FEATURES

Wideband switch: -3 dB frequency at 2.5 GHz
Absorptive 4:1 mux/single-pole, four-throw (SP4T)
High off isolation ($\mathbf{3 7} \mathbf{~ d B}$ at $1 \mathbf{~ G H z}$)
Low insertion loss (1.1 dB dc to 1 GHz)
Single 1.65 V to 2.75 V power supply (VD)
CMOS/LVTTL control logic
20-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package
Low power consumption ($2.5 \mu \mathrm{~A}$ maximum)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Wireless communications

General-purpose radio frequency (RF) switching
Dual-band applications
High speed filter selection
Digital transceiver front-end switches
IF switching
Tuner modules
Antenna diversity switching

GENERAL DESCRIPTION

The ADG904-EP is a wideband analog 4:1 multiplexer that uses a CMOS process to provide high isolation and low insertion loss to 1 GHz . The ADG904-EP is an absorptive/matched mux with 50Ω terminated shunt legs. This device is designed such that the isolation is high over the dc to 1 GHz frequency range.

The ADG904-EP switches one of four inputs to a common output, RFC, as determined by the 3-bit binary address lines A0, A1, and $\overline{\mathrm{EN}}$. A Logic 1 on the $\overline{\mathrm{EN}}$ pin disables the device.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The device has on-board CMOS control logic, which eliminates the need for external control circuitry. The control inputs are both CMOS and LVTTL compatible. The low power consumption of this device makes it ideally suited for wireless applications and general-purpose high frequency switching.

Additional application and technical information can be found in the ADG904 data sheet.

PRODUCT HIGHLIGHTS

1. 37 dB off isolation at 1 GHz .
2. $\quad 1.1 \mathrm{~dB}$ insertion loss at 1 GHz .
3. 20-lead LFCSP package.

Rev. C

TABLE OF CONTENTS

Features1
Enhanced Product Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Continous Current Per Channel 4
REVISION HISTORY
5/2017—Rev. B to Rev. C
Change to Endnote 1, Table 3 3
Updated Outline Dimensions 11
3/2017—Rev. A to Rev. B
Changes to Endnote 4, Table 1 3
Added Endnote 1, Table 2 4
11/2016-Rev. 0 to Rev. A
Changes to Figure 15 9
Absolute Maximum Ratings 5
Thermal Resistance5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits 9
Outline Dimensions 11
Ordering Guide 11

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to $2.75 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, input power $=0 \mathrm{dBm}$, temperature range $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

[^0]
ADG904-EP

CONTINOUS CURRENT PER CHANNEL

Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL ${ }^{1}$						20-lead LFCSP, $\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$, dc bias $=0.5 \mathrm{~V}$
$\mathrm{V}_{\text {DD }}=2.75 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	93.1	10.8	5.9	3.3	mA maximum	
$\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	82.6	10.8	5.9	3.3	mA maximum	

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
VDD to GND 1	-0.5 V to +4 V
Inputs to GND ${ }^{1}$	-0.5 V to $\mathrm{VDD}+0.3 \mathrm{~V}^{2}$
Continuous Current	Data $^{3}+15 \%$
Input Power	18 dBm
Operating Temperature Range (Industrial)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$235^{\circ} \mathrm{C}$
Electrostatic Discharge (ESD)	1 kV

${ }^{1}$ Tested at $+125^{\circ} \mathrm{C}$
${ }^{2} \mathrm{RFx}$ off port inputs to ground $=-0.5 \mathrm{~V}$ to $\mathrm{V} D \mathrm{DD}-0.5 \mathrm{~V}$.
${ }^{3}$ See Table 2.
${ }^{4}$ Input power is tested with switch in both open and close position. Power is applied on RFx, while RFC is terminated to a 50Ω resistor to GND.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\text {JA }}$	$\boldsymbol{\theta}_{\text {Jc }}$	Unit
$\mathrm{CP}-20-6^{1}$	30.4	2.83	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Test condition: thermal impedance simulated values are based on JEDEC 2S2P thermal test board with four thermal vias. See JEDEC JESD51.

Table 5. Truth Table

A1	A0	$\overline{\text { EN }}$	On Switch ${ }^{1}$
X^{2}	X^{2}	1	None
0	0	0	RF1
0	1	0	RF2
1	0	0	RF3
1	1	0	RF4

${ }^{1}$ Off switches have 50Ω termination to GND.
${ }^{2} \mathrm{X}$ means don't care.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Function
0	EPAD	Exposed Pad. The exposed pad is tied to the substrate, GND.
$1,3,4,6,7,9,10,12,13,15,20$	GND	Ground Reference Points for All Circuitry on the Device.
2	RF1	RF 1 Port.
5	RF3	RF 3 Port.
8	RFC	Common RF Port for Switch.
11	RF4	RF 4 Port.
14	RF2	RF 2 Port.
16	A1	Logic Control Input 1.
17	A0	Logic Control Input 0.
18	$\overline{\text { EN }}$	Active Low Digital Input. When high, the device is disabled and all switches are off. When low,
19		Ax logic inputs determine on switches.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Insertion Loss vs. Frequency for $V_{D D}>2.2 V$ (RFx to RFC)

Figure 4. Insertion Loss vs. Frequency for $V_{D D}>2.2 \mathrm{~V}$ (RFx to RFC)
Zoomed View of Figure 3

Figure 5. Insertion Loss vs. Frequency for $V_{D D}<2 V$ (RFx to RFC)

Figure 6. Insertion Loss vs. Frequency over Various Temperature (RFx to RFC)

Figure 7. Isolation vs. Frequency over Supplies (RFx to RFC)

Figure 8. Isolation vs. Frequency over Various Temperature (RFx to RFC)

Figure 9. Return Loss vs. Frequency (RFx to RFC)

Figure 10. Crosstalk vs. Frequency

Figure 11. Switch Timing

Figure 12. Video Feedthrough

Figure 13. Third-Order Intermodulation Intercept (IP3) vs. Frequency

Figure 14. 1 dB Input Compression vs. Frequency (DC Bias Not Used)

TEST CIRCUITS

Figure 15. Switch Timing, toN (EN) and toff (EN)

Figure 16. Switch Timing, $t_{\text {RISE }}$ and $t_{\text {FALL }}$

Figure 18. Insertion Loss

Figure 19. Crosstalk

Figure 20. Video Feedthrough

Figure 21. Third-Order Intermodulation Intercept (IP3)

Figure 22.1dB Input Compression (P1dB)

OUTLINE DIMENSIONS

Figure 23. 20-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-20-6)
Dimensions shown in millimeters
ORDERING GUIDE

Model $^{\mathbf{1}}$	Temperature Range	Package Description	Package Option
ADG904SCPZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	$\mathrm{CP}-20-6$
ADG904SCPZ-EP-RL7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP]	CP-20-6

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$, unless otherwise stated.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 ${ }^{3}$ Video feedthrough is the dc transience at the output of any port of the switch when the control voltage is switched from high to low or low to high in a 50Ω test setup, measured with 1 ns rise time pulses and 500 MHz bandwidth.
 ${ }^{4}$ Less than 100 MHz , refer to the AN-952 Application Note for more information about power handling.

[^1]: ${ }^{1}$ Guaranteed by design, not production tested.

