

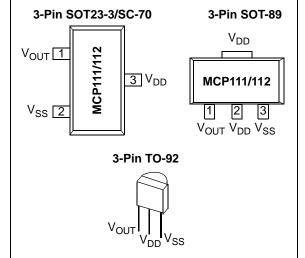
Micropower Voltage Detector

Features

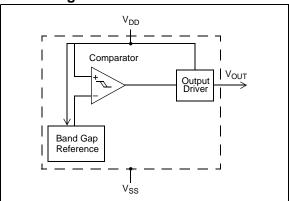
- Ultra-Low Supply Current: 1.75 µA (Max.)
- · Precision Monitoring Options Of:
 - 1.90V, 2.32V, 2.63V, 2.90V, 2.93V, 3.08V, 4.38V and 4.63V
- · Resets Microcontroller in a Power-Loss Event
- Active-Low VOUT Pin:
 - MCP111 Active-Low, Open-Drain
 - MCP112 Active-Low, Push-Pull
- Available in SOT23-3, TO-92, SC-70 and SOT-89-3 Packages
- Temperature Range:
 - Extended: -40°C to +125°C (except MCP1XX-195)
 - Industrial: -40°C to +85°C (MCP1XX-195 Only)
- Pb-Free Devices

Applications

- Critical Microcontroller and Microprocessor **Power-Monitoring Applications**
- Computers
- Intelligent Instruments
- Portable Battery-Powered Equipment


General Description

The MCP111/112 are voltage-detecting devices designed to keep a microcontroller in reset until the system voltage has stabilized at the appropriate level for reliable system operation. These devices also operate as protection from brown-out conditions when the system supply voltage drops below the specified threshold voltage level. Eight different trip voltages are available.


SOT-23/SC70 Output **Reset Delay** Package Pin Out Comment Device (typ.) Туре **Pull-up Resistor** (Pin # 1, 2, 3) MCP111 Open-drain External No V_{OUT}, V_{SS}, V_{DD} **MCP112** Push-pull No No VOUT, VSS, VDD RST, V_{DD}, V_{SS} MCP102 No 120 ms See MCP102/103/121/131 Data Sheet Push-pull (DS20001906) Vss, RST, V_{DD} See MCP102/103/121/131 Data Sheet **MCP103** Push-pull No 120 ms (DS20001906) MCP121 External 120 ms RST, V_{DD}, V_{SS} See MCP102/103/121/131 Data Sheet Open-drain (DS20001906) **MCP131 Open-Drain** Internal (~95 kΩ) 120 ms RST, V_{DD}, V_{SS} See MCP102/103/121/131 Data Sheet (DS20001906)

DEVICE FEATURES

Block Diagram

© 2004-2016 Microchip Technology Inc.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

V _{DD} 7.0V
Input current (V _{DD})10 mA
Output current (RST)10 mA
Rated Rise Time of $V_{DD}100V/\mu s$
All inputs and outputs (except $\overline{\text{RST}}$) w.r.t. V _{SS}
-0.6V to (V _{DD} + 1.0V)
$\overline{\text{RST}}$ output w.r.t. V_{SS}
Storage temperature
Ambient temp. with power applied40°C to + 125°C
Maximum Junction temp. with power applied150°C
ESD protection on all pins \geq 2 kV

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $R_{PU} = 100 \text{ k}\Omega$ (only **MCP111**), $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$.

Parameters		Symbol	Min.	Тур.	Max.	Units	Conditions
Operating Voltage Range		V _{DD}	1.0		5.5	V	
Specified V _{DD} Value to V _O	_{UT} low	V _{DD}	1.0	_		V	$I_{\overline{RST}} = 10 \ \mu A, \ V_{\overline{RST}} < 0.2 V$
Operating Current		I _{DD}	_	< 1	1.75	μA	
V _{DD} Trip Point	MCP1XX-195	V _{TRIP}	1.872	1.900	1.929	V	T _A = +25°C (Note 1)
			1.853	1.900	1.948	V	T _A = -40°C to +85°C (Note 2)
	MCP1XX-240		2.285	2.320	2.355	V	T _A = +25°C (Note 1)
			2.262	2.320	2.378	V	Note 2
	MCP1XX-270		2.591	2.630	2.670	V	T _A = +25°C (Note 1)
			2.564	2.630	2.696	V	Note 2
	MCP1XX-290		2.857	2.900	2.944	V	T _A = +25°C (Note 1)
			2.828	2.900	2.973	V	Note 2
	MCP1XX-300		2.886	2.930	2.974	V	T _A = +25°C (Note 1)
			2.857	2.930	3.003	V	Note 2
	MCP1XX-315		3.034	3.080	3.126	V	T _A = +25°C (Note 1)
			3.003	3.080	3.157	V	Note 2
	MCP1XX-450		4.314	4.380	4.446	V	T _A = +25°C (Note 1)
			4.271	4.380	4.490	V	Note 2
	MCP1XX-475		4.561	4.630	4.700	V	T _A = +25°C (Note 1)
			4.514	4.630	4.746	V	Note 2
V _{DD} Trip Point Tempco		T _{TPCO}	_	±100	—	ppm/° C	

Note 1: Trip point is ±1.5% from typical value.

2: Trip point is ±2.5% from typical value.

