

date 03/15/2021

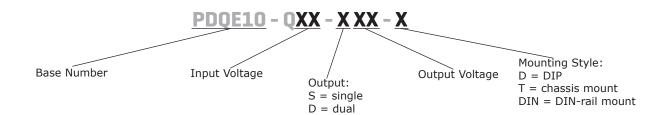
page 1 of 8

SERIES: PDQE10 **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- industry standard footprint
- board, chassis and Din rail versions available
- industrial operating temp -40~+85°C
- 1500 Vdc isolation voltage
- industry standard footprint compatible with CUI legacy PDQ10 series
- high efficiency up to 88%
- 4:1 input rating
- single & dual output models available
- output short circuit, over current & overvoltage protection
- EN 62368-1

MODEL		put tage	output voltage		tput rrent	output power	ripple & noise¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PDQE10-Q24-S3	24	9~36	3.3	0	2400	7.92	80	79
PDQE10-Q24-S5	24	9~36	5	0	2000	10	80	83
PDQE10-Q24-S9	24	9~36	9	0	1111	10	80	86
PDQE10-Q24-S12	24	9~36	12	0	833	10	80	87
PDQE10-Q24-S15	24	9~36	15	0	667	10	80	87
PDQE10-Q24-S24	24	9~36	24	0	416	10	80	88
PDQE10-Q24-D5 ³	24	9~36	±5	0	±1000	10	80	83
PDQE10-Q24-D9 ³	24	9~36	±9	0	±555	10	80	86
PDQE10-Q24-D12 ³	24	9~36	±12	0	±416	10	80	87
PDQE10-Q24-D15 ³	24	9~36	±15	0	±333	10	80	87
PDQE10-Q24-D24 ³	24	9~36	±24	0	±208	10	80	87
PDQE10-Q48-S3	48	18~75	3.3	0	2400	7.92	80	79
PDQE10-Q48-S5	48	18~75	5	0	2000	10	80	83
PDQE10-Q48-S12	48	18~75	12	0	833	10	80	87
PDQE10-Q48-S15	48	18~75	15	0	667	10	80	87
PDQE10-Q48-S24	48	18~75	24	0	416	10	80	88
PDQE10-Q48-D5	48	18~75	±5	0	±1000	10	80	83
PDQE10-Q48-D12	48	18~75	±12	0	±416	10	80	87
PDQE10-Q48-D15	48	18~75	±15	0	±333	10	80	87
PDQE10-Q48-D24	48	18~75	±24	0	±208	10	80	87


Notes:

- 1. From $5 \sim 100\%$ load, nominal input, 20 MHz bandwidth oscilloscope, with $10~\mu F$ tantalum and $1~\mu F$ ceramic capacitors on the output. From $0 \sim 5\%$ load, ripple and noise is
- 2. Measured at nominal input voltage, full load. The typical efficiencies for the chassis mount and DIN-rail mount versions are ~2% less than the DIP versions due to the
- input reverse polarity protection.

 3. In addition to all DIP versions, chassis mount and DIN-rail mount versions of these models are UL approved.

 4. All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

parameter	conditions/description	on	min	typ	max	units
operating input voltage5	24 Vdc input models		9	24	36	Vdc
operating input voltage⁵	48 Vdc input models		18	48	75	Vdc
start-up voltage ⁵	24 Vdc input models				9	Vdc
start-up voltage-	48 Vdc input models				18	Vdc
	for maximum of 1 seco	nd				
surge voltage	24 Vdc input models		-0.7		50	Vdc
	48 Vdc input models		-0.7		100	Vdc
under veltage chutdewn	24 Vdc input models		5.5	6.5		Vdc
under voltage shutdown	48 Vdc input models		12	15.5		Vdc
	24.1/d= :	3.3 Vdc output models			429	mA
	24 Vdc input models	all other models			515	mA
current	40.1/d= :	3.3 Vdc output models			215	mA
	48 Vdc input models	all other models			258	mA
	turn on (3.5~12 Vdc or	open circuit)				
	turn off (<1.2 Vdc)					
remote on/off (CTRL) ⁶	input current when swi	tched off		6	10	mA
	start-up time			2		S
filter	Pi filter					
input reverse polarity protection	only present on chassis mount and DIN-rail mount models					
no load power consumption				0.12		W
			4 1 1 1 1 1			

5. The minimum input voltage and start-up voltage for the chassis mount and DIN-rail mount versions are 1 Vdc higher than the DIP versions. 6. The voltage of the Ctrl pin is referenced to input GND pin. Notes:

