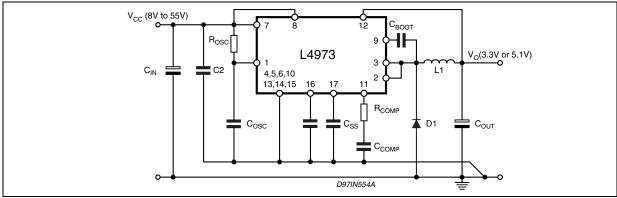


3.5 A step down switching regulator

Features

- Up to 3.5 A step down converter
- Operating input voltage from 8 V to 55 V
- 3.3 V and 5.1 V (±1%) fixed output, and adjustable outputs from:
 - 0.5 V to 50 V (3.3 type)
 - 5.1 V to 50 V (5.1 type)
- Frequency adjustable up to 300 kHz
- Voltage feed forward
- Zero load current operation (min. 1 mA)
- Internal current limiting (pulse by pulse and HICCUP mode)
- Precise 5.1 V (1.5%) reference voltage externally available
- Input/output synchronization function
- Inhibit for zero current consumption (100 mA typ. at V_{CC} = 24 V)
- Protection against feedback disconnection
- Thermal shutdown
- Output over voltage protection
- Soft-start function



Description

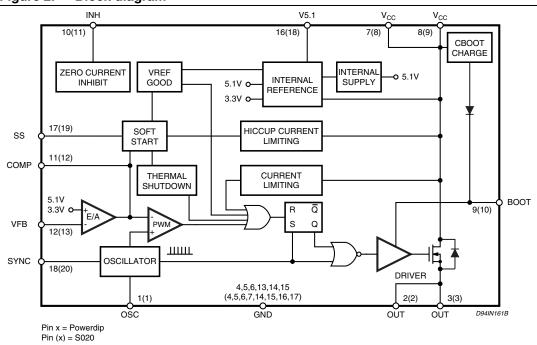
The L4973 is a step down monolithic power switching regulator delivering 3.5 A at fixed voltages of 3.3 V or 5.1 V and using a simple external divider output adjustable voltage up to 50V. Realized in BCD mixed technology, the device uses an internal power D-MOS transistor (with a typical $R_{DS(\text{on})}$ of 0.15 $\Omega)$ to obtain very high efficiency and very fast switching times. Switching frequency up to 300 kHz are achievable (the maximum power dissipation of the packages must be observed).

A wide input voltage range between 8 V to 55 V and output voltages regulated from 3.3 V to 40 V cover the majority of the today applications. Features of this new generation of DC-DC converter includes pulse by pulse current limit, hiccup mode for output short circuit protection, voltage feed forward regulation, soft-start, input/output synchronization, protection against feedback loop disconnection, inhibit for zero current consumption and thermal shutdown. Packages available are in plastic dual in line, DIP-18 (12+3+3) for standard assembly, and SO20 (12+4+4) for SMD assembly.

Figure 1. Internal schematic diagram

February 2009 Rev 18 1/28

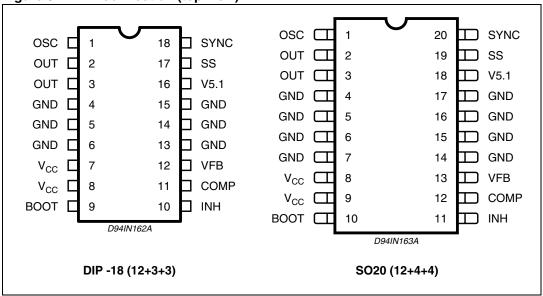
Contents L4973


Contents

1	Block	diagram	3
2	Pin se	ettings	3
	2.1	Pin connection	3
	2.2	Pin description	4
3	Electr	rical data	5
	3.1	Maximum ratings	5
	3.2	Thermal data	5
4	Electr	rical characteristics	6
5	Evalua	ation board	9
6	Applic	cation circuit	12
7	Typica	al characteristics	13
8	Applic	cation ideas	21
9	Packa	age mechanical data	23
10	Order	code	26
11	Revisi	ion history	27

L4973 Block diagram

1 Block diagram



2 Pin settings

2.1 Pin connection

Figure 3. Pin connection (top view)

