voltage	Up to the 32nd harmonic Up to the 32nd harmonic	System	The harmonic distortion can be measured in 3 -wire
Type of harmonics	THD (VL1 and VL1-N) The same for the other phases: L2, L3. THD (AL1)		or 4-wire systems. Tw: 0.02 sec@50Hz without filter

Display, LED's and commands

Display refresh time	$\leq 250 \mathrm{~ms}$	Energy consumption kWh pulsating	d LED (only kWh)
Display	$\begin{aligned} & 4 \text { lines, 4-DGT, } 1 \text { lines, } \\ & 10-D G T \end{aligned}$		$0.001 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is
Type	LCD, single colour backlight		≤ 7 $0.01 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if
Digit dimensions	4-DGT: h $9.5 \mathrm{~mm} ; 10-\mathrm{DGT}$: h 6.0 mm		the Ct ratio by VT ratio is $\geq 7.1 \leq 70.0$
Instantaneous variables read-out Energies variables read-out	4-DGT Imported Total/Partial: 8+2DGT, 9+1DGT or 10DGT; Exported Total/Partial: 8+2DGT, 9+1DGT or 10DGT (with "-" sign)		$0.1 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is $\geq 70.1 \leq 700.0$ $1 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is $\geq 700.1 \leq 7000$ $10 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if
Run Hours counter	$\begin{aligned} & 8+2 \text { DGT (99.999.999 } \\ & \text { hours and } 59 \text { minutes max) } \end{aligned}$		the Ct ratio by VT ratio is $\geq 7001 \leq 70.00 \mathrm{k}$
Overload status	EEEE indication when the value being measured is exceeding the "Continuous inputs overload" (maximum measurement capacity)		$100 \mathrm{kWh} / \mathrm{kvarh}$ by pulse if the Ct ratio by VT ratio is $>70.01 \mathrm{k}$ Max frequency: 16 Hz , according to EN 62052-11
Max. and Min. indication	Max. instantaneous variables: 9999; energies: 9999999 999. Min. instantaneous variables: 0.000 ; energies 0.00	Back position LEDs On the base On the communication modules	Green as power-on Two LEDs: one for TX (green) and one for RX (amber).
Front position LEDs Virtual alarms	4 red LED available in case of virtual alarm (AL1-AL2-AL3-AL4). Note: the real alarm is just the activation of the proper static or relay output if the proper module is available.	Key-pad	For variable selection, programming of the instrument working parameters, "dmd", "max", total energy and partial energy Reset

Main functions

Password
1st level
2nd level
System selection System 3-Ph.n unbalanced load System 3-Ph. unbalanced load

System 3-Ph. 1 balanced load

Numeric code of max. 4 digits; 2 protection levels of the programming data:
Password "0", no protection;
Password from 1 to 9999, all data are protected

3-phase (4-wire)
3 -phase (3-wire), three currents and 3-phase to phase voltage measurements, or in case of Aaron connection two currents (with special wiring on screw terminals) and 3-phase to phase voltage measurements. 3 -phase (3-wire), one current and 3-phase to phase voltage measurements 3 -phase (4-wire), one current and 3-phase to neutral voltage measurements.

System 3-Ph. 2 balanced load	3 -phase (2-wire), one current and 1-phase (L1) to neutral voltage measurement.
System 2-Ph	2-phase (3-wire)
System 1-Ph	1-phase (2-wire)
Transformer ratio	
VT (PT)	1.0 to 999.9 / 1000 to 9999.
CT	1.0 to 999.9 / 1000 to 9999 (up to 10 kA in case of CT with 1 A secondary current and up to 50 kA in case of CT with 5A secondary current).
Maximum CT ratio x VT ratio	9999×9999
Filter	
Operating range	Selectable from 0 to 100% of the input display scale
Filtering coefficient	Selectable from 1 to 32
Filter action	Measurements, analogue signal retransmission, serial communication (fundamental variables: $\mathrm{V}, \mathrm{A}, \mathrm{W}$ and their derived ones).

CARLO GAVAZZI

Main functions (cont.)

