32-bit MCUs (up to 2 MB Live-Update Flash and 512 KB SRAM) with Audio and Graphics Interfaces, HS USB, Ethernet, and Advanced Analog

Operating Conditions

- 2.3 V to $3.6 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, DC to 200 MHz
- 2.3 V to $3.6 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$, DC to 180 MHz
- 2.3 V to $3.6 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Planned)

Core: 200 MHz (up to 330 DMIPS) microAptiv ${ }^{\text {TM }}$

- 16 KB I-Cache, 4 KB D-Cache
- MMU for optimum embedded OS execution
- microMIPS ${ }^{\text {™ }}$ mode for up to 35% smaller code size
- DSP-enhanced core:
- Four 64-bit accumulators
- Single-cycle MAC, saturating and fractional math
- Code-efficient (C and Assembly) architecture

Clock Management

- 0.9\% internal oscillator
- Programmable PLLs and oscillator clock sources
- Fail-Safe Clock Monitor (FSCM)
- Independent Watchdog Timers (WDT) and Deadman Timer (DMT)
- Fast wake-up and start-up

Power Management

- Low-power modes (Sleep and Idle)
- Integrated Power-on Reset and Brown-out Reset

Memory Interfaces

- 50 MHz External Bus Interface (EBI)
- 50 MHz Serial Quad Interface (SQI)

Audio and Graphics Interfaces

- Graphics interfaces: EBI or PMP
- Audio data communication: $I^{2} S, L J$, and RJ
- Audio control interfaces: SPI and $I^{2} C^{\text {TM }}$
- Audio master clock: Fractional clock frequencies with USB synchronization

High-Speed (HS) Communication Interfaces

 (with Dedicated DMA)- USB 2.0-compliant Hi-Speed On-The-Go (OTG) controller
- 10/100 Mbps Ethernet MAC with MII and RMII interface

Security Features

- Crypto Engine with a RNG for data encryption/decryption and authentication (AES, 3DES, SHA, MD5, and HMAC)
- Advanced memory protection:
- Peripheral and memory region access control

Direct Memory Access (DMA)

- Eight channels with automatic data size detection
- Programmable Cyclic Redundancy Check (CRC)

Advanced Analog Features

- 10-bit ADC resolution and up to 48 analog inputs
- Flexible and independent ADC trigger sources
- Two comparators with 32 programmable voltage references
- Temperature sensor with $\pm 2^{\circ} \mathrm{C}$ accuracy

Communication Interfaces

- Two CAN modules (with dedicated DMA channels):
- 2.0B Active with DeviceNet ${ }^{\text {TM }}$ addressing support
- Six UART modules (25 Mbps):
- Supports LIN 1.2 and IrDA ${ }^{\circledR}$ protocols
- Six 4-wire SPI modules
- SQI configurable as an additional SPI module (50 MHz)
- Five $I^{2} \mathrm{C}$ modules (up to 1 Mbaud) with SMBus support
- Parallel Master Port (PMP)
- Peripheral Pin Select (PPS) to enable function remap

Timers/Output Compare/Input Capture

- Nine 16-bit or up to four 32-bit timers/counters
- Nine Output Compare (OC) modules
- Nine Input Capture (IC) modules
- PPS to enable function remap
- Real-Time Clock and Calendar (RTCC) module

Input/Output

- 5V-tolerant pins with up to 32 mA source/sink
- Selectable open drain, pull-ups, and pull-downs
- External interrupts on all I/O pins

Qualification and Class B Support

- AEC-Q100 REVG (Grade $2-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$) Planned
- AEC-Q100 REVG (Grade $1-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) Planned
- Class B Safety Library, IEC 60730
- Back-up internal oscillator

Debugger Development Support

- In-circuit and in-application programming
- 4-wire MIPS ${ }^{\circledR}$ Enhanced JTAG interface
- Unlimited software and 12 complex breakpoints
- IEEE 1149.2-compatible (JTAG) boundary scan
- Non-intrusive hardware-based instruction trace

Software and Tools Support

- C/C++ compiler with native DSP/fractional support
- MPLAB ${ }^{\circledR}$ Harmony Integrated Software Framework
- TCP/IP, USB, Graphics, and mTouch ${ }^{\text {TM }}$ middleware
- MFi, Android ${ }^{T M}$, and Bluetooth ${ }^{\circledR}$ audio frameworks
- FreeRTOS ${ }^{\top M}$, OPENRTOS ${ }^{\circledR}, \mu C / O S^{\top M}$, and other popular RTOS kernels

Packages

Type	QFN	TQFP			VTLA	LQFP
Pin Count	64	64	100		144	124
I/O Pins (up to)	53	53	78		144	
Contact/Lead Pitch	0.50 mm	0.50 mm	0.40 mm	0.50 mm	0.40 mm	0.50 mm
Dimensions	$9 \times 9 \times 0.9 \mathrm{~mm}$	$10 \times 10 \times 1 \mathrm{~mm}$	$12 \times 12 \times 1 \mathrm{~mm}$	$14 \times 14 \times 1 \mathrm{~mm}$	$16 \times 16 \times 1 \mathrm{~mm}$	$9 \times 9 \times 0.9 \mathrm{~mm}$
	$20 \times 20 \times 1.40 \mathrm{~mm}$					

TABLE 1: PIC32MZ EC FAMILY FEATURES

TABLE 2：PIC32MZ EC FAMILY FEATURES（FUTURE PRODUCTS）

	әэะュ	＞						＞						＞						＞					
	כVIr	＞						＞						＞						＞					
	su！d 0 ／l	q						$\stackrel{\infty}{\sim}$						ฝ						$\stackrel{\sim}{\sim}$					
	эəиәч丬э	＞						＞						＞						＞					
	כЈ14	＞						＞						＞						＞					
	10 S	＞						＞						＞						＞					
	193	z						＞						＞						＞					
	dWd	＞						＞						＞						＞					
	${ }_{\text {w }} \mathrm{J}_{\text {z }}$	＋						๑						๑						\bigcirc					
	－10 SH 0＇Z asn	＞						＞						＞						＞					
	jexeduos 6opeuv	N						N						～						\sim					
	（sıəииечэ）วロナ	～						\％						$\stackrel{\infty}{\text { ¢ }}$						$\stackrel{\infty}{\square}$					
		$\underset{\infty}{N}$	$\frac{0}{\infty}$	$\frac{\infty}{\infty}$	$\stackrel{N}{\infty}$	$\left\|\begin{array}{l\|} 0 \\ \infty \\ \infty \end{array}\right\|$	$\stackrel{\infty}{\infty}$	$\left.\frac{N}{\infty} \right\rvert\,$	$\left\|\frac{0}{\infty}\right\|$	$\underset{\infty}{\infty}$	$\underset{\infty}{N}$	$\stackrel{0}{\infty}$		$\underset{\infty}{N}$	$\stackrel{\infty}{\infty}$	$\begin{array}{l\|l\|l\|l\|l\|l\|} \hline \infty \\ \hline \end{array}$	$\stackrel{\circ}{0}$	$\left.\right\|_{\infty} ^{\frac{0}{\infty}}$	$\underset{\infty}{\infty}$		$\frac{0}{\infty}$	$\sum_{\infty}^{\infty} \underset{\infty}{\infty}$	$\stackrel{N}{\infty} \left\lvert\, \frac{0}{\infty}\right.$		$\stackrel{\infty}{\infty}$
	ONY	$>$	＞	＞	\succ	$>$	＞	＞	$>$	＞	＞	＞	＞	＞	＞	＞	＞	＞	＞	＞	＞	＞	$\succ>$		＞
	이시	z	z	＞	z	z	＞	z	z	＞	z	z	$z>$	z	z	＞$>$	z	z	＞	z	z	＞z	z z		$>$
	$90{ }^{\circ} \mathrm{Z} \mathrm{NVO}$	\bigcirc	N	\sim	\bigcirc	\sim	\sim	－	\sim	\sim	\bigcirc	\sim	\sim	－	\sim	\sim	－	\sim	\sim	\bigcirc	\sim	～0	\bigcirc～		\sim
		\bigcirc						\bigcirc						\bullet						\bigcirc					
	$S_{z} \mathrm{l} / \mathrm{ldS}$	＊						\bullet						\bullet						ω					
	Iצ४n	\bullet						\bullet						\cdots						\bullet					
	（1）pieduos ｜s．au！！	$\frac{\stackrel{\circ}{\circ}}{\frac{D}{2}}$						$\frac{0}{\frac{0}{2}}$						$\frac{0}{8}$						$\frac{\stackrel{\rightharpoonup}{\partial}}{\stackrel{\rightharpoonup}{\circ}}$					
	suld ə əqeddewoy	＋						ธ						\because						®					
	（яу）Kıошәр ysely $\ddagger 009$	$\stackrel{\text { ® }}{\sim}$						$\stackrel{\circ}{\circ}$						$\stackrel{\circ}{\circ}$						8					
	sөбеуэеd	$\stackrel{0}{012}$						$\stackrel{\square}{10}$						$\stackrel{\text { ¢ }}{5}$						－					
	suld	¢						8						$\stackrel{\text { N }}{\sim}$						\＃					
		$\stackrel{\sim}{\sim}$			$\stackrel{\circ}{\sim}$			$\stackrel{\sim}{\sim}$			$\stackrel{\circ}{\sim}$			$\stackrel{\sim}{\sim}$				$\stackrel{\circ}{\sim}$		$\stackrel{\sim}{\sim}$			$\stackrel{\circ}{\circ}$		
	（яу）Кィошәр mexboud	～						～			ホ			～			ホ			N			－		
	әэ！ләа													N				亗	寺	$\xrightarrow{\text { ¢ }}$					

PIC32MZ Embedded Connectivity (EC) Family

Device Pin Tables

TABLE 3: PIN NAMES FOR 64-PIN DEVICES

32MZ0512EC(E/F/K)064 32MZ1024EC(G/H/M)064 32MZ1024EC(E/F/K)064 32MZ2048EC(G/H/M)064 QFN ${ }^{(4)}$			
Pin \#	Full Pin Name	Pin \#	Full Pin Name
1	AN17/ETXEN/RPE5/PMD5/RE5	33	Vbus
2	AN16/ETXD0/PMD6/RE6	34	Vusb3V3
3	AN15/ETXD1/PMD7/RE7	35	Vss
4	AN14/C1IND/RPG6/SCK2/PMA5/RG6	36	D-
5	AN13/C1INC/RPG7/SDA4/PMA4/RG7	37	D+
6	AN12/C2IND/RPG8/SCL4/PMA3/RG8	38	USBID/RPF3/RF3
7	Vss	39	Vdd
8	VDD	40	Vss
9	$\overline{\text { MCLR }}$	41	RPF4/SDA5/PMA9/RF4
10	AN11/C2INC/RPG9/PMA2/RG9	42	RPF5/SCL5/PMA8/RF5
11	AN45/C1INA/RPB5/RB5	43	AERXD0/ETXD2/RPD9/SDA1/PMCS2/PMA15/RD9
12	AN4/C1INB/RB4	44	ECOL/RPD10/SCL1/SCK4/RD10
13	AN3/C2INA/RPB3/RB3	45	AERXCLK/AEREFCLK/ECRS/RPD11/PMCS1/PMA14/RD11
14	AN2/C2INB/RPB2/RB2	46	AERXD1/ETXD3/RPD0/RTCC/INT0/RD0
15	PGEC1/VREF-/CVREF-/AN1/RPB1/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN46/RPB6/RB6	49	EMDIO/AEMDIO/RPD1/SCK1/RD1
18	PGED2/AN47/RPB7/RB7	50	ETXERR/AETXEN/RPD2/SDA3/RD2
19	AVdd	51	AERXERR/ETXCLK/RPD3/SCL3/RD3
20	AVss	52	SQICS0/RPD4/PMWR/RD4
21	AN48/RPB8/PMA10/RB8	53	SQICS1/RPD5/PMRD/RD5
22	AN49/RPB9/PMA7/RB9	54	Vdd
23	TMS/CVREFOUT/AN5/RPB10/PMA13/RB10	55	Vss
24	TDO/AN6/PMA12/RB11	56	ERXD3/AETXD1/RPF0/RF0
25	Vss	57	TRCLK/SQICLK/ERXD2/AETXD0/RPF1/RF1
26	VDD	58	TRD0/SQID0/ERXD1/PMD0/RE0
27	TCK/AN7/PMA11/RB12	59	Vss
28	TDI/AN8/RB13	60	VdD
29	AN9/RPB14/SCK3/PMA1/RB14	61	TRD1/SQID1/ERXD0/PMD1/RE1
30	AN10/EMDC/AEMDC/RPB15/OCFB/PMA0/RB15	62	TRD2/SQID2/ERXDV/ECRSDV/AECRSDV/PMD2/RE2
31	OSC1/CLKI/RC12	63	TRD3/SQID3/ERXCLK/EREFCLK/RPE3/PMD3/RE3
32	OSC2/CLKO/RC15	64	AN18/ERXERR/PMD4/RE4

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions.
2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information. Shaded pins are 5 V tolerant.
The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

PIC32MZ Embedded Connectivity (EC) Family

TABLE 4: PIN NAMES FOR 100-PIN DEVICES

PIC32MZ Embedded Connectivity (EC) Family

TABLE 4: PIN NAMES FOR 100-PIN DEVICES (CONTINUED)

TABLE 5: PIN NAMES FOR 124-PIN DEVICES

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions.
2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.
3: \quad Shaded pins are 5 V tolerant.
4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

TABLE 5: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

PIC32MZ0512EC(E/F/K)124 PIC32MZ1024EC(G/H/M)124 PIC32MZ1024EC(E/F/K)124 PIC32MZ2048EC(G/H/M)124 Polarity Indicator			
Package Pin \#	Full Pin Name	Package Pin \#	Full Pin Name
B1	EBIA5/AN34/PMA5/RA5	B29	Vss
B2	EBID6/AN16/PMD6/RE6	B30	D+
B3	EBIA6/AN22/RPC1/PMA6/RC1	B31	RPF2/SDA3/RF2
B4	AN36/ETXD1/RJ9	B32	ERXD0/RH8
B5	EBIWE/AN20/RPC3/PMWR/RC3	B33	ECOL/RH10
B6	AN14/C1IND/RPG6/SCK2/RG6	B34	EBIRDY1/SDA2/RA3
B7	EBIA3/AN12/C2IND/RPG8/SCL4/PMA3/RG8	B35	Vdd
B8	Vdd	B36	EBIA9/RPF4/SDA5/PMA9/RF4
B9	EBIA2/AN11/C2INC/RPG9/PMA2/RG9	B37	RPA14/SCL1/RA14
B10	AN25/RPE8/RE8	B38	EBIA15/RPD9/PMCS2/PMA15/RD9
B11	AN45/C1INA/RPB5/RB5	B39	EMDC/RPD11/RD11
B12	AN37/ERXCLK/EREFCLK/RJ11	B40	ERXDV/ECRSDV/RH13
B13	Vss	B41	SOSCI/RPC13/RC13
B14	PGEC2/AN46/RPB6/RB6	B42	EBID14/RPD2/PMD14/RD2
B15	Vref-/CVref-/AN27/RA9	B43	EBID12/RPD12/PMD12/RD12
B16	AVdD	B44	ETXERR/RJ0
B17	AN38/ETXD2/RH0	B45	EBIRDY3/RJ2
B18	EBIA10/AN48/RPB8/PMA10/RB8	B46	SQICS1/RPD5/RD5
B19	EBIA13/CVREFOUT/AN5/RPB10/PMA13/RB10	B47	ETXCLK/RPD7/RD7
B20	Vss	B48	Vss
B21	TCK/EBIA19/AN29/RA1	B49	EBID10/RPF1/PMD10/RF1
B22	TDO/EBIA17/AN31/RPF12/RF12	B50	EBID8/RPG0/PMD8/RG0
B23	AN8/RB13	B51	TRD3/SQID3/RA7
B24	EBIA0/AN10/RPB15/OCFB/PMA0/RB15	B52	EBIDO/PMD0/RE0
B25	Vdd	B53	Vdd
B26	AN41/ERXD1/RH5	B54	TRD2/SQID2/RG14
B27	AN32/AETXD0/RPD14/RD14	B55	TRD0/SQID0/RG13
B28	OSC1/CLKI/RC12	B56	EBID3/RPE3/PMD3/RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions.
2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.
3: \quad Shaded pins are 5 V tolerant.
4: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

PIC32MZ Embedded Connectivity (EC) Family

TABLE 6: PIN NAMES FOR 144-PIN DEVICES

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions.
2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information.
3: Shaded pins are 5 V tolerant.

TABLE 6: PIN NAMES FOR 144-PIN DEVICES (CONTINUED)

144	PIN LQFP AND TQFP (TOP VIEW) $\begin{aligned} & \text { PIC32MZ0512EC(E/F/K)144 } \\ & \text { PIC32MZ1024EC(G/H/M)144 } \\ & \text { PIC32MZ1024EC(E/F/K)144 } \\ & \text { PIC32MZ2048EC(G/H/M)144 } \end{aligned}$		
Pin Number	Full Pin Name	Pin Number	Full Pin Name
73	Vbus	109	RPD1/SCK1/RD1
74	VUSB3V3	110	EBID14/RPD2/PMD14/RD2
75	Vss	111	EBID15/RPD3/PMD15/RD3
76	D-	112	EBID12/RPD12/PMD12/RD12
77	D+	113	EBID13/PMD13/RD13
78	RPF3/USBID/RF3	114	ETXERR/RJ0
79	SDA3/RPF2/RF2	115	EMDIO/RJ1
80	SCL3/RPF8/RF8	116	EBIRDY3/RJ2
81	ERXD0/RH8	117	EBIA22/RJ3
82	ERXD3/RH9	118	SQICS0/RPD4/RD4
83	ECOL/RH10	119	SQICS1/RPD5/RD5
84	EBIRDY2/RH11	120	ETXEN/RPD6/RD6
85	SCL2/RA2	121	ETXCLK/RPD7/RD7
86	EBIRDY1/SDA2/RA3	122	VDD
87	EBIA14/PMCS1/PMA14/RA4	123	Vss
88	Vdd	124	EBID11/RPF0/PMD11/RF0
89	Vss	125	EBID10/RPF1/PMD10/RF1
90	EBIA9/RPF4/SDA5/PMA9/RF4	126	EBIA21/RK7
91	EBIA8/RPF5/SCL5/PMA8/RF5	127	EBID9/RPG1/PMD9/RG1
92	EBIA18/RK4	128	EBID8/RPG0/PMD8/RG0
93	EBIA19/RK5	129	TRCLK/SQICLK/RA6
94	EBIA20/RK6	130	TRD3/SQID3/RA7
95	RPA14/SCL1/RA14	131	EBICS0/RJ4
96	RPA15/SDA1/RA15	132	EBICS1/RJ5
97	EBIA15/RPD9/PMCS2/PMA15/RD9	133	EBICS2/RJ6
98	RPD10/SCK4/RD10	134	EBICS3/RJ7
99	EMDC/RPD11/RD11	135	EBID0/PMD0/RE0
100	ECRS/RH12	136	Vss
101	ERXDV/ECRSDV/RH13	137	Vdd
102	RH14	138	EBID1/PMD1/RE1
103	EBIA23/RH15	139	TRD2/SQID2/RG14
104	RPD0/RTCC/INT0/RD0	140	TRD1/SQID1/RG12
105	SOSCI/RPC13/RC13	141	TRD0/SQID0/RG13
106	SOSCO/RPC14/T1CK/RC14	142	EBID2/PMD2/RE2
107	VDD	143	EBID3/RPE3/PMD3/RE3
108	Vss	144	EBID4/AN18/PMD4/RE4
Note 1 2 3	The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select (PPS)" for restrictions. Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See Section 12.0 "I/O Ports" for more information. Shaded pins are 5V tolerant.		

PIC32MZ Embedded Connectivity (EC) Family

Table of Contents

1.0 Device Overview 15
2.0 Guidelines for Getting Started with 32-bit Microcontrollers 37
3.0 CPU 43
4.0 Memory Organization 55
5.0 Flash Program Memory 93
6.0 Resets 103
7.0 CPU Exceptions and Interrupt Controller 109
8.0 Oscillator Configuration 145
9.0 Prefetch Module 157
10.0 Direct Memory Access (DMA) Controller 161
11.0 Hi -Speed USB with On-The-Go (OTG) 185
12.0 I/O Ports 233
13.0 Timer1 269
14.0 Timer2/3, Timer4/5, Timer6/7, and Timer8/9. 273
15.0 Deadman Timer (DMT) 279
16.0 Watchdog Timer (WDT) 287
17.0 Input Capture. 291
18.0 Output Compare 295
19.0 Serial Peripheral Interface (SPI) and Inter-IC Sound (I2S) 301
20.0 Serial Quad Interface (SQI) 311
21.0 Inter-Integrated Circuit ${ }^{\top M}\left(I^{2} \mathrm{C}^{\top M}\right)$ 335
22.0 Universal Asynchronous Receiver Transmitter (UART) 343
23.0 Parallel Master Port (PMP) 351
24.0 External Bus Interface (EBI). 361
25.0 Real-Time Clock and Calendar (RTCC) 369
26.0 Crypto Engine. 379
27.0 Random Number Generator (RNG) 399
28.0 Pipelined Analog-to-Digital Converter (ADC) 405
29.0 Controller Area Network (CAN) 435
30.0 Ethernet Controller 473
31.0 Comparator 517
32.0 Comparator Voltage Reference (CVREF) 521
33.0 Power-Saving Features 525
34.0 Special Features 531
35.0 Instruction Set 555
36.0 Development Support. 557
37.0 Electrical Characteristics 561
38.0 AC and DC Characteristics Graphs. 609
39.0 Packaging Information 611
The Microchip Web Site 655
Customer Change Notification Service 655
Customer Support. 655
Product Identification System 656

PIC32MZ Embedded Connectivity (EC) Family

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual sections of the "PIC32 Family Reference Manual". These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the documents listed below, browse the documentation section of the Microchip website (www.microchip.com).

- Section 1. "Introduction" (DS60001127)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 18. "12-bit Pipelined Analog-to-Digital Converter (ADC)" (DS60001194)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit ${ }^{T M}\left(I^{2} C^{\top M}\right) "(D S 60001116)$
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)
- Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183)
- Section 42. "Oscillators with Enhanced PLL" (DS60001250)
- Section 46. "Serial Quad Interface (SQI)" (DS60001244)
- Section 47. "External Bus Interface (EBI)" (DS60001245)
- Section 48. "Memory Organization and Permissions" (DS60001214)
- Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246)
- Section 50. "CPU for Devices with microAptiv ${ }^{\text {TM }}$ Core" (DS60001192)
- Section 51. "Hi-Speed USB with On-The-Go (OTG)" (DS60001232)
- Section 52. "Flash Program Memory with Support for Live Update" (DS60001193)

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This data sheet contains device-specific information for PIC32MZ Embedded Connectivity (EC) devices.
Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MZ EC family of devices.
Table 1-21 through Table 1-22 list the pinout I/O descriptions for the pins shown in the device pin tables (see Table 3 through Table 6).

FIGURE 1-1:
PIC32MZ EC FAMILY BLOCK DIAGRAM

Note: \quad Not all features are available on all devices. Refer to TABLE 1: "PIC32MZ EC Family Features" for the list of features by device.

