FEATURES

SPI interface with error detection

Includes CRC, invalid read/write address, and SCLK count error detection
Supports burst and daisy-chain mode
Industry-standard SPI Mode 0 and Mode 3 interfacecompatible
Guaranteed break-before-make switching, allowing external wiring of switches to deliver multiplexer configurations
$V_{s s}$ to $V_{D D}$ analog signal range
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V
9 V to 40 V single-supply operation (V_{DD})
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation ($\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{ss}}$)
8 kV HBM ESD rating
Low on resistance
1.8 V logic compatibility with $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{L}} \leq 3.3 \mathrm{~V}$

APPLICATIONS
Relay replacement
Automatic test equipment
Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

GENERAL DESCRIPTION

The ADGS5414 contains eight independent single-pole/singlethrow (SPST) switches. An SPI interface controls the switches and has robust error detection features, including cyclic redundancy check (CRC) error detection, invalid read/write address error detection, and SCLK count error detection.

It is possible to daisy-chain multiple ADGS5414 devices together. This enables the configuration of multiple devices with a minimal amount of digital lines. The ADGS5414 can also operate in burst mode to decrease the time between SPI commands.

Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.
The on-resistance profile is flat over the full analog input range, ensuring ideal linearity and low distortion when switching audio signals. The ADGS5414 exhibits break-before-make switching action, allowing the use of the device in multiplexer applications with external wiring.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. The SPI interface removes the need for parallel conversion, logic traces, and reduces the general-purpose input/output (GPIO) channel count.
2. Daisy-chain mode removes the need for additional logic traces when using multiple devices.
3. CRC error detection, invalid read/write address error detenction, and SCLK count error detection ensures a robust digital interface.
4. CRC and error detection capabilities allow the use of the ADGS5414 in safety critical systems.
5. Break-before-make switching allows external wiring of the switches to deliver multiplexer configurations.
6. The trench isolation analog switch section guards against latch-up. A dielectric trench separates the positive and negative channel transistors, preventing latch-up even under severe overvoltage conditions.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 1
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 5
12 V Single Supply 7
36 V Single Supply 9
Continuous Current per Channel, Sx or Dx Pins 11
Timing Characteristics 11
Absolute Maximum Ratings 13
Thermal Resistance 13
ESD Caution 13
Pin Configurations and Function Descriptions 14
Typical Performance Characteristics 15
Test Circuits 19
Terminology 21
Theory of Operation 22
Address Mode 22
Error Detection Features 22
Clearing the Error Flags Register 23
Burst Mode 23
Software Reset 23
Daisy-Chain Mode 23
Power-On Reset 24
Break-Before-Make Switching 25
Trench Isolation 25
Applications Information 26
Power Supply Rails 26
Power Supply Recommendations 26
Register Summary 27
Register Details 28
Switch Data Register 28
Error Configuration Register. 28
Error Flags Register 29
Burst Enable Register 29
Software Reset Register 29
Outline Dimensions 30
Ordering Guide 30

REVISION HISTORY

10/2017—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY

Digital logic voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)=+15 \mathrm{~V} \pm 10 \%$, negative supply voltage $\left(\mathrm{V}_{\mathrm{ss}}\right)=-15 \mathrm{~V} \pm 10 \%$, positive supply voltage $\left(\mathrm{V}_{\mathrm{L}}\right)=2.7 \mathrm{~V}$ to 5.5 V , GND $=0 \mathrm{~V}$, unless otherwise noted.

Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Off Isolation	-60			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF},$ frequency $(\mathrm{f})=1 \mathrm{MHz}$; see Figure 32
Channel to Channel Crosstalk	-75			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=$ $1 \text { MHz; see Figure } 30$
Total Harmonic Distortion + Noise $(\mathrm{THD}+\mathrm{N})$	0.01			\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 15 \mathrm{~V} \text { p-p,f=20} \\ & \mathrm{Hz} \text { to } 20 \mathrm{kHz} \text {; see Figure } 33 \end{aligned}$
-3 dB Bandwidth	200			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; see }$ Figure 34
Insertion Loss	-0.9			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=$ 1 MHz ; see Figure 34
Source Capacitance (Cs) (Off)	11			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
Drain Capacitance(CD) (Off)	11			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}}(\mathrm{On}), \mathrm{Cs}$ (On)	30			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$
Positive Supply Current (ldo)	45			$\mu \mathrm{A}$ typ	All switches open
			70	$\mu \mathrm{A}$ max	All switches open
	45			$\mu \mathrm{A}$ typ	All switches closed, $\mathrm{V}_{\mathrm{L}}=5.5 \mathrm{~V}$
			70	$\mu \mathrm{A}$ max	All switches closed, $\mathrm{V}_{\mathrm{L}}=5.5 \mathrm{~V}$
	310			$\mu \mathrm{A}$ typ	All switches closed, $\mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$
			430	$\mu \mathrm{A}$ max	All switches closed, $\mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$
IL					
Inactive	6.3			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}
			8.0	$\mu \mathrm{A}$ max	
SCLK $=1 \mathrm{MHz}$	14			μA typ	$\begin{aligned} & \overline{\mathrm{CS}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}}=5 \\ & \mathrm{~V} \end{aligned}$
	7			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}} \mathrm{~V}_{\mathrm{L}}= \\ & 3 \mathrm{~V} \end{aligned}$
SCLK $=50 \mathrm{MHz}$	390			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{L}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \\ & \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V} \end{aligned}$
	210			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{L}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}} \\ & \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V} \end{aligned}$
SDI $=1 \mathrm{MHz}$	15			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}} \text { and } \mathrm{SCLK}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}} \\ & =5 \mathrm{~V} \end{aligned}$
	7.5			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{C S} \text { and } S C L K=0 V \text { or } V_{L}, V_{L} \\ & =3 \mathrm{~V} \end{aligned}$
SDI $=25 \mathrm{MHz}$	230			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}} \text { and } \mathrm{SCLK}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}} \\ & =5 \mathrm{~V} \end{aligned}$
	120			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}} \text { and } \mathrm{SCLK}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}} \\ & =3 \mathrm{~V} \end{aligned}$
Active at 50 MHz	1.8			mA typ	Digital inputs toggle between 0 V and $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}=$ 5.5 V
		2	2.1	mA max	
	0.7			mA typ	Digital inputs toggle between 0 V and $\mathrm{V}_{\mathrm{L}} \mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$
			1.0	mA max	
Negative Supply Current (Iss)	0.05			μA typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}
			1.0	$\mu \mathrm{A}$ max	
Dual-Supply Operation ($\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{S S}$)			± 9	V min	$\mathrm{GND}=0 \mathrm{~V}$
			± 22	\checkmark max	$\mathrm{GND}=0 \mathrm{~V}$

ADGS5414

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

ADGS5414

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments	
THD + N	0.04			\% typ	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 18 \mathrm{Vp}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz ; see Figure 33	
-3 dB Bandwidth	200			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 34	
Insertion Loss	-0.85			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \\ & \mathrm{MHz} ; \\ & \text { see Figure } 34 \end{aligned}$	
C_{5} (Off)	11			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
C_{D} (Off)	11			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
$\mathrm{C}_{\mathrm{d}}(\mathrm{On}), \mathrm{Cs}_{\text {(}}(\mathrm{On})$	26			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
POWER REQUIREMENTS IDD	80				$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}$	
			130	$\mu \mathrm{A}$ typ	All switches open	
			$\mu \mathrm{A}$ max	All switches open		
	80				$\mu \mathrm{A}$ typ	All switches closed, $\mathrm{V}_{\mathrm{L}}=5.5 \mathrm{~V}$
			130	$\mu \mathrm{A}$ max	All switches closed, $\mathrm{V}_{\mathrm{L}}=5.5 \mathrm{~V}$	
	330			$\mu \mathrm{A}$ typ	All switches closed, $\mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$	
			490	$\mu \mathrm{A}$ max	All switches closed, $\mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$	
IL						
Inactive	6.3			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}	
SCLK $=1 \mathrm{MHz}$			8.0	$\mu \mathrm{A}$ max		
	14			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}} \mathrm{~V}_{\mathrm{L}}=5 \\ & \mathrm{~V} \end{aligned}$	
	7			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}} \mathrm{~V}_{\mathrm{L}}=3 \\ & \mathrm{~V} \end{aligned}$	
SCLK $=50 \mathrm{MHz}$	390			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{L}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \\ & \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V} \end{aligned}$	
	210			$\mu \mathrm{A}$ typ	$\begin{aligned} & \overline{C S}=V_{\mathrm{L}} \text { and } \mathrm{SDI}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \\ & \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V} \end{aligned}$	
SDI $=1 \mathrm{MHz}$	15			$\mu \mathrm{A}$ typ	$\overline{\mathrm{CS}}$ and $\mathrm{SCLK}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}=$ 5 V	
	7.5			$\mu \mathrm{A}$ typ	$\overline{\mathrm{CS}} \text { and } \mathrm{SCLK}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}}=$ $3 \mathrm{~V}$	
SDI $=25 \mathrm{MHz}$	230			$\mu \mathrm{A}$ typ	$\overline{\mathrm{CS}}$ and $\mathrm{SCLK}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}=$ 5 V	
	120			$\mu \mathrm{A}$ typ	$\overline{\mathrm{CS}} \text { and } \mathrm{SCLK}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{L}}, \mathrm{~V}_{\mathrm{L}}=$ $3 \mathrm{~V}$	
Active at 50 MHz	1.8			mA typ	Digital inputs toggle between 0 V and $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}=5.5 \mathrm{~V}$	
		2	2.1	mA max		
	0.7			mA typ	Digital inputs toggle between 0 V and $\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$	
			1.0	mA max		
Single-Supply Operation (VD)			9	\checkmark min	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {ss }}=0 \mathrm{~V}$	
			40	V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {ss }}=0 \mathrm{~V}$	

