- SHORT-CIRCUIT PROTECTED OUTPUTS
- CLASS AB OUTPUT STAGE FOR MINIMAL CROSSOVER DISTORTION
- SINGLE SUPPLY OPERATION: +3V TO +36V
- DUAL SUPPLIES: $\pm 15 \mathrm{~V}$ TO $\pm 18 \mathrm{~V}$

■ LOW INPUT BIAS CURRENT: 500nA MAX

- INTERNALLY COMPENSATED
- SIMILAR PERFORMANCE TO POPULAR UA741

DESCRIPTION

The MC3403 is a low-cost, quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular UA741. However the MC3403, has several distinct advantages over standard operational amplifiers types in single supply applications. The quad amplifier can operate at supply voltage as low as 3 Volts or as high as 36 volts with quiescent currents about one third of those associated with the UA741 (on a per amplifier basis). The com-mon-mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications.

ORDER CODE

Part Number	Temperature Range	Package			
		N	D	\mathbf{P}	
MC3303	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet	
MC 3403	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet	
MC 3503	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	\bullet	\bullet	\bullet	
Example : MC3403N					

[^0]

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM (each amplifier)

SCHEMATIC DIAGRAM

DUAL SUPPLIES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	MC3503	MC3403	MC3303	Unit
V_{CC}	Supply voltage	± 18 or 36			V
V_{i}	Input Voltage ${ }^{1)}$	± 18			V
$\mathrm{V}_{\text {id }}$	Differential Input Voltage	± 36			V
	Output Short-circuit Duration ${ }^{2)}$	Infinite			
$\mathrm{P}_{\text {tot }}$	Power Dissipation	500			mW
Toper	Operating Free-air Temperature Range	-55 to +125	0 to +70	-40 to +105	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150			${ }^{\circ} \mathrm{C}$

1. For supply voltage less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
2. Any of the amplifier outputs can be shorted to ground indefinitly; however more than one should not be simultaneously shorted as the maximum junction will be exceeded.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$V_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(R_{s} \leq 10 \mathrm{k} \Omega\right) \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$		1	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	mV
$\mathrm{I}_{\text {io }}$	Input Offset Current $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		5	$\begin{gathered} 50 \\ 200 \end{gathered}$	nA
$\mathrm{I}_{\text {ib }}$	Input Bias Current $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		40	$\begin{aligned} & 500 \\ & 800 \end{aligned}$	nA
A_{vd}	$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{o}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	200		V/mV
SVR	$\begin{aligned} & \text { Supply Voltage Rejection Ratio }\left(\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 77 \\ & 77 \end{aligned}$	90		dB
I_{cc}	Supply Current, all Amp, no load $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$ MC3503 MC3503		2.8	$\begin{aligned} & 7 \\ & 4 \\ & 8 \\ & 5 \end{aligned}$	mA
$\mathrm{V}_{\mathrm{icm}}$	Input Common Mode Voltage Range $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$		$\begin{array}{r} +13 \\ +13 \end{array}$	V
CMR	$\begin{aligned} & \text { Common Mode Rejection Ratio }\left(R_{s} \leq 10 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \end{aligned}$	90		dB
Ios	Output Short-circuit Current	10	30	45	mA
$\pm \mathrm{V}_{\text {opp }}$	Output Voltage Swing $T_{a m b}=25^{\circ} \mathrm{C}$ $R_{\mathrm{L}} \leq 10 \mathrm{k} \Omega$ $R_{\mathrm{L}} \leq 2 \mathrm{k} \Omega$ $\mathrm{T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max }$ $R_{\mathrm{L}} \leq 10 \mathrm{k} \Omega$ $R_{\mathrm{L}} \leq 2 \mathrm{k} \Omega$	$\begin{aligned} & 12 \\ & 10 \\ & 12 \\ & 10 \end{aligned}$	$\begin{gathered} 13.5 \\ 13 \end{gathered}$		V
SR	Slew Rate $\left(\mathrm{V}_{\mathrm{I}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unity gain)	0.35	0.5		$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Rsie Time $\left(\mathrm{V}_{\mathrm{O}}= \pm 20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unity gain)		0.18		$\mu \mathrm{s}$
K_{ov}	Overshoot $\left(\mathrm{V}_{\mathrm{I}}= \pm 20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unity gain)		10		\%
Z_{1}	Input Impedance	0.3	1		$\mathrm{M} \Omega$
Z_{0}	Output Impedance		75		Ω
$\mathrm{B}_{\text {om }}$	Power Bandwidth $\left(R_{L}=2 k \Omega, C_{L}=100 p F, A_{V}=1, T_{a m b}=25^{\circ} \mathrm{C}\right.$, $\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{THD} \leq 5 \%$)		9		kHz
B	Unity Gain Bandwidth $\mathrm{V}_{\mathrm{O}}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{T}_{\mathrm{amb}}=$ $25^{\circ} \mathrm{C}$, unity gain)		1		MHz