TABLE 1-1: ADC1 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description	
	64-pin QFN/ TQFP	$\begin{gathered} \text { 100-pin } \\ \text { TQFP } \end{gathered}$	124-pin VTLA	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$				
AN0	16	25	A18	36	1	Analog	Analog Input Channels	
AN1	15	24	A17	35	1	Analog		
AN2	14	23	A16	34	1	Analog		
AN3	13	22	A14	31	1	Analog		
AN4	12	21	A13	26	1	Analog		
AN5	23	34	B19	49	1	Analog		
AN6	24	35	A24	50	1	Analog		
AN7	27	41	A27	59	1	Analog		
AN8	28	42	B23	60	I	Analog		
AN9	29	43	A28	61	1	Analog		
AN10	30	44	B24	62	1	Analog		
AN11	10	16	B9	21	1	Analog		
AN12	6	12	B7	16	1	Analog		
AN13	5	11	A8	15	1	Analog		
AN14	4	10	B6	14	1	Analog		
AN15	3	5	A4	5	1	Analog		
AN16	2	4	B2	4	1	Analog		
AN17	1	3	A3	3	1	Analog		
AN18	64	100	A67	144	1	Analog		
AN19	-	9	A7	13	1	Analog		
AN20	-	8	B5	12	1	Analog		
AN21	-	7	A6	11	1	Analog		
AN22	-	6	B3	6	1	Analog		
AN23	-	1	A2	1	1	Analog		
AN24	-	17	A11	22	1	Analog		
AN25	-	18	B10	23	1	Analog		
AN26	-	19	A12	24	1	Analog		
AN27	-	28	B15	39	1	Analog		
AN28	-	29	A20	40	1	Analog		
AN29	-	38	B21	56	1	Analog		
AN30	-	39	A26	57	1	Analog		
AN31	-	40	B22	58	1	Analog		
AN32	-	47	B27	69	1	Analog		
AN33	-	48	A32	70	1	Analog		
AN34	-	2	B1	2	1	Analog		
AN35	-	-	A5	7	1	Analog		
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{O}=\text { Output }$ PPS $=$ Peripheral Pin Select		$\begin{aligned} & \hline \mathrm{P}=\text { Power } \\ & \mathrm{I}=\text { Input } \end{aligned}$

TABLE 1-1: ADC1 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number				Pin Type	Buffer Type	Description	
	64-pin QFN/ TQFP	$\begin{gathered} \text { 100-pin } \\ \text { TQFP } \end{gathered}$	124-pin VTLA	144-pin TQFP/ LQFP				
AN36	-	-	B4	8	1	Analog	Analog Input Channels	
AN37	-	-	B12	27	I	Analog		
AN38	-	-	B17	43	I	Analog		
AN39	-	-	A22	44	1	Analog		
AN40	-	-	A30	65	1	Analog		
AN41	-	-	B26	66	I	Analog		
AN42	-	-	A31	67	I	Analog		
AN45	11	20	B11	25	I	Analog		
AN46	17	26	B14	37	I	Analog		
AN47	18	27	A19	38	I	Analog		
AN48	21	32	B18	47	I	Analog		
AN49	22	33	A23	48	I	Analog		
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input$\begin{aligned} & \text { O = Output } \\ & \text { PPS = Peripheral Pin Select } \end{aligned}$		$\begin{aligned} & \text { P = Power } \\ & \text { I = Input } \end{aligned}$

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	$\begin{array}{\|l\|} \text { 144-pin } \\ \text { TQFP/ } \\ \text { LQFP } \end{array}$			
CLKI	31	49	B28	71	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.
CLKO	32	50	A33	72	0	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	31	49	B28	71	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	32	50	A33	72	0	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	47	72	B41	105	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	48	73	A49	106	0	-	32.768 low-power oscillator crystal output.
REFCLKI1	PPS	PPS	PPS	PPS	I	-	Reference Clock Generator Inputs 1-4
REFCLKI3	PPS	PPS	PPS	PPS	I	-	
REFCLKI4	PPS	PPS	PPS	PPS	1	-	
REFCLKO1	PPS	PPS	PPS	PPS	0	-	Reference Clock Generator Outputs 1-4
REFCLKO3	PPS	PPS	PPS	PPS	0	-	
REFCLKO4	PPS	PPS	PPS	PPS	0	-	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog }=A \\ & O=O \text { Outpu } \\ & \text { PPS }=\text { Per } \end{aligned}$	Analog input $P=$ Power $I=$ Input

TABLE 1-3: IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
Input Capture							
IC1	PPS	PPS	PPS	PPS	I	ST	Input Capture Inputs 1-9
IC2	PPS	PPS	PPS	PPS	I	ST	
IC3	PPS	PPS	PPS	PPS	I	ST	
IC4	PPS	PPS	PPS	PPS	I	ST	
IC5	PPS	PPS	PPS	PPS	I	ST	
IC6	PPS	PPS	PPS	PPS	I	ST	
IC7	PPS	PPS	PPS	PPS	I	ST	
IC8	PPS	PPS	PPS	PPS	I	ST	
IC9	PPS	PPS	PPS	PPS	1	ST	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = Analog input } \\ & O=\text { Output } \\ & \text { PPS = Peripheral Pin Select } \end{aligned}$	

TABLE 1-4: OC1 THROUGH OC9 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	100-pin TQFP	124-pin VTLA	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
Output Compare							
OC1	PPS	PPS	PPS	PPS	0	-	Output Compare Outputs 1-9
OC2	PPS	PPS	PPS	PPS	0	-	
OC3	PPS	PPS	PPS	PPS	0	-	
OC4	PPS	PPS	PPS	PPS	0	-	
OC5	PPS	PPS	PPS	PPS	0	-	
OC6	PPS	PPS	PPS	PPS	0	-	
OC7	PPS	PPS	PPS	PPS	0	-	
OC8	PPS	PPS	PPS	PPS	0	-	
OC9	PPS	PPS	PPS	PPS	0	-	
OCFA	PPS	PPS	PPS	PPS	1	ST	Output Compare Fault A Input
OCFB	30	44	B24	62	1	ST	Output Compare Fault B Input
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS $=$ Peripheral Pin Select	

TABLE 1-5: EXTERNAL INTERRUPTS PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description	
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	$\begin{array}{\|l\|} \text { 144-pin } \\ \text { TQFP/ } \\ \text { LQFP } \end{array}$				
External Interrupts								
INTO	46	71	A48	104	I	ST	External Interrupt 0	
INT1	PPS	PPS	PPS	PPS	I	ST	External Interrupt 1	
INT2	PPS	PPS	PPS	PPS	I	ST	External Interrupt 2	
INT3	PPS	PPS	PPS	PPS	I	ST	External Interrupt 3	
INT4	PPS	PPS	PPS	PPS	I	ST	External Interrupt 4	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = Analog input } \\ & 0=\text { Output } \\ & \text { PPS = Peripheral Pin Select } \end{aligned}$		$\begin{aligned} & \mathrm{P}=\text { Power } \\ & \mathrm{I}=\text { Input } \end{aligned}$

PIC32MZ Embedded Connectivity (EC) Family

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	100-pin TQFP	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	144-pin TQFP/ LQFP			
PORTA							
RA0	-	17	A11	22	I/O	ST	PORTA is a bidirectional I/O port
RA1	-	38	B21	56	1/0	ST	
RA2	-	59	A41	85	1/0	ST	
RA3	-	60	B34	86	1/O	ST	
RA4	-	61	A42	87	I/O	ST	
RA5	-	2	B1	2	I/O	ST	
RA6	-	89	A61	129	1/0	ST	
RA7	-	90	B51	130	I/O	ST	
RA9	-	28	B15	39	I/O	ST	
RA10	-	29	A20	40	I/O	ST	
RA14	-	66	B37	95	I/O	ST	
RA15	-	67	A45	96	1/O	ST	
PORTB							
RB0	16	25	A18	36	I/O	ST	PORTB is a bidirectional I/O port
RB1	15	24	A17	35	I/O	ST	
RB2	14	23	A16	34	I/O	ST	
RB3	13	22	A14	31	I/O	ST	
RB4	12	21	A13	26	I/O	ST	
RB5	11	20	B11	25	I/O	ST	
RB6	17	26	B14	37	I/O	ST	
RB7	18	27	A19	38	I/O	ST	
RB8	21	32	B18	47	I/O	ST	
RB9	22	33	A23	48	I/O	ST	
RB10	23	34	B19	49	I/O	ST	
RB11	24	35	A24	50	I/O	ST	
RB12	27	41	A27	59	I/O	ST	
RB13	28	42	B23	60	I/O	ST	
RB14	29	43	A28	61	I/O	ST	
RB15	30	44	B24	62	I/O	ST	
PORTC							
RC1	-	6	B3	6	I/O	ST	PORTC is a bidirectional I/O port
RC2	-	7	A6	11	I/O	ST	
RC3	-	8	B5	12	I/O	ST	
RC4	-	9	A7	13	I/O	ST	
RC12	31	49	B28	71	I/O	ST	
RC13	47	72	B41	105	1/0	ST	
RC14	48	73	A49	106	I/O	ST	
RC15	32	50	A33	72	I/O	ST	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	144-pin TQFP/ LQFP			
PORTD							
RD0	46	71	A48	104	I/O	ST	PORTD is a bidirectional I/O port
RD1	49	76	A52	109	I/O	ST	
RD2	50	77	B42	110	I/O	ST	
RD3	51	78	A53	111	I/O	ST	
RD4	52	81	A56	118	1/O	ST	
RD5	53	82	B46	119	1/O	ST	
RD6	-	-	A57	120	1/0	ST	
RD7	-	-	B47	121	1/O	ST	
RD9	43	68	B38	97	1/0	ST	
RD10	44	69	A46	98	1/0	ST	
RD11	45	70	B39	99	1/0	ST	
RD12	-	79	B43	112	I/O	ST	
RD13	-	80	A54	113	1/0	ST	
RD14	-	47	B27	69	1/0	ST	
RD15	-	48	A32	70	1/O	ST	
PORTE							
RE0	58	91	B52	135	I/O	ST	PORTE is a bidirectional I/O port
RE1	61	94	A64	138	1/0	ST	
RE2	62	98	A66	142	1/0	ST	
RE3	63	99	B56	143	I/O	ST	
RE4	64	100	A67	144	I/O	ST	
RE5	1	3	A3	3	I/O	ST	
RE6	2	4	B2	4	1/O	ST	
RE7	3	5	A4	5	I/O	ST	
RE8	-	18	B10	23	I/O	ST	
RE9	-	19	A12	24	I/O	ST	
PORTF							
RF0	56	85	A59	124	I/O	ST	PORTF is a bidirectional I/O port
RF1	57	86	B49	125	I/O	ST	
RF2	-	57	B31	79	I/O	ST	
RF3	38	56	A38	78	I/O	ST	
RF4	41	64	B36	90	I/O	ST	
RF5	42	65	A44	91	I/O	ST	
RF8	-	58	A39	80	I/O	ST	
RF12	-	40	B22	58	1/0	ST	
RF13	-	39	A26	57	I/O	ST	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input P = Power $O=$ Output $\mathrm{I}=$ Input PPS $=$ Peripheral Pin Select	

PIC32MZ Embedded Connectivity (EC) Family

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
PORTG							
RG0	-	88	B50	128	I/O	ST	PORTG is a bidirectional I/O port
RG1	-	87	A60	127	I/O	ST	
RG6	4	10	B6	14	I/O	ST	
RG7	5	11	A8	15	I/O	ST	
RG8	6	12	B7	16	I/O	ST	
RG9	10	16	B9	21	I/O	ST	
RG12	-	96	A65	140	I/O	ST	
RG13	-	97	B55	141	I/O	ST	
RG14	-	95	B54	139	I/O	ST	
RG15	-	1	A2	1	1/O	ST	
PORTH							
RH0	-	-	B17	43	I/O	ST	PORTH is a bidirectional I/O port
RH1	-	-	A22	44	I/O	ST	
RH2	-	-	-	45	I/O	ST	
RH3	-	-	-	46	I/O	ST	
RH4	-	-	A30	65	I/O	ST	
RH5	-	-	B26	66	I/O	ST	
RH6	-	-	A31	67	I/O	ST	
RH7	-	-	-	68	I/O	ST	
RH8	-	-	B32	81	I/O	ST	
RH9	-	-	A40	82	I/O	ST	
RH10	-	-	B33	83	I/O	ST	
RH11	-	-	-	84	1/0	ST	
RH12	-	-	A47	100	I/O	ST	
RH13	-	-	B40	101	I/O	ST	
RH14	-	-	-	102	I/O	ST	
RH15	-	-	-	103	I/O	ST	
PORTJ							
RJ0	-	-	B44	114	I/O	ST	PORTJ is a bidirectional I/O port
RJ1	-	-	A55	115	I/O	ST	
RJ2	-	-	B45	116	I/O	ST	
RJ3	-	-	-	117	I/O	ST	
RJ4	-	-	A62	131	I/O	ST	
RJ5	-	-	-	132	I/O	ST	
RJ6	-	-	-	133	I/O	ST	
RJ7	-	-	-	134	I/O	ST	
RJ8	-	-	A5	7	I/O	ST	
RJ9	-	-	B4	8	I/O	ST	
RJ10	-	-	-	10	I/O	ST	
RJ11	-	-	B12	27	1/0	ST	
RJ12	-	-	-	9	I/O	ST	
RJ13	-	-	-	28	I/O	ST	
RJ14	-	-	-	29	I/O	ST	
RJ15	-	-	-	30	I/O	ST	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $O=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	124-pin VTLA	144-pin TQFP/ LQFP			
PORTK							
RK0	-	-	-	19	I/O	ST	PORTK is a bidirectional I/O port
RK1	-	-	-	51	I/O	ST	
RK2	-	-	-	52	I/O	ST	
RK3	-	-	-	53	I/O	ST	
RK4	-	-	-	92	1/O	ST	
RK5	-	-	-	93	1/O	ST	
RK6	-	-	-	94	1/O	ST	
RK7	-	-	-	126	1/O	ST	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	100-pin TQFP	124-pin VTLA	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
Timer1 through Timer9							
T1CK	48	73	A49	106	I	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	PPS	1	ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	PPS	I	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	PPS	1	ST	Timer5 External Clock Input
T6CK	PPS	PPS	PPS	PPS	1	ST	Timer6 External Clock Input
T7CK	PPS	PPS	PPS	PPS	1	ST	Timer7 External Clock Input
T8CK	PPS	PPS	PPS	PPS	1	ST	Timer8 External Clock Input
T9CK	PPS	PPS	PPS	PPS	1	ST	Timer9 External Clock Input
Real-Time Clock and Calendar							
RTCC	46	71	A48	104	\bigcirc	-	Real-Time Clock Alarm/Seconds Output
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog $=$ Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS $=$ Peripheral Pin Select	

TABLE 1-8: UART1 THROUGH UART6 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	100-pin TQFP	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
Universal Asynchronous Receiver Transmitter 1							
U1RX	PPS	PPS	PPS	PPS	I	ST	UART1 Receive
U1TX	PPS	PPS	PPS	PPS	0	-	UART1 Transmit
$\overline{\text { U1CTS }}$	PPS	PPS	PPS	PPS	I	ST	UART1 Clear to Send
$\overline{\text { U1RTS }}$	PPS	PPS	PPS	PPS	0	-	UART1 Ready to Send
Universal Asynchronous Receiver Transmitter 2							
U2RX	PPS	PPS	PPS	PPS	I	ST	UART2 Receive
U2TX	PPS	PPS	PPS	PPS	0	-	UART2 Transmit
$\overline{\text { U2CTS }}$	PPS	PPS	PPS	PPS	1	ST	UART2 Clear To Send
U2RTS	PPS	PPS	PPS	PPS	0	-	UART2 Ready To Send
Universal Asynchronous Receiver Transmitter 3							
U3RX	PPS	PPS	PPS	PPS	1	ST	UART3 Receive
U3TX	PPS	PPS	PPS	PPS	0	-	UART3 Transmit
$\overline{\text { U3CTS }}$	PPS	PPS	PPS	PPS	1	ST	UART3 Clear to Send
$\overline{\text { U3RTS }}$	PPS	PPS	PPS	PPS	0	-	UART3 Ready to Send
Universal Asynchronous Receiver Transmitter 4							
U4RX	PPS	PPS	PPS	PPS	1	ST	UART4 Receive
U4TX	PPS	PPS	PPS	PPS	0	-	UART4 Transmit
$\overline{\text { U4CTS }}$	PPS	PPS	PPS	PPS	I	ST	UART4 Clear to Send
U4RTS	PPS	PPS	PPS	PPS	0	-	UART4 Ready to Send
Universal Asynchronous Receiver Transmitter 5							
U5RX	PPS	PPS	PPS	PPS	I	ST	UART5 Receive
U5TX	PPS	PPS	PPS	PPS	0	-	UART5 Transmit
U5CTS	PPS	PPS	PPS	PPS	I	ST	UART5 Clear to Send
$\overline{\text { U5RTS }}$	PPS	PPS	PPS	PPS	0	-	UART5 Ready to Send
Universal Asynchronous Receiver Transmitter 6							
U6RX	PPS	PPS	PPS	PPS	I	ST	UART6 Receive
U6TX	PPS	PPS	PPS	PPS	0	-	UART6 Transmit
$\overline{\text { U6CTS }}$	PPS	PPS	PPS	PPS	1	ST	UART6 Clear to Send
$\overline{\text { U6RTS }}$	PPS	PPS	PPS	PPS	0	-	UART6 Ready to Send
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

TABLE 1-9: SPI1 THROUGH SPI 6 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	100-pin TQFP	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
Serial Peripheral Interface 1							
SCK1	49	76	A52	109	I/O	ST	SPI1 Synchronous Serial Clock Input/Output
SDI1	PPS	PPS	PPS	PPS	I	ST	SPI1 Data In
SDO1	PPS	PPS	PPS	PPS	0	-	SPI1 Data Out
$\overline{\overline{S S 1}}$	PPS	PPS	PPS	PPS	1/0	ST	SPI1 Slave Synchronization Or Frame Pulse I/O
Serial Peripheral Interface 2							
SCK2	4	10	B6	14	1/0	ST	SPI2 Synchronous Serial Clock Input/output
SDI2	PPS	PPS	PPS	PPS	I	ST	SPI2 Data In
SDO2	PPS	PPS	PPS	PPS	0	-	SPI2 Data Out
$\overline{\overline{S S} 2}$	PPS	PPS	PPS	PPS	1/0	ST	SPI2 Slave Synchronization Or Frame Pulse I/O
Serial Peripheral Interface 3							
SCK3	29	43	A28	61	1/O	ST	SPI3 Synchronous Serial Clock Input/Output
SDI3	PPS	PPS	PPS	PPS	I	ST	SPI3 Data In
SDO3	PPS	PPS	PPS	PPS	0	-	SPI3 Data Out
$\overline{\text { SS3 }}$	PPS	PPS	PPS	PPS	1/0	ST	SPI3 Slave Synchronization Or Frame Pulse I/O
Serial Peripheral Interface 4							
SCK4	44	69	A46	98	I/O	ST	SPI4 Synchronous Serial Clock Input/Output
SDI4	PPS	PPS	PPS	PPS	I	ST	SPI4 Data In
SDO4	PPS	PPS	PPS	PPS	0	-	SPI4 Data Out
$\overline{\text { SS4 }}$	PPS	PPS	PPS	PPS	1/0	ST	SPI4 Slave Synchronization Or Frame Pulse I/O
Serial Peripheral Interface 5							
SCK5	-	39	A26	57	I/O	ST	SPI5 Synchronous Serial Clock Input/Output
SDI5	-	PPS	PPS	PPS	I	ST	SPI5 Data In
SDO5	-	PPS	PPS	PPS	0	-	SPI5 Data Out
$\overline{\text { SS5 }}$	-	PPS	PPS	PPS	1/0	ST	SPI5 Slave Synchronization Or Frame Pulse I/O
Serial Peripheral Interface 6							
SCK6	-	48	A32	70	1/O	ST	SPI6 Synchronous Serial Clock Input/Output
SDI6	-	PPS	PPS	PPS	I	ST	SPI6 Data In
SDO6	-	PPS	PPS	PPS	0	-	SPI6 Data Out
$\overline{\text { SS6 }}$	-	PPS	PPS	PPS	1/0	ST	SPI6 Slave Synchronization Or Frame Pulse I/O
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS $=$ Peripheral Pin Select	

PIC32MZ Embedded Connectivity (EC) Family

TABLE 1-10: I2C1 THROUGH I2C5 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	124-pin VTLA	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
Inter-Integrated Circuit 1							
SCL1	44	66	B37	95	I/O	ST	I2C1 Synchronous Serial Clock Input/Output
SDA1	43	67	A45	96	1/0	ST	I2C1 Synchronous Serial Data Input/Output
Inter-Integrated Circuit 2							
SCL2	-	59	A41	85	I/O	ST	I2C2 Synchronous Serial Clock Input/Output
SDA2	-	60	B34	86	1/0	ST	I2C2 Synchronous Serial Data Input/Output
Inter-Integrated Circuit 3							
SCL3	51	58	A39	80	I/O	ST	I2C3 Synchronous Serial Clock Input/Output
SDA3	50	57	B31	79	I/O	ST	I2C3 Synchronous Serial Data Input/Output
Inter-Integrated Circuit 4							
SCL4	6	12	B7	16	I/O	ST	I2C4 Synchronous Serial Clock Input/Output
SDA4	5	11	A8	15	I/O	ST	I2C4 Synchronous Serial Data Input/Output
Inter-Integrated Circuit 5							
SCL5	42	65	A44	91	I/O	ST	I2C5 Synchronous Serial Clock Input/Output
SDA5	41	64	B36	90	1/0	ST	I2C5 Synchronous Serial Data Input/Output
Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer						Analog $=$ Analog input $\mathrm{P}=$ Power $O=O$ Otput $\mathrm{I}=$ Input PPS $=$ Peripheral Pin Select	

TABLE 1-11: COMPARATOR 1, COMPARATOR 2 AND CVREF PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{gathered} \text { 100-pin } \\ \text { TQFP } \end{gathered}$	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	144-pin TQFP/ LQFP			
Comparator Voltage Reference							
CVREF+	16	29	A20	40	I	Analog	Comparator Voltage Reference (High) Input
CVREF-	15	28	B15	39	1	Analog	Comparator Voltage Reference (Low) Input
CVREFOUT	23	34	B19	49	0	Analog	Comparator Voltage Reference Output
Comparator 1							
C1INA	11	20	B11	25	1	Analog	Comparator 1 Positive Input
C1INB	12	21	A13	26	1	Analog	Comparator 1 Selectable Negative Input
C1INC	5	11	A8	15	1	Analog	
C1IND	4	10	B6	14	I	Analog	
C10UT	PPS	PPS	PPS	PPS	0	-	Comparator 1 Output
Comparator 2							
C2INA	13	22	A14	31	1	Analog	Comparator 2 Positive Input
C2INB	14	23	A16	34	1	Analog	Comparator 2 Selectable Negative Input
C2INC	10	16	B9	21	1	Analog	
C2IND	6	12	B7	16	1	Analog	
C2OUT	PPS	PPS	PPS	PPS	0	-	Comparator 2 Output
Legend: \quad CMOS $=$ CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer						Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

TABLE 1-12: PMP PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	144-pin TQFP/ LQFP			
PMAO	30	44	B24	30	1/0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
PMA1	29	43	A28	51	I/O	TTL/ST	Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)
PMA2	10	16	B9	21	0	-	Parallel Master Port Address (Demultiplexed Master
PMA3	6	12	B7	52	0	-	modes)
PMA4	5	11	A8	68	0	-	
PMA5	4	2	B1	2	0	-	
PMA6	16	6	B3	6	0	-	
PMA7	22	33	A23	48	0	-	
PMA8	42	65	A44	91	0	-	
PMA9	41	64	B36	90	0	-	
PMA10	21	32	B18	47	0	-	
PMA11	27	41	A27	29	0	-	
PMA12	24	7	A6	11	0	-	
PMA13	23	34	B19	28	0	-	
PMA14	45	61	A42	87	0	-	
PMA15	43	68	B38	97	0	-	
PMCS1	45	61	A42	87	0	-	Parallel Master Port Chip Select 1 Strobe
PMCS2	43	68	B38	97	0	-	Parallel Master Port Chip Select 2 Strobe
PMD0	58	91	B52	135	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master
PMD1	61	94	A64	138	1/0	TTL/ST	mode) or Address/Data (Multiplexed Master modes)
PMD2	62	98	A66	142	1/0	TTL/ST	
PMD3	63	99	B56	143	I/O	TTL/ST	
PMD4	64	100	A67	144	1/0	TTL/ST	
PMD5	1	3	A3	3	1/0	TTL/ST	
PMD6	2	4	B2	4	1/0	TTL/ST	
PMD7	3	5	A4	5	1/0	TTL/ST	
PMD8	-	88	B50	128	1/0	TTL/ST	
PMD9	-	87	A60	127	I/O	TTL/ST	
PMD10	-	86	B49	125	1/0	TTL/ST	
PMD11	-	85	A59	124	1/0	TTL/ST	
PMD12	-	79	B43	112	1/0	TTL/ST	
PMD13	-	80	A54	113	I/O	TTL/ST	
PMD14	-	77	B42	110	I/O	TTL/ST	
PMD15	-	78	A53	111	1/0	TTL/ST	
PMALL	30	44	B24	30	0	-	Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)
PMALH	29	43	A28	51	0	-	Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)
PMRD	53	9	A7	13	0	-	Parallel Master Port Read Strobe
PMWR	52	8	B5	12	0	-	Parallel Master Port Write Strobe
Legend:	CMOS $=$ CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = } \\ & O=\text { Outp } \\ & \text { PPS }=\text { Pe } \end{aligned}$	Analog input $\mathrm{P}=$ Power $\mathrm{I}=$ Input

TABLE 1-13: EBI PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{gathered} \text { 100-pin } \\ \text { TQFP } \end{gathered}$	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	$\begin{array}{\|l} \text { 144-pin } \\ \text { TQFP/ } \\ \text { LQFP } \end{array}$			
EBIAO	-	44	B24	30	0	-	External Bus Interface Address Bus
EBIA1	-	43	A28	51	0	-	
EBIA2	-	16	B9	21	0	-	
EBIA3	-	12	B7	52	0	-	
EBIA4	-	11	A8	68	0	-	
EBIA5	-	2	B1	2	0	-	
EBIA6	-	6	B3	6	0	-	
EBIA7	-	33	A23	48	0	-	
EBIA8	-	65	A44	91	0	-	
EBIA9	-	64	B36	90	0	-	
EBIA10	-	32	B18	47	0	-	
EBIA11	-	41	A27	29	0	-	
EBIA12	-	7	A6	11	0	-	
EBIA13	-	34	B19	28	0	-	
EBIA14	-	61	A42	87	0	-	
EBIA15	-	68	B38	97	0	-	
EBIA16	-	17	A11	19	0	-	
EBIA17	-	40	B22	53	0	-	
EBIA18	-	39	A26	92	0	-	
EBIA19	-	38	B21	93	0	-	
EBIA20	-	-	-	94	0	-	
EBIA21	-	-	-	126	0	-	
EBIA22	-	-	-	117	0	-	
EBIA23	-	-	-	103	0	-	
EBID0	-	91	B52	135	I/O	ST	External Bus Interface Data I/O Bus
EBID1	-	94	A64	138	1/0	ST	
EBID2	-	98	A66	142	1/0	ST	
EBID3	-	99	B56	143	1/0	ST	
EBID4	-	100	A67	144	I/O	ST	
EBID5	-	3	A3	3	I/O	ST	
EBID6	-	4	B2	4	1/0	ST	
EBID7	-	5	A4	5	1/0	ST	
EBID8	-	88	B50	128	I/O	ST	
EBID9	-	87	A60	127	I/O	ST	
EBID10	-	86	B49	125	I/O	ST	
EBID11	-	85	A59	124	1/O	ST	
EBID12	-	79	B43	112	1/O	ST	
EBID13	-	80	A54	113	I/O	ST	
EBID14	-	77	B42	110	I/O	ST	
EBID15	-	78	A53	111	1/O	ST	
EBIBS0	-	-	-	9	0	-	External Bus Interface Byte Select
EBIBS1	-	-	-	10	0	-	
EBICS0	-	59	A41	131	0	-	External Bus Interface Chip Select
$\overline{\text { EBICS1 }}$	-	-	-	132	0	-	
EBICS2	-	-	-	133	0	-	
EBICS3	-	-	-	134	0	-	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