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx Pins

Table 5. Eight Channels On

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}^{\circ} \mathbf{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx PINS				
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}\left(\theta_{J A}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	82	61	38	mA maximum
$V_{D D}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}\left(\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	86	63	41	mA maximum
$V_{D D}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\left(\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	63	47	29	mA maximum
$V_{D D}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\left(\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	85	62	40	mA maximum

Table 6. One Channel On

Parameter	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 2 5}^{\circ} \mathbf{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx PINS				
$V_{D D}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}\left(\theta_{J A}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	199	124	75	mA maximum
$V_{D D}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}\left(\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	210	129	77	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\left(\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	157	104	68	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}\left(\theta_{\mathrm{JA}}=50^{\circ} \mathrm{C} / \mathrm{W}\right)$	206	127	76	mA maximum

TIMING SPECIFICATIONS

$\mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V ; GND $=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 7.

Parameter	Limit	Unit	Test Conditions/Comments
TIMING CHARACTRISTICS			
t_{1}	20	ns min	SCLK period
t_{2}	8	$n \mathrm{n}$ min	SCLK high pulse width
t_{3}	8	$n \mathrm{n}$ min	SCLK low pulse width
t_{4}	10	$n \mathrm{n}$ min	$\overline{\mathrm{CS}}$ falling edge to SCLK active edge
t_{5}	6	ns min	Data setup time
t_{6}	8	ns min	Data hold time
t_{7}	10	$n \mathrm{~ns}$ min	SCLK active edge to $\overline{C S}$ rising edge
t_{8}	20	ns max	$\overline{\text { CS }}$ falling edge to SDO data available
$\mathrm{t}_{9}{ }^{1}$	20	ns max	SCLK falling edge to SDO data available
t_{10}	20	ns max	$\overline{\mathrm{CS}}$ rising edge to SDO returns to high impedance
t_{11}	20	$n \mathrm{n}$ min	$\overline{\mathrm{CS}}$ high time between SPI commands
t_{12}	8	$n \mathrm{n}$ min	$\overline{\text { CS }}$ falling edge to SCLK becomes stable
t_{13}	8	$n \mathrm{n}$ min	$\overline{\mathrm{CS}}$ rising edge to SCLK becomes stable