Pin settings L4973

2.2 Pin description

Table 1. Pin description

N° Pin		Name	Description	
DIP-18	SO-20	Name	Description	
11	12	COMP	E/A output to be used for frequency compensation	
10	11	INH	A logic signal (active high) disables the device (sleep mode operation). If not used it must be connected to GND; if floating the device is disabled.	
9	10	воот	A capacitor connected between this pin and the output allows to drive the internal D-MOS.	
18	20	SYNC	Input/Output synchronization.	
7,8	8,9	V _{CC}	Unregulated DC input voltage	
2,3	2,3	OUT	Stepdown regulator output.	
12	13	VFB	Stepdown feedback input. Connecting the output directly to this pin results in an output voltage of 3.3 V for the L4973V3.3 and 5.1 V for L4973V5.1. An external resistive divider is required for higher output voltages. For output voltage resistive divider is required for higher output voltages. For output voltage less than 3.3 V, see <i>Note: 1</i> and <i>Figure 33</i> .	
16	18	V5.1	Reference voltage externally available.	
4,5,6 13,14,15	4,5,6,7 14,15,16,17	GND	Signal ground	
1	1	osc	An external resistor connected between the unregulated input voltage and Pin 1 and a capacitor connected from Pin 1 to ground fixes the switching frequency. (Line feed forward is automatically obtained)	

Note: 1 The maximum power dissipation of the package must be observed.

L4973 Electrical data

3 Electrical data

3.1 Maximum ratings

Table 2. Absolute maximum ratings

Symbol		B	Walasa	11
DIP-18	S0-20	Parameter	Value	Unit
V ₇ ,V ₈	V ₉ ,V ₈	Input voltage	58	V
V ₂ ,V ₃	V ₂ ,V ₃	Output DC voltage Output peak voltage at t = 0.1 μs f = 200 kHz	-1 - 5	V V
l ₂ ,l ₃	l ₂ ,l ₃	Maximum output current	int.	limit.
V ₉ -V ₈	V ₁₀ -V ₈		14	V
V ₉	V ₁₀	Bootstrap voltage	70	V
V ₁₁	V ₁₂	Analogs input voltage (V _{CC} = 24 V)	12	V
V ₁₇	V ₁₉	Analogs input voltage (V _{CC} = 24 V)	13	V
V ₁₂	V ₁₃	(V _{CC} = 20 V)	6 -0.3	V V
V ₁₈	V ₂₀	(V _{CC} = 20 V)	5.5 0.3	V V
V ₁₀	V ₁₁	Inhibit	V _{CC} -0.3	V V
P _{tot}		DIP 12+3+3 Power dissipation a Tpins \leq 90 °C $(T_A = 70 °C \text{ no copper area})$ $(T_A = 70 °C 4 \text{ cm copper area on PCB})$ SO-20	5 1.3 2	W W W
		Power dissipation a T _{pins} = 90 °C	4	W
T _J ,T _{STG}		Junction and storage temperature	-40 to 150	°C

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	DIP-18	SO-20	Unit
R _{thJP}	Maximum thermal resistance junction-pin	12	15	°C/W
R _{thJA}	Maximum thermal resistance junction-ambient	60 ⁽¹⁾	80 ⁽¹⁾	°C/W

^{1.} Package mounted on board

Electrical characteristics L4973

4 Electrical characteristics

Table 4. Electrical characteristics (Refer to the test circuit, V_{CC} = 24 V; T_J = 25 °C, C_{OSC} = 2.7 nF; R_{OSC} = 20 k Ω ; unless otherwise specified)