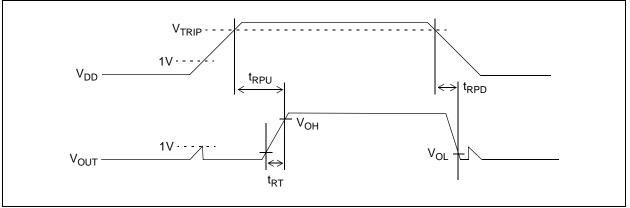
3: This specification allows this device to be used in PIC[®] microcontroller applications that require the In-Circuit Serial Programming[™] (ICSP[™]) feature (see device-specific programming specifications for voltage requirements). This specification DOES NOT allow a continuous high voltage to be present on the open-drain output pin (V_{OUT}). The total time that the V_{OUT} pin can be above the maximum device operational voltage (5.5V) is 100 sec. Current into the V_{OUT} pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to 70°C (+25°C preferred). For additional information, please refer to Figure 2-28.

4: This parameter is established by characterization and is not 100% tested.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $R_{PU} = 100 \text{ k}\Omega$ (only **MCP111**), $T_{A} = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$.

$I_{A} = -40^{\circ}$ C to $+125^{\circ}$ C.							
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions	
Threshold Hysteresis	MCP1XX-195	V _{HYS}	0.019	—	0.114	V	T _A = +25°C
(min. = 1%, max = 6%)	MCP1XX-240		0.023	—	0.139	V	
	MCP1XX-270		0.026	—	0.158	V	
	MCP1XX-290		0.029	—	0.174	V	
	MCP1XX-300		0.029	—	0.176	V	
	MCP1XX-315		0.031	—	0.185	V	
	MCP1XX-450		0.044	—	0.263	V	
	MCP1XX-475		0.046	—	0.278	V	
V _{OUT} Low-level Output Volta	ge	V _{OL}			0.4	V	I_{OL} = 500 μ A, V_{DD} = $V_{TRIP(MIN)}$
V _{OUT} High-level Output Volta	age	V _{OH}	V _{DD} – 0.6	—	_	V	I _{OH} = 1 mA, For only MCP112 (push-pull output)
Open-drain High Voltage on Output		V _{ODH}	_	_	13.5 ⁽³⁾	V	$\label{eq:mcp111} \begin{array}{l} \text{only,} \\ V_{DD} = 3.0 \text{V}, \text{ Time voltage } > \\ 5.5 \text{V applied} \leq 100 \text{s}, \\ \text{current into pin limited to} \\ 2 \text{ mA, } +25^{\circ} \text{C operation} \\ \text{recommended} \\ \hline \textbf{Note 3, Note 4} \end{array}$
Open-drain Output Leakage (MCP111 only)	Current	I _{OD}	_	0.1	—	μA	


Note 1: Trip point is ±1.5% from typical value.

2: Trip point is ±2.5% from typical value.

3: This specification allows this device to be used in PIC[®] microcontroller applications that require the In-Circuit Serial Programming[™] (ICSP[™]) feature (see device-specific programming specifications for voltage requirements). This specification DOES NOT allow a continuous high voltage to be present on the open-drain output pin (V_{OUT}). The total time that the V_{OUT} pin can be above the maximum device operational voltage (5.5V) is 100 sec. Current into the V_{OUT} pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to 70°C (+25°C preferred). For additional information, please refer to Figure 2-28.

4: This parameter is established by characterization and is not 100% tested.

^{© 2004-2016} Microchip Technology Inc.

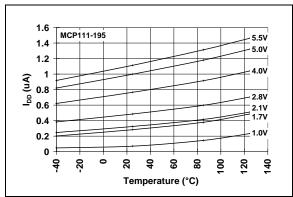
AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $R_{PU} = 100 \text{ k}\Omega$ (only **MCP111**), $T_A = -40^{\circ}$ C to $+125^{\circ}$ C.

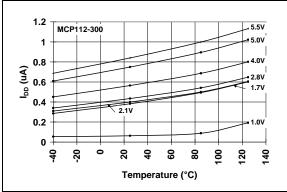
Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions
V _{DD} Detect to V _{OUT} Inactive	t _{RPU}		90	_	μs	Figure 1-1 and C _L = 50 pF (Note 1)
V _{DD} Detect to V _{OUT} Active	t _{RPD}	_	130	_	μs	V_{DD} ramped from $V_{TRIP(MAX)}$ + 250 mV down to $V_{TRIP(MIN)}$ - 250 mV, per Figure 1-1, C_L = 50 pF (Note 1)
V_{OUT} Rise Time After V_{OUT} Active	t _{RT}		5		μs	For V_{OUT} 10% to 90% of final value per Figure 1-1, $C_L = 50 \text{ pF}$ (Note 1)

Note 1: These parameters are for design guidance only and are not 100% tested.

TEMPERATURE CHARACTERISTICS


Electrical Specifications: Unless otherwise noted, all limits are specified for $V_{DD} = 1V$ to 5.5V, $R_{PU} = 100 \text{ k}\Omega$ (**MCP111** only), $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$.

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Specified Temperature Range	T _A	-40	—	+85	°C	MCP1XX-195	
Specified Temperature Range	T _A	-40	_	+125	°C	Except MCP1XX-195	
Maximum Junction Temperature	Τ _J	_	—	+150	°C		
Storage Temperature Range	T _A	-65	—	+150	°C		
Package Thermal Resistances							
Thermal Resistance, 3L-SOT23	θ_{JA}	_	336	_	°C/W		
Thermal Resistance, 3L-SC-70	θ_{JA}	_	340	_	°C/W		
Thermal Resistance, 3L-TO-92	θ_{JA}	_	131.9	—	°C/W		
Thermal Resistance, 3L-SOT-89	θ_{JA}	_	110	_	°C/W		


2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $R_{PU} = 100 \text{ k}\Omega$ (only **MCP111**; see **Figure 4-1**), $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$.

FIGURE 2-1: I_{DD} vs. Temperature (*MCP111-195*).

FIGURE 2-2: I_{DD} vs. Temperature (*MCP112-300*).