PIC32MZ Embedded Connectivity (EC) Family

TABLE 1-13: EBI PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	124-pin VTLA	$\begin{array}{\|l\|} \text { 144-pin } \\ \text { TQFP/ } \\ \text { LQFP } \end{array}$			
$\overline{\text { EBIOE }}$	-	9	A7	13	0	-	External Bus Interface Output Enable
EBIRDY1	-	60	B34	86	I	ST	External Bus Interface Ready Input
EBIRDY2	-	58	A39	84	I	ST	
EBIRDY3	-	57	B45	116	I	ST	
$\overline{\text { EBIRP }}$	-	-	-	45	0	-	External Bus Interface Flash Reset Pin
$\overline{\text { EBIWE }}$	-	8	B5	12	0	-	External Bus Interface Write Enable
Legend:	$\begin{aligned} & \mathrm{MOS}=\mathrm{C} \\ & \mathrm{~T}=\mathrm{Schn} \\ & \mathrm{TL}=\mathrm{Trar} \end{aligned}$	OS-comp t Trigger in istor-trans	tible inpu put with C stor Logic	or output MOS level input buffe		Analog $\mathrm{O}=\mathrm{Outp}$ PPS = P	Analog input $\mathrm{P}=$ Power $\mathrm{I}=$ Input

TABLE 1-14: USB PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				Pin Type	Buffer Type	Description	
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$				
VBuS	33	51	A35	73	I	Analog	USB bus power monitor	
VUSB3V3	34	52	A36	74	P	-	USB internal transceiver supply. If the USB module is not used, this pin must be connected to Vss.	
D+	37	55	B30	77	I/O	Analog	USB D+	
D-	36	54	A37	76	I/O	Analog	USB D-	
USBID	38	56	A38	78	1	ST	USB OTG ID detect	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = Analog input } \\ & O=O \text { Otput } \\ & \text { PPS = Peripheral Pin Select } \end{aligned}$		$\begin{aligned} & \text { P = Power } \\ & \text { I = Input } \end{aligned}$

TABLE 1-15: CAN1 AND CAN2 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description	
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 124-pin } \\ & \text { VTLA } \end{aligned}$	144-pin TQFP/ LQFP				
C1TX	PPS	PPS	PPS	PPS	0	-	CAN1 Bus Transmi	
C1RX	PPS	PPS	PPS	PPS	1	ST	CAN1 Bus Receive	
C2TX	PPS	PPS	PPS	PPS	0	-	CAN2 Bus Transmi	
C2RX	PPS	PPS	PPS	PPS	1	ST	CAN2 Bus Receive	
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = Analog input } \\ & O=\text { Output } \\ & \text { PPS = Peripheral Pin Select } \end{aligned}$		$\begin{aligned} & \mathrm{P}=\text { Power } \\ & \mathrm{I}=\text { Input } \end{aligned}$

TABLE 1-16: ETHERNET MII I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	144-pin TQFP/ LQFP			
ERXD0	61	41	B32	81	1	ST	Ethernet Receive Data 0
ERXD1	58	42	B26	66	I	ST	Ethernet Receive Data 1
ERXD2	57	43	A31	67	I	ST	Ethernet Receive Data 2
ERXD3	56	44	A40	82	I	ST	Ethernet Receive Data 3
ERXERR	64	35	A30	65	I	ST	Ethernet Receive Error Input
ERXDV	62	12	B40	101	I	ST	Ethernet Receive Data Valid
ERXCLK	63	16	B12	27	1	ST	Ethernet Receive Clock
ETXD0	2	86	A5	7	0	-	Ethernet Transmit Data 0
ETXD1	3	85	B4	8	0	-	Ethernet Transmit Data 1
ETXD2	43	79	B17	43	0	-	Ethernet Transmit Data 2
ETXD3	46	80	A22	44	0	-	Ethernet Transmit Data 3
ETXERR	50	87	B44	114	0	-	Ethernet Transmit Error
ETXEN	1	77	A57	120	0	-	Ethernet Transmit Enable
ETXCLK	51	78	B47	121	1	ST	Ethernet Transmit Clock
ECOL	44	10	B33	83	1	ST	Ethernet Collision Detect
ECRS	45	11	A47	100	1	ST	Ethernet Carrier Sense
EMDC	30	70	B39	99	0	-	Ethernet Management Data Clock
EMDIO	49	71	A55	115	I/O	-	Ethernet Management Data
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = } \\ & \text { O O Outp } \\ & \text { PPS = Pe } \end{aligned}$	Analog input $\mathrm{P}=$ Power $\mathrm{I}=$ Input

TABLE 1-17: ETHERNET RMII PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 100-pin } \\ \text { TQFP } \end{gathered}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	144-pin TQFP/ LQFP			
Ethernet MII Interface							
ERXD0	61	41	B32	81	1	ST	Ethernet Receive Data 0
ERXD1	58	42	B26	66	I	ST	Ethernet Receive Data 1
ERXERR	64	35	A30	65	I	ST	Ethernet Receive Error Input
ETXD0	2	86	A5	7	0	-	Ethernet Transmit Data 0
ETXD1	3	85	B4	8	0	-	Ethernet Transmit Data 1
ETXEN	1	77	A57	120	0	-	Ethernet Transmit Enable
EMDC	30	70	B39	99	0	-	Ethernet Management Data Clock
EMDIO	49	71	A55	115	I/O	-	Ethernet Management Data
EREFCLK	63	16	B12	27	I	ST	Ethernet Reference Clock
ECRSDV	62	12	B40	101	I	ST	Ethernet Carrier Sense Data Valid
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

PIC32MZ Embedded Connectivity (EC) Family

TABLE 1-18: ALTERNATE ETHERNET MII PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
AERXD0	-	18	-	-	1	ST	Alternate Ethernet Receive Data 0
AERXD1	-	19	-	-	I	ST	Alternate Ethernet Receive Data 1
AERXD2	-	28	-	-	1	ST	Alternate Ethernet Receive Data 2
AERXD3	-	29	-	-	I	ST	Alternate Ethernet Receive Data 3
AERXERR	-	1	-	-	I	ST	Alternate Ethernet Receive Error Input
AERXDV	-	12	-	-	1	ST	Alternate Ethernet Receive Data Valid
AERXCLK	-	16	-	-	I	ST	Alternate Ethernet Receive Clock
AETXD0	-	47	-	-	0	-	Alternate Ethernet Transmit Data 0
AETXD1	-	48	-	-	0	-	Alternate Ethernet Transmit Data 1
AETXD2	-	44	-	-	0	-	Alternate Ethernet Transmit Data 2
AETXD3	-	43	-	-	0	-	Alternate Ethernet Transmit Data 3
AETXERR	-	35	-	-	0	-	Alternate Ethernet Transmit Error
AECOL	-	42	-	-	1	ST	Alternate Ethernet Collision Detect
AECRS	-	41	-	-	1	ST	Alternate Ethernet Carrier Sense
AETXCLK	-	66	-	-	1	ST	Alternate Ethernet Transmit Clock
AEMDC	-	70	-	-	0	-	Alternate Ethernet Management Data Clock
AEMDIO	-	71	-	-	1/0	-	Alternate Ethernet Management Data
AETXEN	-	67	-	-	0	-	Alternate Ethernet Transmit Enable
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = } \\ & \text { O O Outp } \end{aligned}$ $\mathrm{PPS}=\mathrm{Pe}$	Analog input $\mathrm{P}=$ Power $\mathrm{I}=$ Input

TABLE 1-19: ALTERNATE ETHERNET RMII PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{gathered} \text { Pin } \\ \text { Type } \end{gathered}$	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	$\begin{aligned} & \text { 144-pin } \\ & \text { TQFP/ } \\ & \text { LQFP } \end{aligned}$			
AERXD0	43	18	-	-	1	ST	Alternate Ethernet Receive Data 0
AERXD1	46	19	-	-	I	ST	Alternate Ethernet Receive Data 1
AERXERR	51	1	-	-	1	ST	Alternate Ethernet Receive Error Input
AETXD0	57	47	-	-	0	-	Alternate Ethernet Transmit Data 0
AETXD1	56	48	-	-	0	-	Alternate Ethernet Transmit Data 1
AEMDC	30	70	-	-	0	-	Alternate Ethernet Management Data Clock
AEMDIO	49	71	-	-	I/O	-	Alternate Ethernet Management Data
AETXEN	50	67	-	-	0	-	Alternate Ethernet Transmit Enable
AEREFCLK	45	16	-	-	I	ST	Alternate Ethernet Reference Clock
AECRSDV	62	12	-	-	1	ST	Alternate Ethernet Carrier Sense Data Valid
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog $\mathrm{O}=\mathrm{Out}$ PPS = P	Analog input $P=$ Power $I=$ Input ripheral Pin Select

TABLE 1-20: SQI1 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	$\begin{aligned} & \text { 64-pin } \\ & \text { QFN/ } \\ & \text { TQFP } \end{aligned}$	100-pin TQFP	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	144-pin TQFP/ LQFP			
SQICLK	57	89	A61	129	0	-	Serial Quad Interface Clock
SQICSO	52	81	A56	118	0	-	Serial Quad Interface Chip Select 0
SQICS1	53	82	B46	119	0	-	Serial Quad Interface Chip Select 1
SQID0	58	97	B55	141	I/O	ST	Serial Quad Interface Data 0
SQID1	61	96	A65	140	1/0	ST	Serial Quad Interface Data 1
SQID2	62	95	B54	139	I/O	ST	Serial Quad Interface Data 2
SQID3	63	90	B51	130	I/O	ST	Serial Quad Interface Data 3
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					$\begin{aligned} & \text { Analog = Analog input } \\ & O=\text { Output } \\ & \text { PPS = Peripheral Pin Select } \end{aligned}$	

TABLE 1-21: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				Pin Type	Buffer Type	Description
	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	144-pin TQFP/ LQFP			
Power and Ground							
AVDD	19	30	B16	41	P	P	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	A21	42	P	P	Ground reference for analog modules. This pin must be connected at all times
VDD	$\begin{gathered} \hline 8,26,39 \\ 54,60 \end{gathered}$	14,37, 46,62, $74,83,93$	B8, A15, A25, B25, B35, A50, A58, B53	18,33, 55,64, 88,107, 122,137	P	-	Positive supply for peripheral logic and I/O pins. This pin must be connected at all times.
Vss	$\begin{aligned} & \hline 7,25,35 \\ & 40,55,59 \end{aligned}$	$\begin{aligned} & 13,36, \\ & 45,53, \\ & 63,75, \\ & 84,92 \end{aligned}$	A9, B13, B20, B29, A29, A43, A51, B48, A63	17,32, 54,63, 75,89, 108, 123,136	P	-	Ground reference for logic, I/O pins, and USB. This pin must be connected at all times.
Voltage Reference							
VREF+	16	29	A20	40	I	Analog	Analog Voltage Reference (High) Input
VREF-	15	28	B15	39	1	Analog	Analog Voltage Reference (Low) Input
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS = Peripheral Pin Select	

TABLE 1-22: JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number				$\begin{aligned} & \text { Pin } \\ & \text { Type } \end{aligned}$	Buffer Type	Description
	64-pin QFN/ TQFP	$\begin{aligned} & \text { 100-pin } \\ & \text { TQFP } \end{aligned}$	$\begin{gathered} \text { 124-pin } \\ \text { VTLA } \end{gathered}$	144-pin TQFP/ LQFP			
JTAG							
TCK	27	38	B21	56	1	ST	JTAG Test Clock Input Pin
TDI	28	39	A26	57	1	ST	JTAG Test Data Input Pin
TDO	24	40	B22	58	0	-	JTAG Test Data Output Pin
TMS	23	17	A11	22	1	ST	JTAG Test Mode Select Pin
Trace							
TRCLK	57	89	A61	129	0	-	Trace Clock
TRD0	58	97	B55	141	0	-	Trace Data bits 0-3
TRD1	61	96	A65	140	0	-	
TRD2	62	95	B54	139	0	-	
TRD3	63	90	B51	130	0	-	
Programming/Debugging							
PGED1	16	25	A18	36	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1
PGEC1	15	24	A17	35	1	ST	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	18	27	A19	38	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2
PGEC2	17	26	B14	37	1	ST	Clock input pin for Programming/Debugging Communication Channel 2
$\overline{\overline{M C L R}}$	9	15	A10	20	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
Legend:	CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer					Analog = Analog input $\mathrm{P}=$ Power $\mathrm{O}=$ Output $\mathrm{I}=$ Input PPS $=$ Peripheral Pin Select	

NOTES:

PIC32MZ Embedded Connectivity (EC) Family

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

Note 1: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

2.1 Basic Connection Requirements

Getting started with the PIC32MZ EC family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- $\overline{M C L R}$ pin (see 2.3 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP ${ }^{\text {TM }}$) and debugging purposes (see 2.4 "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")
The following pin(s) may be required as well:
VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVss pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, Vss, AVDD and AVss is required. See Figure 2-1.
Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of $0.1 \mu \mathrm{~F}$ (100 nF), $10-20 \mathrm{~V}$ is recommended. The capacitor should be a low Equivalent Series Resistance (low$E S R$) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz , add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \mu \mathrm{~F}$ to $0.001 \mu \mathrm{~F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \mu \mathrm{~F}$ in parallel with $0.001 \mu \mathrm{~F}$.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-1:
RECOMMENDED MINIMUM CONNECTION

Note 1: If the USB module is not used, this pin must be connected to Vss.
2: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1Ω and the inductor capacity greater than 10 mA .

Where:

$$
\begin{aligned}
& f=\frac{F C N V}{2} \quad \text { (i.e., ADC conversion rate/2) } \\
& f=\frac{1}{(2 \pi \sqrt{L C})} \\
& L=\left(\frac{1}{(2 \pi f \sqrt{C})}\right)^{2}
\end{aligned}
$$

2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from $4.7 \mu \mathrm{~F}$ to $47 \mu \mathrm{~F}$. This capacitor should be located as close to the device as possible.

2.3 Master Clear ($\overline{\text { MCLR }}$) Pin

The $\overline{\mathrm{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

Pulling The $\overline{M C L R}$ pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{M C L R}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.
For example, as illustrated in Figure 2-2, it is recommended that the capacitor C , be isolated from the $\overline{\mathrm{MCLR}}$ pin during programming and debugging operations.
Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the $\overline{\mathrm{MCLR}}$ pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS ${ }^{(1,2,3)}$

Note 1: $470 \Omega \leq \mathrm{R} 1 \leq 1 \Omega$ will limit any current flowing into $\overline{\text { MCLR }}$ from the external capacitor C , in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the $\overline{\text { MCLR }}$ pin VIH and VIL specifications are met without interfering with the Debug/Programmer tools.
2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
3: No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

PIC32MZ Embedded Connectivity (EC) Family

2.4 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.
Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB ${ }^{\circledR}$ ICD 3 or MPLAB REAL ICE ${ }^{\text {™ }}$.
For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available from the Microchip web site.

- "Using MPLAB ${ }^{\circledR}$ ICD 3 " (poster) (DS50001765)
- "MPLAB ${ }^{\circledR}$ ICD 3 Design Advisory" (DS50001764)
- "MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM }}$ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB ${ }^{\circledR}$ REAL ICE ${ }^{\text {TM }}$ Emulator" (poster) (DS50001749)

2.5 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.
Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.6 Trace

The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 8.0 "Oscillator Configuration" for details).
The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR

 CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.
Alternatively, inputs can be reserved by connecting the pin to Vss through a 1 k to 10k resistor and configuring the pin as an input.

2.9 Designing for High-Speed Peripherals

The PIC32MZ EC family devices have peripherals that operate at frequencies much higher than typical for an embedded environment. Table 2-1 lists the peripherals that produce high-speed signals on their external pins:

TABLE 2-1: PERIPHERALS THAT PRODUCE HS SIGNALS ON EXTERNAL PINS

Peripheral	High-Speed Signal Pins	Maximum Speed on Signal Pin
EBI	EBIAx, EBIDx	50 MHz
SQI1	SQICLK, SQICSx, SQIDx	50 MHz
HS USB	D+, D-	480 MHz

Due to these high-speed signals, it is important to take into consideration several factors when designing a product that uses these peripherals, as well as the PCB on which these components will be placed. Adhering to these recommendations will help achieve the following goals:

- Minimize the effects of electromagnetic interference to the proper operation of the product
- Ensure signals arrive at their intended destination at the same time
- Minimize crosstalk
- Maintain signal integrity
- Reduce system noise
- Minimize ground bounce and power sag

2.9.1 SYSTEM DESIGN

2.9.1.1 Impedance Matching

When selecting parts to place on high-speed buses, particularly the SQI bus, if the impedance of the peripheral device does not match the impedance of the pins on the PIC32MZ EC device to which it is connected, signal reflections could result, thereby degrading the quality of the signal.
If it is not possible to select a product that matches impedance, place a series resistor at the load to create the matching impedance. See Figure 2-4 for an example.

FIGURE 2-4: SERIES RESISTOR

2.9.1.2 PCB Layout Recommendations

The following list contains recommendations that will help ensure the PCB layout will promote the goals previously listed.

- Component Placement

- Place bypass capacitors as close to their component power and ground pins as possible, and place them on the same side of the PCB
- Devices on the same bus that have larger setup times should be placed closer to the PIC32MZ EC device

- Power and Ground

- Multi-layer PCBs will allow separate power and ground planes
- Each ground pin should be connected to the ground plane individually
- Place bypass capacitor vias as close to the pad as possible (preferably inside the pad)
- If power and ground planes are not used, maximize width for power and ground traces
- Use low-ESR, surface-mount bypass capacitors

- Clocks and Oscillators

- Place crystals as close as possible to the PIC32MZ EC device OSC/SOSC pins
- Do not route high-speed signals near the clock or oscillator
- Avoid via usage and branches in clock lines (SQICLK)
- Place termination resistors at the end of clock lines
- Traces
- Higher-priority signals should have the shortest traces
- Match trace lengths for parallel buses (EBIAx, EBIDx, SQIDx)
- Avoid long run lengths on parallel traces to reduce coupling
- Make the clock traces as straight as possible
- Use rounded turns rather than right-angle turns
- Have traces on different layers intersect on right angles to minimize crosstalk
- Maximize the distance between traces, preferably no less than three times the trace width
- Power traces should be as short and as wide as possible
- High-speed traces should be placed close to the ground plane

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-5 and Figure 2-6.

FIGURE 2-5: AUDIO PLAYBACK APPLICATION

FIGURE 2-6: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

3.0 CPU

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU for Devices with microAptiv ${ }^{\text {TM }}$ Core" (DS60001192) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

MIPS32 ${ }^{\circledR}$ microAptiv ${ }^{\text {TM }}$ Microprocessor Core resources are available at: www.imgtec.com.
The MIPS32 ${ }^{\circledR}$ microAptiv ${ }^{\text {TM }}$ Microprocessor Core is the heart of the PIC32MZ EC family device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

PIC32MZ EC family processor core key features:

- 5-stage pipeline
- 32-bit address and data paths
- MIPS32 ${ }^{\circledR}$ Enhanced Architecture (Release 2):
- Multiply-accumulate and multiply-subtract instructions
- Targeted multiply instruction
- Zero/One detect instructions
- WAIT instruction
- Conditional move instructions (MOVN, MOVZ)
- Vectored interrupts
- Programmable exception vector base
- Atomic interrupt enable/disable
- GPR shadow registers to minimize latency for interrupt handlers
- Bit field manipulation instructions
- Virtual memory support
- microMIPS ${ }^{\text {TM }}$ compatible instruction set:
- Improves code size density over MIPS32 ${ }^{\circledR}$, while maintaining MIPS32 ${ }^{\circledR}$ performance.
- Supports all MIPS32 ${ }^{\circledR}$ instructions (except branch-likely instructions)
- Fifteen additional 32-bit instructions and 39 16-bit instructions corresponding to commonly-used MIPS32 ${ }^{\circledR}$ instructions
- Stack pointer implicit in instruction
- MIPS32 ${ }^{\circledR}$ assembly and ABI compatible
- MMU with Translation Lookaside Buffer (TLB) mechanism:
- 16 dual-entry fully associative Joint TLB
- 4-entry fully associative Instruction TLB
- 4-entry fully associative Data TLB
- 4 KB pages
- Separate L1 data and instruction caches:
- 16 KB 4-way Instruction Cache (I-Cache)
- 4 KB 4-way Data Cache (D-Cache)
- Autonomous Multiply/Divide Unit (MDU):
- Maximum issue rate of one 32×32 multiply per clock
- Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend ($r s$) sign extension-dependent)
- Power Control:
- Minimum frequency: 0 MHz
- Low-Power mode (triggered by WAIT instruction)
- Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
- Support for single stepping
- Virtual instruction and data address/value breakpoints
- Hardware breakpoint supports both address match and address range triggering.
- Eight instruction and four data complex breakpoints
- iFlowtrace ${ }^{\circledR}$ version 2.0 support:
- Real-time instruction program counter
- Special events trace capability
- Two performance counters with 34 userselectable countable events
- Disabled if the processor enters Debug mode
- Four Watch registers:
- Instruction, Data Read, Data Write options
- Address match masking options
- DSP ASE Extension:
- Native fractional format data type operations
- Register Single Instruction Multiple Data (SIMD) operations (add, subtract, multiply, shift)
- GPR-based shift
- Bit manipulation
- Compare-Pick
- DSP Control Access
- Indexed-Load
- Branch
- Multiplication of complex operands
- Variable bit insertion and extraction
- Virtual circular buffers
- Arithmetic saturation and overflow handling
- Zero-cycle overhead saturation and rounding operations

PIC32MZ Embedded Connectivity (EC) Family

A block diagram of the PIC32MZ EC family processor core is shown in Figure 3-1.

FIGURE 3-1: PIC32MZ EC FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

PIC32MZ Embedded Connectivity (EC) Family

3.2 Architecture Overview

The MIPS32 ${ }^{\circledR}$ microAptiv ${ }^{\text {TM }}$ Microprocessor core in PIC32MZ EC family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CPO)
- Memory Management Unit (MMU)
- Instruction/Data cache controllers
- Power Management
- Instructions and data caches
- microMIPS ${ }^{\text {TM }}$ support
- Enhanced JTAG (EJTAG) controller

3.2.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. Seven additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.
The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.
The high-performance MDU consists of a 32×32 booth recoded multiplier, four pairs of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown (' 32 ' of 32×32) represents the r s operand. The second number (' 32 ' of 32×32) represents the rt operand.
The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.
Divide operations are implemented with a simple 1-bit-per-clock iterative algorithm. An early-in detection checks the sign extension of the dividend ($r s$) operand. If $r s$ is 8 bits wide, 23 iterations are skipped. For a 16 -bit wide rs, 15 iterations are skipped and for a 24-bit wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.
Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1: MIPS32 ${ }^{\text {® }}$ microAptiv ${ }^{\text {TM }}$ MICROPROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

Opcode	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU, MSUB/MSUBU (HI/LO destination)	16 bits	5	1
	32 bits	5	1
MUL (GPR destination)	16 bits	5	1
	32 bits	5	1
DIV/DIVU	8 bits	12/14	12/14
	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

PIC32MZ Embedded Connectivity (EC) Family

The MIPS architecture defines that the result of a multiply or divide operation be placed in one of four pairs of HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.
In addition to the $\mathrm{HI} / \mathrm{LO}$ targeted operations, the MIPS32 ${ }^{\circledR}$ architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the $\mathrm{HI} / \mathrm{LO}$ register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.
Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.
The MDU also implements various shift instructions operating on the $\mathrm{HI} / \mathrm{LO}$ register and multiply instructions as defined in the DSP ASE. The MDU supports all of the data types required for this purpose and includes three extra $\mathrm{HI} / \mathrm{LO}$ registers as defined by the ASE.

Table 3-2 lists the latencies and repeat rates for the DSP multiply and dot-product operations. The approximate latencies and repeat rates are listed in terms of pipeline clocks.

TABLE 3-2: DSP-RELATED LATENCIES AND REPEAT RATES

Op code	Latency	Repeat Rate
Multiply and dot-product without saturation after accumulation	5	1
Multiply and dot-product with saturation after accumulation	5	1
Multiply without accumulation	5	1

3.2.3 SYSTEM CONTROL COPROCESSOR (CPO)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation and cache protocols, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as cache size and set associativity, and the presence of options like microMIPS ${ }^{\text {TM }}$, is also available by accessing the CPO registers, listed in Table 3-3.

PIC32MZ Embedded Connectivity (EC) Family

TABLE 3-3: COPROCESSOR 0 REGISTERS

Register Number	Register Name	Function
0	Index	Index into the TLB array (microAptiv ${ }^{\text {TM }}$ MPU only).
1	Random	Randomly generated index into the TLB array (microAptiv ${ }^{\text {TM }}$ MPU only).
2	EntryLo0	Low-order portion of the TLB entry for even-numbered virtual pages (microAptiv ${ }^{\text {TM }}$ MPU only).
3	EntryLo1	Low-order portion of the TLB entry for odd-numbered virtual pages (microAptiv ${ }^{\text {TM }}$ MPU only).
4	Context/ UserLocal	Pointer to the page table entry in memory (microAptiv ${ }^{\text {TM }}$ MPU only). User information that can be written by privileged software and read via the RDHWR instruction.
5	PageMask/ PageGrain	PageMask controls the variable page sizes in TLB entries. PageGrain enables support of 1 KB pages in the TLB (microAptiv ${ }^{\text {TM }}$ MPU only).
6	Wired	Controls the number of fixed (i.e., wired) TLB entries (microAptiv ${ }^{\text {TM }}$ MPU only).
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers in Non-privileged mode.
8	BadVAddr	Reports the address for the most recent address-related exception.
9	Count	Processor cycle count.
10	EntryHi	High-order portion of the TLB entry (microAptiv ${ }^{\text {TM }}$ MPU only).
11	Compare	Core timer interrupt control.
12	Status	Processor status and control.
	IntCtl	Interrupt control of vector spacing.
	SRSCtI	Shadow register set control.
	SRSMap	Shadow register mapping control.
	View_IPL	Allows the Priority Level to be read/written without extracting or inserting that bit from/to the Status register.
	SRSMAP2	Contains two 4-bit fields that provide the mapping from a vector number to the shadow set number to use when servicing such an interrupt.
13	Cause	Describes the cause of the last exception.
	NestedExc	Contains the error and exception level status bit values that existed prior to the current exception.
	View_RIPL	Enables read access to the RIPL bit that is available in the Cause register.
14	EPC	Program counter at last exception.
	NestedEPC	Contains the exception program counter that existed prior to the current exception.
15	PRID	Processor identification and revision
	Ebase	Exception base address of exception vectors.
	CDMMBase	Common device memory map base.
16	Config	Configuration register.
	Config1	Configuration register 1.
	Config2	Configuration register 2.
	Config3	Configuration register 3.
	Config4	Configuration register 4.
	Config5	Configuration register 5.
	Config7	Configuration register 7.
17	LLAddr	Load link address (microAptiv ${ }^{\text {TM }}$ MPU only).
18	WatchLo	Low-order watchpoint address (microAptiv ${ }^{\text {TM }}$ MPU only).
19	WatchHi	High-order watchpoint address (microAptiv ${ }^{\text {TM }}$ MPU only).
20-22	Reserved	Reserved in the PIC32 core.

