TOSHIBA TC75W55FU/FK

TOSHIBA CMOS LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

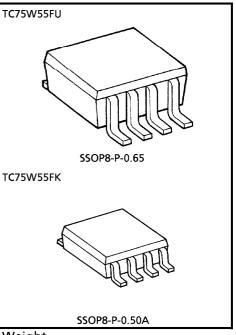
TC75W55FU, TC75W55FK

DUAL OPERATIONAL AMPLIFIER

TC75W55 is a CMOS operational amplifier with low supply voltage, low supply current.

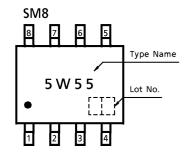
FEATURES

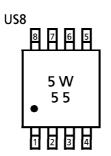
• Low supply voltage : $V_{DD} = \pm 0.9 \sim 3.5 \text{V}$ or $1.8 \sim 7 \text{V}$

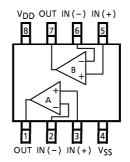

Low supply current : I_{DD} ($V_{DD} = 3V$) = $20 \mu A$ (Typ.)

The internally phase compensated operational amplifier.

Small package


MAXIMUM RATINGS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	RATING	N	
Supply Voltage	V _{DD} , V _{SS}	7	V	
Differential Input Voltage	DVIN	± 7	V	
Input Voltage	V _{IN}	$V_{DD} \sim V_{SS}$	V	
Power Dissipation	D-	250 (SM8)	mW	
	PD	200 (US8)	11100	
Operating Temperature	T _{opr}	- 40∼8 5	°C	
Storage Temperature	T _{stg}	- 55∼125	°C	


Weight SSOP8-P-0.65 : 0.021g (Typ.) SSOP8-P-0.50A : 0.01g (Typ.)

MARKING (TOP VIEW)

PIN CONNECTION (TOP VIEW)

980508EBA1

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating range as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions can feet forth in the TOSHIBA Semiconductor Poliability Handbook and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- The products described in this document are subject to foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS ($V_{DD} = 3.0V$, $V_{SS} = GND$, $T_a = 25$ °C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	1	$R_S = 10k\Omega$	_	2	10	mV
Input Offset Current	lιο	_	_	_	1	_	pΑ
Input Bias Current	lj	_	_	_	1	_	pА
Common Mode Input Voltage	CMV_{IN}	2	_	0.0	_	2.1	V
Voltage Gain (Open Loop)	G_V	_	_	60	70	_	dB
Maximum Output Voltage	Voн	3	$R_L \ge 1M\Omega$	2.9	_	_	٧
	v_{OL}	4	$R_L \ge 1M\Omega$	_	_	0.1	٧
Common Mode Input Signal Rejection Ratio	CMRR	2	$V_{IN} = 0.0 \sim 2.1 V$	60	70	_	dB
Supply Voltage Rejection Ratio	SVRR	1	$V_{DD} = 1.8 \sim 7.0 V$	60	70	_	dB
Supply Current	I _{DD}	5	_	_	20	40	μΑ
Source Current	I _{source}	6	<u> </u>	10	20	_	μ A
Sink Current	l _{sink}	7		100	450	_	μ A

DC CHARACTERISTICS ($V_{DD} = 1.8V$, $V_{SS} = GND$, $T_{a} = 25$ °C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	1	$R_S = 100 k\Omega$	_	2	10	mV
Input Offset Current	lιο	_	_	_	1	_	pА
Input Bias Current	lj .	_	_	_	1	_	pА
Common Mode Input Voltage	CMVIN	2	_	0.0	_	0.9	V
Voltage Gain (Open Loop)	GV	_	_	60	70	_	dB
Maximum Output Voltage	VOH	3	$R_L \ge 1M\Omega$	1.7	_	_	V
	VOL	4	$R_L \ge 1M\Omega$		_	0.1	\ \ \
Supply Current	l _{DD}	5	_		16	32	μΑ
Source Current	Isource	6	_	8	16	_	μΑ
Sink Current	l _{sink}	7	_	100	400		μΑ