$\left.\left.\begin{array}{ll}\begin{array}{l}\text { Displaying } \\ \text { Number of variables }\end{array} & \begin{array}{l}\text { Up to } 5 \text { variables per } \\ \text { page. See "Front view". } 7 \\ \text { different set of variables } \\ \text { available (see "Display } \\ \text { pages") according to } \\ \text { the application being } \\ \text { selected. One page is } \\ \text { freely programmable as } \\ \text { combination of variables. } \\ \text { The backlight time is } \\ \text { programmable from 0 } \\ \text { (always on) to 255 minutes }\end{array} \\ \hline \text { Backlight } & \begin{array}{l}\text { In case of basic unit or } \\ \text { with the addition of M O R2 } \\ \text { or M O O2 digital output } \\ \text { modules. }\end{array} \\ \hline \text { Up to 4 }\end{array}\right\} \begin{array}{l}\text { Up alarm and down alarm. } \\ \text { The alarms can be } \\ \text { connected to any } \\ \text { instantaneous variable } \\ \text { Working condition } \\ \text { available in the table "List } \\ \text { of the variables that can be }\end{array}\right\}$

General specifications

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)(\mathrm{R} . \mathrm{H}$. from 0 to 90% non-condensing @ $\left.40^{\circ} \mathrm{C}\right)$ according to EN62053-21, EN62053-23			
Storage temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.1588^{\circ} \mathrm{F}\right)(\mathrm{R} . \mathrm{H} .<90 \%$ non-condensing @ $\left.40^{\circ} \mathrm{C}\right)$ according to EN62053-21, EN62053-23			
Installation category	Cat. III (IEC60664, EN60664)			
Insulation (for 1 minute)	See "Insulation between inputs and outputs" table			
Dielectric strength	4 kVAC RMS for 1 minute	,	Noise rejection CMRR	$100 \mathrm{~dB}, 48$ to 62 Hz
:---	:---			
EMC	According to EN62052-11			
Immunity and emissions				

Standard compliance Safety
 IEC60664, IEC61010-1
 EN60664, EN61010-1
 EN62052-11.
 EN62053-22, EN62053-23.
 Metrology Pulse output
 IEC62053-31
 Approvals
 Connections
 Cable cross-section area
 Eligible System performance Meter for Go Solar California, CE, cULus "Listed"
 Screw-type
 max. $2.5 \mathrm{~mm}^{2}$.
 min./max. screws tightening
 torque: $0.4 \mathrm{Nm} / 0.8 \mathrm{Nm}$.
 Suggested screws
 tightening torque: 0.5 Nm

General specifications (cont.)

Housing DIN
Dimensions (WxHxD)

Max. depth behind the panel
Material
Module holder:
$96 \times 96 \times 50 \mathrm{~mm}$.
"A" and "B" type modules:
$89.5 \times 63 \times 16 \mathrm{~mm}$.
"C" type module:
89.5x63x20mm.
With 3 modules (A+B+C):
81.7 mm
Polycarbonate/ABS/Nylon
PA66, self-extinguishing:
UL 94 V-0

Mounting	Panel mounting
Protection degree Front Screw terminals	IP65, NEMA4x, NEMA12
Weight	Approx. 420 g (packing included)

Insulation between inputs and outputs

	Power Supply (HoL)	Mesuring inputs	Relay output (MOR2)	Static ouput $(\mathrm{MOO2})$	Serial port	Ethernet port	Analogue outputs
Power Supply (HoL)	-	4 kV					
Mesuring inputs	4 kV	-	4 kV				
Relay output (MOR2)	4 kV	4 kV	2 kV	-	4 kV	4 kV	4 kV
Static ouput (MOO2)	4 kV	4 kV	-	2 kV	4 kV	4 kV	4 kV
Serial port	4 kV	4 kV	4 kV	4 kV	-	-	4 kV
Ethernet port	4 kV	4 kV	4 kV	4 kV	-	4 kV	
Analogue outputs	4 kV	$4 \mathrm{kV}(1)$					

(1): respect another module 4 kV , in the same module 0 kV .
-: combination not allowed
NOTE: all the models have, mandatory, to be connected to external current transformers because the isolation among the current inputs is just functional (100VAC).

List of the variables that can be connected to:

- Communication port (all listed variables)
- Analogue outputs (all variables with the only exclusion of "energies" and "run hour counter"
- Pulse outputs (only "energies")
- Alarm outputs ("energies", "hour counter" and "max" excluded)