PIC32MZ Embedded Connectivity (EC) Family

TABLE 3-3: COPROCESSOR 0 REGISTERS (CONTINUED)

Register Number	Register Name	
23	Debug	EJTAG debug register.
	TraceControl	EJTAG trace control.
	TraceControl2	EJTAG trace control 2.
	UserTraceData1	EJTAG user trace data 1 register.
	TraceBPC	EJTAG trace breakpoint register.
	Debug2	Debug control/exception status 1.
24	DEPC	Program counter at last debug exception.
	UserTraceData2	EJTAG user trace data 2 register.
25	PerfCt10	Performance counter 0 control.
	PerfCnt0	Performance counter 0.
	PerfCt11	Performance counter 1 control.
	PerfCnt1	Performance counter 1.
26	ErrCtl	Software test enable of way-select and data RAM arrays for I-Cache and D-Cache (microAptiv ${ }^{\text {TM }}$ MPU only).
27	Reserved	Reserved in the PIC32 core.
28	TagLo/DataLo	Low-order portion of cache tag interface (microAptiv ${ }^{\text {TM }}$ MPU only).
29	Reserved	Reserved in the PIC32 core.
30	ErrorEPC	Program counter at last error exception.
31	DeSave	Debug exception save.

3.3 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 33.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gatedclocks to reduce this dynamic power consumption.

3.4 L1 Instruction and Data Caches

3.4.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 16 Kbytes. Because the I-Cache is virtually indexed, the virtual-tophysical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 22 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.
The l-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.
The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.
The cache locking function is always available on all l-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.4.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 4 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 22 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to l-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.
The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.4.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

3.5 EJTAG Debug Support

The processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the processor core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.
The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.6 MIPS ${ }^{\circledR}$ DSP ASE Extension

The MIPS DSP Application-Specific Extension Revision 2 is an extension to the MIPS32 ${ }^{\circledR}$ architecture. This extension comprises new integer instructions and states that include new HI/LO accumulator register pairs and a DSP control register. This extension is crucial in a wide range of DSP, multimedia, and DSP-like algorithms covering Audio and Video processing applications. The extension supports native fractional format data type operations, register Single Instruction Multiple Data (SIMD) operations, such as add, subtract, multiply, and shift. In addition, the extension includes the following features that are essential in making DSP algorithms computationally efficient:

- Support for multiplication of complex operands
- Variable bit insertion and extraction
- Implementation and use of virtual circular buffers
- Arithmetic saturation and overflow handling support
- Zero cycle overhead saturation and rounding operations

3.7 microAptiv ${ }^{\text {TM }}$ Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the microAptiv ${ }^{\text {TM }}$ core, which is included on PIC32MZ EC family devices.

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CPO REGISTER 16, SELECT 0

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	R-0
	-	-	-	-	-	-	-	ISP
23:16	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0
	DSP	UDI	SB	MDU	-	$\mathrm{MM}<1: 0>$		BM
15:8	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-0
	BE	AT<1:0>		AR<2:0>			MT<2:1>	
7:0	R-1	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0
	MT<0>	-	-	-	-	K0<2:0>		

Legend:	$r=$ Reserved bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 31 Reserved: This bit is hardwired to ' 1 ' to indicate the presence of the Config1 register.
bit 30-25 Unimplemented: Read as ' 0 '
bit 24 ISP: Instruction Scratch Pad RAM bit $0=$ Instruction Scratch Pad RAM is not implemented
bit 23 DSP: Data Scratch Pad RAM bit
$0=$ Data Scratch Pad RAM is not implemented
bit 22 UDI: User-defined bit
0 = CorExtend User-Defined Instructions are not implemented
bit 21 SB: SimpleBE bit
1 = Only Simple Byte Enables are allowed on the internal bus interface
bit 20 MDU: Multiply/Divide Unit bit
0 = Fast, high-performance MDU
bit 19 Unimplemented: Read as ' 0 '
bit 18-17 MM<1:0>: Merge Mode bits
$10=$ Merging is allowed
bit 16 BM: Burst Mode bit
$0=$ Burst order is sequential
bit 15 BE: Endian Mode bit
$0=$ Little-endian
bit 14-13 AT<1:0>: Architecture Type bits
$00=$ MIPS32 ${ }^{\circledR}$
bit 12-10 AR<2:0>: Architecture Revision Level bits
$001=$ MIPS32 ${ }^{\circledR}$ Release 2
bit 9-7 MT<2:0>: MMU Type bits
$001=$ microAptiv ${ }^{\text {TM }}$ MPU Microprocessor core uses a TLB-based MMU
bit 6-3 Unimplemented: Read as ' 0 '
bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits $010=$ Uncached

REGISTER 3-2: CONFIG1: CONFIGURATION REGISTER 1; CP0 REGISTER 16, SELECT 1

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\underset{\text { Bit }}{\text { 25/17/9/1 }}$	$\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$
31:24	$\mathrm{r}-1$	R-0	R-0	R-1	R-1	R-1	R-1	R-0
	-	MMU Size<5:0>						IS<2>
23:16	R-1	R-0	R-0	R-1	R-1	R-0	R-1	R-1
	IS<1:0>		IL<2:0>			IA<2:0>		
15:8	R-0	R-0	R-0	R-0	R-1	R-1	R-0	R-1
	DS<2:0>			DL<2:0>			DA<2:1>	
7:0	R-1	U-0	U-0	R-1	R-1	R-0	R-1	R-0
	DA<0>	-	-	PC	WR	CA	EP	FP

Legend:	$r=$ Reserved bit	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$\prime 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31 Reserved: This bit is hardwired to a ' 1 ' to indicate the presence of the Config2 register.
bit 30-25 MMU Size<5:0>: Contains the number of TLB entries minus 1
$001111=16$ TLB entries
bit 24-22 IS<2:0>: Instruction Cache Sets bits
$010=$ Contains 256 instruction cache sets per way
bit 21-19 IL<2:0>: Instruction-Cache Line bits
011 = Contains instruction cache line size of 16 bytes
bit 18-16 IA<2:0: Instruction-Cache Associativity bits
011 = Contains 4-way instruction cache associativity
bit 15-13 DS<2:0>: Data-Cache Sets bits
$000=$ Contains 64 data cache sets per way
bit 12-10 DL<2:0>: Data-Cache Line bits
011 = Contains data cache line size of 16 bytes
bit 9-7 DA<2:0>: Data-Cache Associativity bits
011 = Contains the 4-way set associativity for the data cache
bit 6-5 Unimplemented: Read as ' 0 '
bit 4 PC: Performance Counter bit
1 = The processor core contains Performance Counters
bit 3 WR: Watch Register Presence bit
1 = No Watch registers are present
bit 2 CA: Code Compression Implemented bit
$0=$ No MIPS16e ${ }^{\circledR}$ present
bit 1 EP: EJTAG Present bit
1 = Core implements EJTAG
bit $0 \quad$ FP: Floating Point Unit bit
$0=$ Floating Point Unit is not implemented

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	r-1	U-0						
	-	-	-	-	-	-	-	-
23:16	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y
	-	IPLW<1:0>		MMAR<2:0>			MCU	ISAONEXC ${ }^{(1)}$
15:8	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1
	ISA<1:0> ${ }^{(1)}$		ULRI	RXI	DSP2P	DSPP	-	ITL
7:0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-0
	-	VEIC	VINT	SP	CDMM	-	-	TL

Legend:	$r=$ Reserved bit	$y=$ Value set from Configuration bits on POR
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$\prime 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 31 Reserved: This bit is hardwired as ' 1 ' to indicate the presence of the Config4 register
bit 30-23 Unimplemented: Read as ' 0 '
bit 22-21 IPLW<1:0>: Width of the Status IPL and Cause RIPL bits
$01=$ IPL and RIPL bits are 8-bits in width
bit 20-18 MMAR<2:0>: microMIPS ${ }^{\text {TM }}$ Architecture Revision Level bits
000 = Release 1
bit 17 MCU: MIPS ${ }^{\circledR}$ MCU ${ }^{\text {TM }}$ ASE Implemented bit
$1=$ MCU $^{\text {TM }}$ ASE is implemented
bit 16 ISAONEXC: ISA on Exception bit ${ }^{(1)}$
$1=$ microMIPS $^{\text {TM }}$ is used on entrance to an exception vector
$0=$ MIPS32 ${ }^{\circledR}$ ISA is used on entrance to an exception vector
bit 15-14 ISA<1:0>: Instruction Set Availability bits ${ }^{(1)}$
11 = Both MIPS32 ${ }^{\circledR}$ and microMIPS ${ }^{\text {TM }}$ are implemented; microMIPS ${ }^{\text {TM }}$ is used when coming out of reset
$10=$ Both MIPS32 ${ }^{\circledR}$ and microMIPS ${ }^{\text {TM }}$ are implemented; MIPS32 ${ }^{\circledR}$ ISA used when coming out of reset
bit 13 ULRI: UserLocal Register Implemented bit
1 = UserLocal Coprocessor 0 register is implemented
bit 12 RXI: RIE and XIE Implemented in PageGrain bit
$1=$ RIE and XIE bits are implemented
bit 11 DSP2P: MIPS DSP ASE Revision 2 Presence bit
1 = DSP Revision 2 is present
bit 10 DSPP: MIPS DSP ASE Presence bit
1 = DSP is present
bit $9 \quad$ Unimplemented: Read as ' 0 '
bit $8 \quad$ ITL: Indicates that iFlowtrace ${ }^{\circledR}$ hardware is present
$1=$ The iFlowtrace ${ }^{\circledR}$ is implemented in the core
bit 7 Unimplemented: Read as ' 0 '
bit 6 VEIC: External Vector Interrupt Controller bit
1 = Support for an external interrupt controller is implemented.
bit $5 \quad$ VINT: Vector Interrupt bit
1 = Vector interrupts are implemented
bit 4 SP: Small Page bit
$0=4$ KB page size
bit 3 CDMM: Common Device Memory Map bit
1 = CDMM is implemented
bit 2-1 Unimplemented: Read as ' 0 '
bit $0 \quad$ TL: Trace Logic bit
$0=$ Trace logic is not implemented
Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

PIC32MZ Embedded Connectivity (EC) Family

REGISTER 3-4: CONFIG5: CONFIGURATION REGISTER 5; CPO REGISTER 16, SELECT 5

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	U-0							
	-	-	-	-	-	-	-	-
23:16	U-0							
	-	-	-	-	-	-	-	-
15:8	U-0							
	-	-	-	-	-	-	-	-
7:0	U-0	R-1						
	-	-	-	-	-	-	-	NF

Legend:	$r=$ Reserved	
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

bit 31-1 Unimplemented: Read as ' 0 '
bit $0 \quad$ NF: Nested Fault bit
1 = Nested Fault feature is implemented

REGISTER 3-5: CONFIG7: CONFIGURATION REGISTER 7; CPO REGISTER 16, SELECT 7

Bit Range	Bit $\mathbf{3 1 / 2 3 / 1 5 / 7}$	Bit $\mathbf{3 0 / 2 2 / 1 4 / 6}$	Bit $\mathbf{2 9 / 2 1 / 1 3 / 5}$	Bit $\mathbf{2 8 / 2 0 / 1 2 / 4}$	Bit $\mathbf{2 7 / 1 9 / 1 1 / 3}$	Bit $\mathbf{2 6 / 1 8 / 1 0 / 2}$	Bit $\mathbf{2 5 / 1 7 / 9 / 1}$	Bit $\mathbf{2 4 / 1 6 / 8 / 0}$
$31: 24$	$\mathrm{R}-1$	$\mathrm{U}-0$						
	WII	-	-	-	-	-	-	-
$23: 16$	$\mathrm{U}-0$							
	-	-	-	-	-	-	-	-
$15: 8$	$\mathrm{U}-0$							
	-	-	-	-	-	-	-	-
$7: 0$	-	$\mathrm{U}-0$						
	-	-	-	-	-	-	-	-

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit $31 \quad$ WII: Wait IE Ignore bit
1 = Indicates that this processor will allow an interrupt to unblock a WAIT instruction
bit 30-0 Unimplemented: Read as ' 0 '

NOTES:

4.0 MEMORY ORGANIZATION

This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to Section 48. "Memory Organization and Permissions" in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EC microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, Special Function Registers (SFRs) and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ EC devices allow execution from data memory.
Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read-Write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ EC microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.
The main memory maps for the PIC32MZ EC devices are illustrated in Figure 4-1 through Figure 4-4. Figure 4-5 provides memory map information for boot Flash and boot alias. Table 4-1 provides memory map information for SFRs.

FIGURE 4-1: MEMORY MAP FOR DEVICES WITH 512 KB OF PROGRAM MEMORY ${ }^{(1,2)}$

Note 1: Memory areas are not shown to scale.
2: The Cache, MMU, and TLB are initialized by compiler start-up code.
: RAM memory is divided into two equal banks: RAM Bank 1 and RAM Bank 2 on a half boundary.
: The MMU must be enabled and the TLB must be set up to access this segment.

FIGURE 4-2: MEMORY MAP FOR DEVICES WITH 1024 KB OF PROGRAM MEMORY AND 256 KB OF RAM ${ }^{(1,2)}$

FIGURE 4-3: MEMORY MAP FOR DEVICES WITH 1024 KB OF PROGRAM MEMORY AND 512 KB OF RAM ${ }^{(1,2)}$

FIGURE 4-4: MEMORY MAP FOR DEVICES WITH 2048 KB OF PROGRAM MEMORY ${ }^{(1,2)}$

Note 1: Memory areas are not shown to scale.
The Cache, MMU, and TLB are initialized by compiler start-up code.
: RAM memory is divided into two equal banks: RAM Bank 1 and RAM Bank 2 on a half boundary.
4: The MMU must be enabled and the TLB must be set up to access this segment.

PIC32MZ Embedded Connectivity (EC) Family

FIGURE 4-5: BOOT AND ALIAS MEMORY MAP

TABLE 4-1: SFR MEMORY MAP

Peripheral	Virtual Address		
	Base	Offset Start	Offset End
System Bus	0xBF8F0000	0x0000	0xFFFF
RNG	0xBF8E0000	0x6000	0x6FFF
Crypto		0x5000	0x5FFF
USB		0x3000	0x3FFF
SQI1		0x2000	0x2FFF
EBI		0x1000	0x1FFF
Prefetch		0x0000	0x0FFF
Ethernet	0xBF880000	0x2000	0x2FFF
CAN1 and CAN2		0x0000	0x1FFF
PORTA-PORTK	0xBF860000	0x0000	0x09FF
Comparator 1, 2	0xBF840000	0xC000	0xC1FF
ADC1		0xB000	0xB3FF
OC1-OC9		0x4000	0x51FF
IC1-IC9		0x2000	0x31FF
Timer1-Timer9		0x0000	0x11FF
PMP	0xBF820000	0xE000	0xE1FF
UART1-UART6		0x2000	0x2BFF
SPI1-SPI6		0x1000	0x1BFF
I2C1-I2C5		0x0000	0x09FF
DMA	0xBF810000	0x1000	0x1FFF
Interrupt Controller		0x0000	0x0FFF
PPS	0xBF800000	0x1400	0x17FF
Oscillator		0x1200	0x13FF
CVREF		0x0E00	0x0FFF
RTCC		0x0C00	0x0DFF
Deadman Timer		0x0A00	0x0BFF
Watchdog Timer		0x0800	0x09FF
Flash Controller		0x0600	0x07FF
Configuration		0x0000	0x03FF

4.1.1 BOOT FLASH SEQUENCE AND CONFIGURATION SPACES

Sequence space is used to identify which boot Flash is aliased by aliased regions. If the value programmed into the TSEQ<15:0> bits of the BF1SEQ0 word is equal to or greater than the value programmed into the TSEQ<15:0> bits of the BF2SEQ0 word, Boot Flash 1 is aliased by the lower boot alias region, and Boot Flash 2 is aliased by the upper boot alias region. If TSEQ<15:0> bits of BF2SEQ0 is greater than TSEQ<15:0> bits of BF1SEQ0, the opposite is true (see Table 4-2 and Table 4-3 for BFxSEQ0 word memory locations).
The CSEQ<15:0> bits must contain the complement value of the TSEQ<15:0> bits; otherwise, the value of TSEQ<15:0> is considered invalid, and an alternate sequence is used. See Section 4.1.2 "Alternate Sequence and Configuration Words" for more information.
Once boot Flash memories are aliased, configuration space located in the lower boot alias region is used as the basis for the Configuration words, DEVSIGNO, DEVCPO, and DEVCFGx (and the associated alternate configuration registers). This means that the boot Flash region to be aliased by lower boot alias region memory must contain configuration values in the appropriate memory locations.

$$
\begin{array}{ll}
\text { Note: } & \text { Do not use word program operation } \\
\text { (NVMOP }<3: 0>=0001 \text {) when program- } \\
\text { ming data into the sequence and } \\
\text { configuration spaces. }
\end{array}
$$

4.1.2 ALTERNATE SEQUENCE AND CONFIGURATION WORDS

Every word in the configuration space and sequence space has an associated alternate word (designated by the letter A as the first letter in the name of the word). During device start-up, primary words are read and if uncorrectable ECC errors are found, the BCFGERR ($\mathrm{RCON}<27>$) flag is set and alternate words are used. If uncorrectable ECC errors are found in primary and alternate words, the BCFGFAIL (RCON<26>) flag is set and the default configuration is used.
TABLE 4-2: BOOT FLASH 1 SEQUENCE AND CONFIGURATION WORDS SUMMARY

Legend: $\quad \mathrm{x}=$ unknown value on Reset; $-=$ Reserved, read as ' 1 '. Reset values are shown in hexadecimal.
BOOT FLASH 2 SEQUENCE AND CONFIGURATION WORDS SUMMARY

Legend: $\quad \mathrm{x}=$ unknown value on Reset; $-=$ Reserved, read as ' 1 '. Reset values are shown in hexadecimal.

PIC32MZ Embedded Connectivity (EC) Family

REGISTER 4-1: BFxSEQ0/ABFxSEQ0: BOOT FLASH ' x ' SEQUENCE WORD 0 REGISTER (' x ' = 1 AND 2)

Bit Range	$\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$	$\underset{\substack{\text { Bit } \\ 28 / 20 / 12 / 4}}{ }$	$\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 26/18/10/2 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$	$\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$
31:24	R/P							
	CSEQ<15:8>							
23:16	R/P							
	CSEQ<7:0>							
15:8	R/P							
	TSEQ<15:8>							
7:0	R/P							
	TSEQ<7:0>							

Legend:		$P=$ Programmable bit
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-n=$ Value at POR	$' 1 '=$ Bit is set	$0 '=$ Bit is cleared

bit 31-16 CSEQ<15:0>: Boot Flash Complement Sequence Number bits
bit 15-0 TSEQ<15:0>: Boot Flash True Sequence Number bits

Note: The BFxSEQ1 through BFxSEQ3 and ABFxSEQ1 through ABFxSEQ3 registers are used for Quad Word programming operation when programming the BFxSEQ0/ABFxSEQ0 registers, and do not contain any valid information.

PIC32MZ Embedded Connectivity (EC) Family

The System Bus arbitration scheme implements a nonprogrammable, Least Recently Serviced (LRS) priority, which provides Quality Of Service (QOS) for most initiators. However, some initiators can use Fixed High Priority (HIGH) arbitration to guarantee their access to data.
The arbitration scheme for the available initiators is shown in Table 4-5.

TABLE 4-5: INITIATOR ID AND QOS

Name	ID	QOS
CPU	1	LRS $^{(1)}$
CPU	2	HIGH $^{(1,2)}$
DMA Read	3	LRS $^{(1)}$
DMA Read	4	HIGH $^{(1,2)}$
DMA Write	5	LRS $^{(1)}$
DMA Write	6	HIGH $^{(1,2)}$
USB	7	LRS
Ethernet Read	8	LRS
Ethernet Write	9	LRS
CAN1	10	LRS
CAN2	11	LRS
SQI1	12	LRS
Flash Controller	13	HIGH ${ }^{(2)}$
Crypto	14	LRS

Note 1: When accessing SRAM, the DMAPRI bit (CFGCON<25>) and the CPUPRI bit (CFGCON<24>) provide arbitration control for the DMA and CPU (when servicing an interrupt (i.e., EXL = 1)), respectively, by selecting the use of LRS or HIGH When using HIGH, the DMA and CPU get arbitration preference over all initiators using LRS.
2: Using HIGH arbitration can have serious negative effects on other initiators. Therefore, it is recommended to not enable this type of arbitration for an initiator that uses significant system bandwidth. HIGH arbitration is intended to be used for low bandwidth applications that require low latency, such as LCC graphics applications.

4.3 Permission Access and System Bus Registers

The System Bus on PIC32MZ EC family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.
The System Bus divides the entire memory space into fourteen target regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.
Using the CFGPG register (see Register 34-10 in Section 34.0 "Special Features"), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-6.