AC CHARACTERISTICS ($V_{DD} = 3.0V$, $V_{SS} = GND$, Ta = 25°C)

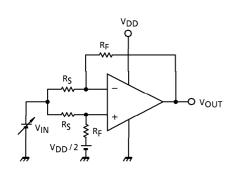
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Slew Rate	SR			_	0.08	_	V / μ s
Unity Gain Cross Frequency	f_T	_	I	_	160		kHz

AC CHARACTERISTICS ($V_{DD} = 1.8V$, $V_{SS} = GND$, Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Slew Rate	SR			_	0.06	_	V/μs
Unity Gain Cross Frequency	fT	_		_	140	_	kHz

TEST CIRCUIT

1. SVRR, V_{IO}



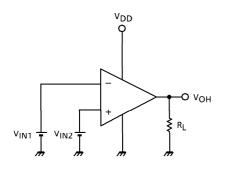
SVRR

$$\begin{split} &V_{DD} = 1.8V \ : \ V_{DD} = V_{DD}1, \ V_{OUT} = V_{OUT}1 \\ &V_{DD} = 7.0V \ : \ V_{DD} = V_{DD}2, \ V_{OUT} = V_{OUT}2 \\ &SVRR = 20 \ell og \ \left(\left| \frac{V_{OUT}1 - V_{OUT}2}{V_{DD}1 - V_{DD}2} \right| \times \frac{R_S}{R_F + R_S} \right) \end{split}$$

•
$$V_{IO}$$

 $V_{IO} = \left(V_{OUT} - \frac{V_{DD}}{2}\right) \times \frac{R_S}{R_F + R_S}$

2. CMRR, CMVIN

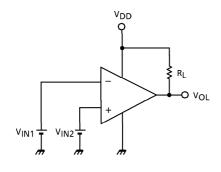


CMRR

$$\begin{split} &V_{IN} = 0.0V \ : \ V_{IN} = V_{IN}1, \ V_{OUT} = V_{OUT}1 \\ &V_{IN} = 2.1V \ : \ V_{IN} = V_{IN}2, \ V_{OUT} = V_{OUT}2 \\ &CMRR = 20 \ell og \left(\left| \frac{V_{OUT}1 - V_{OUT}2}{V_{IN}1 - V_{IN}2} \right| \times \frac{R_S}{R_F + R_S} \right) \end{split}$$

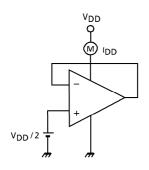
CMV_{IN}

3. VOH

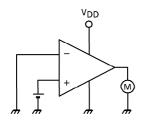


VOF

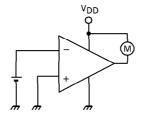
$$V_{IN1} = \frac{V_{DD}}{2} - 0.05V$$

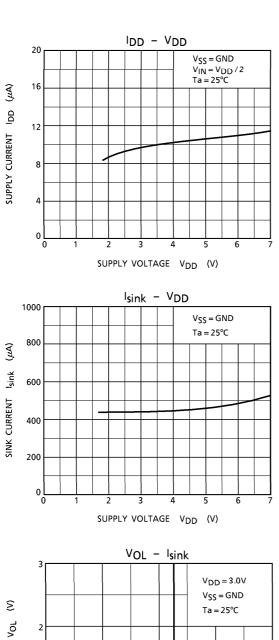

$$V_{IN2} = \frac{V_{DD}}{2} + 0.05V$$

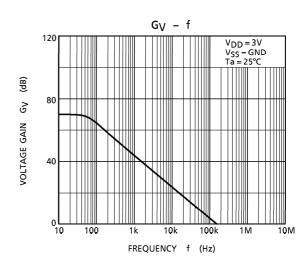
4. V_{OL}

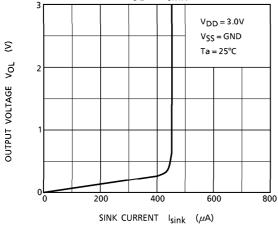


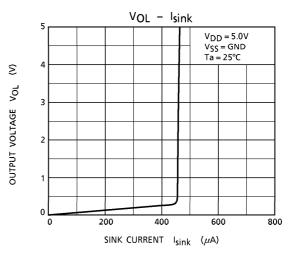
 V_{OL} $V_{IN1} = \frac{V_{DD}}{2} + 0.05V$ $V_{IN2} = \frac{V_{DD}}{2} - 0.05V$