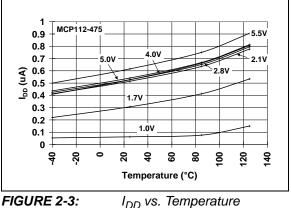


FIGURE 2-3: I_{DD} (MCP112-475).

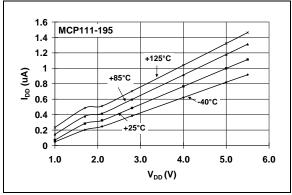


FIGURE 2-4:

I_{DD} vs. V_{DD} (**MCP111-195**).

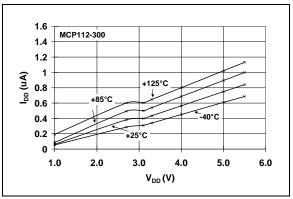


FIGURE 2-5: I_{DD} vs. V_{DD} (MCP112-300).

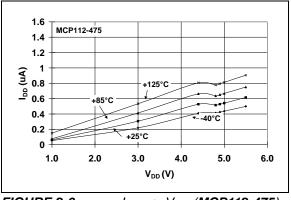
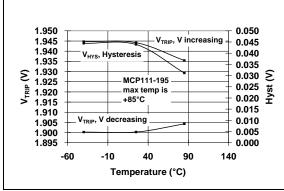
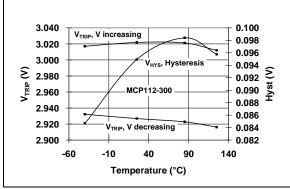



FIGURE 2-6:


I_{DD} vs. V_{DD} (**MCP112-475**).

© 2004-2016 Microchip Technology Inc.

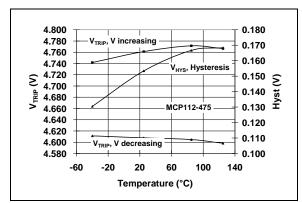

Note: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, R_{PU} = 100 k Ω (only **MCP111**; see **Figure 4-1**), T_A = -40°C to +125°C.

FIGURE 2-7: V_{TRIP} and V_{HYST} vs. Temperature (**MCP111-195**).

FIGURE 2-8: V_{TRIP} and V_{HYST} vs. Temperature (**MCP112-300**).

FIGURE 2-9: V_{TRIP} and V_{HYST} vs. Temperature (**MCP112-475**).

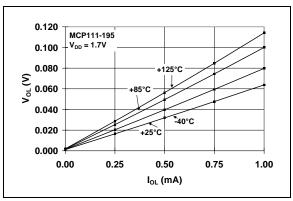


FIGURE 2-10: V_{OL} vs. I_{OL} (MCP111-195 @ V_{DD} = 1.7V).

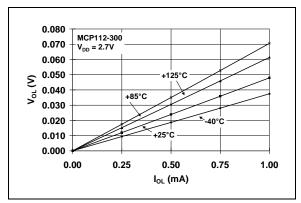
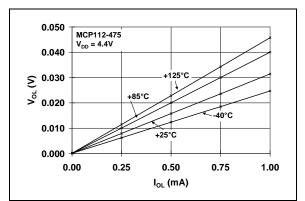
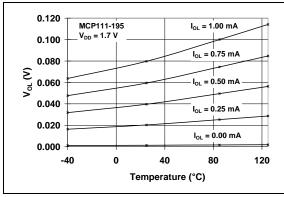
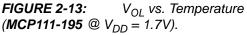
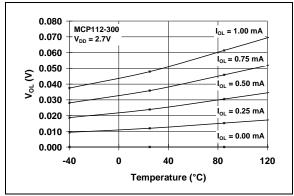
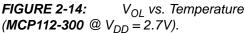


FIGURE 2-11: V_{OL} vs. I_{OL} (MCP112-300 @ V_{DD} = 2.7V).


FIGURE 2-12: V_{OL} vs. I_{OL} (MCP112-475 @ V_{DD} = 4.4V).

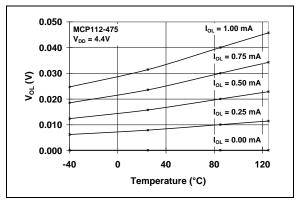

Note: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, R_{PU} = 100 k Ω (only MCP111; see Figure 4-1), T_A = -40°C to +125°C.

FIGURE 2-15: V_{OL} vs. Temperature (**MCP112-475** @ V_{DD} = 4.4V).

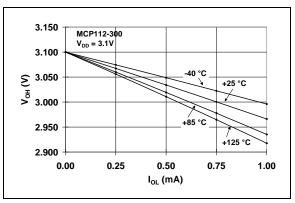


FIGURE 2-16: V_{OH} vs. I_{OH} (MCP112-300 @ V_{DD} = 3.1V).

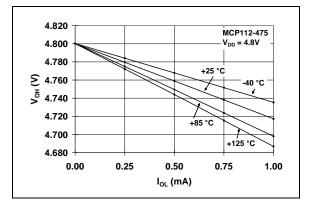
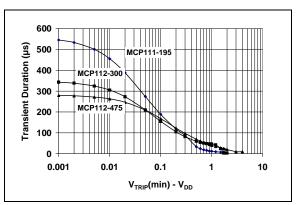



FIGURE 2-17: V_{OH} vs. I_{OH} (MCP112-475 @ V_{DD} = 4.8V).

FIGURE 2-18: Typical Transient Response (25 °C).

^{© 2004-2016} Microchip Technology Inc.

Note: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, R_{PU} = 100 k Ω (only MCP111; see Figure 4-1), T_A = -40°C to +125°C.