Register 4-2 through Register 4-10 are used for setting and controlling access permission groups and regions.
To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting PGLOCK prevents writes to the control registers; clearing PGLOCK allows writes.
To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.
TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS

Target Number	Target Description ${ }^{(5)}$	SBTxREGy Register							SBTxRDy Register		SBTxWRy Register	
		Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	$\begin{aligned} & \text { Region } \\ & \text { Size } \end{aligned}$	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1, GROUP0) GR	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUPO)
0	System Bus	SBTOREG0	R	0x1F8F0000	R	64 KB	-	0	SBTORD0	R/W ${ }^{(1)}$	SBTOWR0	R/W ${ }^{(1)}$
		SBTOREG1	R	0x1F8F8000	R	32 KB	-	3	SBTORD1	R/W ${ }^{(1)}$	SBTOWR1	R/W ${ }^{(1)}$
1		SBT1REG0	R	0x1D000000	$\mathrm{R}^{(4)}$	$\mathrm{R}^{(4)}$	-	0	SBT1RD0	R/W ${ }^{(1)}$	SBT1WR0	0, 0, 0, 0
		SBT1REG2	R	0x1F8E0000	R	4 KB	1	2	SBT1RD2	R/W ${ }^{(1)}$	SBT1WR2	$\mathrm{R} / \mathrm{W}^{(1)}$
		SBT1REG3	R/W	R/W	R/W	R/W	1	2	SBT1RD3	R/W ${ }^{(1)}$	SBT1WR3	0, 0, 0, 0
		SBT1REG4	R/W	R/W	R/W	R/W	1	2	SBT1RD4	R/W ${ }^{(1)}$	SBT1WR4	0, 0, 0, 0
		SBT1REG5	R/W	R/W	R/W	R/W	1	2	SBT1RD5	R/W ${ }^{(1)}$	SBT1WR5	0, 0, 0, 0
		SBT1REG6	R/W	R/W	R/W	R/W	1	2	SBT1RD6	R/W ${ }^{(1)}$	SBT1WR6	0, 0, 0, 0
		SBT1REG7	R/W	R/W	R/W	R/W	0	1	SBT1RD7	R/W ${ }^{(1)}$	SBT1WR7	0, 0, 0, 0
		SBT1REG8	R/W	R/W	R/W	R/W	0	1	SBT1RD8	R/W ${ }^{(1)}$	SBT1WR8	0, 0, 0, 0
2	RAM Bank 1 Memory	SBT2REG0	R	0x00000000	$\mathrm{R}^{(4)}$	$\mathrm{R}^{(4)}$	-	0	SBT2RD0	R/W ${ }^{(1)}$	SBT2WR0	R/W ${ }^{(1)}$
		SBT2REG1	R/W	R/W	R/W	R/W	-	3	SBT2RD1	R/W ${ }^{(1)}$	SBT2WR1	R/W ${ }^{(1)}$
		SBT2REG2	R/W	R/W	R/W	R/W	0	1	SBT2RD2	R/W ${ }^{(1)}$	SBT2WR2	$\mathrm{R} / \mathrm{W}^{(1)}$
3	RAM Bank 2 Memory	SBT3REG0	$\mathrm{R}^{(4)}$	$\mathrm{R}^{(4)}$	$\mathrm{R}^{(4)}$	$\mathrm{R}^{(4)}$	-	0	SBT3RD0	R/W ${ }^{(1)}$	SBT3WR0	R/W ${ }^{(1)}$
		SBT3REG1	R/W	R/W	R/W	R/W	-	3	SBT3RD1	R/W ${ }^{(1)}$	SBT3WR1	R/W ${ }^{(1)}$
		SBT3REG2	R/W	R/W	R/W	R/W	0	1	SBT3RD2	R/W ${ }^{(1)}$	SBT3WR2	R/W ${ }^{(1)}$
4	External Memory via EBI and EBIModule	SBT4REG0	R	0x20000000	R	64 MB	-	0	SBT4RD0	R/W ${ }^{(1)}$	SBT4WR0	R/W ${ }^{(1)}$
		SBT4REG2	R	0x1F8E1000	R	4 KB	0	1	SBT4RD2	R/W ${ }^{(1)}$	SBT4WR2	R/W ${ }^{(1)}$
5	Peripheral Set 1: System Control Flash Control DMT/WDT RTCC CVR PPS Input PPS Output Interrupts DMA	SBT5REG0	R	0x1F800000	R	128 KB	-	0	SBT5RD0	R/W ${ }^{(1)}$	SBT5WR0	R/W ${ }^{(1)}$
		SBT5REG1	R/W	R/W	R/W	R/W	-	3	SBT5RD1	R/W ${ }^{(1)}$	SBT5WR1	R/W ${ }^{(1)}$
		SBT5REG2	R/W	R/W	R/W	R/W	0	1	SBT5RD2	R/W ${ }^{(1)}$	SBT5WR2	$\mathrm{R} / \mathrm{W}^{(1)}$

Legend: $\quad R=$ Read; $\quad R / W=$ Read/Write; ' x ' in a register name $=0-13 ; \quad$ ' y ' in a register name $=0-8$.
The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.
 Refer to the Device Memory Maps (Figure 4-1 through Figure 4-4) for specific device memory sizes and start addresses.
See Table 4-1for information on specific target memory size and start addresses.
6: The SBTxREG1 SFRs are reserved, and therefore, are not listed in this table for this target.
TABLE 4-6: SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS (CONTINUED)

TABLE 4-7: SYSTEM BUS REGISTER MAP

			Bits																
			31/15	30/14	29/13	28/12	27/11	26/10	$25 / 9$	24/8	23/7	22/6	21/5	$20 / 4$	19/3	18/2	17/1	16/0	
	SBFLAG	31:16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0000
0510	SBFLAG	15:0	-	-	T13PGV	T12PGV	T11PGV	T10PGV	T9PGV	T8PGV	T7PGV	T6PGV	T5PGV	T4PGV	T3PGV	T2PGV	T1PGV	TOPGV	0000