Symbol	Parameter	Test condition	Test condition		Тур	Max	Unit
Dynamic	characteristics						
	Input voltage range (1)	$V_{O} = V_{REF}$ to 40 V; $I_{O} = 3.5$ A	(2)	8		55	V
		I _O = 1 A		5.05	5.1	5.15	V
	Output voltage L4973V5.1	$I_O = 0.5 \text{ A to } 3.5 \text{ A V}_{CC} = 8 \text{ V}$		5.00	5.1	5.20	V
		to 55 V	(2)	4.95	5.1	5.25	V
	_	I _O = 1 A		3.326	3.36	3.393	V
	Output voltage L4973V3.3	$I_O = 0.5 \text{ A to } 3.5 \text{ A V}_{CC} = 8 \text{ V}$		3.292	3.36	3.427	V
		to 40 V	(2)	3.26	3.36	3.46	V
	D	V _{CC} = 10.5 V I _O = 3.5 A			0.15	0.22	Ω
	R _{DS(on)}	V _{CC} = 10.5 V 1 ₀ = 3.5 A	(2)			0.35	Ω
	Maximum limiting	V _ 9.V to 55.V	(2)	3.8	4.5	5.5	Α
	current	V _{CC} = 8 V to 55 V		4	4.5	5.5	Α
	$V_{O} = 5.1 \text{ V; } I_{O} = 3.5 \text{ A}$				90		%
η	Efficiency	V _O = 3.3 V; I _O = 3.5 A			85		%
	Switching frequency		(2)	90	100	110	kHz
	Supply voltage ripple rejection	$V_i = V_{CC} + 2 V_{RMS} V_O = V_{ref};$ $I_O = 1 A; f_{ripple} = 100 Hz$		60			dB
$\Delta f_{\sf SW}$	Switching frequency stability vs., supply voltage	V _{CC} = 8 V to 55 V			2	5	%
Referenc	ce section						
	Peteronee voltage	I _{ref} = 0 to 20 mA;		5.025	5.1	5.175	V
	Reference voltage	$V_{CC} = 8 \text{ to } 55 \text{ V}$	(2)	4.950	5.1	5.250	V
	Line regulation	I _{ref} = 0 mA; V _{CC} = 8 to 55 V			5	10	mV
	Load regulation	V _{ref} = 0 to 5 mA; V _{CC} = 0 to 20 mA			2 6	10 25	mV mV
	Short circuit current			30	65	100	mA

L4973 Electrical characteristics

Table 4. Electrical characteristics (continued) (Refer to the test circuit, V_{CC} = 24 V; T_J = 25 °C, C_{OSC} = 2.7 nF; R_{OSC} = 20 k Ω ; unless otherwise specified)

Symbol	Parameter	Test condition		Min	Тур	Max	Unit
Soft-star	t						
	Soft-start charge current			30	45	60	μΑ
	Soft-start discharge current			15	22	30	μА
Inhibit			· ·				
	High level voltage		(2)	3.0			V
	Low level voltage		(2)			0.8	V
	I _{source} high level	V _{INH} = 3 V	(2)	10	16	50	μΑ
	I _{source} low level	V _{INH} = 0.8 V	(2)	10	15	50	μΑ
DC chara	acteristics						
	Total operating quiescent current	Duty cycle = 50 %			4	6	mA
	Quiescent current	Duty cycle = 0			2.7	4	mA
	Total stand-by quiescent V _{CC} = 24 V; V _{INH} = 5 V			100	200	μΑ	
	current	V _{CC} = 55 V; V _{INH} = 5 V			150	300	μΑ
Error am	plifier		'				
	High level output voltage			11.0			V
	Low level output voltage					0.65	V
	Source bias current			1	2	3	μΑ
	Source output current			200	300	600	μΑ
	Sink output current			200	300		μΑ
	Supply voltage ripple rejection	V _{COMP} = VFB C _{REF} = 4.7 μF 1-5 mA load current		60	80		dB
	DC open loop gain	$R_L = \infty$		50	60		dB
	Transconductance	$I_{comp} = -0.1 \text{ to } 0.1 \text{ mA};$ $V_{comp} = 6 \text{ V}$			2.5		mS
Oscillato	r section		LI .				
	Ramp valley			0.78	0.85	0.92	V
	Ramp peak	V _{CC} = 8 V V _{CC} = 55 V		1.9 9	2.1 9.6	2.3 10.2	V V
		•					

Electrical characteristics L4973

Table 4. Electrical characteristics (continued) (Refer to the test circuit, V_{CC} = 24 V; T_J = 25 °C, C_{OSC} = 2.7 nF; R_{OSC} = 20 k Ω ; unless otherwise specified)

