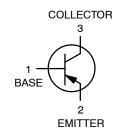
Switching Transistor

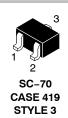
PNP Silicon


Features

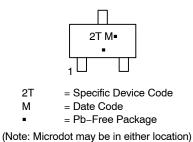
- Moisture Sensitivity Level: 1
- ESD Rating: Human Body Model; 4 kV, Machine Model; 400 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

http://onsemi.com


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	-40	Vdc
Collector-Base Voltage	V _{CBO}	-40	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ι _C	-600	mAdc


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board T _A = 25°C	P _D	150	mW
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	833	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

MARKING DIAGRAM

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT4403WT1G	SC–70 (Pb–Free)	3000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) ($I_C = -1.0$ mAdc, $I_B = 0$)	V _{(BR)CEO}	-40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = -0.1 \text{ mAdc}, I_E = 0$)	V _{(BR)CBO}	-40	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = -0.1 \text{ mAdc}, I_C = 0$)	V _{(BR)EBO}	-5.0	-	Vdc
Base Cutoff Current ($V_{CE} = -35$ Vdc, $V_{EB} = -0.4$ Vdc)	I _{BEV}	-	-0.1	μAdc
Collector Cutoff Current (V _{CE} = -35 Vdc, V _{EB} = -0.4 Vdc)	I _{CEX}	-	-0.1	μAdc

ON CHARACTERISTICS

$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = -0.1 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -1.0 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -10 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc}) \\ (I_{C} = -150 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc}) \text{ (Note 1)} \\ (I_{C} = -500 \text{ mAdc}, V_{CE} = -2.0 \text{ Vdc}) \text{ (Note 1)} \end{array} $	h _{FE}	30 60 100 100 20	- - 300 -	-
Collector-Emitter Saturation Voltage (Note 1) ($I_C = -150 \text{ mAdc}, I_B = -15 \text{ mAdc}$) ($I_C = -500 \text{ mAdc}, I_B = -50 \text{ mAdc}$)	V _{CE(sat)}		-0.4 -0.75	Vdc
Base – Emitter Saturation Voltage (Note 1) ($I_C = -150 \text{ mAdc}, I_B = -15 \text{ mAdc}$) ($I_C = -500 \text{ mAdc}, I_B = -50 \text{ mAdc}$)	V _{BE(sat)}	-0.75 -	-0.95 -1.3	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain – Bandwidth Product (I_C = –20 mAdc, V_{CE} = –10 Vdc, f = 100 MHz)	f _T	200	-	MHz
Collector-Base Capacitance (V_{CB} = -10 Vdc, I_E = 0, f = 1.0 MHz)	C _{cb}	-	8.5	pF
Emitter–Base Capacitance (V_{BE} = -0.5 Vdc, I_C = 0, f = 1.0 MHz)	C _{eb}	-	30	pF
Input Impedance (I _C = -1.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{ie}	1.5	15	kΩ
Voltage Feedback Ratio ($I_C = -1.0 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, f = 1.0 kHz)	h _{re}	0.1	8.0	X 10 ⁻⁴
Small-Signal Current Gain (I _C = -1.0 mAdc, V _{CE} = -10 Vdc, f = 1.0 kHz)	h _{fe}	60	500	-
Output Admittance ($I_C = -1.0 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, f = 1.0 kHz)	h _{oe}	1.0	100	μmhos

SWITCHING CHARACTERISTICS

Delay Time	(V _{CC} = -30 Vdc, V _{FB} = -2.0 Vdc,	t _d	-	15	20
Rise Time	$I_{\rm C} = -150 \text{ mAdc}, I_{\rm B1} = -15 \text{ mAdc}$)	t _r	-	20	ns
Storage Time	$(V_{CC} = -30 \text{ Vdc}, I_C = -150 \text{ mAdc}, I_{B1} = I_{B2} = -15 \text{ mAdc})$	ts	-	225	20
Fall Time		t _f	-	30	ns

1. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

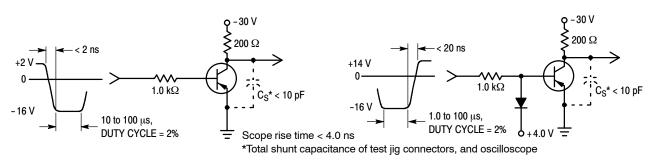
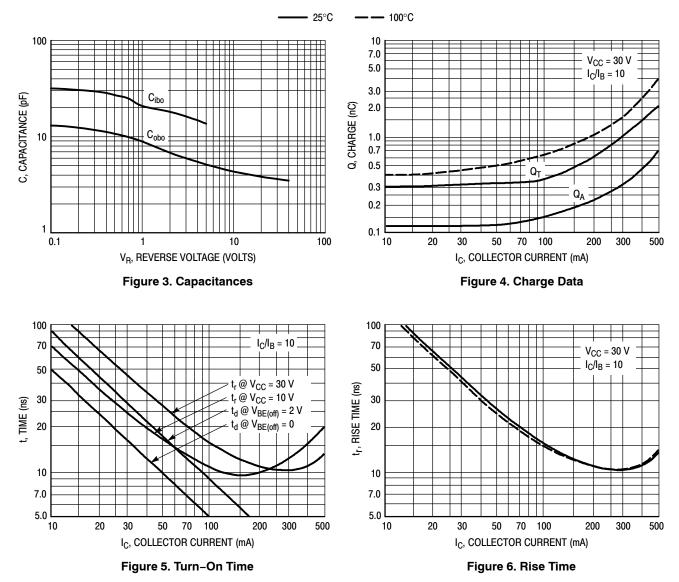
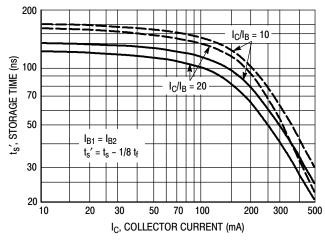
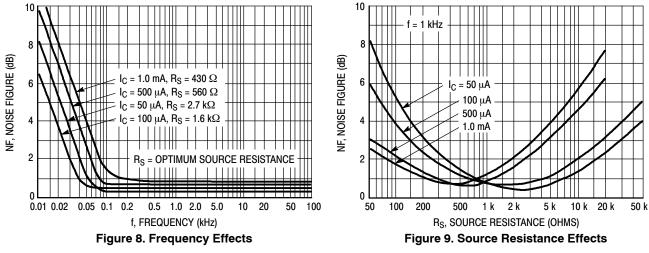
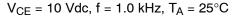