[^0]\mp@subsup{}{}{(1)
1 = Write protection for physical address 0x01FC30000 through 0x1FC33FFF enabled
0 = Write protection for physical address 0x01FC30000 through 0x1FC33FFF disabled
bit 3 UBWP3: Upper Boot Alias Page 3 Write-protect bit (1)
1 = Write protection for physical address 0x01FC2C000 through 0x1FC2FFFF enabled
0 = Write protection for physical address 0x01FC2C000 through 0x1FC2FFFF disabled
bit 2 UBWP2: Upper Boot Alias Page 2 Write-protect bit(1)
1 = Write protection for physical address 0x01FC28000 through 0x1FC2BFFF enabled
0 = Write protection for physical address 0x01FC28000 through 0x1FC2BFFF disabled
bit 1 UBWP1: Upper Boot Alias Page 1 Write-protect bit(1)
1 = Write protection for physical address 0x01FC24000 through 0x1FC27FFF enabled
0 = Write protection for physical address 0x01FC24000 through 0x1FC27FFF disabled
bit 0 UBWP0: Upper Boot Alias Page 0 Write-protect bit (}\mp@subsup{}{}{(1)
1 = Write protection for physical address 0x01FC20000 through 0x1FC23FFF enabled
0 = Write protection for physical address 0x01FC20000 through 0x1FC23FFF disabled

```

Note 1: These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

NOTES:

\subsection*{6.0 RESETS}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The device Reset sources are as follows:
- Power-on Reset (POR)
- Master Clear Reset pin ( \(\overline{\mathrm{MCLR}}\) )
- Software Reset (SWR)
- Watchdog Timer Reset (WDTR)
- Brown-out Reset (BOR)
- Configuration Mismatch Reset (CMR)
- Deadman Timer Reset (DMTR)

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

\section*{FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM}

Reset Control Registers
RESETS REGISTER MAP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1240} & \multirow[t]{2}{*}{RCON} & 31:16 & - & - & - & - & BCFGERR & BCFGFAIL & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & CMR & - & EXTR & SWR & DMTO & WDTO & SLEEP & IDLE & BOR & POR & 0000 \\
\hline \multirow[t]{2}{*}{1250} & \multirow[t]{2}{*}{RSWRST} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & SWRST & 0000 \\
\hline \multirow[t]{2}{*}{1260} & \multirow[t]{2}{*}{RNMICON} & 31:16 & - & - & - & - & - & - & DMTO & WDTO & SWNMI & - & - & - & - & - & CF & WDTS & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{NMICNT<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1270} & \multirow[t]{2}{*}{PWRCON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & VREGS & 0000 \\
\hline
\end{tabular}
Legend: \(x=\) unknown value on Reset; \(-=\) unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Bit \\
Range
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{RW}-0, \mathrm{HC}\) & \(\mathrm{R} / \mathrm{W}-0, \mathrm{HC}\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & BCFGERR & BCFGFAIL & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0, \mathrm{HS}\) & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & CMR & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{R} / \mathrm{W}-0, \mathrm{HS}\) & \(\mathrm{R} / \mathrm{W}-1, \mathrm{HS}\) & \(\mathrm{R} / \mathrm{W}-1, \mathrm{HS}\) \\
\cline { 2 - 9 } & EXTR & SWR & DMTO & WDTO & SLEEP & IDLE & \(\mathrm{BOR}^{(1)}\) & POR \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS \(=\) Set by hardware & HC \(=\) Cleared by hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-28 Unimplemented: Read as ' 0 '
bit 27 BCFGERR: Primary Configuration Registers Error Flag bit
\(1=\) An error occurred during a read of the primary configuration registers
\(0=\) No error occurred during a read of the primary configuration registers
bit 26 BCFGFAIL: Primary/Secondary Configuration Registers Error Flag bit
1 = An error occurred during a read of the primary and alternate configuration registers
\(0=\) No error occurred during a read of the primary and alternate configuration registers
bit 25-10 Unimplemented: Read as ' 0 '
bit 9 CMR: Configuration Mismatch Reset Flag bit
1 = A Configuration Mismatch Reset has occurred
\(0=A\) Configuration Mismatch Reset has not occurred
bit 8 Unimplemented: Read as ' 0 '
bit 7 EXTR: External Reset ( \(\overline{M C L R}\) ) Pin Flag bit
1 = Master Clear (pin) Reset has occurred
\(0=\) Master Clear (pin) Reset has not occurred
bit 6 SWR: Software Reset Flag bit 1 = Software Reset was executed
\(0=\) Software Reset was not executed
bit 5 DMTO: Deadman Timer Time-out Flag bit
1 = A DMT time-out has occurred
\(0=\) A DMT time-out has not occurred
bit 4 WDTO: Watchdog Timer Time-out Flag bit \(1=\) WDT Time-out has occurred \(0=\) WDT Time-out has not occurred
bit 3 SLEEP: Wake From Sleep Flag bit 1 = Device was in Sleep mode
\(0=\) Device was not in Sleep mode
bit 2 IDLE: Wake From Idle Flag bit
1 = Device was in Idle mode
\(0=\) Device was not in Idle mode
bit 1 BOR: Brown-out Reset Flag bit \({ }^{(1)}\)
1 = Brown-out Reset has occurred
\(0=\) Brown-out Reset has not occurred
bit \(0 \quad\) POR: Power-on Reset Flag bit \({ }^{11)}\)
1 = Power-on Reset has occurred
\(0=\) Power-on Reset has not occurred
Note 1: User software must clear this bit to view the next detection.

\section*{REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & W-O, HC \\
\hline & - & - & - & - & - & - & - & SWRST \({ }^{(1,2)}\) \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Cleared by hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-1 Unimplemented: Read as '0'
bit \(0 \quad\) SWRST: Software Reset Trigger bit \({ }^{(1,2)}\)
1 = Enable software Reset event
\(0=\) No effect

Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

2: Once this bit is set, any read of the RSWRST register will cause a reset to occur.

REGISTER 6-3: RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Bit } \\
& 24 / 16 / 8 / 0
\end{aligned}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & DMTO & WDTO \\
\hline \multirow{2}{*}{23:16} & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & SWNMI & - & - & - & - & - & CF & WDTS \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{NMICNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-26 Unimplemented: Read as ' 0 '
bit 25 DMTO: Deadman Timer Time-out Flag bit
1 = DMT time-out has occurred and caused a NMI
\(0=\) DMT time-out has not occurred
Setting this bit will cause a DMT NMI event, and NMICNT will begin counting.
bit 24 WDTO: Watchdog Timer Time-Out Flag bit
1 = WDT time-out has occurred and caused a NMI
\(0=\) WDT time-out has not occurred
Setting this bit will cause a WDT NMI event, and MNICNT will begin counting.
bit 23 SWNMI: Software NMI Trigger.
1 = An NMI will be generated
\(0=\) An NMI will not be generated
bit 22-18 Unimplemented: Read as ' 0 '
bit 17 CF: Clock Fail Detect bit
1 = FSCM has detected clock failure and caused an NMI
\(0=\) FSCM has not detected clock failure
Setting this bit will cause a a CF NMI event, but will not cause a clock switch to the BFRC.
bit 16 WDTS: Watchdog Timer Time-out in Sleep Mode Flag bit
1 = WDT time-out has occurred during Sleep mode and caused a wake-up from sleep
\(0=\) WDT time-out has not occurred during Sleep mode
Setting this bit will cause a WDT NMI.
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-0 NMICNT<7:0>: NMI Reset Counter Value bits
These bits specify the reload value used by the NMI reset counter.
11111111-00000001 = Number of SYSCLK cycles before a device Reset occurs \({ }^{(1)}\)
\(00000000=\) No delay between NMI assertion and device Reset event
Note 1: When a Watchdog Timer NMI event (when not in Sleep mode) or a Deadman Timer NMI event is triggered the NMICNT will start decrementing. When NMICNT reaches zero, the device is Reset. This NMI reset counter is only applicable to these two specific NMI events.

Note: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

\section*{REGISTER 6-4: PWRCON: POWER CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 \\
\hline & - & - & - & - & - & - & - & VREGS \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-1 Unimplemented: Read as '0'
bit \(0 \quad\) VREGS: Voltage Regulator Stand-by Enable bit
1 = Voltage regulator will remain active during Sleep
\(0=\) Voltage regulator will go to Stand-by mode during Sleep

\subsection*{7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108) and Section 50. "CPU for Devices with microAptiv \({ }^{\text {TM }}\) Core" (DS60001192) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EC devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Controller module exists outside of the CPU and prioritizes the interrupt events before presenting them to the CPU.
The CPU handles interrupt events as part of the exception handling mechanism, which is described in Section 7.1 "CPU Exceptions".

The Interrupt Controller module includes the following features:
- Up to 190 interrupt sources and vectors with dedicated programmable offsets, eliminating the need for redirection
- Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Seven shadow register sets that can be used for any priority level, eliminating software context switch and reducing interrupt latency
- Software can generate any interrupt

Figure 7-1 shows the block diagram for the Interrupt Controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

CPU Exceptions
CPU coprocessor 0 contains the logic for identifying and managing exceptions Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.
TABLE 7-1: MIPS \(32{ }^{\circledR}\) microAptiv \({ }^{\text {TM }}\) MICROPROCESSOR CORE EXCEPTION TYPES
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Exception Type (In Order of Priority) & Description & Branches to & Status Bits Set & Debug Bits Set & EXCCODE & XC32 Function Name \\
\hline \multicolumn{7}{|l|}{Highest Priority} \\
\hline Reset & Assertion \(\overline{\mathrm{MCLR}}\) or a Power-on Reset (POR). & 0xBFC0_0000 & BEV, ERL & - & - & on_reset \\
\hline Soft Reset & Assertion of a software Reset. & 0xBFC0_0000 & \[
\begin{gathered}
\hline \text { BEV, SR, } \\
\text { ERL }
\end{gathered}
\] & - & - & _on_reset \\
\hline DSS & EJTAG debug single step. & 0xBFC0_0480 & - & DSS & - & - \\
\hline DINT & EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register. & 0xBFC0_0480 & - & DINT & - & - \\
\hline NMI & Assertion of NMI signal. & 0xBFC0_0000 & \[
\begin{gathered}
\hline \text { BEV, NMI, } \\
\text { ERL }
\end{gathered}
\] & - & - & _nmi_handler \\
\hline Machine Check & TLB write that conflicts with an existing entry. & EBASE+0x180 & \[
\begin{gathered}
\text { MCHECK, } \\
\text { EXL }
\end{gathered}
\] & - & 0x18 & _general_exception_handler \\
\hline Interrupt & Assertion of unmasked hardware or software interrupt signal. & See Table 7-2. & IPL<2:0> & - & \(0 \times 00\) & See Table 7-2. \\
\hline Deferred Watch & Deferred watch (unmasked by K|DM=>!(K|DM) transition). & EBASE+0x180 & WP, EXL & - & 0x17 & _general_exception_handler \\
\hline DIB & EJTAG debug hardware instruction break matched. & 0xBFC0_0480 & - & DIB & - & - \\
\hline WATCH & A reference to an address that is in one of the Watch registers (fetch). & EBASE+0x180 & EXL & - & 0x17 & _general_exception_handler \\
\hline AdEL & Fetch address alignment error. Fetch reference to protected address. & EBASE+0x180 & EXL & - & \(0 \times 04\) & _general_exception_handler \\
\hline \multirow[t]{2}{*}{TLBL} & \multirow[t]{2}{*}{Fetch TLB miss or fetch TLB hit to page with V \(=0\).} & EBASE if Status.EXL = 0 & - & - & \(0 \times 02\) & - \\
\hline & & \[
\begin{aligned}
& \text { EBASE }+0 \times 180 \text { if } \\
& \text { Status. } E X L==1
\end{aligned}
\] & - & - & \(0 \times 02\) & _general_exception_handler \\
\hline TLBL Execute Inhibit & An instruction fetch matched a valid TLB entry that had the XI bit set. & EBASE+0x180 & EXL & - & 0x14 & _general_exception_handler \\
\hline Cache Error & Instruction or data reference detects a cache tag or data error. & EBASE+0x100 & - & - & 0x1E & _cache_error_exception \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Exception Type (In Order of Priority) & Description & Branches to & Status Bits Set & Debug Bits Set & EXCCODE & XC32 Function Name \\
\hline IBE & Instruction fetch bus error. & EBASE+0x180 & EXL & - & 0x06 & general_exception_handler \\
\hline Instruction Validity Exceptions & An instruction could not be completed because it was not allowed to access the required resources (Coprocessor Unusable) or was illegal (Reserved Instruction). If both exceptions occur on the same instruction, the Coprocessor Unusable Exception takes priority over the Reserved Instruction Exception. & EBASE+0x180 & EXL & - & \[
\begin{gathered}
\hline 0 \times 0 \mathrm{~A} \text { or } \\
0 \times 0 \mathrm{~B}
\end{gathered}
\] & _general_exception_handler \\
\hline Execute Exception & An instruction-based exception occurred: Integer overflow, trap, system call, breakpoint, floating point, or DSP ASE state disabled exception. & EBASE+0x180 & EXL & - & 0x08-0x0C & _general_exception_handler \\
\hline Tr & Execution of a trap (when trap condition is true). & EBASE+0x180 & EXL & - & 0x0D & general_exception_handler \\
\hline DDBL/DDBS & EJTAG Data Address Break (address only) or EJTAG data value break on store (address + value). & 0xBFC0_0480 & - & \[
\begin{aligned}
& \hline \text { DDBL or } \\
& \text { DDBS }
\end{aligned}
\] & - & - \\
\hline WATCH & A reference to an address that is in one of the Watch registers (data). & EBASE+0x180 & EXL & - & 0x17 & _general_exception_handler \\
\hline AdEL & Load address alignment error. User mode load reference to kernel address. & EBASE+0x180 & EXL & - & 0x04 & _general_exception_handler \\
\hline AdES & Store address alignment error. User mode store to kernel address. & EBASE+0x180 & EXL & - & \(0 \times 05\) & _general_exception_handler \\
\hline TLBL & Load TLB miss or load TLB hit to page with V \(=0\). & EBASE+0x180 & EXL & - & 0x02 & _general_exception_handler \\
\hline TLBS & Store TLB miss or store TLB hit to page with V \(=0\). & EBASE+0x180 & EXL & - & \(0 \times 03\) & _general_exception_handler \\
\hline DBE & Load or store bus error. & EBASE+0x180 & EXL & - & 0x07 & general_exception_handler \\
\hline DDBL & EJTAG data hardware breakpoint matched in load data compare. & 0xBFC0_0480 & - & DDBL & - & - \\
\hline CBrk & EJTAG complex breakpoint. & 0xBFC0_0480 & - & DIBIMPR, DDBLIMPR, and/or DDBSIMPR & - & - \\
\hline \multicolumn{7}{|l|}{Lowest Priority} \\
\hline
\end{tabular}
7.2 Interrupts
For details on the Variable Offset feature, refer to 8.5.2 "Variable Offset" in
Table 7-2 provides the Interrupt IRQ, vector and bit location information.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Interrupt Source \({ }^{(1)}\)} & \multirow[t]{2}{*}{XC32 Vector Name} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { IRQ } \\
\#
\end{array}
\]} & \multirow[t]{2}{*}{Vector \#} & \multicolumn{4}{|l|}{Interrupt Bit Location} & \multirow[t]{2}{*}{Persistent Interrupt} \\
\hline & & & & Flag & Enable & Priority & Sub-priority & \\
\hline \multicolumn{9}{|l|}{Highest Natural Order Priority} \\
\hline Core Timer Interrupt & CORE_TIMER_VECTOR & 0 & OFF000<17:1> & IFS0<0> & IEC0<0> & IPC0<4:2> & IPC0<1:0> & No \\
\hline Core Software Interrupt 0 & _CORE_SOFTWARE_0_VECTOR & 1 & OFF001<17:1> & IFS0<1> & IEC0<1> & IPC0<12:10> & IPC0<9:8> & No \\
\hline Core Software Interrupt 1 & CORE_SOFTWARE_1_VECTOR & 2 & OFF002<17:1> & IFS0<2> & IEC0<2> & IPC0<20:18> & IPC0<17:16> & No \\
\hline External Interrupt & EXTERNAL_0_VECTOR & 3 & OFF003<17:1> & IFS0<3> & IEC0<3> & IPC0<28:26> & IPC0<25:24> & No \\
\hline Timer1 & _TIMER_1_VECTOR & 4 & OFF004<17:1> & IFS0<4> & IEC0<4> & IPC1<4:2> & IPC1<1:0> & No \\
\hline Input Capture 1 Error & INPUT_CAPTURE_1_ERROR_VECTOR & 5 & OFF005<17:1> & IFS0<5> & IEC0<5> & IPC1<12:10> & IPC1<9:8> & Yes \\
\hline Input Capture 1 & _INPUT_CAPTURE_1_VECTOR & 6 & OFF006<17:1> & IFS0<6> & IEC0<6> & IPC1<20:18> & IPC1<17:16> & Yes \\
\hline Output Compare 1 & _OUTPUT_COMPARE_1_VECTOR & 7 & OFF007<17:1> & IFS0<7> & IEC0<7> & IPC1<28:26> & IPC1<25:24> & No \\
\hline External Interrupt 1 & EXTERNAL_1_VECTOR & 8 & OFF008<17:1> & IFS0<8> & IEC0<8> & IPC2<4:2> & IPC2<1:0> & No \\
\hline Timer2 & _TIMER_2_VECTOR & 9 & OFF009<17:1> & IFS0<9> & IEC0<9> & IPC2<12:10> & IPC2<9:8> & No \\
\hline Input Capture 2 Error & _INPUT_CAPTURE_2_ERROR_VECTOR & 10 & OFF010<17:1> & IFSO<10> & IEC0<10> & IPC2<20:18> & IPC2<17:16> & Yes \\
\hline Input Capture 2 & _INPUT_CAPTURE_2_VECTOR & 11 & OFF011<17:1> & IFS0<11> & IEC0<11> & IPC2<28:26> & IPC2<25:24> & Yes \\
\hline Output Compare 2 & _OUTPUT_COMPARE_2_VECTOR & 12 & OFF012<17:1> & IFS0<12> & IEC0<12> & IPC3<4:2> & IPC3<1:0> & No \\
\hline External Interrupt 2 & EXTERNAL_2_VECTOR & 13 & OFF013<17:1> & IFS0<13> & IEC0<13> & IPC3<12:10> & IPC3<9:8> & No \\
\hline Timer3 & _TIMER_3_VECTOR & 14 & OFF014<17:1> & IFS0<14> & IEC0<14> & IPC3<20:18> & IPC3<17:16> & No \\
\hline Input Capture 3 Error & _INPUT_CAPTURE_3_ERROR_VECTOR & 15 & OFF015<17:1> & IFS0<15> & IEC0<15> & IPC3<28:26> & IPC3<25:24> & Yes \\
\hline Input Capture 3 & _INPUT_CAPTURE_3_VECTOR & 16 & OFF016<17:1> & IFS0<16> & IEC0<16> & IPC4<4:2> & IPC4<1:0> & Yes \\
\hline Output Compare 3 & _OUTPUT_COMPARE_3_VECTOR & 17 & OFF017<17:1> & IFS0<17> & IEC0<17> & IPC4<12:10> & IPC4<9:8> & No \\
\hline External Interrupt 3 & EXTERNAL_3_VECTOR & 18 & OFF018<17:1> & IFSO<18> & IEC0<18> & IPC4<20:18> & IPC4<17:16> & No \\
\hline Timer4 & _TIMER_4_VECTOR & 19 & OFF019<17:1> & IFSO<19> & IEC0<19> & IPC4<28:26> & IPC4<25:24> & No \\
\hline Input Capture 4 Error & _INPUT_CAPTURE_4_ERROR_VECTOR & 20 & OFF020<17:1> & IFSO<20> & IEC0<20> & IPC5<4:2> & IPC5<1:0> & Yes \\
\hline Input Capture 4 & _INPUT_CAPTURE_4_VECTOR & 21 & OFF021<17:1> & IFSO<21> & IEC0<21> & IPC5<12:10> & IPC5<9:8> & Yes \\
\hline Output Compare 4 & _OUTPUT_COMPARE_4_VECTOR & 22 & OFF022<17:1> & IFS0<22> & IEC0<22> & IPC5<20:18> & IPC5<17:16> & No \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family \\
2: This interrupt source is not available on 64-pin devices. \\
3: This interrupt source is not available on 100-pin devices.
\end{tabular}} \\
\hline
\end{tabular}
TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)


\footnotetext{
Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the list of available peripherals.
This interrupt source is not available on 64-pin devices.
This interrupt source is not available on 100-pin devices.
}
TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)
TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Interrupt Source \({ }^{(1)}\)} & \multirow[t]{2}{*}{XC32 Vector Name} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { IRQ } \\
\#
\end{array}
\]} & \multirow[t]{2}{*}{Vector \#} & \multicolumn{4}{|l|}{Interrupt Bit Location} & \multirow[t]{2}{*}{Persistent Interrupt} \\
\hline & & & & Flag & Enable & Priority & Sub-priority & \\
\hline SPI1 Receive Done & SPI1_RX_VECTOR & 110 & OFF110<17:1> & IFS3<14> & IEC3<14> & IPC27<20:18> & IPC27<17:16> & Yes \\
\hline SPI1 Transfer Done & _SPI1_TX_VECTOR & 111 & OFF111<17:1> & IFS3<15> & IEC3<15> & IPC27<28:26> & IPC27<25:24> & Yes \\
\hline UART1 Fault & _UART1_FAULT_VECTOR & 112 & OFF112<17:1> & IFS3<16> & IEC3<16> & IPC28<4:2> & IPC28<1:0> & Yes \\
\hline UART1 Receive Done & UART1_RX_VECTOR & 113 & OFF113<17:1> & IFS3<17> & IEC3<17> & IPC28<12:10> & IPC28<9:8> & Yes \\
\hline UART1 Transfer Done & _UART1_TX_VECTOR & 114 & OFF114<17:1> & IFS3<18> & IEC3<18> & IPC28<20:18> & IPC28<17:16> & Yes \\
\hline I2C1 Bus Collision Event & _I2C1_BUS_VECTOR & 115 & OFF115<17:1> & IFS3<19> & IEC3<19> & IPC28<28:26> & IPC28<25:24> & Yes \\
\hline I2C1 Slave Event & _I2C1_SLAVE_VECTOR & 116 & OFF116<17:1> & IFS3<20> & IEC3<20> & IPC29<4:2> & IPC29<1:0> & Yes \\
\hline I2C1 Master Event & _I2C1_MASTER_VECTOR & 117 & OFF117<17:1> & IFS3<21> & IEC3<21> & IPC29<12:10> & IPC29<9:8> & Yes \\
\hline PORTA Input Change Interrupt \({ }^{(2)}\) & _CHANGE_NOTICE_A_VECTOR & 118 & OFF118<17:1> & IFS3<22> & IEC3<22> & IPC29<20:18> & IPC29<17:16> & Yes \\
\hline PORTB Input Change Interrupt & _CHANGE_NOTICE_B_VECTOR & 119 & OFF119<17:1> & IFS3<23> & IEC3<23> & IPC29<28:26> & IPC29<25:24> & Yes \\
\hline PORTC Input Change Interrupt & _CHANGE_NOTICE_C_VECTOR & 120 & OFF120<17:1> & IFS3<24> & IEC3<24> & IPC30<4:2> & IPC30<1:0> & Yes \\
\hline PORTD Input Change Interrupt & _CHANGE_NOTICE_D_VECTOR & 121 & OFF121<17:1> & IFS3<25> & IEC3<25> & IPC30<12:10> & IPC30<9:8> & Yes \\
\hline PORTE Input Change Interrupt & _CHANGE_NOTICE_E_VECTOR & 122 & OFF122<17:1> & IFS3<26> & IEC3<26> & IPC30<20:18> & IPC30<17:16> & Yes \\
\hline PORTF Input Change Interrupt & _CHANGE_NOTICE_F_VECTOR & 123 & OFF123<17:1> & IFS3<27> & IEC3<27> & IPC30<28:26> & IPC30<25:24> & Yes \\
\hline PORTG Input Change Interrupt & CHANGE_NOTICE_G_VECTOR & 124 & OFF124<17:1> & IFS3<28> & IEC3<28> & IPC31<4:2> & IPC31<1:0> & Yes \\
\hline PORTH Input Change Interrupt \({ }^{(2,3)}\) & CHANGE_NOTICE_H_VECTOR & 125 & OFF125<17:1> & IFS3<29> & IEC3<29> & IPC31<12:10> & IPC31<9:8> & Yes \\
\hline PORTJ Input Change Interrupt \({ }^{(2,3)}\) & _CHANGE_NOTICE_J_VECTOR & 126 & OFF126<17:1> & IFS3<30> & IEC3<30> & IPC31<20:18> & IPC31<17:16> & Yes \\
\hline PORTK Input Change Interrupt \({ }^{(2,3)}\) & CHANGE_NOTICE_K_VECTOR & 127 & OFF127<17:1> & IFS3<31> & IEC3<31> & IPC31<28:26> & IPC31<25:24> & Yes \\
\hline Parallel Master Port & _PMP_VECTOR & 128 & OFF128<17:1> & IFS4<0> & IEC4<0> & IPC32<4:2> & IPC32<1:0> & Yes \\
\hline Parallel Master Port Error & _PMP_ERROR_VECTOR & 129 & OFF129<17:1> & IFS4<1> & IEC4<1> & IPC32<12:10> & IPC32<9:8> & Yes \\
\hline Comparator 1 Interrupt & _COMPARATOR_1_VECTOR & 130 & OFF130<17:1> & IFS4<2> & IEC4<2> & IPC32<20:18> & IPC32<17:16> & No \\
\hline Comparator 2 Interrupt & _COMPARATOR_2_VECTOR & 131 & OFF \(131<17: 1>\) & IFS4<3> & IEC4<3> & IPC32<28:26> & IPC32<25:24> & No \\
\hline USB General Event & _USB1_VECTOR & 132 & OFF132<17:1> & IFS4<4> & IEC4<4> & IPC33<4:2> & IPC33<1:0> & Yes \\
\hline USB DMA Event & _USB1_DMA_VECTOR & 133 & OFF133<17:1> & IFS4<5> & IEC4<5> & IPC33<12:10> & IPC33<9:8> & Yes \\
\hline DMA Channel 0 & _DMA0_VECTOR & 134 & OFF134<17:1> & IFS4<6> & IEC4<6> & IPC33<20:18> & IPC33<17:16> & No \\
\hline DMA Channel 1 & DMA1_VECTOR & 135 & OFF135<17:1> & IFS4<7> & IEC4<7> & IPC33<28:26> & IPC33<25:24> & No \\
\hline DMA Channel 2 & _DMA2_VECTOR & 136 & OFF136<17:1> & IFS4<8> & IEC4<8> & IPC34<4:2> & IPC34<1:0> & No \\
\hline DMA Channel 3 & _DMA3_VECTOR & 137 & OFF137<17:1> & IFS4<9> & IEC4<9> & IPC34<12:10> & IPC34<9:8> & No \\
\hline DMA Channel 4 & _DMA4_VECTOR & 138 & OFF138<17:1> & IFS4<10> & IEC4<10> & IPC34<20:18> & IPC34<17:16> & No \\
\hline
\end{tabular} Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the list of available peripherals. This interrupt source is not available on 64-pin devices. This interrupt source is not available on 100-pin devices.
TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the list of available peripherals. 2: This interrupt source is not available on 64 -pin devices.
3: This interrupt source is not available on 100 -pin devices.
TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Interrupt Source \({ }^{(1)}\)} & \multirow[t]{2}{*}{XC32 Vector Name} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { IRQ } \\
\#
\end{gathered}
\]} & \multirow[t]{2}{*}{Vector \#} & \multicolumn{4}{|l|}{Interrupt Bit Location} & \multirow[t]{2}{*}{Persistent Interrupt} \\
\hline & & & & Flag & Enable & Priority & Sub-priority & \\
\hline Prefetch Module SEC Event & _PREFETCH_VECTOR & 168 & OFF168<17:1> & IFS5<8> & IEC5<8> & IPC42<4:2> & IPC42<1:0> & Yes \\
\hline SQI1 Event & _SQI1_VECTOR & 169 & OFF169<17:1> & IFS5<9> & IEC5<9> & IPC42<12:10> & IPC42<9:8> & Yes \\
\hline UART4 Fault & _UART4_FAULT_VECTOR & 170 & OFF170<17:1> & IFS5<10> & IEC5<10> & IPC42<20:18> & IPC42<17:16> & Yes \\
\hline UART4 Receive Done & _UART4_RX_VECTOR & 171 & OFF171<17:1> & IFS5<11> & IEC5<11> & IPC42<28:26> & IPC42<25:24> & Yes \\
\hline UART4 Transfer Done & _UART4_TX_VECTOR & 172 & OFF172<17:1> & IFS5<12> & IEC5<12> & IPC43<4:2> & IPC43<1:0> & Yes \\
\hline I2C4 Bus Collision Event & _I2C4_BUS_VECTOR & 173 & OFF173<17:1> & IFS5<13> & IEC5<13> & IPC43<12:10> & IPC43<9:8> & Yes \\
\hline I2C4 Slave Event & _I2C4_SLAVE_VECTOR & 174 & OFF174<17:1> & IFS5<14> & IEC5<14> & IPC43<20:18> & IPC43<17:16> & Yes \\
\hline I2C4 Master Event & _I2C4_MASTER_VECTOR & 175 & OFF175<17:1> & IFS5<15> & IEC5<15> & IPC43<28:26> & IPC43<25:24> & Yes \\
\hline SPI5 Fault \({ }^{(2)}\) & _SPI5_FAULT_VECTOR & 176 & OFF176<17:1> & IFS5<16> & IEC5<16> & IPC44<4:2> & IPC44<1:0> & Yes \\
\hline SPI5 Receive Done \({ }^{(\mathbf{2})}\) & _SPI5_RX_VECTOR & 177 & OFF177<17:1> & IFS5<17> & IEC5<17> & IPC44<12:10> & IPC44<9:8> & Yes \\
\hline SPI5 Transfer Done \({ }^{(\mathbf{2})}\) & _SPI5_TX_VECTOR & 178 & OFF178<17:1> & IFS5<18> & IEC5<18> & IPC44<20:18> & IPC44<17:16> & Yes \\
\hline UART5 Fault & _UART5_FAULT_VECTOR & 179 & OFF179<17:1> & IFS5<19> & IEC5<19> & IPC44<28:26> & IPC44<25:24> & Yes \\
\hline UART5 Receive Done & _UART5_RX_VECTOR & 180 & OFF180<17:1> & IFS5<20> & IEC5<20> & IPC45<4:2> & IPC45<1:0> & Yes \\
\hline UART5 Transfer Done & _UART5_TX_VECTOR & 181 & OFF181<17:1> & IFS5<21> & IEC5<21> & IPC45<12:10> & IPC45<9:8> & Yes \\
\hline I2C5 Bus Collision Event & _I2C5_BUS_VECTOR & 182 & OFF182<17:1> & IFS5<22> & IEC5<22> & IPC45<20:18> & IPC45<17:16> & Yes \\
\hline I2C5 Slave Event & _I2C5_SLAVE_VECTOR & 183 & OFF183<17:1> & IFS5<23> & IEC5<23> & IPC45<28:26> & IPC45<25:24> & Yes \\
\hline I2C5 Master Event & _I2C5_MASTER_VECTOR & 184 & OFF184<17:1> & IFS5<24> & IEC5<24> & IPC46<4:2> & IPC46<1:0> & Yes \\
\hline SPI6 Fault \({ }^{(2)}\) & _SPI6_FAULT_VECTOR & 185 & OFF185<17:1> & IFS5<25> & IEC5<25> & IPC46<12:10> & IPC46<9:8> & Yes \\
\hline SPI6 Receive Done \({ }^{(\mathbf{2})}\) & _SPI6_RX_VECTOR & 186 & OFF186<17:1> & IFS5<26> & IEC5<26> & IPC46<20:18> & IPC46<17:16> & Yes \\
\hline SPI6 Transfer Done \({ }^{(\mathbf{2})}\) & _SPI6_TX_VECTOR & 187 & OFF187<17:1> & IFS5<27> & IEC5<27> & IPC46<28:26> & IPC46<25:24> & Yes \\
\hline UART6 Fault & _UART6_FAULT_VECTOR & 188 & OFF188<17:1> & IFS5<28> & IEC5<28> & IPC47<4:2> & IPC47<1:0> & Yes \\
\hline UART6 Receive Done & _UART6_RX_VECTOR & 189 & OFF189<17:1> & IFS5<29> & IEC5<29> & IPC47<12:10> & IPC47<9:8> & Yes \\
\hline UART6 Transfer Done & _UART6_TX_VECTOR & 190 & OFF190<17:1> & IFS5<30> & IEC5<30> & IPC47<20:18> & IPC47<17:16> & Yes \\
\hline
\end{tabular}

\footnotetext{
Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the list of available peripherals. This interrupt source is not available on 64-pin devices.

This interrupt source is not available on 100-pin devices
}
Interrupt Control Registers

INTERRUPT REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0100} & \multirow[t]{2}{*}{IEC4} & 31:16 & U3TXIE & U3RXIE & U3EIE & SPI3TXIE & SPI3RXIE & SPI3EIE & ETHIE & CAN2IE \({ }^{(3)}\) & CAN1IE \({ }^{(3)}\) & I2C2MIE \({ }^{(2)}\) & I2C2SIE \({ }^{(2)}\) & I2C2BIE \({ }^{(2)}\) & U2TXIE & U2RXIE & U2EIE & SPI2TXIE & 0000 \\
\hline & & 15:0 & SPI2RXIE & SPI2EIE & DMA7IE & DMA6IE & DMA5IE & DMA4IE & DMA3IE & DMA2IE & DMA1IE & DMAOIE & USBDMAIE & USBIE & CMP2IE & CMP1IE & PMPEIE & PMPIE & 0000 \\
\hline \multirow[t]{2}{*}{0110} & \multirow[t]{2}{*}{IEC5} & 31:16 & - & U6TXIE & U6RXIE & U6EIE & SPI6TXIE \({ }^{(2)}\) & SPI6RXIE \({ }^{(2)}\) & SPI6IE \({ }^{(2)}\) & I2C5MIE & I2C5SIE & I2C5BIE & U5TXIE & U5RXIE & U5EIE & SPI5TXIE \({ }^{(2)}\) & SPI5RXIE \({ }^{(2)}\) & SPI5EIE \({ }^{(2)}\) & 0000 \\
\hline & & 15:0 & I2C4MIE & I2C4SIE & I2C4BIE & U4TXIE & U4RXIE & U4EIE & SQI1IE & PREIE & FCEIE & RTCCIE & SPI4TXIE & SPI4RXIE & SPI4EIE & I2C3MIE & I2C3SIE & I2C3BIE & 0000 \\
\hline \multirow[t]{2}{*}{0140} & \multirow[t]{2}{*}{IPC0} & 31:16 & - & - & - & \multicolumn{3}{|l|}{INTOIP<2:0>} & \multicolumn{2}{|l|}{INTOIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{CS1IP<2:0>} & \multicolumn{2}{|l|}{CS1IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{CSOIP<2:0>} & \multicolumn{2}{|l|}{CSOIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{CTIP<2:0>} & \multicolumn{2}{|l|}{CTIS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0150} & \multirow[t]{2}{*}{IPC1} & 31:16 & - & - & - & \multicolumn{3}{|l|}{OC1IP<2:0>} & \multicolumn{2}{|l|}{OC11S<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC1IP<2:0>} & \multicolumn{2}{|l|}{IC1IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{IC1EIP<2:0>} & \multicolumn{2}{|l|}{IC1EIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{T1IP<2:0>} & \multicolumn{2}{|l|}{T1IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0160} & \multirow[t]{2}{*}{IPC2} & 31:16 & - & - & - & \multicolumn{3}{|l|}{IC2IP<2:0>} & \multicolumn{2}{|l|}{IC2IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC2EIP<2:0>} & \multicolumn{2}{|l|}{IC2EIS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{T21P<2:0>} & \multicolumn{2}{|l|}{T2IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{INT1 IP \(<2: 0>\)} & \multicolumn{2}{|l|}{INT11S<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0170} & \multirow[t]{2}{*}{IPC3} & 31:16 & - & - & - & \multicolumn{3}{|l|}{IC3EIP<2:0>} & \multicolumn{2}{|l|}{IC3EIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{T3IP<2:0>} & \multicolumn{2}{|l|}{T3IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{INT21P<2:0>} & \multicolumn{2}{|l|}{INT2|S<1:0>} & - & - & - & \multicolumn{3}{|l|}{OC2IP<2:0>} & \multicolumn{2}{|l|}{OC2IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0180} & \multirow[t]{2}{*}{IPC4} & 31:16 & - & - & - & \multicolumn{3}{|l|}{T4IP<2:0>} & \multicolumn{2}{|l|}{T4IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{INT3IP<2:0>} & \multicolumn{2}{|l|}{INT31S<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{OC3IP<2:0>} & \multicolumn{2}{|l|}{OC3IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC3IP<2:0>} & \multicolumn{2}{|l|}{IC3IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0190} & \multirow[t]{2}{*}{IPC5} & 31:16 & - & - & - & \multicolumn{3}{|l|}{INT4|P<2:0>} & \multicolumn{2}{|l|}{INT4IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{OC4IP<2:0>} & \multicolumn{2}{|l|}{OC4IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{IC4IP<2:0>} & \multicolumn{2}{|l|}{IC4IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC4EIP<2:0>} & \multicolumn{2}{|l|}{IC4EIS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{01A0} & \multirow[t]{2}{*}{IPC6} & 31:16 & - & - & - & \multicolumn{3}{|l|}{OC5IP<2:0>} & \multicolumn{2}{|l|}{OC5IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC5IP<2:0>} & \multicolumn{2}{|l|}{IC5IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{IC5EIP<2:0>} & \multicolumn{2}{|l|}{IC5EIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{T5IP<2:0>} & \multicolumn{2}{|l|}{T5IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{01B0} & \multirow[t]{2}{*}{IPC7} & 31:16 & - & - & - & \multicolumn{3}{|l|}{OC6IP<2:0>} & \multicolumn{2}{|l|}{OC6IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC6IP<2:0>} & \multicolumn{2}{|l|}{IC6IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{IC6EIP<2:0>} & \multicolumn{2}{|l|}{IC6EIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{T6IP<2:0>} & \multicolumn{2}{|l|}{T6IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{01C0} & \multirow[t]{2}{*}{IPC8} & 31:16 & - & - & - & \multicolumn{3}{|l|}{OC7IP<2:0>} & \multicolumn{2}{|l|}{OC7IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC7IP<2:0>} & \multicolumn{2}{|l|}{IC7IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{IC7EIP<2:0>} & \multicolumn{2}{|l|}{IC7EIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{T7IP<2:0>} & \multicolumn{2}{|l|}{T7IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{01D0} & \multirow[t]{2}{*}{IPC9} & 31:16 & - & - & - & \multicolumn{3}{|l|}{OC8IP<2:0>} & \multicolumn{2}{|l|}{OC8IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC8IP<2:0>} & \multicolumn{2}{|l|}{IC8IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{IC8EIP<2:0>} & \multicolumn{2}{|l|}{IC8EIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{T8IP<2:0>} & \multicolumn{2}{|l|}{T8IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{01E0} & \multirow[t]{2}{*}{IPC10} & 31:16 & - & - & - & \multicolumn{3}{|l|}{OC9IP<2:0>} & \multicolumn{2}{|l|}{OC91S<1:0>} & - & - & - & \multicolumn{3}{|l|}{IC9IP<2:0>} & \multicolumn{2}{|l|}{IC9IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{IC9EIP<2:0>} & \multicolumn{2}{|l|}{IC9EIS<1:0>} & - & - & - & \multicolumn{3}{|l|}{T9IP<2:0>} & \multicolumn{2}{|l|}{T9IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{01F0} & \multirow[t]{2}{*}{IPC11} & 31:16 & - & - & - & \multicolumn{3}{|l|}{AD1DC2IP<2:0>} & \multicolumn{2}{|l|}{AD1DC2IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{AD1DC1IP<2:0>} & \multicolumn{2}{|l|}{AD1DC1IS<1:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{3}{|l|}{AD1IP<2:0>} & \multicolumn{2}{|l|}{AD1IS<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0200} & \multirow[t]{2}{*}{IPC12} & 31:16 & - & - & - & \multicolumn{3}{|l|}{AD1DC6IP<2:0>} & \multicolumn{2}{|l|}{AD1DC6IS<1:0>} & - & - & - & & D1DC5IP<2 & & AD1DC5 & IS<1:0> & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{AD1DC4IP<2:0>} & \multicolumn{2}{|l|}{AD1DC4IS<1:0>} & - & - & - & \multicolumn{3}{|l|}{AD1DC3IP<2:0>} & \multicolumn{2}{|l|}{AD1DC3IS<1:0>} & 0000 \\
\hline
\end{tabular}

\footnotetext{
Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
}

\[
\begin{aligned}
& \text { This bit is not available on } 64 \text {-pin devices. } \\
& \text { This bit in not available on devices without a CAN module. } \\
& \text { This bit is not available on } 100 \text {-pin devices. }
\end{aligned}
\]
Bits 31 and 30 are not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64 -pin devices. Bits 31 and 30 are not available on 64 -pin and 100-pin devices; bits 29 through 14 are not available on 64 -pin devices.
Bits 31, 30, 29, and bits 5 through 0 are not available on 64-pin and 100-pin devices; bit 22 is not available on 64 -pin devices

\section*{PIC32MZ Embedded Connectivity (EC) Family}
TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

INTERRUPT REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|}
\hline & & \multirow[t]{2}{*}{} \\
\hline \(17 / 1\) & 16/0 & \\
\hline \multicolumn{2}{|l|}{U1TXIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{U1EIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{CNAIS<1:0> \({ }^{(2)}\)} & 0000 \\
\hline \multicolumn{2}{|l|}{I2C1SIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{CNEIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{CNCIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{CNJIS<1:0> \({ }^{(2,4)}\)} & 0000 \\
\hline \multicolumn{2}{|l|}{CNGIS<1:0>} & 000 \\
\hline \multicolumn{2}{|l|}{CMP1IS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{PMPIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{DMAOIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{USBIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{DMA4IS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{DMA2IS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{SPI2EIS<1:0>} & 000 \\
\hline \multicolumn{2}{|l|}{DMA6IS<1:0>} & 000 \\
\hline \multicolumn{2}{|l|}{U2RXIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{SPI2TXIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{12C2MIS<1:0> \({ }^{(2)}\)} & 0000 \\
\hline \multicolumn{2}{|l|}{I2C2BIS<1:0> \({ }^{(2)}\)} & 0000 \\
\hline \multicolumn{2}{|l|}{SPI3EIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{CAN2IS<1:0> \({ }^{(3)}\)} & 0000 \\
\hline \multicolumn{2}{|l|}{U3RXIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{SPI3TXIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{I2C3MIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{I2C3BIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{RTCCIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{SPI4RXIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{U4EIS<1:0>} & 0000 \\
\hline \multicolumn{2}{|l|}{PREIS<1:0>} & 0000 \\
\hline
\end{tabular}

\footnotetext{

This bit is not available on 64 -pin devices.
This bit is not available on dev-pin devices
This bit is not available on 100 -
Bits 31 and 30 are not available on 64 -pin and 100-pin devices; bits 29 through 14 are not available on 64 -pin devices. 2: This bit is not available on 64 -pin devices.
3:
This bit is not available on devices without a CAN module.
4:
5:
6:
6its bit is not available on 100 -pin devices.
 Bits 31,30 are not available on 64 -pin and 100 -pin devices; bits 29 through 14 are not available on 64 through 0 are not available on 64 -pin and 100 -pin devices; bit 22 is not available on 64 -pin devices.
}
TABLE 7-3: INTERRUPT REGISTER MAP (CONTINUED)

INTERRUPT REGISTER MAP (CONTINUED)

Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
 SET, and INV Registers" for more informa
This bit is not available on devices without a CAN module.
This bit is not available on 31 and not available on 64-pin and 100-pin devices; bits 29 through 14 are not available on 64 -pin devices.
Bits 31,30, 29, and bits 5 through 0 are not available on 64 -pin and 100-pin devices; bit 22 is not available on 64-pin devices.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & MVEC & - & \multicolumn{3}{|c|}{TPC<2:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & INT4EP & INT3EP & INT2EP & INT1EP & INT0EP \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\(x=\) Bit is unknown
\end{tabular}
bit 31-13 Unimplemented: Read as ' 0 '
bit 12 MVEC: Multi Vector Configuration bit
1 = Interrupt controller configured for multi vectored mode
\(0=\) Interrupt controller configured for single vectored mode
bit 11 Unimplemented: Read as ' 0 '
bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits
111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer
\(110=\) Interrupts of group priority 6 or lower start the Interrupt Proximity timer
101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer
\(100=\) Interrupts of group priority 4 or lower start the Interrupt Proximity timer
011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer
\(010=\) Interrupts of group priority 2 or lower start the Interrupt Proximity timer
001 = Interrupts of group priority 1 start the Interrupt Proximity timer
\(000=\) Disables Interrupt Proximity timer
bit 7-5 Unimplemented: Read as ' 0 '
bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge
bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
1 = Rising edge
\(0=\) Falling edge
bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
1 = Rising edge
\(0=\) Falling edge
bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
1 = Rising edge
\(0=\) Falling edge
bit \(0 \quad\) INTOEP: External Interrupt 0 Edge Polarity Control bit
1 = Rising edge
\(0=\) Falling edge

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{4}{|c|}{PRI7SS<3:0>(1)} & \multicolumn{4}{|c|}{PRI6SS<3:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{4}{|c|}{PRI5SS \(<3: 0>\) (1)} & \multicolumn{4}{|c|}{PRI4SS<3:0>(1)} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{4}{|c|}{PRI3SS<3:0>} & \multicolumn{4}{|c|}{PRI2SS<3:0>(1)} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 \\
\hline & \multicolumn{4}{|c|}{PRI1SS<3:0>(1)} & - & - & - & SS0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) = Bit is cleared \\
\hline
\end{tabular}
bit 31-28 PRI7SS<3:0>: Interrupt with Priority Level 7 Shadow Set bits \({ }^{(1)}\)
\(1 \mathrm{xxx}=\) Reserved (by default, an interrupt with a priority level of 7 uses Shadow Set 0)
\(0111=\) Interrupt with a priority level of 7 uses Shadow Set 7
\(0110=\) Interrupt with a priority level of 7 uses Shadow Set 6
.
\(\cdot\)
\(0001=\) Interrupt with a priority level of 7 uses Shadow Set 1
\(0000=\) Interrupt with a priority level of 7 uses Shadow Set 0
bit 27-24 PRI6SS<3:0>: Interrupt with Priority Level 6 Shadow Set bits \({ }^{(1)}\)
\(1 \mathrm{xxx}=\) Reserved (by default, an interrupt with a priority level of 6 uses Shadow Set 0)
\(0111=\) Interrupt with a priority level of 6 uses Shadow Set 7
\(0110=\) Interrupt with a priority level of 6 uses Shadow Set 6
-
.
\(0001=\) Interrupt with a priority level of 6 uses Shadow Set 1
\(0000=\) Interrupt with a priority level of 6 uses Shadow Set 0
bit 23-20 PRI5SS<3:0>: Interrupt with Priority Level 5 Shadow Set bits \({ }^{(1)}\)
\(1 \mathrm{xxx}=\) Reserved (by default, an interrupt with a priority level of 5 uses Shadow Set 0)
\(0111=\) Interrupt with a priority level of 5 uses Shadow Set 7
\(0110=\) Interrupt with a priority level of 5 uses Shadow Set 6
-
.
\(0001=\) Interrupt with a priority level of 5 uses Shadow Set 1
\(0000=\) Interrupt with a priority level of 5 uses Shadow Set 0
bit 19-16 PRI4SS<3:0>: Interrupt with Priority Level 4 Shadow Set bits \({ }^{(1)}\)
\(1 \mathrm{xxx}=\) Reserved (by default, an interrupt with a priority level of 4 uses Shadow Set 0)
\(0111=\) Interrupt with a priority level of 4 uses Shadow Set 7
\(0110=\) Interrupt with a priority level of 4 uses Shadow Set 6
.
\(\cdot\)
\(0001=\) Interrupt with a priority level of 4 uses Shadow Set 1
\(0000=\) Interrupt with a priority level of 4 uses Shadow Set 0
Note 1: These bits are ignored if the MVEC bit \((\) INTCON<12> \()=0\).

\section*{REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED)}
bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits \({ }^{(1)}\)
\(1 \mathrm{xxx}=\) Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0)
\(0111=\) Interrupt with a priority level of 3 uses Shadow Set 7
\(0110=\) Interrupt with a priority level of 3 uses Shadow Set 6
.
-
\(0001=\) Interrupt with a priority level of 3 uses Shadow Set 1
\(0000=\) Interrupt with a priority level of 3 uses Shadow Set 0
bit 11-8 PRI2SS<3:0>: Interrupt with Priority Level 2 Shadow Set bits \({ }^{(1)}\)
\(1 \mathrm{xxx}=\) Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0)
\(0111=\) Interrupt with a priority level of 2 uses Shadow Set 7
\(0110=\) Interrupt with a priority level of 2 uses Shadow Set 6
-
-
\(0001=\) Interrupt with a priority level of 2 uses Shadow Set 1
\(0000=\) Interrupt with a priority level of 2 uses Shadow Set 0
bit 7-4 PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits \({ }^{(1)}\)
\(1 \mathrm{xxx}=\) Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0)
\(0111=\) Interrupt with a priority level of 1 uses Shadow Set 7
\(0110=\) Interrupt with a priority level of 1 uses Shadow Set 6
-
:
\(0001=\) Interrupt with a priority level of 1 uses Shadow Set 1
\(0000=\) Interrupt with a priority level of 1 uses Shadow Set 0
bit 3-1 Unimplemented: Read as ' 0 '
bit \(0 \quad\) SSO: Single Vector Shadow Register Set bit
1 = Single vector is presented with a shadow set
\(0=\) Single vector is not presented with a shadow set
Note 1: These bits are ignored if the MVEC bit \((\) INTCON \(<12>)=0\).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
30 / 22 / 14 / 6
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{SRIPL<2:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{SIRQ<7:0>} \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-11 Unimplemented: Read as ' 0 '
bit 10-8 SRIPL<2:0>: Requested Priority Level bits for Single Vector Mode bits 111-000 = The priority level of the latest interrupt presented to the CPU
bit 7-6 Unimplemented: Read as ' 0 '
bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits
11111111-00000000 = The last interrupt request number serviced by the CPU

REGISTER 7-4: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{IPTMR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{IPTMR<23:16>} \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{IPTMR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{IPTMR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-0 IPTMR<31:0>: Interrupt Proximity Timer Reload bits
Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 7-5: IFSx: INTERRUPT FLAG STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Bit \\
Range
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & R/W-0 \\
\cline { 2 - 10 } & IFS31 & IFS30 & IFS29 & IFS28 & IFS27 & IFS26 & IFS25 & IFS24 \\
\hline \multirow{2}{*}{\(23: 16\)} & R/W-0 \\
\cline { 2 - 11 } & IFS23 & IFS22 & IFS21 & IFS20 & IFS19 & IFS18 & IFS17 & IFS16 \\
\hline \multirow{2}{*}{\(15: 8\)} & R/W-0 \\
\cline { 2 - 11 } & IFS15 & IFS14 & IFS13 & IFS12 & IFS11 & IFS10 & IFS9 & IFS8 \\
\hline \multirow{2}{*}{\(7: 0\)} & R/W-0 \\
\cline { 2 - 10 } & IFS7 & IFS6 & IFS5 & IFS4 & IFS3 & IFS2 & IFS1 & IFS0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-0 IFS31-IFS0: Interrupt Flag Status bits
1 = Interrupt request has occurred
\(0=\) No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-6: IECx: INTERRUPT ENABLE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & IEC31 & IEC30 & IEC29 & IEC28 & IEC27 & IEC26 & IEC25 & IEC24 \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & IEC23 & IEC22 & IEC21 & IEC20 & IEC19 & IEC18 & IEC17 & IEC16 \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & IEC15 & IEC14 & IEC13 & IEC12 & IEC11 & IEC10 & IEC9 & IEC8 \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & IEC7 & IEC6 & IEC5 & IEC4 & IEC3 & IEC2 & IEC1 & IEC0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-0 IEC31-IEC0: Interrupt Enable bits
1 = Interrupt is enabled
\(0=\) Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{3}{|c|}{IP3<2:0>} & \multicolumn{2}{|c|}{IS3<1:0>} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{3}{|c|}{IP2<2:0>} & \multicolumn{2}{|c|}{IS2<1:0>} \\
\hline \multirow{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{3}{|c|}{IP1<2:0>} & \multicolumn{2}{|c|}{IS1<1:0>} \\
\hline \multirow[t]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{3}{|c|}{IP0<2:0>} & \multicolumn{2}{|c|}{IS0<1:0>} \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) = Bit is cleared \\
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-26 IP3<2:0>: Interrupt Priority bits
\(111=\) Interrupt priority is 7
-
\(\cdot\)
\(010=\) Interrupt priority is 2
\(001=\) Interrupt priority is 1
\(000=\) Interrupt is disabled
bit 25-24 IS3<1:0>: Interrupt Subpriority bits
\(11=\) Interrupt subpriority is 3
\(10=\) Interrupt subpriority is 2
\(01=\) Interrupt subpriority is 1
\(00=\) Interrupt subpriority is 0
bit 23-21 Unimplemented: Read as ' 0 '
bit 20-18 IP2<2:0>: Interrupt Priority bits
\(111=\) Interrupt priority is 7
.
.
\(010=\) Interrupt priority is 2
\(001=\) Interrupt priority is 1
\(000=\) Interrupt is disabled
bit 17-16 IS2<1:0>: Interrupt Subpriority bits
\(11=\) Interrupt subpriority is 3
\(10=\) Interrupt subpriority is 2
\(01=\) Interrupt subpriority is 1
\(00=\) Interrupt subpriority is 0
bit 15-13 Unimplemented: Read as ' 0 '
Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)}
bit 12-10 IP1<2:0>: Interrupt Priority bits
\(111=\) Interrupt priority is 7
.
-
\(010=\) Interrupt priority is 2
\(001=\) Interrupt priority is 1
\(000=\) Interrupt is disabled
bit 9-8 IS1<1:0>: Interrupt Subpriority bits
\(11=\) Interrupt subpriority is 3
\(10=\) Interrupt subpriority is 2
\(01=\) Interrupt subpriority is 1
\(00=\) Interrupt subpriority is 0
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-2 IP0<2:0>: Interrupt Priority bits
\(111=\) Interrupt priority is 7
-
.
\(010=\) Interrupt priority is 2
\(001=\) Interrupt priority is 1
\(000=\) Interrupt is disabled
bit 1-0 IS0<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
\(10=\) Interrupt subpriority is 2
\(01=\) Interrupt subpriority is 1
\(00=\) Interrupt subpriority is 0

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-8: OFFx: INTERRUPT VECTOR ADDRESS OFFSET REGISTER ( \(\mathbf{x}=\mathbf{0 - 1 9 0}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Bit \\
Range
\end{tabular} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
28 / 20 / 12 / 4
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & \multicolumn{2}{|l|}{VOFF<17:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{VOFF<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & U-0 \\
\hline & \multicolumn{7}{|c|}{VOFF<7:1>} & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}

\footnotetext{
bit 31-16 Unimplemented: Read as ' 0 '
bit 17-1 VOFF<17:1>: Interrupt Vector ' \(x\) ' Address Offset bits
bit 0 Unimplemented: Read as ' 0 '
}

NOTES:

\subsection*{8.0 OSCILLATOR CONFIGURATION}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MZ EC oscillator system has the following modules and features:
- A total of five external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown with dedicated Back-up FRC (BFRC)
- Dedicated On-Chip PLL for USB peripheral
- Flexible reference clock output
- Multiple clock branches for peripherals for better performance flexibility
A block diagram of the oscillator system is provided in Figure 8-1. Table 8-1 shows the clock distribution.

FIGURE 8-1: PIC32MZ EC FAMILY OSCILLATOR DIAGRAM


Notes: 1. A series resistor, Rs, may be required for AT strip cut crystals, or to eliminate clipping. Alternately, to increase oscillator circuit gain, add a parallel resistor, RP.
2. The internal feedback resistor, RF, is typically in the range of 2 to \(10 \mathrm{M} \Omega\).
3. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for help in determining the best oscillator components.
4. PBCLK1 divided by 2 is available on the OSC2 pin in certain clock modes.
5. Shaded regions indicate multiple instantiations of a peripheral or feature.
6. Refer to Table 37-18 in Section 37.0 "Electrical Characteristics" for frequency limitations.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 8-1: SYSTEM AND PERIPHERAL CLOCK DISTRIBUTION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Peripheral} & \multicolumn{15}{|c|}{Clock Source} \\
\hline & \[
\begin{aligned}
& \text { U } \\
& \text { 花 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { U } \\
& \text { ru} \\
& \text { _ }
\end{aligned}
\] & \[
\begin{aligned}
& \text { U } \\
& 0 \\
& 0 \\
& \text { O }
\end{aligned}
\] & \[
\begin{aligned}
& \text { צ } \\
& \text { O } \\
& \text { © }
\end{aligned}
\] & \[
\begin{aligned}
& \text { צ } \\
& \text { U } \\
& \text { O } \\
& \text { On }
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { Y } \\
& \text { U } \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \cong \\
& \underset{\sim}{U} \\
& \mathbf{0}
\end{aligned}
\] & \[
\begin{aligned}
& \underset{Z}{Z} \\
& \text { U } \\
& \text { M }
\end{aligned}
\] & \[
\begin{aligned}
& \text { مٌ } \\
& \text { J } \\
& \text { @ }
\end{aligned}
\] & \[
\begin{aligned}
& \underset{1}{x} \\
& \underset{\sim}{0} \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& \underline{1} \\
& \text { U } \\
& \mathbf{Q}
\end{aligned}
\] &  &  &  \\
\hline CPU & & & & & & & & & & & X & & & & \\
\hline WDT & & X & & & & & & & & & & & & & \\
\hline Deadman Timer & & & & & & & & & & & X & & & & \\
\hline Flash & \(X^{(2)}\) & & & \(X^{(2)}\) & & & & & & \(X^{(2)}\) & & & & & \\
\hline ADC & X & & & X & & & & \(\mathrm{X}^{(3)}\) & & & & & & & X \\
\hline Comparator & & & & & & & & X & & & & & & & \\
\hline Crypto & & & & & & & & & & X & & & & & \\
\hline RNG & & & & & & & & & & X & & & & & \\
\hline USB & & & & & X & & & & & \(X^{(3)}\) & & & & & \\
\hline CAN & & & & & & & & & & X & & & & & \\
\hline Ethernet & & & & & & & & & & \(X^{(3)}\) & & & & & \\
\hline PMP & & & & & & & X & & & & & & & & \\
\hline \(\mathrm{I}^{2} \mathrm{C}^{\text {TM }}\) & & & & & & & X & & & & & & & & \\
\hline UART & & & & & & & X & & & & & & & & \\
\hline RTCC & & X & X & & & & & & & & & & & & \\
\hline EBI & & & & & & & & & & & & X & & & \\
\hline SQI & & & & & & & & & & \(X^{(3)}\) & & & & X & \\
\hline SPI & & & & & & & X & & & & & & X & & \\
\hline Timers & & & \(\chi^{(4)}\) & & & & & X & & & & & & & \\
\hline Output Compare & & & & & & & & X & & & & & & & \\
\hline Input Capture & & & & & & & & X & & & & & & & \\
\hline Ports & & & & & & & & & X & & & & & & \\
\hline DMA & & & & X & & & & & & & & & & & \\
\hline Interrupts & & & & X & & & & & & & & & & & \\
\hline Prefetch & & & & X & & & & & & & & & & & \\
\hline OSC2 Pin & & & & & & \(X^{(5)}\) & & & & & & & & & \\
\hline
\end{tabular}

Note 1: PBCLK1 is used by system modules and cannot be turned off.
2: SYSCLK/PBCLK5 is used to fetch data from/to the Flash Controller, while the FRC clock is used for programming.
3: Special Function Register (SFR) access only.
4: Timer1 only.
5: PBCLK1 divided by 2 is available on the OSC2 pin in certain clock modes.

\subsection*{8.1 Fail-Safe Clock Monitor (FSCM)}

The PIC32MZ EC oscillator system includes a Fail-safe Clock Monitor (FSCM). The FSCM monitors the SYSCLK for continuous operation. If it detects that the SYSCLK has failed, it switches the SYSCLK over to the BFRC oscillator and triggers a NMI. The BFRC is an untuned 8 MHz oscillator that will drive the SYSCLK during FSCM event. When the NMI is executed, software can attempt to restart the main oscillator or shut down the system.
In Sleep mode both the SYSCLK and the FSCM halt, which prevents FSCM detection.
8.2 Oscillator Control Registers
TABLE 8-2: OSCILLATOR CONFIGURATION REGISTER MAP
 Note 1: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset

\section*{REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{FRCDIV<2:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 & R-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & DRMEN & SOSCRDY & - & - & - & - & - & - \\
\hline 15.8 & U-0 & R-0 & R-0 & R-0 & U-0 & R/W-y & R/W-y & R/W-y \\
\hline 15.8 & - & \multicolumn{3}{|c|}{COSC<2:0>} & - & \multicolumn{3}{|c|}{NOSC<2:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R-0 & R-0 & R/W-0 & R/W-0, HS & U-0 & R/W-y & R/W-y \\
\hline & CLKLOCK & ULOCK & SLOCK & SLPEN & CF & - & SOSCEN & OSWEN \({ }^{(1)}\) \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(y=\) Value set from Configuration bits on POR & HS \(=\) Set by hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-27 Unimplemented: Read as ' 0 '
bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
111 = FRC divided by 256
\(110=\) FRC divided by 64
101 = FRC divided by 32
\(100=\) FRC divided by 16
\(011=\) FRC divided by 8
\(010=\) FRC divided by 4
001 = FRC divided by 2
\(000=\) FRC divided by 1 (default setting)
bit 23 DRMEN: Dream Mode Enable bit
1 = Dream mode is enabled
\(0=\) Dream mode is disabled
bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
\(1=\) Indicates that the Secondary Oscillator is running and is stable
\(0=\) Secondary Oscillator is still warming up or is turned off
bit 21-15 Unimplemented: Read as ' 0 '
bit 14-12 COSC<2:0>: Current Oscillator Selection bits
111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
\(110=\) Back-up Fast RC (BFRC) Oscillator
101 = Internal Low-Power RC (LPRC) Oscillator
\(100=\) Secondary Oscillator (Sosc)
011 = Reserved
\(010=\) Primary Oscillator (POSC) (HS or EC)
001 = System PLL (SPLL)
\(000=\) Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
bit 11 Unimplemented: Read as ' 0 '
Note 1: The reset value for this bit depends on the setting of the IESO (DEVCFG1<7>) bit. When IESO = 1, the reset value is ' 1 '. When IESO \(=0\), the reset value is ' 0 '.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER \\ bit 10-8 NOSC<2:0>: New Oscillator Selection bits \\ 111 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV) \\ \(110=\) Reserved \\ 101 = Internal Low-Power RC (LPRC) Oscillator \\ \(100=\) Secondary Oscillator (Sosc) \\ 011 = Reserved \\ \(010=\) Primary Oscillator (Posc) (HS or EC) \\ 001 = System PLL (SPLL) \\ \(000=\) Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV) \\ On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (DEVCFG1<2:0>). \\ bit 7 CLKLOCK: Clock Selection Lock Enable bit \\ 1 = Clock and PLL selections are locked \\ \(0=\) Clock and PLL selections are not locked and may be modified \\ bit 6 ULOCK: USB PLL Lock Status bit \\ 1 = Indicates that the USB PLL module is in lock or USB PLL module start-up timer is satisfied \\ \(0=\) Indicates that the USB PLL module is out of lock or USB PLL module start-up timer is in progress or USB PLL is disabled \\ bit 5 SLOCK: System PLL Lock Status bit \\ 1 = System PLL module is in lock or module start-up timer is satisfied \\ \(0=\) System PLL module is out of lock, start-up timer is running or system PLL is disabled \\ bit 4 SLPEN: Sleep Mode Enable bit \\ 1 = Device will enter Sleep mode when a WAIT instruction is executed \\ \(0=\) Device will enter Idle mode when a WAIT instruction is executed \\ bit 3 CF: Clock Fail Detect bit \\ \(1=\) FSCM has detected a clock failure \\ \(0=\) No clock failure has been detected \\ bit 2 Unimplemented: Read as ' 0 ' \\ bit 1 SOSCEN: Secondary Oscillator (Sosc) Enable bit \\ 1 = Enable Secondary Oscillator \\ \(0=\) Disable Secondary Oscillator \\ bit \(0 \quad\) OSWEN: Oscillator Switch Enable bit \({ }^{(1)}\) \\ \(1=\) Initiate an oscillator switch to selection specified by NOSC<2:0> bits \\ \(0=\) Oscillator switch is complete}

Note 1: The reset value for this bit depends on the setting of the IESO (DEVCFG1<7>) bit. When IESO = 1, the reset value is ' 1 '. When IESO \(=0\), the reset value is ' 0 '.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit 31/23/15/7 & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & Bit 29/21/13/5 & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & Bit 26/18/10/2 & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 & R-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & R-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & \multicolumn{6}{|c|}{TUN<5:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(\prime 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 31-6 Unimplemented: Read as '0'
bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits }\mp@subsup{}{}{(1)
100000 = Center frequency -12.5%
100001=
-
-
•
111111 =
000000 = Center frequency; Oscillator runs at minimal frequency (8 MHz)
000001 =
•
•
011110 =
011111 = Center frequency +12.5%