No	Variable	1-ph. sys (1P)	$\begin{aligned} & \text { 2-ph. } \\ & \text { sys } \\ & \text { (2P) } \end{aligned}$	3-ph. 3-wire balanced sys (3P.1)	3-ph. 2-wire balanced sys (3P.2)	3-ph. 3-wire unbal. sys (3P)	3-ph. 4-wire unbal. sys (3P.n)	Notes
1	VL-N sys	0	X	X	(X	\#	(X	sys= system= \sum
2	VL1	X	X	X	X	\#	X	
3	VL2	0	X	H	H	\#	X	(H) $=$ VL1
4	VL3	0	0	H	H	\#	X	(H) $=$ VL1
5	VL-L sys	0	\#	X	X	X	X	sys= system $=\sum$
6	VL1-2	\#	X	X	P	X	X	(P) $=$ VL1*1.73
7	VL2-3	\#	0	X	P	X	X	(P) $=$ VL1*1.73
8	VL3-1	\#	0	X	P	X	X	$(\mathrm{P})=\mathrm{VL1} 1.73$
9	Asys	0	X	0	0	X	X	
10	An	\#	X	0	0	0	X	
11	AL1	X	X	X	X	X	X	
12	AL2	0	X	K	R	X	X	(R) $=$ AL1
13	AL3	0	0	K	R	X	X	(R)=AL1
14	VA sys	X	X	X	X	X	X	sys= system $=\sum$
15	VA L1	X	X	X	X	0	X	
16	VA L2	0	X	U	U	0	X	(U)=VAL1
17	VA L3	0	0	U	U	0	X	(U)=VAL1
18	var sys	X	X	X	X	X	X	sys= system $=\sum$
19	var L1	X	X	X	X	0	X	
20	var L2	0	X	V	V	0	X	(V)=VARL1
21	var L3	0	0	V	V	0	X	(V)=VARL1
22	W sys	X	X	X	X	X	X	sys= system $=\sum$
23	WL1	X	X	X	X	0	X	
24	WL2	0	X	S	S	0	X	(S) $=$ WL1
25	WL3	0	0	S	S	0	X	(S)=WL1
26	PF sys	X	X	X	X	X	X	sys= system= \sum
27	PF L1	X	X	X	X	0	X	
28	PF L2	0	X	T	T	0	X	(T)=PFL1
29	PF L3	0	0	T	T	0	X	(T)=PFL1
30	Hz	X	X	X	X	X	X	
31	Phase seq.	0	X	X	X	X	X	
32	Asy VLL	0	0	X	0	X	X	Asymmetry
33	Asy VLN	0	X	0	0	0	X	Asymmetry
34	Run Hours	X	X	X	X	X	X	
35	kWh (+)	X	X	X	X	X	X	Total
36	kvarh (+)	X	X	X	X	X	X	Total (1)
37	kWh (+)	X	X	X	X	X	X	Partial
38	kvarh (+)	X	X	X	X	X	X	Partial (1)
39	kWh (-)	X	X	X	X	X	X	Total
40	kvarh (-)	X	X	X	X	X	X	Total (1)
41	kWh (-)	X	X	X	X	X	X	Partial
42	kvarh (-)	X	X	X	X	X	X	Partial (1)
43	A L1 THD	X	X	X	X	X	X	
44	A L2 THD	0	X	F	F	X	X	$\begin{aligned} & (F)=A L 1 T H D \\ & (F)=A L 1 T H D \end{aligned}$
45	A L3 THD	0	0	F	F	X	X	
46	V L1 THD	X	X	X	X	0	X	(G)=VL1THD
47	V L2 THD	0	X	X	G	0	X	(G)=VL1THD
48	V L3 THD	0	0	X	G	0	X	
49	V L1-2 THD	X	X	X	\#	X	X	
50	V L2-3 THD	0	X	X	\#	X	X	
51	V L3-1 THD	0	0	X	\#	X	X	

[^0]H: 100-240 +/-10\% (90 to 255) VDC/AC ($50 / 60 \mathrm{~Hz}$); L: 24-48 +/-15\% (20 to 55) VDC/AC ($50 / 60 \mathrm{~Hz}$)

Power consumption

List of selectable applications

	Description	Notes
A	Cost allocation	Imported energy metering (Easy connection)
B	Cost control	Imported and partial energy metering (Easy connection)
C	Complex cost allocation	Imported/exported energy (total and partial)
D	Solar	Imported and exported energy metering with some basic power analyzer function
E	Complex cost and power analysis	Imported/exported energy (total and partial) and power analysis
F	Cost and power quality analysis	Imported energy and power quality analysis (Easy connec- tion)
G	Advanced energy and power analysis for power generation	Complete energy metering and power quality analysis