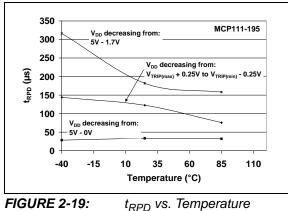
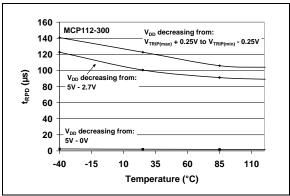
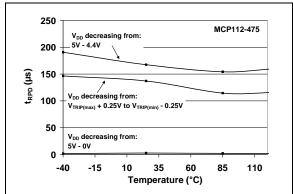
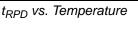
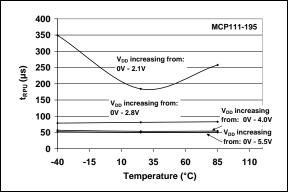
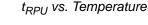
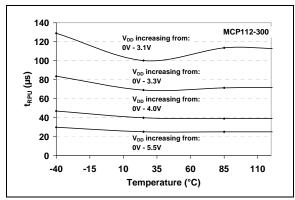
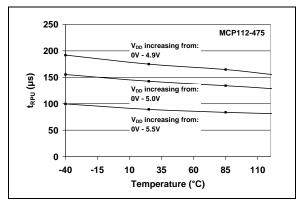



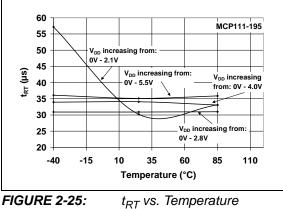
FIGURE 2-19: (MCP111-195).

FIGURE 2-20: t_{RPD} vs. Temperature (*MCP112-300*).


FIGURE 2-21: (MCP112-475).





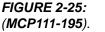

FIGURE 2-23: t_{RPU} vs. Temperature (*MCP112-300*).

FIGURE 2-24: t_{RPU} vs. Temperature (*MCP112-475*).

Note: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, R_{PU} = 100 k Ω (only MCP111; see **Figure 4-1**), $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

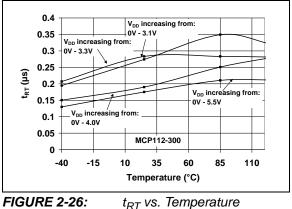


FIGURE 2-26: (MCP112-300).

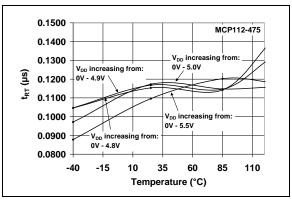
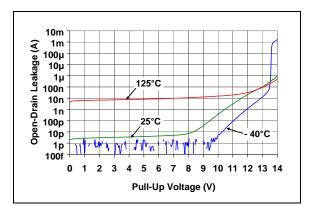



FIGURE 2-27: t_{RT} vs. Temperature (MCP112-475).

FIGURE 2-28: Open-Drain Leakage Current vs. Voltage Applied to V_{OUT} Pin (MCP111-195).

3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:PIN FUNCTION TABLE

P	in Number					
SOT-23-3 SC-70	SOT-89-3	T0-92	Symbol	Function		
1	1	1	V _{OUT}	Output State V_{DD} Falling: $H = V_{DD} > V_{TRIP}$ $L = V_{DD} < V_{TRIP}$ V_{DD} Rising: $H = V_{DD} > V_{TRIP} + V_{HYS}$ $L = V_{DD} < V_{TRIP} + V_{HYS}$		
2	3	3	V _{SS}	Ground reference		
3	2	2	V _{DD}	Positive power supply		
_	4	_	V _{DD}	Positive power supply		

4.0 APPLICATION INFORMATION

For many of today's microcontroller applications, care must be taken to prevent low-power conditions that can cause many different system problems. The most common causes is a brown-out condition, where the system supply drops below the operating level momentarily. The second most common cause is when a slowly decaying power supply causes the microcontroller to begin executing instructions without sufficient voltage to sustain SRAM, thus producing indeterminate results. Figure 4-1 shows a typical application circuit.

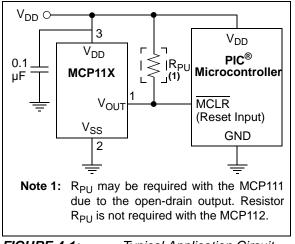


FIGURE 4-1:

Typical Application Circuit.

4.1 **V**_{TRIP} Operation

The voltage trip point (V_{TRIP}) is determined on the falling edge of V_{DD} . The actual voltage trip point (V_{TRIPAC}) will be between the minimum trip point (V_{TRIPMIN}) and the maximum trip point (V_{TRIPMAX}). There is a hysteresis on this trip point to remove any "jitter" that would occur on the V_{OUT} pin when the device V_{DD} is at the trip point.

Figure 4-2 shows the state of the V_{OUT} pin as determined by the V_{DD} voltage. The V_{TRIP} specification is for falling V_{DD} voltages. When the V_{DD} voltage is rising, the V_{OUT} pin will not be driven high until V_{DD} is at $V_{\text{TRIP}} + V_{\text{HYS}}$.

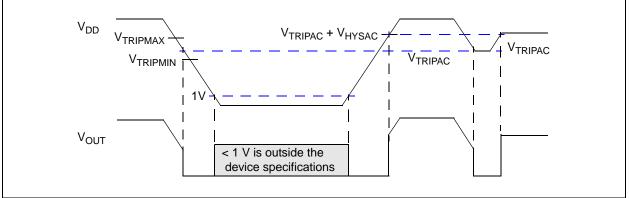


FIGURE 4-2:

 V_{OUT} Operation as Determined by the V_{TRIP} and V_{HYS} .