```

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-y & R/W-y & R/W-y \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{PLLODIV<2:0>} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & R/W-y \\
\hline & - & \multicolumn{7}{|c|}{PLLMULT<6:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-y & R/W-y & R/W-y \\
\hline & - & & & & & \multicolumn{3}{|c|}{PLLIDIV<2:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-y & U-0 & U-0 & U-0 & U-0 & R/W-y & R/W-y & R/W-y \\
\hline & PLLICLK & - & - & - & - & \multicolumn{3}{|c|}{PLLRANGE<2:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(y=\) Value set from Configuration bits on POR \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-27 Unimplemented: Read as ' 0 '
bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits
111 = PLL Divide by 32
\(110=\) PLL Divide by 32
101 = PLL Divide by 32
100 = PLL Divide by 16
011 = PLL Divide by 8
\(010=\) PLL Divide by 4
001 = PLL Divide by 2
\(000=\) PLL Divide by 2
The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in Section 34.0 "Special Features" for information.
bit 23 Unimplemented: Read as ' 0 '
bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits
1111111 = Multiply by 128
\(1111110=\) Multiply by 127
\(1111101=\) Multiply by 126
\(1111100=\) Multiply by 125
-
-
-
\(0000000=\) Multiply by 1
The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in Section 34.0 "Special Features" for information.
bit 15-11 Unimplemented: Read as ' 0 '

Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.
2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

\section*{REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER}
bit 10-8 PLLIDIV<2:0>: System PLL Input Clock Divider bits
111 = Divide by 8
\(110=\) Divide by 7
\(101=\) Divide by 6
\(100=\) Divide by 5
011 = Divide by 4
\(010=\) Divide by 3
001 = Divide by 2
\(000=\) Divide by 1
The default setting is specified by the FPLLIDIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in Section 34.0 "Special Features" for information.
bit 7 PLLICLK: System PLL Input Clock Source bit
\(1=\) FRC is selected as the input to the System PLL
\(0=\) Posc is selected as the input to the System PLL
The POR default is specified by the FPLLICLK Configuration bit in the DEVCFG2 register. Refer to Register 34-5 in Section 34.0 "Special Features" for information.
bit 6-3 Unimplemented: Read as ' 0 '
bit 2-0 PLLRANGE<2:0>: System PLL Frequency Range Selection bits
111 = Reserved
\(110=\) Reserved
\(101=34-64 \mathrm{MHz}\)
\(100=21-42 \mathrm{MHz}\)
\(011=13-26 \mathrm{MHz}\)
\(010=8-16 \mathrm{MHz}\)
\(001=5-10 \mathrm{MHz}\)
\(000=\) Bypass
The default setting is specified by the FPLLRNG<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in Section 34.0 "Special Features" for information.

Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.
2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

REGISTER 8-4: REFOxCON: REFERENCE OSCILLATOR CONTROL REGISTER ( \(x=1-4\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{RODIV<14:8>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RODIV<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0, HC & R-0, HS, HC \\
\hline & ON(1) & - & SIDL & OE & RSLP(2) & - & DIVSWEN & ACTIVE \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{ROSEL<3:0> \({ }^{(3)}\)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Hardware Clearable & HS = Hardware Settable \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 31 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 30-16} & RODIV<14:0> Reference Clock Divider bits \\
\hline & The value selects the reference clock divider bits (see Figure 8-1 for details). A value of ' 0 ' selects no divider. \\
\hline \multirow[t]{3}{*}{bit 15} & ON: Output Enable bit \({ }^{(1)}\) \\
\hline & 1 = Reference Oscillator Module enabled \\
\hline & \(0=\) Reference Oscillator Module disabled \\
\hline bit 14 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{3}{*}{bit 13} & SIDL: Peripheral Stop in Idle Mode bit \\
\hline & 1 = Discontinue module operation when device enters Idle mode \\
\hline & \(0=\) Continue module operation in Idle mode \\
\hline \multirow[t]{3}{*}{bit 12} & OE: Reference Clock Output Enable bit \\
\hline & 1 = Reference clock is driven out on REFCLKOx pin \\
\hline & \(0=\) Reference clock is not driven out on REFCLKOx pin \\
\hline \multirow[t]{3}{*}{bit 11} & RSLP: Reference Oscillator Module Run in Sleep bit \({ }^{(2)}\) \\
\hline & 1 = Reference Oscillator Module output continues to run in Sleep \\
\hline & \(0=\) Reference Oscillator Module output is disabled in Sleep \\
\hline bit 10 & Unimplemented: Read as '0' \\
\hline \multirow[t]{3}{*}{bit 9} & DIVSWEN: Divider Switch Enable bit \\
\hline & 1 = Divider switch is in progress \\
\hline & \(0=\) Divider switch is complete \\
\hline \multirow[t]{3}{*}{bit 8} & ACTIVE: Reference Clock Request Status bit \({ }^{(1)}\) \\
\hline & 1 = Reference clock request is active \\
\hline & \(0=\) Reference clock request is not active \\
\hline
\end{tabular}
bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits \({ }^{(3)}\)
1111 = Reserved
\(\cdot\)
1001 = BFRC
1000 = REFCLKIx
0111 = System PLL output
0110 = Reserved
0101 = Sosc
0100 = LPRC
\(0011=\) FRC
\(0010=\) Posc
0001 = PBCLK1
\(0000=\) SYSCLK
Note 1: Do not write to this register when the ON bit is not equal to the ACTIVE bit.
2: This bit is ignored when the ROSEL<3:0> bits \(=0000\) or 0001 .
3: The ROSEL<3:0> bits should not be written while the ACTIVE bit is ' 1 ', as undefined behavior may result.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 8-5: REFOxTRIM: REFERENCE OSCILLATOR TRIM REGISTER ( \(\mathrm{x}=1\) 1-4)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ROTRIM<8:1>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 & R-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & ROTRIM<0> & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & R-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(y=\) Value set from Configuration bits on POR \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits
\(111111111=511 / 512\) divisor added to RODIV value
\(111111110=510 / 512\) divisor added to RODIV value
-
-
-
\(100000000=256 / 512\) divisor added to RODIV value
-
-
-
\(000000010=2 / 512\) divisor added to RODIV value
\(000000001=1 / 512\) divisor added to RODIV value \(000000000=0\) divisor added to RODIV value
bit 22-0 Unimplemented: Read as ' 0 '

Note 1: While the ON bit (REFOxCON<15>) is ' 1 ', writes to this register do not take effect until the DIVSWEN bit is also set to ' 1 '.
2: Do not write to this register when the ON bit (REFOxCON<15>) is not equal to the ACTIVE bit (REFOxCON<8>).
3: Specified values in this register do not take effect if RODIV<14:0> (REFOxCON<30:16>) \(=0\).

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 8-6: PBxDIV: PERIPHERAL BUS ' \(x\) ' CLOCK DIVISOR CONTROL REGISTER (' \(x\) ' = 1-8)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-1 & U-0 & U-0 & U-0 & R-1 & U-0 & U-0 & U-0 \\
\hline & ON \({ }^{(1)}\) & - & - & - & PBDIVRDY & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-x \\
\hline & - & \multicolumn{7}{|c|}{PBDIV<6:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Peripheral Bus ' \(x\) ' Output Clock Enable bit \({ }^{(1)}\)
1 = Output clock is enabled
\(0=\) Output clock is disabled
bit 14-12 Unimplemented: Read as ' 0 '
bit 11 PBDIVRDY: Peripheral Bus ' \(x\) ' Clock Divisor Ready bit
1 = Clock divisor logic is not switching divisors and the PBxDIV<6:0> bits may be written
\(0=\) Clock divisor logic is currently switching values and the PBxDIV<6:0> bits cannot be written
bit 10-7 Unimplemented: Read as ' 0 '
bit 6-0 PBDIV<6:0>: Peripheral Bus ' \(x\) ' Clock Divisor Control bits
\(1111111=\) PBCLKx is SYSCLK divided by 128
\(1111110=\) PBCLKx is SYSCLK divided by 127
-
-
-
0000011 = PBCLKx is SYSCLK divided by 4
\(0000010=\) PBCLKx is SYSCLK divided by 3
\(0000001=\) PBCLKx is SYSCLK divided by 2 (default value for \(x \neq 7\) )
\(0000000=\) PBCLKx is SYSCLK divided by 1 (default value for \(x=7\) )

Note 1: The clock for peripheral bus 1 cannot be turned off. Therefore, the ON bit in the PB1DIV register cannot be written as a ' 0 '.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

\subsection*{9.0 PREFETCH MODULE}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Prefetch module is a performance enhancing module that is included in PIC32MZ EC family devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.