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
	Maximum frequency	Duty cycle = 0%; R_{OSC} =13 k Ω ; C_{OSC} = 820 pF;			300	kHz
Sync fun	Sync function					
	High input voltage	V _{CC} = 8 V to 55 V	3.5			V
	Low input voltage	V _{CC} = 8 V to 55 V			0.9	V
	Slave sink current		0.15	0.25	0.45	mA
	Master output amplitude	I _{source} = 3 mA	4	4.5		V
	Output pulse width	No load, V _{sync} = 4.5 V	0.20	0.35		μS

^{1.} Pulse testing with a low duty cycle

^{2.} Specifications referred to T_J from -40 $^{\circ}\text{C}$ to 125 $^{\circ}\text{C}.$

L4973 Evaluation board

5 Evaluation board

Figure 4. Evaluation board circuit

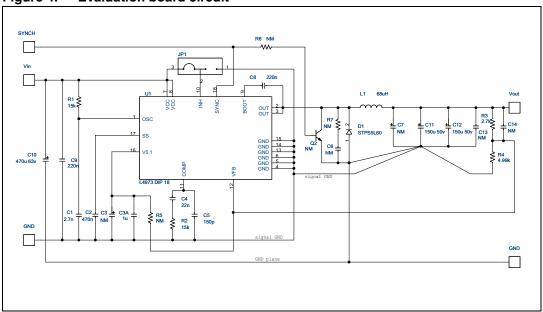


Table 5. Component list (fsw = 150 kHz, V_{OUT} = 5 V)

Reference	Description	Part number	Manufacturer
R1	Resistor 15 kΩ 1%		
R2	Resistor 15 kΩ 1%		
R3	Resistor 2.7 kΩ 1%		
R4	Resistor 4.99 kΩ 1%		
R5	Not mounted		
R6	Not mounted		
R7	Not mounted		
C1	Capacitor 2.7 nF 5%		
C2	Capacitor 470 nF 5%		
C3	Capacitor 1 μF 5%		
C4	Capacitor 22 nF 5%		
C5	Capacitor 150 pF 5%		
C6	Not mounted		
C7	Not mounted		
C8	Capacitor 220 nF 5%		
C9	Capacitor 220 nF 5%		
C10	Capacitor 470 μF 63V	EKY-630ELL471ML20S	Nippon Chemi-con

Evaluation board L4973

Table 5. Component list (fsw = 150 kHz, V_{OUT} = 5 V) (continued)

Reference	Description	Part number	Manufacturer
C11	Capacitor 150 μF 35 V	EKY-350ELL151MHB5D	Nippon Chemi-con
C11	Capacitor 150 μF 35 V	EKY-350ELL151MHB5D	Nippon Chemi-con
C13	Capacitor 100 nF 5 %		
C14	Not mounted		
L1	$68 \mu H I_{RMS} = 3.4 A I_{SAT} = 6.7 A$	DO5040H-683MLD	Coilcraft
U1		L4973V3.3	STMicroelectronics

Table 6. Resistor divider for $V_{OUT} = 12 \text{ V}$

Reference	Description	Part number	Manufacturer
R3	Resistor 2.7 kΩ 1%		
R4	Resistor 1 kΩ 1%		

Table 7. Resistor divider for $V_{OUT} = 3.3 \text{ V}$

Reference	Description	Part number	Manufacturer
R3	Resistor 2.7 kΩ 1%		
R4	Not mounted		

L4973 Evaluation board

Figure 5. Evaluation board (components side)