Display pages

$\begin{array}{c\|} \hline \text { Var } \\ \text { Type } \\ \hline \end{array}$	No	Line 1 Variable Type	Line 2 Variable Type	Line 3 Variable Type	Line 4Variable Type	Line 5Variable Type	Note	Applications						
								A	B	C	D	E	F	G
	0	Home page	Programmable					x	x	x	x	x	x	x
a	1	Total kWh (+)	b, c, d	b, c, d	b, c, d	b, c, d		x	x	x	x	x	x	x
a	2	Total kvarh (+)	b, c, d	b, c, d	b, c, d	b, c, d		x	x	x	x	x	x	x
a	3	Total kWh (-)	b, c, d	b, c, d	b, c, d	b, c, d				x	x	x		x
a	4	Total kvarh (-)	b, c, d	b, c, d	b, c, d	b, c, d				x	x	x		x
a	5	kWh (+) partial	b, c, d	b, c, d	b, c, d	b, c, d			x	x		x	x	x
a	6	kvarh (+) part.	b, c, d	b, c, d	b, c, d	b, c, d			x	x		x	x	x
a	7	kWh (-) partial	b, c, d	b, c, d	b, c, d	b, c, d				x		x		x
a	8	kvarh (-) part.	b, c, d	b, c, d	b, c, d	b, c, d				x		x		x
a	9	$\begin{array}{\|c\|} \hline \text { Run Hours } \\ (99999999.99) \end{array}$	b, c, d	b, c, d	b, c, d	b, c, d				x	x	x	x	x
b	10	a/Phase seq.	VLN Σ	VL1	VL2	VL3	(1) (2)				x	x	x	x
b	11	a/Phase seq.	VLN Σ	VL1-2	VL2-3	VL3-1	(1) (2)				x	x	x	x
b	12	a/Phase seq.	An	AL1	AL2	AL3	(1) (2)				x	x	x	x
b	13	a/Phase seq.	Hz	"ASY"	VLL sys (\% asy)	VLL sys (\% asy)	(1) (2)				x	x	x	x
b	14	a/Phase seq.	A Σ	AL1	AL2	AL3	(1) (2)				x	x	x	x
c	15	a/Phase seq.	W Σ	WL1	WL2	WL3	(1) (2)				x	x	x	x
c	16	a/Phase seq.	var Σ	var L1	var L2	var L3	(1) (2)					x	x	x
c	17	a/Phase seq.	PF Σ	PF L1	PF L2	PF L3	(1) (2)					x	x	x
c	18	a/Phase seq.	VA Σ	VAL1	VAL2	VAL3	(1) (2)					x	x	x
d	19	a/Phase seq.		THD V1	THD V2	THD V3	(1) (2)						x	x
d	20	a/Phase seq.		THD V12	THD V23	THD V31	(1) (2)						x	x
d	21	a/Phase seq.		THD A1	THD A2	THD A3	(1) (2)						x	x

Note: the table refers to system 3P.n.
(1) Also maximum value storage (no EEPROM storage).
(2) Also average (dmd) value (no EEPROM storage).

Additional available information on the display

No	Line 1	Line 2	Line 3	Line 4	Line 5	Note	Applications						
							A	B	C	D	E	F	G
1	Lot n. (text) xxxx	Yr. (text) xx	SYS (text)	x (1/2/3)	1... 60 (min) "dmd"		x	X	X	X	X	X	X
2	Conn. xxx.x (3ph.n/3ph/3ph./ $3 \mathrm{ph} .2 / 1 \mathrm{ph} / 2 \mathrm{ph})$	CT.rA (text)	1.0 ... 99.99k	PT.rA (text)	1.0... 9999		X	X	x	X	X	X	X
3	LED PULSE (text) kWh	xxxx kWh per pulse					X	X	x	X	X	X	X
4	PULSE out1 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				x	x	x	X	X	X	x
5	PULSE out2 (text) kWh/kvarh	xxxx kWh/kvarh per pulse	+/- tot/PAr				x	X	x	X	X	x	X
6	Remote out	out1 (text)	on/oFF	Out2 (text)	on/oFF		X	x	x	x	x	x	x
7	Alarm 1 nE/nd	None / out 1 / out 2	Set 1	Set 2	(measurement)					X	X	X	X
8	Alarm $2 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					X	X	X	x
9	Alarm $3 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					x	X	x	X
10	Alarm $4 \mathrm{nE} / \mathrm{nd}$	None / out 1 / out 2	Set 1	Set 2	(measurement)					X	X	X	X
11	Analogue 1	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%					x	X	X	x
12	Analogue 2	Hi:E	$0.0 \ldots 9999$	Hi.A	0.0 ... 100.0\%					X	X	X	X
13	COM port	None / out 1 / out 2	xxx (address)	bdr (text)	$\begin{gathered} 9.6 / 19.2 / \\ 38.4 / 115.2 \end{gathered}$		x	X	x	X	X	X	X
14	IP address	XXX	XXX	XXX	XXX		X	X	x	X	X	X	x

Back protection rotary switch

		Function	Rotary switch position	Description					
							Unlok	1	All programming parameters are freely modifiable by means of the front key-pad and by means of the communication port.