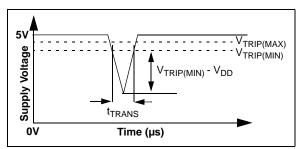
4.2 Negative Going V_{DD} Transients

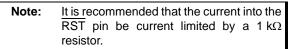
The minimum pulse width (time) required to cause a reset may be an important criteria in the implementation of a Power-on Reset (POR) circuit. This time is referred to as transient duration, defined as the amount of time needed for these supervisory devices to respond to a drop in V_{DD}. The transient duration time is dependent on the magnitude of V_{TRIP} - V_{DD}. Generally speaking, the transient duration decreases with increases in V_{TRIP} - V_{DD}.

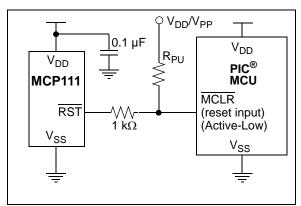
Figure 4-3 shows a typical transient duration vs. reset comparator overdrive for which the MCP111/112 will not generate a reset pulse. It shows that the farther below the trip point the transient pulse goes, the duration of the pulse required to cause a reset gets shorter. Figure 2-18 shows the transient response characteristics for the MCP111/112.

A 0.1 µF bypass capacitor, mounted as close as possible to the V_{DD} pin, provides additional transient immunity (refer to Figure 4-1).

^{© 2004-2016} Microchip Technology Inc.




FIGURE 4-3: Example of Typical Transient Duration Waveform.


4.3 Effect of Temperature on Time-Out Period (t_{RPU})

The time-out period (t_{RPU}) determines how long the device remains in the reset condition. This is affected by both V_{DD} and temperature. The graph shown in Figures 2-22, 2-23 and 2-24 show the typical response for different V_{DD} values and temperatures.

4.4 Using in PIC[®] Microcontroller ICSP[™] Applications (MCP111 only)

Figure 4-4 shows the typical application circuit for using the MCP111 for voltage supervisory function when the PIC microcontroller will be programmed via the In-Circuit Serial ProgrammingTM (ICSP) feature. Additional information is available in TB087, *"Using Voltage Supervisors with PIC[®] Microcontroller Systems which Implement In-Circuit Serial ProgrammingTM"*, DS91087.

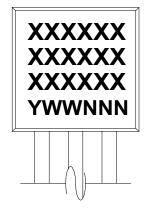
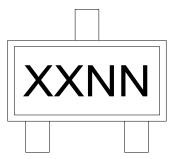


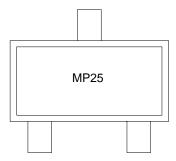
FIGURE 4-4: Typical Application Circuit for $PIC^{\textcircled{R}}$ Microcontroller with the ICSPTM feature.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information


3-Lead TO-92

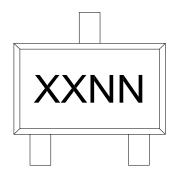
Device	Code
MCP111-240E/TO	240E
MCP111-270E/TO	270E
MCP111-290E/TO	290E
MCP111-300E/TO	300E
MCP111-315E/TO	315E
MCP111-450E/TO	450E
MCP111-475E/TO	475E
MCP111-195I/TO	1951


Example: MCP111 240E TO@3 626256

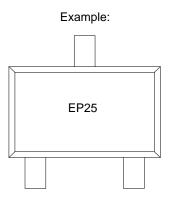
3-Lead SOT-23

Device	Code
MCP111T-195I/TT	MPNN
MCP111T-240ETT	MQNN
MCP111T-270E/TT	MGNN
MCP111T-290E/TT	NHNN
MCP111T-300E/TT	MJNN
MCP111T-315E/TT	MKNN
MCP111T-450E/TT	MLNN
MCP111T-475E/TT	MMNN
MCP112T-195I/TT	MRNN
MCP112T-240ETT	MSNN
MCP112T-270E/TT	MANN
MCP112T-290E/TT	MBNN
MCP112T-300E/TT	MCNN
MCP112T-315E/TT	MDNN
MCP112T-450E/TT	MENN
MCP112T-475E/TT	MFNN

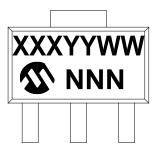
Example:

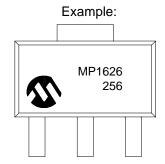


Legend	: XXX Y WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

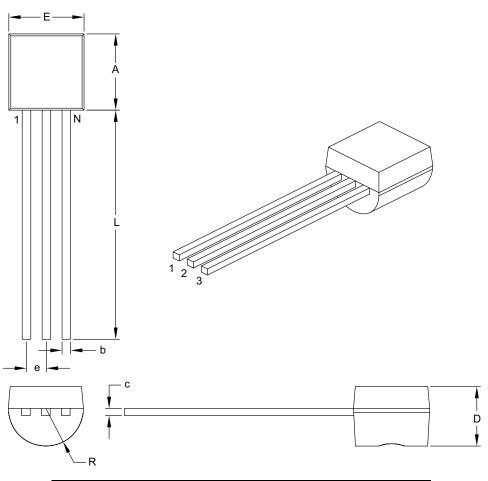

© 2004-2016 Microchip Technology Inc.