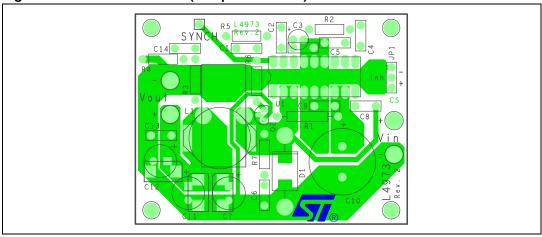
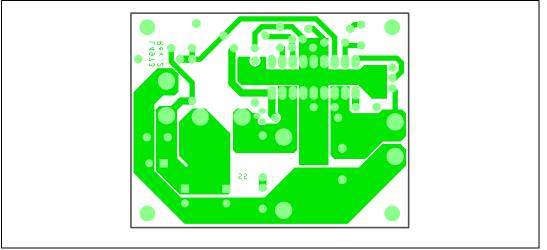
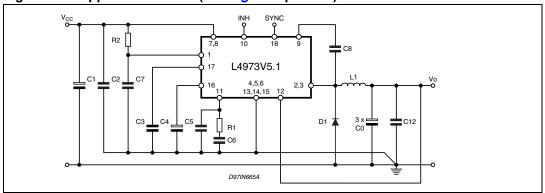
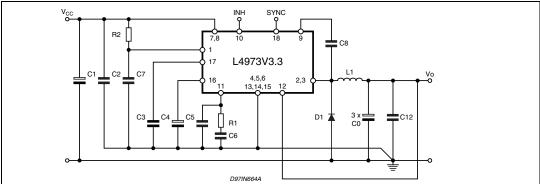



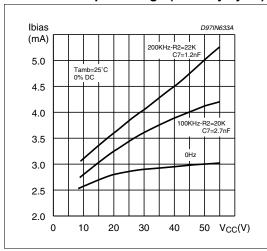
Figure 6. Evaluation board (solder side)

Application circuit L4973

6 Application circuit

Figure 7. Application circuit (see Figure 4 part list)


Figure 8. Application circuit (see Figure 4 part list)

7 Typical characteristics

Figure 9. Quiescent drain current vs. input voltage (0% duty cycle)

Figure 10. Quiescent drain current vs. junction temperature

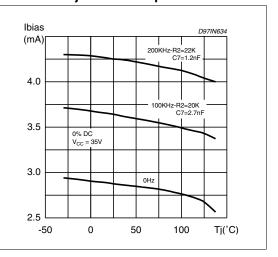
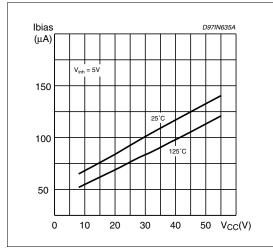
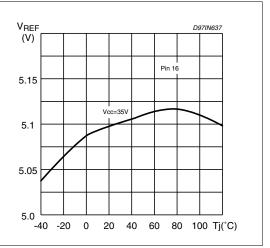
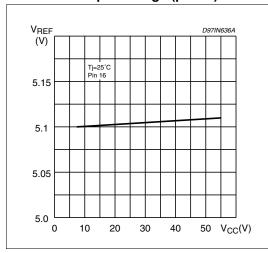




Figure 11. Stand by drain current vs. input voltage

Figure 12. Reference voltage vs. junction temperature (pin 16)



Typical characteristics L4973

Figure 13. Reference voltage vs. input voltage (pin 16)

Figure 14. Reference voltage vs. reference input current

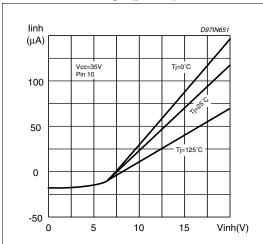
VREF (V)

5.2

5.1

Vcc=10V

5.0


Tj=25°C

4.9

0 10 20 30 40 50 IREF(mA)

Figure 15. Inhibit current vs. inhibit voltage (pin 10)

Figure 16. Line regulation (see *Figure 7*)

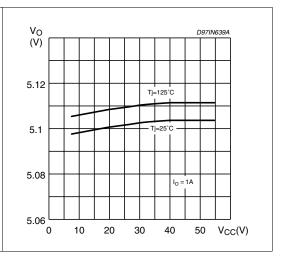
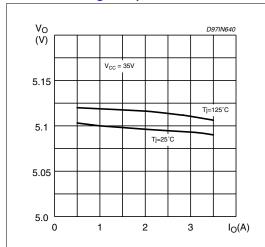



Figure 17. Load regulation (see *Figure 7*)

Figure 18. Line regulation (see *Figure 8*)