[^0]
Timing Diagrams

Figure 2. Addressable Mode Timing Diagram

Figure 3. Daisy Chain Timing Diagram

Figure 4. SCLK/ $\overline{C S}$ Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 8.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
VL to GND	-0.3 V to +5.75 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	-0.3 V to +5.75 V
Peak Current, Sx or Dx Pins	422 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
```Continuous Current, Sx or Dx Pins}\mp@subsup{}{}{2```	Data (see Table 5 and Table 6) + 15\%
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb Free	260(+0 or -5$)^{\circ} \mathrm{C}$
Human Body Model (HBM) Electrostatic Discharge (ESD)	8 kV

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

## THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Close attention to PCB thermal design is required.
$\theta_{\mathrm{JA}}$ is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. $\theta_{\mathrm{JC}}$ is the junction to case thermal resistance.

Table 9. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{J}{ }^{2}}$	Unit
$\mathrm{CP}-24-17^{1}$	50	3.28	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD51.
${ }^{2} \theta_{\text {Jсв }}$ is the junction to the bottom of the case value.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



NOTES

1. EXPOSED PAD. THE EXPOSED PAD IS CONNECTED

INTERNALLY. FOR INCREASED RELIABILITY OF THE
SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY,
IT IS RECOMMENDED THAT THE EXPOSED PAD BE
SOLDERED TO THE SUBSTRATE, VSS.
Figure 5. Pin Configuration
Table 8. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD}}$	Most Positive Power Supply Potential.
2	S1	Source Terminal 1. This pin can be an input or output.
3	D1	Drain Terminal 1. This pin can be an input or output.
4	S2	Source Terminal 2. This pin can be an input or output.
5	D2	Drain Terminal 2. This pin can be an input or output.
6	S3	Source Terminal 3. This pin can be an input or output.
7	D3	Drain Terminal 3. This pin can be an input or output.
8	S4	Source Terminal 4. This pin can be an input or output.
9	D4	Drain Terminal 4. This pin can be an input or output.
10	D5	Drain Terminal 5. This pin can be an input or output.
11	S5	Source Terminal 5. This pin can be an input or output.
12	D6	Drain Terminal 6. This pin can be an input or output.
13	S6	Source Terminal 6. This pin can be an input or output.
14	D7	Drain Terminal 7. This pin can be an input or output.
15	S7	Source Terminal 7. This pin can be an input or output.
16	D8	Drain Terminal 8. This pin can be an input or output.
17	S8	Source Terminal 8. This pin can be an input or output.
18	Vss	Most Negative Power Supply Potential. In single-supply applications, tie this pin to ground.
19	SDO	Serial Data Output. This pin can daisy-chain a numeral ADGS5414 devices together or for reading back the data stored in a register for diagnostic purposes. The serial data is propagated on the falling edge of SCLK. Pull this open-drain output to $V_{L}$ with an external resistor.
20	$\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$	$\overline{\operatorname{RESET} / L o g i c ~ P o w e r ~ S u p p l y ~ I n p u t ~(~} \mathrm{V}_{\mathrm{L}}$ ). Under normal operation, drive the $\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin with a 2.7 V to 5.5 V supply. Pull the pin low to complete a hardware reset. All switches are opened, and the appropriate registers are set to their default.
21	$\overline{C S}$	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\mathrm{CS}}$ goes low, it powers on the SCLK buffers and enables the input shift register. Data is transferred in on the falling edges of the following clocks. Taking $\overline{\mathrm{CS}}$ high updates the switch condition.
22	SCLK	Serial Clock Input. Data is captured on the positive edge of SCLK. Data can be transferred at rates of up to 50 MHz .
23	GND	Ground (0 V) Reference.
24	SDI	Serial Data Input. Data is captured on the positive edge of the serial clock input.
	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, $\mathrm{V}_{\text {ss }}$.

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 6. Ron as a Function of $V_{S}$ and $V_{D}$ (Dual Supply)


Figure 7. Ron as a Function of $V_{S}$ and $V_{D}$ (Dual Supply)


Figure 8. Ron as a Function of $V_{S}$ and $V_{D}$ (Single Supply)


Figure 9. Ron as a Function of $V_{S}$ and $V_{D}$ (Single Supply)


Figure 10. $R_{o n}$ as a Function of $V_{S}$ and $V_{D}$ for Different Temperatures, $\pm 15 \mathrm{~V}$ Dual Supply


Figure 11. Ron as a Function of $V_{s}$ and $V_{D}$ for Different Temperatures, $\pm 20$ V Dual Supply


Figure 12. Ron as a Function of $V_{s}$ and $V_{D}$ for Different Temperatures, 12 V Single Supply


Figure 13. Ron as a Function of $V_{s}$ and $V_{D}$ for Different Temperatures, 36 V Single Supply


Figure 14. Leakage Currents vs. Temperature, $\pm 15$ V Dual Supply


Figure 15. Leakage Currents vs. Temperature, $\pm 20$ V Dual Supply


Figure 16. Leakage Currents vs. Temperature, 12 V Single Supply


Figure 17. Leakage Currents vs. Temperature, 36 V Single Supply


Figure 18. Off Isolation vs. Frequency, $\pm 15$ V Dual Supply


Figure 19. Crosstalk vs. Frequency, $\pm 15$ V Dual Supply


Figure 20. Charge Injection vs. Vs


Figure 21. ACPSRR vs. Frequency, $\pm 15$ V Dual Supply


Figure 22. THD $+N$ vs. Frequency, Dual Supply


Figure 23. Bandwidth vs. Frequency