Figure 1. Turn-On Time

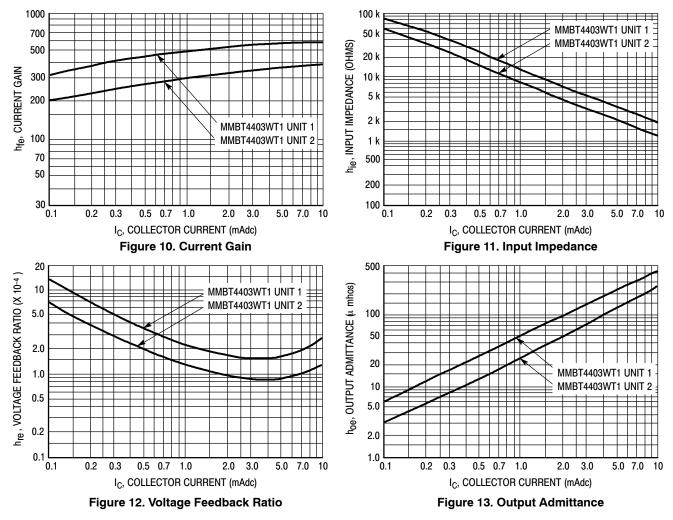
Figure 2. Turn-Off Time

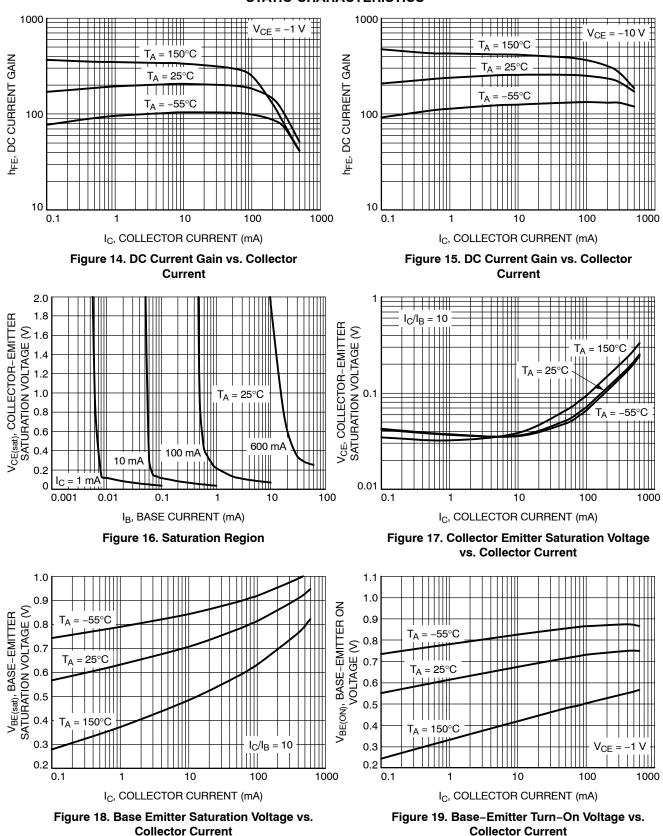
TRANSIENT CHARACTERISTICS


Figure 7. Storage Time

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE

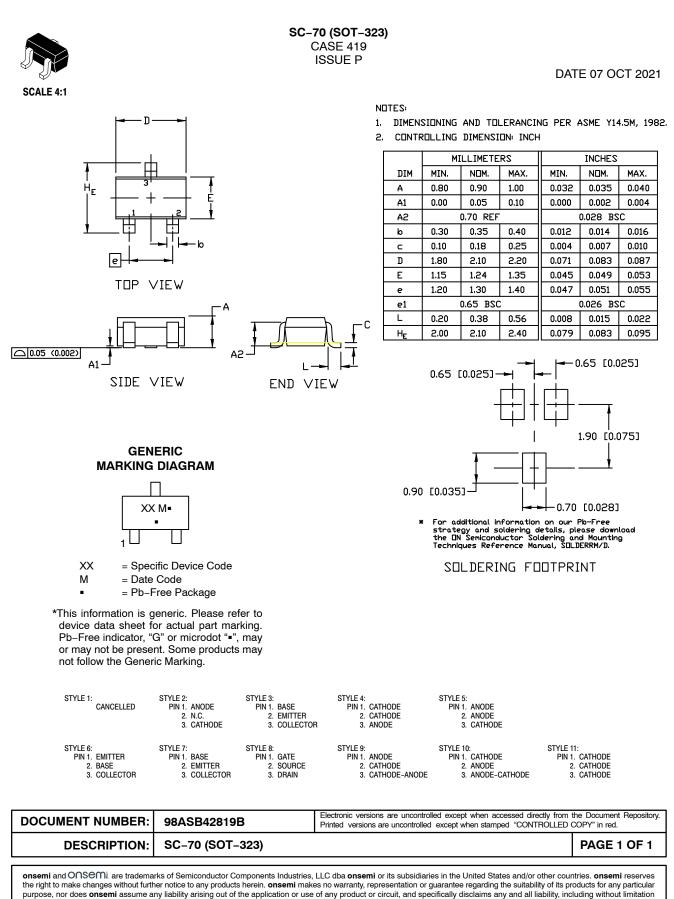

 $V_{CE} = -10$ Vdc, $T_A = 25^{\circ}C$; Bandwidth = 1.0 Hz



h PARAMETERS

This group of graphs illustrates the relationship between h_{fe} and other "h" parameters for this series of transistors. To obtain these curves, a high–gain and a low–gain unit were selected from the MMBT4403WT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

STATIC CHARACTERISTICS


1000 0.5 0.0001 0.001 s 0 I_C, COLLECTOR CURRENT (mA) θ_{VC} for $\text{V}_{\text{CE(sat)}}$ 0.1 COEFFICIENT (mV/°C) 0.5 100 0.01 1.0 1.5 10 + θ_{VS} for V_{BE} 2.0 Single Pulse Test at T_A = 25°C 1 1 2.5 1 10 100 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 V_{CE}, COLLECTOR EMITTER VOLTAGE (V) I_C, COLLECTOR CURRENT (mA)

STATIC CHARACTERISTICS

Figure 20. Safe Operating Area

Figure 21. Temperature Coefficients

ONSEM¹.

© Semiconductor Components Industries, LLC, 2019

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcula performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Onsemi: MMBT4403WT1 MMBT4403WT1G