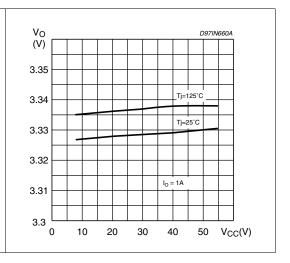
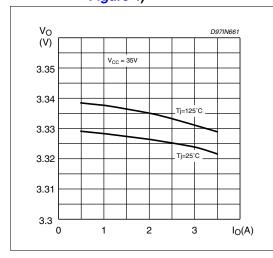
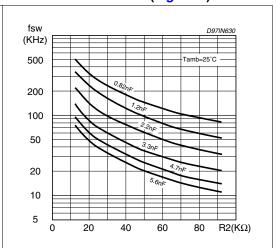
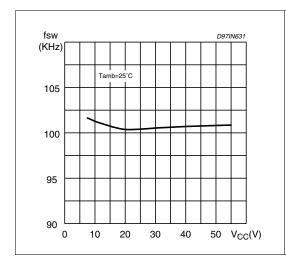




Figure 19. Load regulation (see Figure 4)

Figure 20. Switching frequency vs. R2 and C7 (*Figure 4*)



Typical characteristics L4973

Figure 21. Switching frequency vs. input voltage

Figure 22. Switching frequency vs. junction temperature (see *Figure 4*)

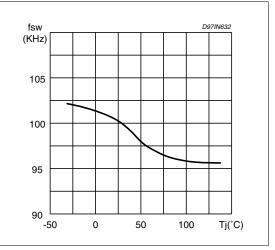
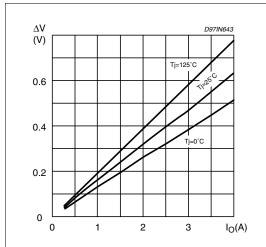



Figure 23. Dropout voltage between pin Figure 24. Efficiency vs. output voltage 7,8 and 2,3 (see *Figure 6*)

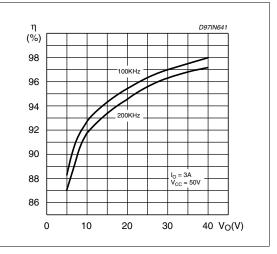


Figure 25.

7,8 and 2,3 (see *Figure 4*)

D97/N643

(V)

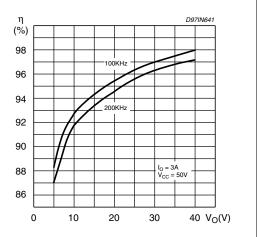
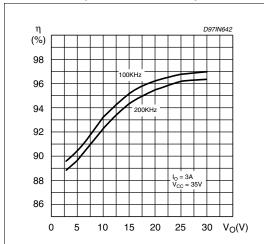
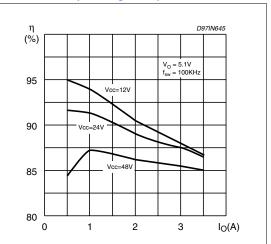
0.6

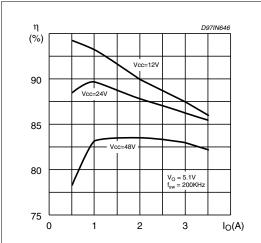
Tj=125°C

96

96

Dropout voltage between pin Figure 26. Efficiency vs. output voltage


Figure 27. Efficiency vs. output voltage Figure 28. Efficiency vs. output current (Diode STPS745D) (see *Figure 7*)

Typical characteristics L4973

Figure 29. Efficiency vs. output current Figure 30. Efficiency vs. output current (see *Figure 7*) (see *Figure 8*)

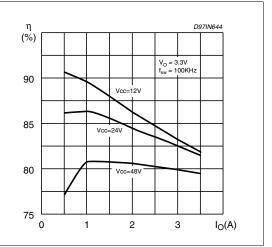
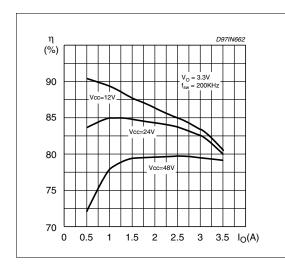



Figure 31. Efficiency vs. output current Figure 32. (see *Figure 8*)

Figure 32. Power dissipation vs. input voltage (device only) (see Figure 7)