Figure 24. ton and toff Times vs. Temperature


Figure 25. IDD VS. $V_{L}$


Figure 26. Digital Feedthrough


Figure 27. IL vs. SCLK Frequency when $\overline{C S}$ is High

## Data Sheet

## TEST CIRCUITS



Figure 28. On Leakage


Figure 29. On Resistance


CHANNEL TO CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 30. Channel to Channel Crosstalk


Figure 31. Off Isolation


Figure 32. Off Leakage


Figure 33. THD + Noise


INSERTION LOSS $=20 \log \frac{\mathrm{~V}_{\text {OUT }} \text { WITH SWITCH }}{\mathrm{V}_{\text {S }} \text { WITHOUT SWITCH }}$
Figure 34. Bandwidth


NOTES

1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED FROM THE ACPSRR MEASUREMENT.

Figure 35. ACPSRR

## ADGS5414



Figure 36. Break-Before-Make Time Delay, $t_{D}$


Figure 37. Switching Times


Figure 38. Charge Injection

## TERMINOLOGY

IDD
IDD is the positive supply current.
Iss
Iss is the negative supply current.
$V_{D}, V_{s}$
$V_{D}$ and $V_{S}$ are the analog voltages on Terminal $D$ and Terminal S , respectively.
Ron
Ron represents the ohmic resistance between Terminal D and Terminal S.
$\Delta \mathbf{R o n}_{\text {on }}$
$\Delta R_{\text {ON }}$ is the difference between the $R_{\text {ON }}$ of any two channels.
$\mathbf{R}_{\text {flat(on) }}$
$\mathrm{R}_{\text {FLat(on) }}$ is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
$\mathrm{I}_{\mathrm{s}}$ (Off)
$I_{s}$ (Off) is the source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
$\mathrm{I}_{\mathrm{D}}$ (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{S}}(\mathrm{On})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ are the channel leakage currents with the switch on.
$\mathrm{V}_{\text {INL }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
Vinh
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
Int, In $_{\text {INH }}$
$\mathrm{I}_{\text {inL }}$ and $\mathrm{I}_{\text {INH }}$ are the low and high input currents of the digital inputs.

## $\mathrm{C}_{\mathrm{D}}$ (Off)

$C_{D}$ (Off) is the off switch drain capacitance, which is measured with reference to GND.
$\mathrm{C}_{s}$ (Off)
$\mathrm{C}_{S}$ (Off) is the off switch source capacitance, which is measured with reference to GND.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{Cs}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{\mathrm{s}}(\mathrm{On})$ are the on switch capacitances, which are measured with reference to GND.

## $\mathrm{C}_{\text {IN }}$

$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.
ton
ton is the delay between applying the digital control input and the output switching on.
$t_{\text {off }}$
$t_{\text {OfF }}$ is the delay between applying the digital control input and the output switching off.
$t_{D}$
$t_{D}$ is the off time measured between the $80 \%$ point of both switches when switching from one address state to another.

## Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

## Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

## On Response

On response is the frequency response of the on switch.

## Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

## AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. ACPSRR is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

## THEORY OF OPERATION

The ADGS5414 is a set of SPI controlled, octal SPST switches with error detection features. SPI Mode 0 and Mode 3 can be used with the device, and it operates with SCLK frequencies up to 50 MHz . The default mode for the ADGS5414 is address mode in which the registers of the device are accessed by a 16 -bit SPI command that is bounded by $\overline{\mathrm{CS}}$. The SPI command becomes 24 bits long if the user enables CRC error detection. Other error detection features include SCLK count error detection and invalid read/write error detection. If any of these SPI interface errors occur, they are detectable by reading the error flags register. The ADGS5414 can also operate in two other modes: burst mode and daisy-chain mode.
The interface pins of the ADGS5414 are $\overline{\mathrm{CS}}, \mathrm{SCLK}, \mathrm{SDI}$, and SDO. Hold $\overline{\mathrm{CS}}$ low when using the SPI interface. Data is captured on SDI on the rising edge of SCLK, and data is propagated out on SDO on the falling edge of SCLK. SDO has an open-drain output; thus, connect a pull-up to this output. When not pulled low by the ADGS5414, SDO is in a high impedance state.

## ADDRESS MODE

Address mode is the default mode for the ADGS5414 upon power-up. A single SPI frame in address mode is bounded by $\mathrm{a} \overline{\mathrm{CS}}$ falling edge and the succeeding $\overline{\mathrm{CS}}$ rising edge. The SPI frame is comprised of 16 SCLK cycles. The timing diagram for address mode is shown in Figure 39. The first SDI bit indicates if the SPI command is a read or write command. When the first bit is set to 0 , a write command is issued, and if the first bit is set to 1 , a read command is issued. The next seven bits determine the target register address. The remaining eight bits provide the data to the addressed register. The last eight bits are ignored during a read command, because, during these clock cycles, SDO propagates out the data contained in the addressed register.
The target register address of an SPI command is determined on the eighth SCLK rising edge. Data from this register propagates out on SDO from the ninth to the $16^{\text {th }}$ SCLK falling edge during SPI reads.