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3, 5 Vdc output models			2,200	μF
	±5 Vdc output models			1,000	μF
manyimayya anna aitiya laad?	9, ±9 Vdc output models			680	μF
maximum capacitive load ⁷	±12 Vdc output models			470	μF
	±15 Vdc output models			330	μF
	all other models			100	μF
voltage accuracy ⁸	0% to full load		±1	±3	%
	from low line to high line, full load				
line regulation	positive outputs		±0.2	±0.5	%
	negative outputs		±0.5	±1	%
	from 5% to full load				
load regulation9	positive outputs		±0.5	±1	%
-	negative outputs		±0.5	±1.5	%
voltage balance ¹⁰	dual output models			±5	%

Note: 7. Tested at input voltage range and full load.

8. At 0~5% load, the max output voltage accuracy for the ±5 & ±9 Vdc output models is ±5%.
9. At 0~100% load, the max load regulation is ±5%.
10. Unbalanced loads should not exceed ±5%. If ±5% is exceeded, the product performance cannot be guaranteed.

Additional Resources: Product Page | 3D Model

CUI Inc | SERIES: PDQE10 | DESCRIPTION: DC-DC CONVERTER date 03/15/2021 | page 3 of 8

OUTPUT (CONTINUED)

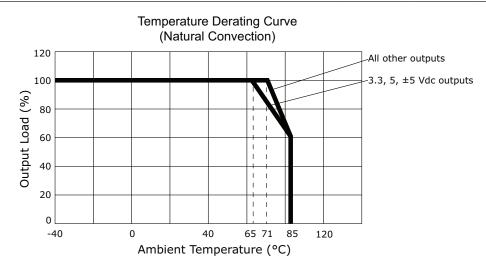
parameter	conditions/description	min	typ	max	units
cross regulation	dual output models: main output 50% load secondary output from 10~100% load			±5	%
switching frequency ¹¹	PWM mode		350		kHz
transient recovery time	25% load step change, nominal input voltage		300	500	μs
transient response deviation	25% load step change, nominal input voltage		±3	±5	%
temperature coefficient	at full load			±0.03	%/°C

Note: 11. Value is based on full load. At loads <10%, the switching frequency decreases with decreasing load

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection		110		160	%
over current protection		110	140	190	%
short circuit protection	continuous, self recovery				

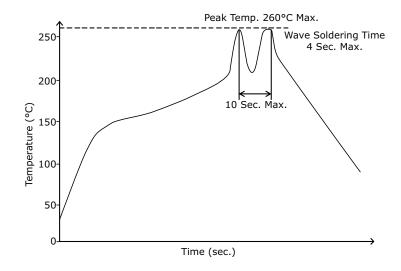
SAFETY AND COMPLIANCE


parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute at 1 mA	1,500			Vdc
isolation resistance	input to output at 500 Vdc	1,000			МΩ
isolation capacitance	input to output, 100 kHz / 0.1 V		1,000		pF
safety approvals ¹²	certified to 62368-1: EN certified to 60950-1: UL				
conducted emissions	CISPR22/EN55022, class A (no external circ	cuit); class B (externa	l circuit requi	ired, see Figu	re 3-b)
radiated emissions	CISPR22/EN55022, class A (no external circ	cuit); class B (externa	l circuit requi	ired, see Figu	re 3-b)
ESD	IEC/EN61000-4-2, contact ± 4kV, class B				
radiated immunity	IEC/EN61000-4-3, 10V/m, class A				
EFT/burst	IEC/EN61000-4-4, ± 2kV, class B (external	circuit required, see F	igure 3-a)		
surge	IEC/EN61000-4-5, line-line ± 2kV, class B (external circuit requir	ed, see Figur	e 3-a)	
conducted immunity	IEC/EN61000-4-6, 3 Vr.m.s, class A				
voltage dips & interruptions	IEC/EN61000-4-29, 0%-70%, class B				
MTBF	as per MIL-HDBK-217F, 25°C	1,000,000			hours
RoHS	yes				

Note: 12. See specific chassis mount and DIN-rail mount versions with UL approval on page 1.

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
vibration	10~55 Hz for 30 minutes on each axis		10		G

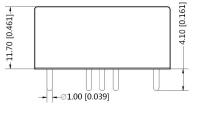

DERATING CURVES

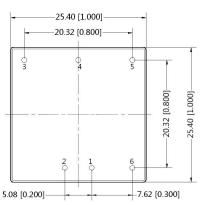
SOLDERABILITY¹³

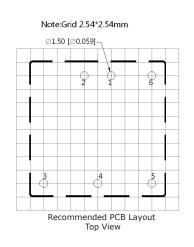
parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

Note: 13. For DIP models only.