Package Marking Information (Continued)


3-Lead SC-70


Device	Code
MCP111T-195I/LB	EPNN
MCP111T-240E/LB	EQNN
MCP111T-270E/LB	EGNN
MCP111T-290E/LB	EHNN
MCP111T-300E/LB	EJNN
MCP111T-315E/LB	EKNN
MCP111T-450E/LB	ELNN
MCP111T-475E/LB	EMNN
MCP112T-195I/LB	ERNN
MCP112T-240E/LB	ESNN
MCP112T-270E/LB	EANN
MCP112T-290E/LB	EBNN
MCP112T-300E/LB	ECNN
MCP112T-315E/LB	EDNN
MCP112T-450E/LB	EENN
MCP112T-475E/LB	EFNN

3-Lead SOT-89



Device	Code
MCP111T-195I/MB	MP
MCP111T-240EMB	MQ
MCP111T-270E/MB	MG
MCP111T-290E/MB	NH
MCP111T-300E/MB	MJ
MCP111T-315E/MB	MK
MCP111T-450E/MB	ML
MCP111T-475E/MB	MM
MCP112T-195I/MB	MR
MCP112T-240EMB	MS
MCP112T-270E/MB	MA
MCP112T-290E/MB	MB
MCP112T-300E/MB	MC
MCP112T-315E/MB	MD
MCP112T-450E/MB	ME
MCP112T-475E/MB	MF

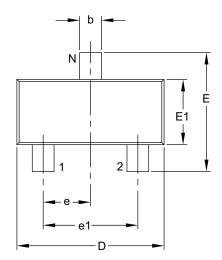
3-Lead Plastic Transistor Outline (TO) [TO-92]

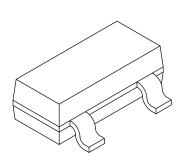
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

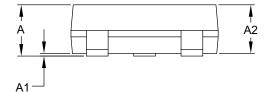
	Units	INCHES		
Dimensi	on Limits	MIN	MAX	
Number of Pins	Ν	:	3	
Pitch	е	.050 BSC		
Bottom to Package Flat	D	.125 .165		
Overall Width	E	.175	.205	
Overall Length	Α	.170 .210		
Molded Package Radius	R	.080	.105	
Tip to Seating Plane	L	.500	-	
Lead Thickness	С	.014	.021	
Lead Width	b	b .014 .022		

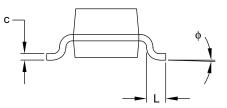
Notes:

- 1. Dimensions A and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing C04-101B


^{© 2004-2016} Microchip Technology Inc.

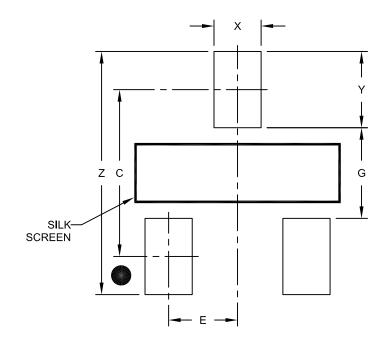

3-Lead Plastic Small Outline Transistor (TT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensio	Dimension Limits			MAX			
Number of Pins	Ν		3				
Lead Pitch	е		0.95 BSC				
Outside Lead Pitch	e1		1.90 BSC				
Overall Height	Α	0.89	-	1.12			
Molded Package Thickness	A2	0.79	0.95	1.02			
Standoff	A1	0.01	-	0.10			
Overall Width	Е	2.10	-	2.64			
Molded Package Width	E1	1.16	1.30	1.40			
Overall Length	D	2.67	2.90	3.05			
Foot Length	L	0.13	0.50	0.60			
Foot Angle	¢	0°	-	10°			
Lead Thickness	С	0.08	-	0.20			
Lead Width	b	0.30	_	0.54			

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-104B

3-Lead Plastic Small Outline Transistor (TT) [SOT-23]

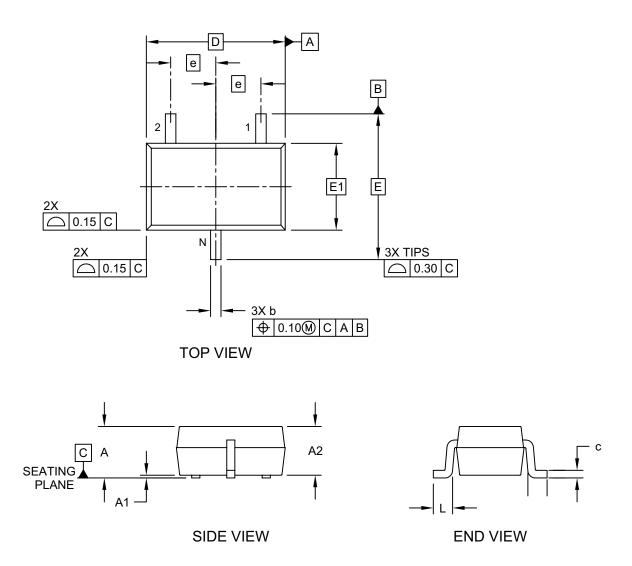
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			S	
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.95 BSC		
Contact Pad Spacing	С		2.30		
Contact Pad Width (X3)	Х			0.65	
Contact Pad Length (X3)	Y			1.05	
Distance Between Pads	G	1.25			
Overall Width	Z			3.35	

Notes:

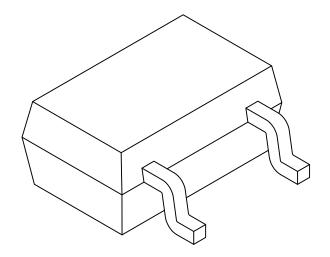
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2104A

^{© 2004-2016} Microchip Technology Inc.

3-Lead Plastic Small Outline Transistor (LB) [SC70]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-060C Sheet 1 of 2

3-Lead Plastic Small Outline Transistor (LB) [SC70]

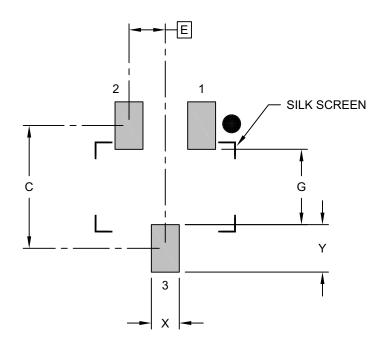
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		3				
Pitch	е		0.65 BSC				
Overall Height	Α	0.80	-	1.10			
Standoff	A1	0.00	-	0.10			
Molded Package Thickness	A2	0.80	-	1.00			
Overall Length	Overall Length D			2.00 BSC			
Exposed Pad Length	D2	2.50	2.60	2.70			
Overall Width	2.10 BSC						
Exposed Pad Width	E1	E1 1.25 BSC					
Terminal Width	b	0.15	-	0.40			
Terminal Length	L	0.10	0.20	0.46			
Lead Thickness	С	0.20	-	0.26			

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.

2. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

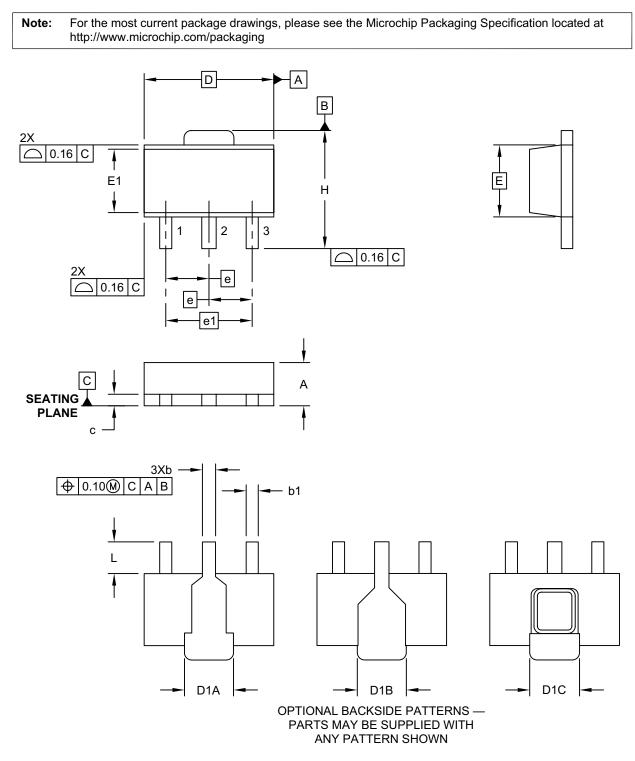
Microchip Technology Drawing C04-060C Sheet 2 of 2

© 2004-2016 Microchip Technology Inc.

3-Lead Plastic Small Outline Transistor (LB) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

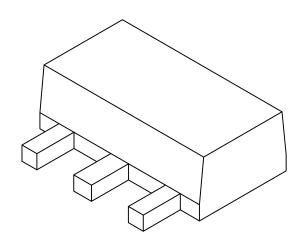

	Units	MILLIMETERS			
Dimension	I Limits	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		2.20		
Contact Pad Width	Х			0.50	
Contact Pad Length	Y			0.85	
Distance Between Pads	G	1.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2060B


3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Microchip Technology Drawing C04-029C Sheet 1 of 2

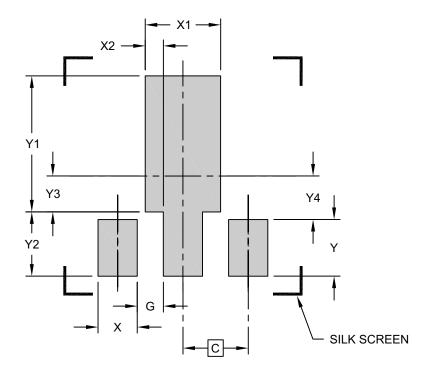
^{© 2004-2016} Microchip Technology Inc.

3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS			
Dimension	Dimension Limits				
Number of Leads	Ν	3			
Pitch	е		1.50 BSC		
Outside Lead Pitch	e1		3.00 BSC		
Overall Height	Α	1.40	1.50	1.60	
Overall Width	Н	3.94	4.10	4.25	
Molded Package Width at Base		2.50 BSC			
Molded Package Width at Top		2.13	2.20	2.29	
Overall Length D		4.50 BSC			
Tab Length (Option A)		1.63	1.73	1.83	
Tab Length (Option B)	D1B	1.40	1.60	1.75	
Tab Length (Option C)	D1C	1.62	1.73	1.83	
Foot Length	L	0.79	1.10	1.20	
Lead Thickness	С	0.35	0.40	0.44	
Lead 2 Width	b	0.41	0.50	0.56	
Leads 1 & 3 Width	b1	0.36	0.42	0.48	

Notes:


- 1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-029C Sheet 2 of 2

3-Lead Plastic Small Outline Transistor (MB) - [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units	MILLIMETERS				
Dimension Limits	MIN	NOM	MAX		
С		1.50 (BSC)			
X (3 PLACES)		0.900			
X1		1.733			
X2 (2 PLACES)		0.416			
G (2 PLACES)		0.600			
Y (2 PLACES)		1.300			
Y1		3.125			
Y2		1.475			
Y3		0.825			
Y4		1.000			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2029C

^{© 2004-2016} Microchip Technology Inc.

5.2 Product Tape and Reel Specifications

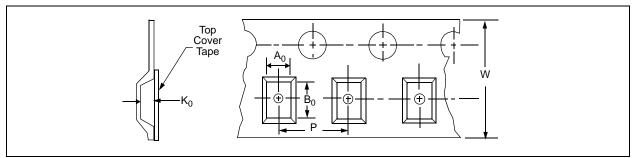


FIGURE 5-1: Embossed Carrier Dimensions (8, 12, 16 and 24 mm tape only).