A register write occurs on the $16^{\text {th }}$ SCLK rising edge during SPI writes.
During any SPI command, SDO sends out eight alignment bits on the first eight SCLK falling edges. The alignment bits observed at SDO are $0 \times 25$.

## ERROR DETECTION FEATURES

Protocol and communication errors on the SPI interface are detectable. There are three detectable errors: incorrect SCLK error detection, invalid read and write address error detection, and CRC error detection. Each of these errors has a corresponding enable bit in the error configuration register. In addition, there is an error flag bit for each of these errors in the error flags register.

## CRC Error Detection

The CRC error detection feature extends a valid SPI frame by eight SCLK cycles. These eight extra cycles send the CRC byte for that SPI frame. The CRC byte is calculated by the SPI block using the 16-bit payload: the $\mathrm{R} / \overline{\mathrm{W}}$ bit, a selected register address, Bits[6:0], and selected Register Data Bits[7:0]. The CRC polynomial used in the SPI block is $x^{8}+x^{2}+x^{1}+1$ with a seed value of 0 . For a timing diagram with CRC enabled, see Figure 40. Register writes occur at the $24^{\text {th }}$ SCLK rising edge with CRC error checking enabled.
During an SPI write, the microcontroller or computer processing unit (CPU) provides the CRC byte through SDI. The SPI block checks the CRC byte just before the $24^{\text {th }}$ SCLK rising edge. On this same edge, the register write is prevented if an incorrect CRC byte is received by the SPI interface. The CRC error flag is asserted in the error flags register in the case of the incorrect CRC byte being detected.
During an SPI read, the CRC byte is provided to the microcontroller through SDO.
The CRC error detection feature is disabled by default and can be configured by the user through the error configuration register.



## SCLK Count Error Detection

SCLK count error detection allows the user to detect if an incorrect number of SCLK cycles are sent by the microcontroller or CPU. When in address mode, with CRC disabled, 16 SCLK cycles are expected. If 16 SCLK cycles are not detected, the SCLK count error flag asserts in the error flags register. When less than 16 SCLK cycles are received by the device, a write to the register map does not occur. When the ADGS5414 receives more than 16 SCLK cycles, a write to the memory map still occurs at the $16^{\text {th }}$ SCLK rising edge, and the flag asserts in the error flags register. With CRC enabled, the expected number of SCLK cycles becomes 24 . SCLK count error detection is enabled by default and can be configured by the user through the error configuration register.

## Invalid Read/Write Address Error

An invalid read/write address error detects when a nonexistent register address is a target for a read or write. In addition, this error asserts when a write to a read only register is attempted. The invalid read/write address error flag asserts in the error flags register when an invalid read/write address error occurs. The invalid read/write address error is detected on the ninth SCLK rising edge, which means a write to the register does not occur when an invalid address is targeted. Invalid read/write address error detection is enabled by default and can be disabled by the user through the error configuration register.

## CLEARING THE ERROR FLAGS REGISTER

To clear the error flags register, write the 16-bit SPI frame (not included in the register map), 0x6CA9, to the device. This SPI command does not trigger the invalid $\mathrm{R} / \overline{\mathrm{W}}$ address error. When CRC is enabled, the user must send the correct CRC byte for a successful error clear command. At the $16^{\text {th }}$ or $24^{\text {th }}$ SCLK rising edge, the error flags register resets to zero.

## BURST MODE

The SPI interface can accept consecutive SPI commands without the need to deassert the $\overline{\mathrm{CS}}$ line, which is called burst mode. Burst mode is enabled through the burst enable register (Address $0 x 05$ ). This mode uses the same 16 -bit command to communicate with the device. In addition, the response of the device at SDO is still aligned with the corresponding SPI command. Figure 41 shows an example of SDI and SDO during burst mode.

The invalid read/write address and CRC error checking functions operate similarly during burst mode as they do during address mode. However, SCLK count error detection operates in a slightly different manner. The total number of SCLK cycles within a given $\overline{\mathrm{CS}}$ frame is counted, and if the total is not a multiple of 16 , or a multiple of 24 when CRC is enabled, the SCLK count error flag asserts.


## SOFTWARE RESET

When in address mode, the user can initiate a software reset. To do so, write two consecutive SPI commands, namely 0xA3 followed by 0x05, to Register 0x0B. After a software reset, all register values are set to default.

## DAISY-CHAIN MODE

The connection of several ADGS5414 devices in a daisy-chain configuration is possible, and Figure 42 shows this setup. All devices share the same $\overline{\mathrm{CS}}$ and SCLK line, whereas the SDO of a device forms a connection to the SDI of the next device, creating a shift register. In daisy-chain mode, SDO is an eight cycle delayed version of SDI. When in daisy-chain mode, all commands target the switch data register (SW_DATA). Therefore, it is not possible to make configuration changes while in daisy-chain mode.