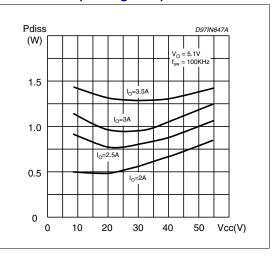
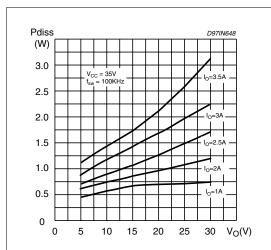



Figure 33. Power dissipation vs. output Figure 34. Pulse by pulse limiting voltage (device only) current vs. junction temperature

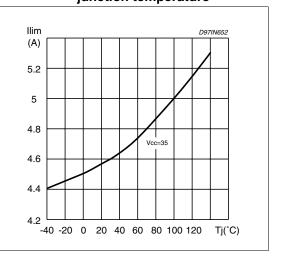
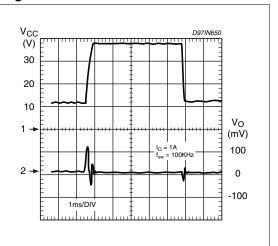
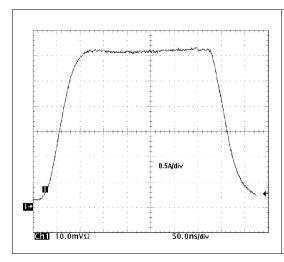



Figure 35. Load transient

D97/N649
(A)
3
2
1
2
1
2
00µs/DIV
100
0
-100


Figure 36. Line transient

Typical characteristics L4973

Figure 37. Source current rise and fall time, pin 2, 3 (see *Figure 4*)

Figure 38. Soft-start capacitor selection vs. inductor and $V_{\rm CC}$ max (ref. AN938)

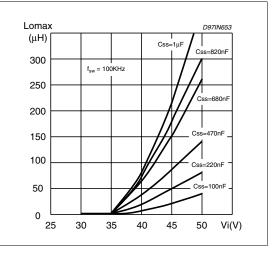
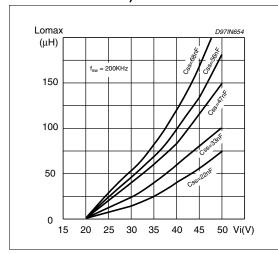
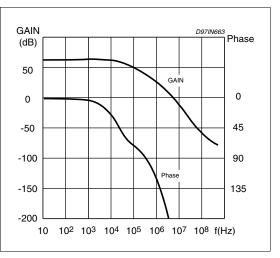




Figure 39. Soft-start capacitor selection Figure 40. vs. inductor and $V_{\rm CC}$ max (ref. AN938)

ure 40. Open loop frequency and phase of error amplifier

L4973 Application ideas

8 Application ideas

Figure 41. 3.5 A at V_0 < 3.3 V (see part list *Figure 4*)

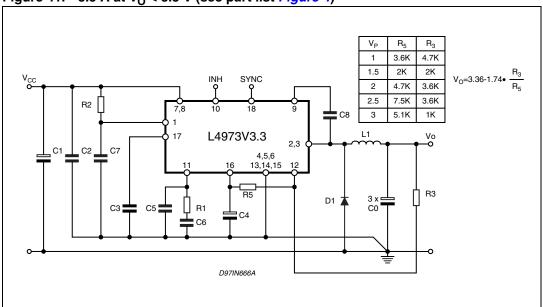
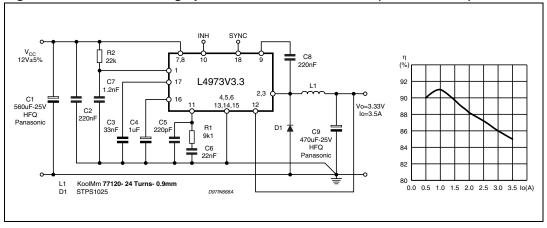



Figure 42. 12 V to 3.3 V high performance buck converter (fsw = 200 kHz)

57

Downloaded from Arrow.com.