Symbol	Parameter	Min.	Typ.	Max.	Unit
GBP	Gain Bandwith Product $\left(\mathrm{V}_{\mathrm{O}}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right.$ $\mathrm{f}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)	0.7	1		MHz
THD	Total Harmonic Distortion ($f=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{v}}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{o}}=2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)		0.02		\%
e_{n}	Equivalent Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{s}}=100 \Omega$		43		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$
¢m	Phase Margin		60		Degrees
$D V_{\text {io }}$	Input Offset Voltage Drift $T_{\min } \leq T_{\mathrm{amb}} \leq \mathrm{T}_{\max }$		10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$D \mathrm{l}_{\text {io }}$	Input Offset Current Drift $\mathrm{T}_{\min } \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\max }$		50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{01} / \mathrm{V}_{02}$	Channel Separation		120		dB

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=$Ground, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(R_{s} \leq 10 \mathrm{k} \Omega\right) \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{gathered}$		1	6	mV
I_{i}	$\begin{array}{\|l\|} \hline \text { Input Offset Current } \\ T_{a m b}=25^{\circ} \mathrm{C} \\ T_{\min } \leq T_{\text {amb }} \leq T_{\max } \end{array}$		5	$\begin{aligned} & 50 \\ & 200 \end{aligned}$	nA
l_{b}	Input Bias Current $\begin{aligned} & T_{\text {amb }}=25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\max } \end{aligned}$		40	$\begin{aligned} & 500 \\ & 800 \end{aligned}$	nA
$A_{v d}$	$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{o}}=1.4 \mathrm{Vto} 2.4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right) \\ & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }} \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	200		V/mV
SVR	Supply Voltage Rejection Ratio ($\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega$) $\begin{aligned} & T_{\text {amb }}=25^{\circ} \mathrm{C} \\ & T_{\text {min }} \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$	$\begin{aligned} & 77 \\ & 77 \end{aligned}$	90		dB
$\mathrm{I}_{\text {cc }}$	Supply Current, all Amp, no load MC3503		2.8	$\begin{aligned} & 7 \\ & 4 \end{aligned}$	mA
$\mathrm{V}_{\text {opp }}$	$\begin{aligned} & \text { Output Voltage Range }\left(R_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \\ & V_{\mathrm{CC}}=+5 \mathrm{~V} \\ & +5<\mathrm{V}_{\mathrm{CC}} \leq+30 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.3 \\ \mathrm{~V}_{\mathrm{CC}}{ }^{+}-2 \mathrm{~V} \end{gathered}$	$\begin{gathered} 3.5 \\ \mathrm{v}_{\mathrm{CC}^{+}-1.7 \mathrm{~V}} \end{gathered}$		v

CIRCUIT DESCRIPTION

The MC3403 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transonductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 8 pF) can be employed, thus saving chip area.
The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input com-mon-mode range can include the negative supply fo ground, in single supply operation, without saturation either the input devices or the differential to single-ended converter.
The second stage consists of a standard current source load amplifier stage. The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operations. This is possible because class AB operation is utilized.

Each amplifier is biased from an internal voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

TYPICAL PERFORMANCE CURVES

APPLICATION INFORMATION

VOLTAGE REFERENCE

WIEN BRIDGE OSCILLATOR

HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER

COMPARATOR WITH HYSTERESIS

BI-QUAD FILTER

FUNCTION GENERATOR

MULTIPLE FEEDBACK BANDPASS FILTER

Given $f_{0}=$ center frequency ; chosse values f_{0}, C than

$$
\begin{aligned}
R 3 & =\frac{Q}{f_{0} C} \\
R 1 & =\frac{R 3}{2 A\left(f_{0}\right)} \\
R 2 & =\frac{R 1 R 5}{4 Q^{2} R 1-R 5}
\end{aligned}
$$

For less than 10% error from operational amplifier
$Q_{0} F_{0}<0.1$ where f_{0} and BW are expressed in Hz BW
If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters

TYPICAL PERFORMANCE CURVES

$\boxed{77}$

PACKAGE MECHANICAL DATA
14 PINS - PLASTIC PACKAGE

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
a1	0.51			0.020		
B	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25				0.010
D			20		0.335	
E		8.5			0.100	
e		2.54				0.600
e3						
F			5.24			0.130
i				2.54		
L						0.2050
Z	1.27					0.100

PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.020	
c1	45° (typ.)					
D (1)	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F (1)	3.8		4.0	0.150		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.020		0.050
M			0.68			0.027
S	8° (max.)					

[^1]PACKAGE MECHANICAL DATA

14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.20			0.05
A1	0.05		0.15	0.01		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.15
C	0.09		0.20	0.003		0.012
D	4.90	5.00	5.10	0.192	0.196	0.20
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.025	
k	0°		8°	0°		8°
L	0.450	0.600	0.750	0.018	0.024	0.030
L1		1.00			0.039	
aaa			0.100			0.004

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

STMicroelectronics:
MC3403DT MC3303DT MC3303PT

[^0]: $\mathbf{N}=$ Dual in Line Package (DIP)
 $\mathrm{D}=$ Small Outline Package (SO) - also available in Tape \& Reel (DT)
 $\mathbf{P}=$ Thin Shrink Small Outline Package (TSSOP) - only available in Tape \& Reel (PT)

[^1]: Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15 mm (. 066 inc) ONLY FOR DATA BOOK.