CARRIER TAPE/CAVITY DIMENSIONS

Case	Packag	e		Carrier Dimensions		Cavity imensior	าร	Output Quantity	Reel Diameter in
Outline	Туре		W mm	P mm	A0 mm	B0 mm	K0 mm	Units	mm
TT	SOT-23B	3L	8	4	3.15	2.77	1.22	3000	180
LB	SC-70	3L	8	4	2.4	2.4	1.19	3000	180

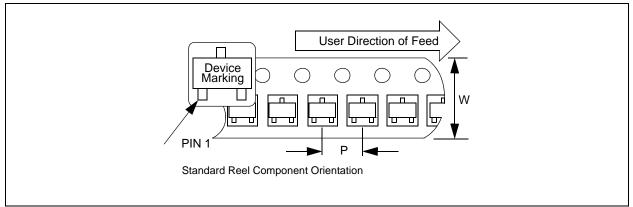
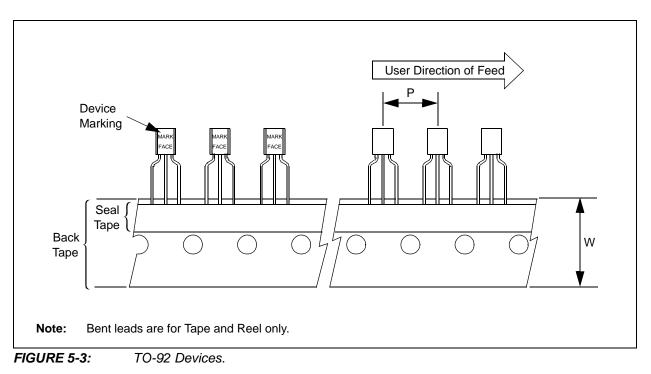
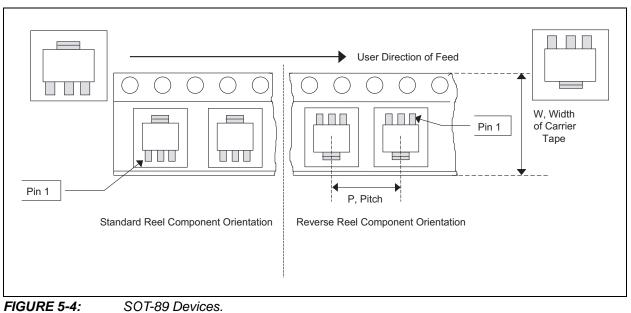




FIGURE 5-2:

3-Lead SOT-23/SC70 Device Tape and Reel Specifications.

^{© 2004-2016} Microchip Technology Inc.

NOTES:

APPENDIX A: REVISION HISTORY

Revision F (July 2016)

The following is the list of modifications:

- 1. Updated Table 3-1.
- 2. Updated Section 5.0 "Packaging information".
- 3. Minor typographical corrections.

Revision E (January 2013)

• Added a note to each package outline drawing.

Revision D (June 2005)

1. Added SOT-89-3 package information throughout.

Revision C (March 2005)

The following is the list of modifications:

- Added Section 4.4 "Using in PIC® Microcontroller ICSP™ Applications (MCP111 only)" on using the MCP111 in PIC microcontroller ICSP applications.
- Added V_{ODH} specifications in Section 1.0 "Electrical Characteristics" (for ICSP applications).
- 3. Added Figure 2-28.
- 4. Added devices features table to page 1.
- 5. Updated SC-70 package markings and added Pb-free marking information to Section 5.0 "Packaging information".
- 6. Added Appendix A: "Revision History".

Revision B (August 2004)

1. Corrected package marking information in **Section 5.0 "Packaging information"**.

Revision A (May 2004)

• Original release of this document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X Device Tape/Ro Optio	XXX X XX eel Monitoring Temperature Package n Options Range	Examples: a) MCP111T-195I/TT: Tape and Reel, 1.95V option, open-drain, -40°C to +85°C, SOT-23B package.
Device:	MCP111: MicroPower Voltage Detector, open-drain MCP111T: MicroPower Voltage Detector, open-drain (Tape and Reel)	 b) MCP111T-315E/LB: Tape and Reel, 3.15V option, open-drain, -40°C to +125°C, SC-70-3 package.
	MCP112: MicroPower Voltage Detector, push-pull MCP112T: MicroPower Voltage Detector, push-pull (Tape and Reel)	c) MCP111-300E/TO: 3.00V option, open-drain, -40°C to +125°C, TO-92-3 package.
Monitoring Options:	195 = 1.90V 240 = 2.32V 270 = 2.63V	d) MCP111-315E/MB: 3.15V option, open-drain, -40°C to +125°C, SOT-89-3 package.
	$\begin{array}{rcl} 290 &=& 2.90 \lor \\ 300 &=& 2.93 \lor \\ 315 &=& 3.08 \lor \\ 450 &=& 4.38 \lor \\ 475 &=& 4.63 \lor \end{array}$	a) MCP112T-290E/TT: Tape and Reel, 2.90V option, push-pull, - 40°C to +125°C, SOT-23B-3 package.
Temperature Range:	I = -40°C to +85°C (MCP11X-195 only)	 b) MCP112T-475E/LB: Tape and Reel, 4.75V option, push-pull, -40°C to +125°C, SC-70-3 package.
	E = -40°C to +125°C (Except MCP11X-195 only)	c) MCP112-450E/TO: 4.5V option, push-pull, -40°C to +125°C, TO-92-3 package.
Package:	LB = SC-70, 3-lead MB = SOT-89, 3-lead TO = TO-92, 3-lead TT = SOT-23B, 3-lead	 d) MCP112-315E/MB: 3.15V option, push-pull, -40°C to +125°C, SOT-89-3 package.

I.

NOTES:

I.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2004-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0860-4

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 **Technical Support:** http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600

Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16

Fax: 66-2-694-1350