## ADGS5414



The ADGS5414 can only enter daisy-chain mode when in address mode by sending the 16 -bit SPI command, $0 \times 2500$ (see Figure 43). When the ADGS5414 receives this command, the SDO of the device sends out the same command because the alignment bits at SDO are $0 \times 25$, which allows multiple daisy-connected devices to enter daisy-chain mode in a single SPI frame. A hardware reset is required to exit daisy-chain mode.
For the timing diagram of a typical daisy-chain SPI frame, see Figure 44. For example, when $\overline{\mathrm{CS}}$ goes high, Device 1 writes Command 0, SW_DATA, Bits[7:0] to its switch data register, Device 2 writes Command 1, SW_DATA, Bits[7:0] to its switches. The SPI block uses the last eight bits it receives through SDI to update the switches. After entering daisy-chain mode, the first eight bits sent out by SDO on each device in the chain are 0 x 00 . When $\overline{\mathrm{CS}}$ goes high, the internal shift register value does not reset back to zero.

An SCLK rising edge reads in data on SDI while data is propagated out on SDO on an SCLK falling edge. The expected number of SCLK cycles must be a multiple of eight before $\overline{\mathrm{CS}}$ goes high. If this is not the case, the SPI interface sends the last eight bits received to the switch data register.

## POWER-ON RESET

The digital section of the ADGS5414 goes through an initialization phase during $\mathrm{V}_{\mathrm{L}}$ power-up. This initialization also occurs after a hardware or software reset. After $V_{L}$ power-up or a reset, ensure a minimum of $120 \mu \mathrm{~s}$ from the time of power-up or reset before any SPI command is issued. Ensure $V_{L}$ does not drop out during the $120 \mu$ s initialization phase because it can result in the incorrect operation of the ADGS5414.

## BREAK-BEFORE-MAKE SWITCHING

The ADGS5414 exhibits break-before-make switching action, which allows the use of the device in multiplexer applications. A multiplexer function can be achieved by externally hardwiring the device in the required mux configuration, as shown in Figure 45.


Figure 45. An SPI Controlled Switch Configured in a 4:1 Mux

## TRENCH ISOLATION

In the analog switch section of the ADGS5414, an insulating oxide layer (trench) is placed between the N-type metal-oxide semiconductor (NMOS) and the P-type metal-oxide semiconductor (PMOS) transistors of each complementary metal-oxide semiconductor CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the P -well and N -well of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) circuit is formed by the two transistors, causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latchup proof switch.
The Analog Devices, Inc., high voltage latch-up proof family of switches and multiplexers provides a robust olution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADGS5414 high voltage switches allow single-supply operation from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.


Figure 46. Trench Isolation

## APPLICATIONS INFORMATION

## POWER SUPPLY RAILS

To guarantee correct operation of the ADGS5414, $0.1 \mu \mathrm{~F}$ decoupling capacitors are required.

The ADGS5414 can operate with bipolar supplies between $\pm 9 \mathrm{~V}$ and $\pm 22 \mathrm{~V}$. The supplies on $V_{\text {DD }}$ and $V_{\text {sS }}$ do not need to be symmetrical; however, the $\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\text {SS }}$ range must not exceed 44 V . The ADGS5414 can also operate with single supplies between 9 V and 40 V with $\mathrm{V}_{\text {ss }}$ connected to GND.

The voltage range that can be supplied to $\mathrm{V}_{\mathrm{L}}$ is from 2.7 V to 5.5 V .
The device is fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V , analog supply voltage ranges.

## POWER SUPPLY RECOMMENDATIONS

Analog Devices has a wide range of power management products that meet the requirements of most high performance signal chains.
An example of a bipolar power solution is shown in Figure 47. The ADP5070 dual switching regulator generates a positive and negative supply rail for the ADGS5414, an amplifier, and/or a precision converter in a typical signal chain.

Figure 47 also shows two optional low dropout regulators (LDOs), ADP7118 and ADP7182, positive and negative LDOs respectively, that can reduce the output ripple of the ADP5070 in ultralow noise sensitive applications.
The ADM7160 can be used to generate the $\mathrm{V}_{\mathrm{L}}$ voltage that is required to power the digital circuitry within the ADGS5414.


Table 10. Recommended Power Management Devices

Product	Description
ADP5070	$1 \mathrm{~A} / 0.6 \mathrm{~A}$, dc-to-dc switching regulator with
independent positive and negative outputs	
ADM7160	$5.5 \mathrm{~V}, 200 \mathrm{~mA}$, ultralow noise, linear regulator
ADP7118	$20 \mathrm{~V}, 200 \mathrm{~mA}$, low noise, CMOS LDO linear regulator
ADP7182	$-28 \mathrm{~V},-200 \mathrm{~mA}$, low noise, LDO linear regulator

## REGISTER SUMMARY

Table 11. Register Summary

Reg.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default	RW
$0 \times 01$	SW_DATA	SW8_EN	SW7_EN	SW6_EN	SW5_EN	SW4_EN	SW3_EN	SW2_EN	SW1_EN	0x00	R/W
$0 \times 02$	ERR_CONFIG			Reserved			RW_ERR_EN	SCLK_ERR_EN	CRC_ERR_EN	0x06	R/W