Accuracy (According to EN62053-22 and EN62053-23)
kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

Class 2 accuracy limits (Reactive energy)
Start-up current: 5mA (AV5-AV6), 1mA (AV4-AV7)

UCS parameter progr. and var. reading software

UCS Software

Multi-language software (Italian, English, French, German, Danish, Czech, Chinese, Spanish) for variable reading, and parameters programming (both online and offline). The program runs under Windows 7 and following versions.

Four different working modes can be selected: - management of local RS232 (MODBUS);

- management of local optical port (MODBUS) - management of a local RS485 network (MODBUS); - managed via TCP port

Used calculation formulas

Phase variables
Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{i}$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$
Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables

Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}$
Voltage asymmetry
$A S Y_{L L}=\frac{\left(V_{L L \text { max }}-V_{L L \text { min }}\right)}{V_{L L} \Sigma}$
$A S Y_{L N}=\frac{\left(V_{L N \text { max }}-V_{L N \text { min }}\right)}{V_{L N} \Sigma}$
Three-phase reactive power
$\operatorname{var}_{\Sigma}=\left(\right.$ var $_{1}+$ var $\left._{2}+\operatorname{var}_{3}\right)$
Three-phase active power

$$
W_{\Sigma}=W_{1}+W_{2}+W_{3}
$$

Three-phase apparent power

$$
V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}
$$

Total harmonic distortion

Three-phase power factor
$\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Energy metering

$k \operatorname{var} h i=\int_{t 1}^{t 2} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$k W h i=\int_{t 1}^{12} P i(t) d t \cong \Delta t \sum_{n 1}^{n 2} P n j$
Where:
$\mathrm{i}=$ considered phase (L1, L2 or L3)
$\mathbf{P}=$ active power; $\mathbf{Q}=$ reactive power; $\mathbf{t}_{1}, \mathbf{t}_{2}=$ starting and ending time points of consumption recording; $\mathbf{n}=$ time unit $\Delta ; \Delta t=$ time interval between two successive power consumptions; $\mathbf{n}_{1}, \mathbf{n}_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

System type selection: 3-Ph. 2

System type selection: 3-Ph.n

3-ph, 2-wire, balanced load
Fig. 2

1-CT and 1-VT/PT connections

System type selection: 3-Ph

System type selection: 3-Ph (cont.)

Wiring diagrams

System type selection: 3-Ph. 1

System type selection: 2-Ph (cont.)

3-ph, 3-wire, balanced load Fig. 10

System type selection: 2-Ph

Power Supply

90 to 260VAC/DC (H option) Fig. 15 Fig. 16 to 60VAC/DC (L option)

Static, relay and analogue outputs wiring diagrams

RS485 and RS232 wiring diagrams

\bigcirc	\bigcirc
M C 485 232, module	
$\bigcirc^{\circ} \mathrm{O}$ RS485 \quad RS232	
$\bigcirc \longdiv { \square }$	\bigcirc
$\theta \theta \theta \theta \theta \theta \theta \theta$	
$\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1\end{array}$	

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between ($\mathrm{B}+$) and (T). The communication RS232 and RS485 ports can't be connected and used simultaneously.

RS485 wiring diagram of Bacnet module

NOTE. RS485: additional devices provided with RS485 are connected in parallel. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between $(B+)$ and (T).

Ethernet and BACnet-IP connections

Connection to Ethernet or BACnet modules using the RJ45 connector.

Profibus module connections

Connection to the Profibus module using USB micro type B (Modbus RTU) and RS485 DB9 (Profibus DP-V0).

1. Key-pad

To program the configuration parameters and scroll the variables on the display.
2. Display

LCD-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

3. kWh LED

Red LED blinking proportional to the energy being measured
4. Alarm LED's

Red LED's light-on when virtual alarms are activated.
5. Main bar-graph

To display the power consumption versus the installed power.
6. Optical communication port

To program the working parameters and to read the measurements

Dimensions and Panel cut-out

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Carlo Gavazzi:
WM3096AV53H02XXS1XX WM3096AV53HR2XXS1XX WM3096AV53HXXXXS1XX WM3096AV63HXXXXS1XX
WM30AV43H WM30AV43L WM30AV53H WM30AV53L WM30AV63H WM30AV63L WM30AV73H WM30AV73L
MCPB MOA2 MCEI MCETH MOO2 MOV2 MCBACMS MC485232 MOR2 MCBACIP

[^0]: (X) = available; (O) = not available (variable not available); (\#) Not available (the relevant page is not displayed)
 (1): On 4 quadrants (ind/cap)