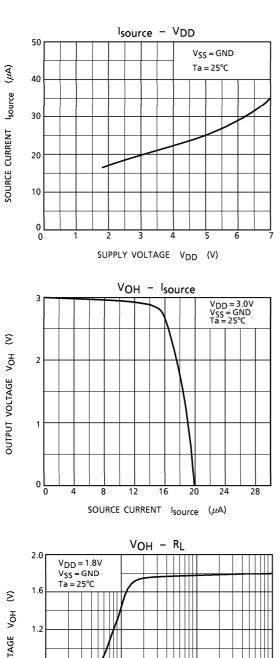

5. I_{DD}

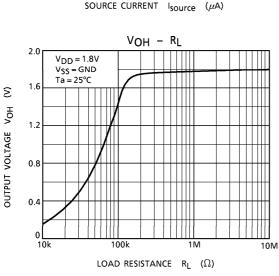


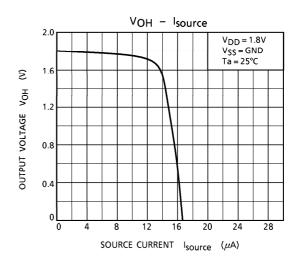

6. I_{source}

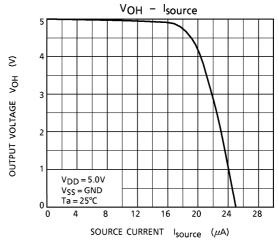

7. I_{sink}

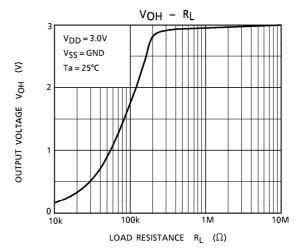


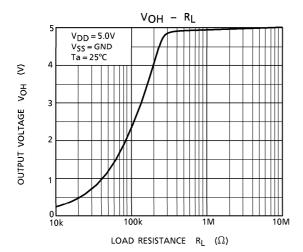


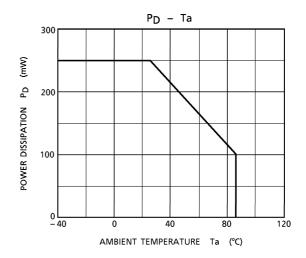


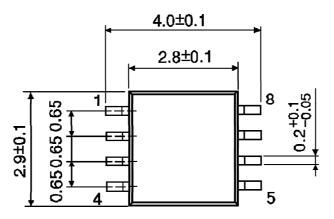


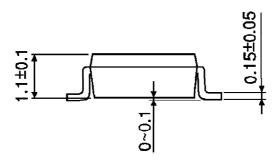






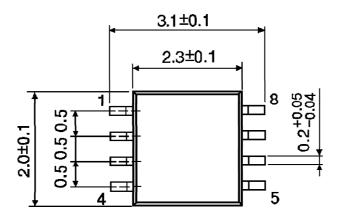


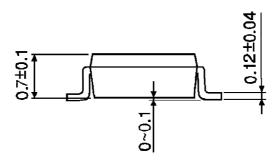




OUTLINE DRAWING SSOP8-P-0.65

Unit: mm





Weight: 0.021g (Typ.)

OUTLINE DRAWING SSOP8-P-0.50A

Unit: mm

Weight: 0.01g (Typ.)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Toshiba:

TC75W55FU,LF