Application ideas L4973

Figure 43. Synchronization example

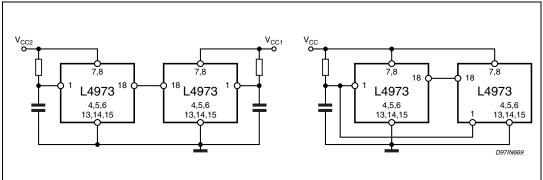
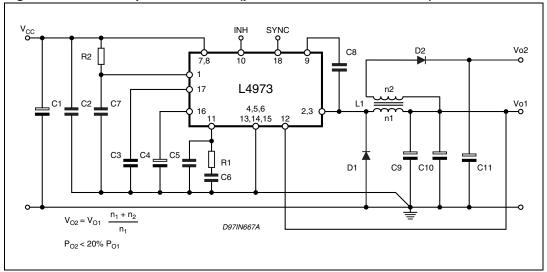



Figure 44. Multi output not isolated (pin out referred to DIP12+3+3)

9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. DIP-18 mechanical data

Dim		mm.			inch		
Dim.	Min	Тур	Max	Min	Тур	Max	
a1	0.51			0.020			
В	0.85		1.40	0.033		0.055	
b		0.50			0.020		
b1	0.38		0.50	0.015		0.020	
D			24.80			0.976	
E		8.80			0.346		
е		2.54			0.100		
еЗ		20.32			0.800		
F			7.10			0.280	
I			5.10			0.201	
L		3.30			0.130		
Z			2.54			0.100	

Figure 45. Package dimensions

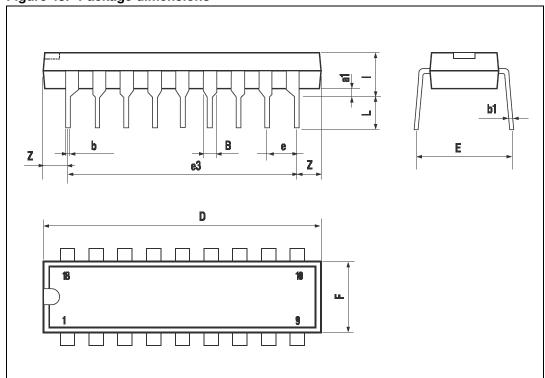
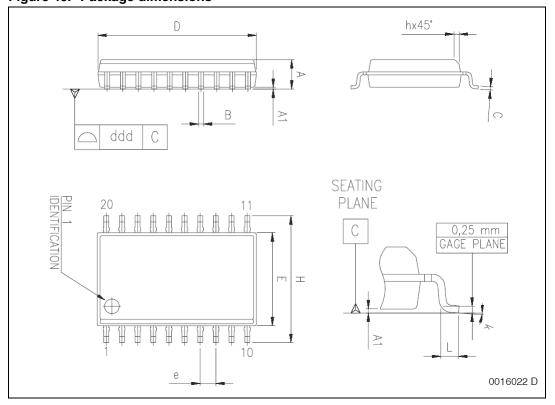



Table 9. SO-20 mechanical data

Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Max
Α	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
В	0.33		0.51	0.013		0.200
С	0.23		0.32	0.009		0.013
D (1)	12.60		13.00	0.496		0.512
Е	7.40		7.60	0.291		0.299
е		1.27			0.050	
Н	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.40		1.27	0.016		0.050
k	0° (min.), 8° (max.)					
ddd			0.10			0.004

Figure 46. Package dimensions

Order code L4973

10 Order code

Table 10. Order code

Part number	Package	Packaging
L4973D3.3, E-L4973D3.3	SO-20	Tube
L4973D3.3-013TR, E-L4973D3.3-TR	SO-20	Tape and reel
L4973D5.1	SO-20	Tube
L4973D5.1-013TR	SO-20	Tape and reel
L4973V3.3, E-L4973V3.3	DIP-18	Tube
L4973V5.1, E-L4973V5.1	DIP-18	Tube

L4973 Revision history

11 Revision history

Table 11. Document revision history

Date	Revision	Changes
12-Sep-2001	13	First Issue
07-May-2005	14	Updated the Layout look & feel. Changed name of the D1 on the fig. 5.
14-Dec-2005	15	Added the ECOPACK part numbers in the Table 1. Order Codes.
06-Dec-2006	16	The document has been reformatted, and order codes updated
07-May-2007	17	New data on Table 4
26-Feb-2009	18	Updated Section 5: Evaluation board on page 9

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

57