$0 \times 03$	ERR_FLAGS			Reserved			RW_ERR_FLAG	SCLK_ERR_FLAG	CRC_ERR_FLAG	0x00	R
$0 \times 05$	BURST_EN	Reserved							BURST_MODE_EN	0x00	R/W
0x0B	SOFT_RESETB	SOFT_RESETB								0x00	R/W

## REGISTER DETAILS

## SWITCH DATA REGISTER

## SW_DATA, Address 0x01, Reset: 0x00

The switch data register controls the status of the eight switches of the ADGS5414.
Table 12. Bit Descriptions for SW_DATA

Bit	Bit Name	Setting	Description	Default	Access
7	SW8_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for Switch 8. Switch 8 open. Switch 8 closed.	0x0	R/W
6	SW7_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for Switch 7.   Switch 7 open.   Switch 7 closed.	0x0	R/W
5	SW6_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for Switch 6. Switch 6 open. Switch 6 closed.	0x0	R/W
4	SW5_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for Switch 5. Switch 5 open. Switch 5 closed.	0x0	R/W
3	SW4_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for Switch 4. Switch 4 open. Switch 4 closed.	0x0	R/W
2	SW3_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for Switch 3. Switch 3 open. Switch 3 closed.	0x0	R/W
1	SW2_EN	0	Enable bit for Switch 2.   Switch 2 open.   Switch 2 closed.	0x0	R/W
0	SW1_EN	0	Enable bit for Switch 1. Switch 1 open. Switch 1 closed.	0x0	R/W

## ERROR CONFIGURATION REGISTER

ERR_CONFIG, Address 0x02, Reset: 0x06
The error configuration register allows the user to enable or disable the relevant error features as required.
Table 13. Bit Descriptions for ERR_CONFIG

Bit	Bit Name	Setting	Description	Default	Access
[7:3]	Reserved		These bits are reserved; set these bits to 0 .	0x0	R
2	RW_ERR_EN	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Enable bit for detecting an invalid read/write address. Disabled.   Enabled.	0x1	R/W
1	SCLK_ERR_EN	0	Enable bit for detecting the correct number of SCLK cycles in an SPI frame. 16 SCLK cycles are expected when CRC is disabled and burst mode is disabled. 24 SCLK cycles are expected when CRC is enabled and burst mode is disabled. A multiple of 16 SCLK cycles is expected when CRC is disabled and burst mode is enabled. A multiple of 24 SCLK cycles is expected when CRC is enabled and burst mode is enabled.   Disabled.   Enabled.	0x1	R/W
0	CRC_ERR_EN	0	Enable bit for CRC error detection. SPI frames must be 24 bits wide when enabled.   Disabled.   Enabled.	$0 \times 0$	R/W

ADGS5414

## ERROR FLAGS REGISTER

ERR_FLAGS, Address 0x03, Reset: 0x00,
The error flags register allows the user to determine if an error occurs. To clear the error flags register, write the special 16-bit SPI command, 0x6CA9, to the device. This SPI command does not trigger the invalid R/W address error. When CRC is enabled, the user must include the correct CRC byte during the SPI write for the clear Error Flags Register command to be successful.

Table 14. Bit Descriptions for ERR_FLAGS

Bit	Bit Name	Setting	Description	Default	Access
[7:3]	RESERVED		These bits are reserved and are set to 0 .	0x0	R
2	RW_ERR_FLAG	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Error flag for invalid read/write address. The error flag asserts during an SPI read if the target address does not exist. The error flag also asserts when the target address of a SPI write is does not exist or is read only. No Error.   Error.	0x0	R
1	SCLK_ERR_FLAG	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Error flag for the detection of the correct number of SCLK cycles in an SPI frame.   No Error.   Error.	$0 \times 0$	R
0	CRC_ERR_FLAG	0	Error Flag that determines if a CRC error occurs during a register write. No Error.   Error.	$0 \times 0$	R

## BURST ENABLE REGISTER

## BURST_EN, Address 0x05, Reset: 0x00

The burst enable register allows the user to enable/disable the burst mode. When enabled, the user can send multiple consecutive SPI commands without deasserting $\overline{\mathrm{CS}}$.

Table 15. Bit Descriptions for BURST_EN

Bits	Bit Name	Settings	Description	Default	Access
$[7: 1]$	Reserved		These bits are reserved; set these bits to 0.	$0 \times 0$	R
0	BURST_MODE_EN	0	Burst mode enable bit.	Disabled.	Enabled.
		1	Enabl	R/W	

## SOFTWARE RESET REGISTER

## SOFT_RESETB, Address 0x0B, Reset: 0x00

This register performs a software reset. Consecutively, write 0 xA 3 and 0 x 05 to this register and to reset the device registers to their default state.

Table 15. Bit Descriptions for SOFT_RESETB

Bits	Bit Name	Settings	Description	Default	Access
$[7: 0]$	SOFT_RESETB		To Perform a Software Reset, consecutively write 0xA3 followed by 0x05   to this register.	$0 \times 0$	R

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-8


Figure 48. 24-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.95 mm Package Height (CP-24-17)
Dimensions shown in millimeters

## ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADGS5414BCPZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	CP-24-17
ADGS5414BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP]	
EVAL-ADGS5414SDZ		Evaluation Board	CP-24-17

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

# Mouser Electronics 

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
ADGS5414BCPZ ADGS5414BCPZ-RL7 EVAL-ADGS5414SDZ


[^0]:    ${ }^{1}$ Measured with the $1 \mathrm{k} \Omega$ pull-up resistor to $\mathrm{V}_{\mathrm{L}}$ and a 20 pF load. $\mathrm{t}_{9}$ determines the maximum SCLK frequency when using SDO.