MECHANICAL

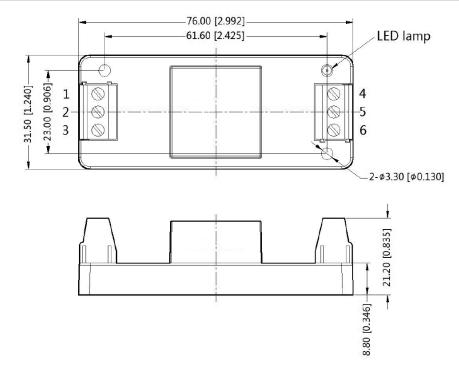

parameter		conditions/description	min	typ	max	units
dimensions	DIP Chassis DIN-Rail	25.40 x 25.40 x 11.70 [1.000 x 1.000 x 0.461 inch] 76.00 x 31.50 x 21.20 [2.992 x 1.240 x 0.834 inch] 76.00 x 31.50 x 25.80 [2.992 x 1.240 x 1.016 inch]				mm mm mm
case material		aluminum alloy				
weight		DIP Chassis mount DIN-rail mount		15 35 55		g g g


MECHANICAL DRAWING (DIP)


units: mm [inch] tolerance: ±0.50[±0.020]

pin diameter tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS					
PIN	Fund	ction			
PIN	Single	Dual			
1	GND	GND			
2	Vin	Vin			
3	+Vout	+Vout			
4	No Pin	0V			
5	0V	-Vout			
6	CTRL	CTRL			

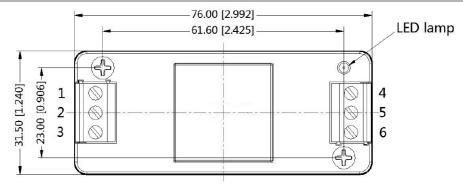


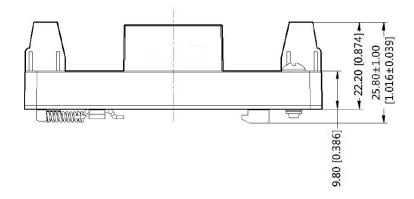
MECHANICAL DRAWING (CHASSIS)

units: mm [inch] tolerance: $\pm 0.50[\pm 0.020]$

wire range: 24~12 AWG tightening torque: max 0.4 N*m

PIN CONNECTIONS				
Fund	ction			
Single	Dual			
CTRL	CTRL			
GND	GND			
Vin	Vin			
0V	-Vout			
NC	0V			
+Vout	+Vout			
	Single CTRL GND Vin 0V NC			


MECHANICAL DRAWING (DIN-RAIL)


units: mm [inch] tolerance: ±0.50[±0.020]

installed on DIN rail TS35 wire range: 24~12 AWG

tightening torque: max 0.4 N*m

PIN CONNECTIONS					
PIN	Fund	ction			
PIN	Single	Dual			
1	CTRL	CTRL			
2	GND	GND			
3	Vin	Vin			
4	0V	-Vout			
5	NC	0V			
6	+Vout	+Vout			

APPLICATION CIRCUIT

This series has been tested according to the following recommended circuits (Figures 1 & 2) before leaving the factory. If you want to further reduce the input and output ripple, you can increase the input and output capacitors or select capacitors of low equivalent impedance provided that the capacitance is less than the maximum capacitive load of the model.

Figure 1
Single Output Models

Figure 2 Dual Output Models

Table 1

Vin (Vdc)	Cin (µF)	Cout (µF)
24	100	10
48	10~47	10

EMC RECOMMENDED CIRCUIT

Figure 3

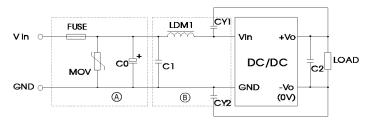


Table 2

Recommended External Circuit Components				
Vin (Vdc)	24	48		
FUSE	choose according to actual input current			
MOV	S20K30	S14K60		
C0	330 μF / 50 V	330 μF / 100 V		
C1	1 μF / 50 V	1 μF / 100 V		
C2	10 μF			
LDM1	4.7 μH			
CY1, CY2	1 nF / 2 kV			

REVISION HISTORY

rev.	description	date
1.0	initial release	06/21/2018
1.01	features and safety line updated, packaging removed	01/19/2021
1.02	remote start-up time updated	03/15/2021

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.