The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

\section*{\(9.1 \quad\) Features}
- \(4 \times 16\) byte fully-associative lines
- One line for CPU instructions
- One line for CPU data
- Two lines for peripheral data
- 16-byte parallel memory fetch
- Configurable predictive prefetch
- Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

9.2 Prefetch Control Registers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{20}{|l|}{PREFETCH REGISTER MAP} \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline 0000 & PRECON & 31:16 & - & - & - & - & - & PFMSECEN & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 000 & PRECON & 15:0 & - & - & - & - & - & - & - & - & - & - & PREF & <1:0> & - & & WS< & & 0007 \\
\hline 0010 & PRESTAT & 31:16 & - & - & - & - & PFMDED & PFMSEC & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 0010 & PRESTAT & 15:0 & - & - & - & - & - & - & - & - & & & & PFMS & <7:0> & & & & 0000 \\
\hline
\end{tabular}

\footnotetext{

}

REGISTER 9-1: PRECON: PREFETCH MODULE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Bit} \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & U-0 & U-0 \\
\hline & - & - & - & - & - & PFMSECEN & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & R/W-0 & R/W-0 & U-0 & R/W-1 & R/W-1 & R/W-1 \\
\hline & - & - & \multicolumn{2}{|l|}{PREFEN<1:0>} & - & \multicolumn{3}{|c|}{PFMWS<2:0>(1)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-27 Unimplemented: Read as ' 0 '
bit 26 PFMSECEN: Flash SEC Interrupt Enable bit
1 = Generate an interrupt when the PFMSEC bit (PRESTAT<26>) is set
\(0=\) Do not generate an interrupt when the PFMSEC bit is set
bit 25-6 Unimplemented: Read as ' 0 '
bit 5-4 PREFEN<1:0>: Predictive Prefetch Enable bits
11 = Enable predictive prefetch for any address
\(10=\) Enable predictive prefetch for CPU instructions and CPU data
01 = Enable predictive prefetch for CPU instructions only
\(00=\) Disable predictive prefetch
bit 3 Unimplemented: Read as ' 0 '
bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSCLK Wait States bits \({ }^{(1)}\)
111 = Seven Wait states
-
-
-
\(010=\) Two Wait states
\(001=\) One Wait state
000 = Zero Wait states

Note 1: For the Wait states to SYSCLK relationship, refer to Table 37-13 in Section37.0 "Electrical Characteristics".

REGISTER 9-2: PRESTAT: PREFETCH MODULE STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & HS, R/W-0 & HS, R/W-0 & U-0 & U-0 \\
\hline & - & - & - & - & PFMDED & PFMSEC & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & HS, R/W-0 \\
\hline & \multicolumn{8}{|c|}{PFMSECCNT<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by hardware \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-28 Unimplemented: Read as ' 0 '
bit 27 PFMDED: Flash Double-bit Error Detected (DED) Status bit
This bit is set in hardware and can only be cleared (i.e., set to ' 0 ') in software.
1 = A DED error has occurred
\(0=\) A DED error has not occurred
bit 26 PFMSEC: Flash Single-bit Error Corrected (SEC) Status bit
1 = A SEC error occurred when PFMSECCNT<7:0> was equal to zero
0 = A SEC error has not occurred
bit 25-8 Unimplemented: Read as ' 0 '
bit 7-0 PFMSECCNT<7:0>: Flash SEC Count bits
11111111-00000000 = SEC count

\subsection*{10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the device such as SPI, UART, PMP, etc., or memory itself.
Following are some of the key features of the DMA Controller module:
- Eight identical channels, each featuring:
- Auto-increment source and destination address registers
- Source and destination pointers
- Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
- Transfer granularity, down to byte level
- Bytes need not be word-aligned at source and destination
- Fixed priority channel arbitration
- Flexible DMA channel operating modes:
- Manual (software) or automatic (interrupt) DMA requests
- One-Shot or Auto-Repeat Block Transfer modes
- Channel-to-channel chaining
- Flexible DMA requests:
- A DMA request can be selected from any of the peripheral interrupt sources
- Each channel can select any (appropriate) observable interrupt as its DMA request source
- A DMA transfer abort can be selected from any of the peripheral interrupt sources
- Up to 2-byte Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
- DMA channel block transfer complete
- Source empty or half empty
- Destination full or half full
- DMA transfer aborted due to an external event
- Invalid DMA address generated
- DMA debug support features:
- Most recent error address accessed by a DMA channel
- Most recent DMA channel to transfer data
- CRC Generation module:
- CRC module can be assigned to any of the available channels
- CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

10.1 DMA Control Registers
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1000} & \multirow[t]{2}{*}{DMACON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & - & SUSPEND & DMABUSY & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{1010} & \multirow[t]{2}{*}{DMASTAT} & 31:16 & RDWR & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & & ACH<2, & & 0000 \\
\hline \multirow[t]{2}{*}{1020} & \multirow[t]{2}{*}{DMAADDR} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{DMAADDR<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline
\end{tabular}
Legend: \(x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
 more information.
TABLE 10-2: DMA CRC REGISTER MAP

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1060} & \multirow[t]{2}{*}{DCHOCON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & CHPIGNEN & - & CHPATLEN & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & \multicolumn{2}{|l|}{CHPRI<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1070} & \multirow[t]{2}{*}{DCHOECON} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{CHAIRQ<7:0>} & 00FE \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{1080} & \multirow[t]{2}{*}{DCHOINT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline 1090 & DCHOSSA & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{CHSSA<31:0>} & 0000 \\
\hline 10A0 & \multirow[t]{2}{*}{DCHODSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHDSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{10B0} & \multirow[t]{2}{*}{DCHOSSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{10C0} & \multirow[t]{2}{*}{DCHODSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{10D0} & \multirow[t]{2}{*}{DCHOSPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{10E0} & \multirow[t]{2}{*}{DCHODPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{10F0} & \multirow[t]{2}{*}{DCHOCSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1100} & \multirow[t]{2}{*}{DCHOCPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1110} & \multirow[t]{2}{*}{DCHODAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHPDAT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1120} & \multirow[t]{2}{*}{DCH1CON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & CHPIGNEN & - & CHPATLEN & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & CHPR & <1:0> & 0000 \\
\hline \multirow[t]{2}{*}{1130} & \multirow[t]{2}{*}{DCH1ECON} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{CHAIRQ<7:0>} & 00FE \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{1140} & \multirow[t]{2}{*}{DCH1INT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline \multirow[t]{2}{*}{1150} & \multirow[t]{2}{*}{DCH1SSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHSSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{1160} & \multirow[t]{2}{*}{DCH1DSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHDSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline
\end{tabular}
Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
 more information.
TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1170} & \multirow[t]{2}{*}{DCH1SSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1180} & \multirow[t]{2}{*}{DCH1DSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1190} & \multirow[t]{2}{*}{DCH1SPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{11A0} & \multirow[t]{2}{*}{DCH1DPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{11B0} & \multirow[t]{2}{*}{DCH1CSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{11C0} & \multirow[t]{2}{*}{DCH1CPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{11D0} & \multirow[t]{2}{*}{DCH1DAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHPDAT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{11E0} & \multirow[t]{2}{*}{DCH2CON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & CHPIGNEN & - & CHPATLEN & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & CHPR & <1:0> & 0000 \\
\hline \multirow[t]{2}{*}{11F0} & \multirow[t]{2}{*}{DCH2ECON} & 31:16 & - & - & - & - & - & - & - & - & & & & CHAIR & <7:0> & & & & 00FE \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{1200} & \multirow[t]{2}{*}{DCH2INT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline 1210 & DCH2SSA & \begin{tabular}{|l|}
\hline \(31: 16\) \\
\hline \(15: 0\) \\
\hline
\end{tabular} & \multicolumn{16}{|l|}{CHSSA<31:0>} & 0000 \\
\hline 1220 & DCH2DSA & 31:16 & \multicolumn{16}{|l|}{CHDSA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1230} & \multirow[t]{2}{*}{DCH2SSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1240} & \multirow[t]{2}{*}{DCH2DSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1250} & \multirow[t]{2}{*}{DCH2SPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1260} & \multirow[t]{2}{*}{DCH2DPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1270} & \multirow[t]{2}{*}{DCH2CSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline
\end{tabular}
Legend: \(\quad x=\) unknown value on Reset; — = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1280} & \multirow[t]{2}{*}{DCH2CPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1290} & \multirow[t]{2}{*}{DCH2DAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHPDAT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{12A0} & \multirow[t]{2}{*}{DCH3CON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & CHPIGNEN & - & CHPATLEN & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & \multicolumn{2}{|l|}{CHPRI<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{12B0} & \multirow[t]{2}{*}{DCH3ECON} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{CHAIRQ<7:0>} & 00FF \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{12C0} & \multirow[t]{2}{*}{DCH3INT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline \multirow[t]{2}{*}{12D0} & \multirow[t]{2}{*}{DCH3SSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHSSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline 12E0 & DCH3DSA & 31:16 & \multicolumn{16}{|l|}{CHDSA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{12F0} & \multirow[t]{2}{*}{DCH3SSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1300} & \multirow[t]{2}{*}{DCH3DSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1310} & \multirow[t]{2}{*}{DCH3SPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1320} & \multirow[t]{2}{*}{DCH3DPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1330} & \multirow[t]{2}{*}{DCH3CSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1340} & \multirow[t]{2}{*}{DCH3CPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1350} & \multirow[t]{2}{*}{DCH3DAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHPDAT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1360} & \multirow[t]{2}{*}{DCH4CON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & CHPIGNEN & - & CHPATLEN & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & \multicolumn{2}{|l|}{CHPRI<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1370} & \multirow[t]{2}{*}{DCH4ECON} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{CHAIRQ<7:0>} & 00FE \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{1380} & \multirow[t]{2}{*}{DCH4INT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline
\end{tabular}
TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1390} & \multirow[t]{2}{*}{DCH4SSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHSSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{13A0} & \multirow[t]{2}{*}{DCH4DSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHDSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{13B0} & \multirow[t]{2}{*}{DCH4SSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{13C0} & \multirow[t]{2}{*}{DCH4DSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{13D0} & \multirow[t]{2}{*}{DCH4SPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{13E0} & \multirow[t]{2}{*}{DCH4DPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{13F0} & \multirow[t]{2}{*}{DCH4CSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1400} & \multirow[t]{2}{*}{DCH4CPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1410} & \multirow[t]{2}{*}{DCH4DAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHPDAT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1420} & \multirow[t]{2}{*}{DCH5CON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & CHPIGNEN & - & CHPATLEN & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & CHPR & <1:0> & 0000 \\
\hline \multirow[t]{2}{*}{1430} & \multirow[t]{2}{*}{DCH5ECON} & 31:16 & - & - & - & - & - & - & - & - & & & & CHAIR & <7:0> & & & & 00FF \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{1440} & \multirow[t]{2}{*}{DCH5INT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline \multirow[t]{2}{*}{1450} & \multirow[t]{2}{*}{DCH5SSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHSSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{1460} & \multirow[t]{2}{*}{DCH5DSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHDSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{1470} & \multirow[t]{2}{*}{DCH5SSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1480} & \multirow[t]{2}{*}{DCH5DSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1490} & \multirow[t]{2}{*}{DCH5SPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline
\end{tabular}
Legend: \(\quad \mathrm{x}=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\boxed{8} \\
\hline
\end{array}
\] & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline  & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{14A0} & \multirow[t]{2}{*}{DCH5DPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14B0} & \multirow[t]{2}{*}{DCH5CSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14C0} & \multirow[t]{2}{*}{DCH5CPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14D0} & \multirow[t]{2}{*}{DCH5DAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHPDAT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14E0} & \multirow[t]{2}{*}{DCH6CON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & CHPIGNEN & - & CHPATLEN & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & CHPR & <1:0> & 0000 \\
\hline \multirow[t]{2}{*}{14F0} & \multirow[t]{2}{*}{DCH6ECON} & 31:16 & - & - & - & - & - & - & - & - & & & & CHAIR & <7:0> & & & & 00FE \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{1500} & \multirow[t]{2}{*}{DCH6INT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline 1510 & DCH6SSA & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{CHSSA<31:0>} & 0000 \\
\hline 1520 & DCH6DSA & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{CHDSA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1530} & \multirow[t]{2}{*}{DCH6SSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1540} & \multirow[t]{2}{*}{DCH6DSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1550} & \multirow[t]{2}{*}{DCH6SPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1560} & \multirow[t]{2}{*}{DCH6DPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1570} & \multirow[t]{2}{*}{DCH6CSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1580} & \multirow[t]{2}{*}{DCH6CPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1590} & \multirow[t]{2}{*}{DCH6DAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHPDAT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{15A0} & \multirow[t]{2}{*}{DCH7CON} & 31:16 & \multicolumn{8}{|l|}{CHPIGN<7:0>} & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CHBUSY & - & |CHPIGNEN & - & CHPATLEN| & - & - & CHCHNS & CHEN & CHAED & CHCHN & CHAEN & - & CHEDET & CHPR & <1:0> & 0000 \\
\hline
\end{tabular}

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{15B0} & \multirow[t]{2}{*}{DCH7ECON} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{CHAIRQ<7:0>} & 00FE \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CHSIRQ<7:0>} & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - & FFOO \\
\hline \multirow[t]{2}{*}{15C0} & \multirow[t]{2}{*}{DCH7INT} & 31:16 & - & - & - & - & - & - & - & - & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF & 0000 \\
\hline \multirow[t]{2}{*}{15D0} & \multirow[t]{2}{*}{DCH7SSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHSSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{15E0} & \multirow[t]{2}{*}{DCH7DSA} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{CHDSA<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{15F0} & \multirow[t]{2}{*}{DCH7SSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1600} & \multirow[t]{2}{*}{DCH7DSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1610} & \multirow[t]{2}{*}{DCH7SPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHSPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1620} & \multirow[t]{2}{*}{DCH7DPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHDPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1630} & \multirow[t]{2}{*}{DCH7CSIZ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCSIZ<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1640} & \multirow[t]{2}{*}{DCH7CPTR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CHCPTR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1650} & \multirow[t]{2}{*}{DCH7DAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & & & & & & & & CHPD & <15:0> & & & & & & & & 0000 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note 1: } & \text { All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus }\end{array}\)
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of \(0 \times 4,0 \times 8\) and \(0 \times C\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Bit \\
Range
\end{tabular}} & \begin{tabular}{c} 
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c} 
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) & U \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & RW-0 & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & ON & - & - & SUSPEND & DMABUSY & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as '0' \\
\(-\mathrm{n}=\) Value at POR & \(' 1 '=\) Bit is set & \(\prime 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: DMA On bit
1 = DMA module is enabled
\(0=\) DMA module is disabled
bit 14-13 Unimplemented: Read as ' 0 '
bit 12 SUSPEND: DMA Suspend bit
1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
\(0=\) DMA operates normally
bit 11 DMABUSY: DMA Module Busy bit
1 = DMA module is active and is transferring data
\(0=\) DMA module is disabled and not actively transferring data
bit 10-0 Unimplemented: Read as ' 0 '

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 & U-0 \\
\hline & RDWR & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{DMACH<2:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31
RDWR: Read/Write Status bit
1 = Last DMA bus access when an error was detected was a read
\(0=\) Last DMA bus access when an error was detected was a write
bit 30-3 Unimplemented: Read as ' 0 '
bit 2-0 DMACH<2:0>: DMA Channel bits
These bits contain the value of the most recent active DMA channel when an error was detected.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<23:16>} \\
\hline \multirow{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 DMAADDR<31:0>: DMA Module Address bits
These bits contain the address of the most recent DMA access when an error was detected.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 \\
\hline & - & - & \multicolumn{2}{|c|}{BYTO<1:0>} & \(\mathrm{WBO}^{(1)}\) & - & - & BITO \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{PLEN<4:0>(1)} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & CRCEN & CRCAPP(1) & CRCTYP & - & - & \multicolumn{3}{|c|}{CRCCH<2:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown
\end{tabular}
bit 31-30 Unimplemented: Read as ' 0 '
bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
\(10=\) Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
\(00=\) No swapping (i.e., source byte order)
bit 27 WBO: CRC Write Byte Order Selection bit \({ }^{(1)}\)
1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
\(0=\) Source data is written to the destination unaltered
bit 26-25 Unimplemented: Read as ' 0 '
bit 24 BITO: CRC Bit Order Selection bit
When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):
1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
\(0=\) The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)
When CRCTYP (DCRCCON<15>) \(=0\) (CRC module is in LFSR mode):
\(1=\) The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
\(0=\) The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)
bit 23-13 Unimplemented: Read as ' 0 '
bit 12-8 PLEN<4:0>: Polynomial Length bits \({ }^{(1)}\)
When CRCTYP (DCRCCON \(<15>\) ) \(=1\) (CRC module is in IP Header mode):
These bits are unused.

When CRCTYP (DCRCCON \(<15>\) ) \(=0\) (CRC module is in LFSR mode):
Denotes the length of the polynomial -1 .
bit \(7 \quad\) CRCEN: CRC Enable bit
\(1=\) CRC module is enabled and channel transfers are routed through the CRC module
\(0=\) CRC module is disabled and channel transfers proceed normally

Note 1: When \(\mathrm{WBO}=1\), unaligned transfers are not supported and the CRCAPP bit cannot be set.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)}
bit \(6 \quad\) CRCAPP: CRC Append Mode bit \({ }^{(1)}\)
1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
\(0=\) The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
bit 5 CRCTYP: CRC Type Selection bit
1 = The CRC module will calculate an IP header checksum
\(0=\) The CRC module will calculate a LFSR CRC
bit 4-3 Unimplemented: Read as ' 0 '
bit 2-0 CRCCH<2:0>: CRC Channel Select bits
\(111=\) CRC is assigned to Channel 7
\(110=\) CRC is assigned to Channel 6
\(101=\) CRC is assigned to Channel 5
\(100=\) CRC is assigned to Channel 4
\(011=\) CRC is assigned to Channel 3
\(010=\) CRC is assigned to Channel 2
\(001=\) CRC is assigned to Channel 1
\(000=\) CRC is assigned to Channel 0

Note 1: When \(\mathrm{WBO}=1\), unaligned transfers are not supported and the CRCAPP bit cannot be set.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCDATA<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCDATA<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCDATA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCDATA<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 DCRCDATA<31:0>: CRC Data Register bits
Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return ' 0 ' on any read.

When CRCTYP (DCRCCON \(<15>\) ) \(=1\) (CRC module is in IP Header mode):
Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always ' 0 '. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):
Bits greater than PLEN will return ' 0 ' on any read.

\section*{REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCXOR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCXOR<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCXOR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DCRCXOR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits
When CRCTYP (DCRCCON \(<15>\) ) \(=1\) (CRC module is in IP Header mode):
This register is unused.
When CRCTYP (DCRCCON \(<15>\) ) \(=0\) (CRC module is in LFSR mode):
1 = Enable the XOR input to the Shift register
\(0=\) Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Bit \\
Range
\end{tabular} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\underset{\text { Bit }}{26 / 18 / 10 / 2}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHPIGN<7:0>} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 \\
\hline & CHBUSY & - & CHIPGNEN & - & CHPATLEN & - & - & CHCHNS \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R-0 & R/W-0 & R/W-0 \\
\hline & CHEN \({ }^{(2)}\) & CHAED & CHCHN & CHAEN & - & CHEDET & \multicolumn{2}{|r|}{CHPRI<1:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-24 CHPIGN<7:0>: Channel Register Data bits
Pattern Terminate mode:
Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.
bit 23-16 Unimplemented: Read as ' 0 '
bit 15 CHBUSY: Channel Busy bit
1 = Channel is active or has been enabled
\(0=\) Channel is inactive or has been disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 CHPIGNEN: Enable Pattern Ignore Byte bit
1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled
\(0=\) Disable this feature
bit 12 Unimplemented: Read as ' 0 '
bit 11 CHPATLEN: Pattern Length bit
\(1=2\) byte length
\(0=1\) byte length
bit 10-9 Unimplemented: Read as ' 0 '
bit \(8 \quad\) CHCHNS: Chain Channel Selection bit \({ }^{(1)}\)
1 = Chain to channel lower in natural priority ( CH 1 will be enabled by CH 2 transfer complete)
\(0=\) Chain to channel higher in natural priority ( CH 1 will be enabled by CH 0 transfer complete)
bit \(7 \quad\) CHEN: Channel Enable bit \({ }^{(2)}\)
1 = Channel is enabled
\(0=\) Channel is disabled
bit \(6 \quad\) CHAED: Channel Allow Events If Disabled bit
1 = Channel start/abort events will be registered, even if the channel is disabled
\(0=\) Channel start/abort events will be ignored if the channel is disabled
bit \(5 \quad\) CHCHN: Channel Chain Enable bit
1 = Allow channel to be chained
\(0=\) Do not allow channel to be chained
Note 1: The chain selection bit takes effect when chaining is enabled (i.e., \(\mathrm{CHCHN}=1\) ).
2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER (CONTINUED)
bit 4 CHAEN: Channel Automatic Enable bit
1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
\(0=\) Channel is disabled on block transfer complete
bit 3 Unimplemented: Read as ' 0 '
bit 2 CHEDET: Channel Event Detected bit
1 = An event has been detected
\(0=\) No events have been detected
bit 1-0 CHPRI<1:0>: Channel Priority bits
11 = Channel has priority 3 (highest)
\(10=\) Channel has priority 2
\(01=\) Channel has priority 1
\(00=\) Channel has priority 0

Note 1: The chain selection bit takes effect when chaining is enabled (i.e., \(\mathrm{CHCHN}=1\) ).
2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{CHAIRQ<7:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{CHSIRQ<7:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & S-0 & S-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline & CFORCE & CABORT & PATEN & SIRQEN & AIRQEN & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(S=\) Settable bit & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits \({ }^{(1)}\)
\(11111111=\) Interrupt 255 will abort any transfers in progress and set CHAIF flag
-
-
\(00000001=\) Interrupt 1 will abort any transfers in progress and set CHAIF flag
\(00000000=\) Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8 CHSIRQ<7:0>: Channel Transfer Start IRQ bits \({ }^{(1)}\)
11111111 = Interrupt 255 will initiate a DMA transfer
-
\(00000001=\) Interrupt 1 will initiate a DMA transfer
\(00000000=\) Interrupt 0 will initiate a DMA transfer
bit \(7 \quad\) CFORCE: DMA Forced Transfer bit
1 = A DMA transfer is forced to begin when this bit is written to a ' 1 '
\(0=\) This bit always reads ' 0 '
bit 6 CABORT: DMA Abort Transfer bit
\(1=\) A DMA transfer is aborted when this bit is written to a ' 1 '
\(0=\) This bit always reads ' 0 '
bit 5 PATEN: Channel Pattern Match Abort Enable bit
1 = Abort transfer and clear CHEN on pattern match
\(0=\) Pattern match is disabled
bit 4 SIRQEN: Channel Start IRQ Enable bit
1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
\(0=\) Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3 AIRQEN: Channel Abort IRQ Enable bit
\(1=\) Channel transfer is aborted if an interrupt matching CHAIRQ occurs
\(0=\) Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0 Unimplemented: Read as ' 0 '

Note 1: See Table 7-2: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & CHSDIE & CHSHIE & CHDDIE & CHDHIE & CHBCIE & CHCCIE & CHTAIE & CHERIE \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & CHSDIF & CHSHIF & CHDDIF & CHDHIF & CHBCIF & CHCCIF & CHTAIF & CHERIF \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23 CHSDIE: Channel Source Done Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 22 CHSHIE: Channel Source Half Empty Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled
bit 21 CHDDIE: Channel Destination Done Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 20 CHDHIE: Channel Destination Half Full Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 19 CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 18 CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 17 CHTAIE: Channel Transfer Abort Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 16 CHERIE: Channel Address Error Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 15-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) CHSDIF: Channel Source Done Interrupt Flag bit
1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
\(0=\) No interrupt is pending
bit 6 CHSHIF: Channel Source Half Empty Interrupt Flag bit
1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
\(0=\) No interrupt is pending

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)
bit 5 CHDDIF: Channel Destination Done Interrupt Flag bit
\(1=\) Channel Destination Pointer has reached end of destination (CHDPTR \(=\) CHDSIZ)
\(0=\) No interrupt is pending
bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit
1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
\(0=\) No interrupt is pending
bit \(3 \quad\) CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
\(0=\) No interrupt is pending
bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
\(0=\) No interrupt is pending
bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
\(0=\) No interrupt is pending
bit \(0 \quad\) CHERIF: Channel Address Error Interrupt Flag bit
1 = A channel address error has been detected
Either the source or the destination address is invalid.
\(0=\) No interrupt is pending

REGISTER 10-10: DCHxSSA: DMA CHANNEL x SOURCE START ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHSSA<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHSSA<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHSSA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHSSA<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-0 CHSSA<31:0> Channel Source Start Address bits
Channel source start address.
Note: This must be the physical address of the source.

REGISTER 10-11: DCHxDSA: DMA CHANNEL x DESTINATION START ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHDSA<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHDSA<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHDSA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHDSA<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits
Channel destination start address.
Note: This must be the physical address of the destination.

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL x SOURCE SIZE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHSSIZ<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHSSIZ<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHSSIZ<15:0>: Channel Source Size bits
\(1111111111111111=65,535\) byte source size
\(\stackrel{\rightharpoonup}{-}\)
\(0000000000000010=2\) byte source size
\(0000000000000001=1\) byte source size
\(0000000000000000=65,536\) byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL x DESTINATION SIZE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\underset{31 / 23 / 15 / 7}{\text { Bit }}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHDSIZ<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHDSIZ<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits
\(1111111111111111=65,535\) byte destination size
-
.
\(0000000000000010=2\) byte destination size
\(0000000000000001=1\) byte destination size
\(0000000000000000=65,536\) byte destination size

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{CHSPTR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{CHSPTR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as '0' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits
\(1111111111111111=\) Points to byte 65,535 of the source
-
\(0000000000000001=\) Points to byte 1 of the source
\(0000000000000000=\) Points to byte 0 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{CHDPTR<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{CHDPTR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits
\(1111111111111111=\) Points to byte 65,535 of the destination
-
-
\(0000000000000001=\) Points to byte 1 of the destination
\(0000000000000000=\) Points to byte 0 of the destination

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL x CELL-SIZE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHCSIZ<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHCSIZ<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits
\(111111111111111=65,535\) bytes transferred on an event
-
\(0000000000000010=2\) bytes transferred on an event
\(0000000000000001=1\) byte transferred on an event
\(0000000000000000=65,536\) bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL x CELL POINTER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{25 / 17 / 9 / 1}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{CHCPTR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{CHCPTR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHCPTR<15:0>: Channel Cell Progress Pointer bits
\(1111111111111111=65,535\) bytes have been transferred since the last event
\(\cdot\)
\(0000000000000001=1\) byte has been transferred since the last event \(0000000000000000=0\) bytes have been transferred since the last event

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 10-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHPDAT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CHPDAT<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(\prime 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 CHPDAT<15:0>: Channel Data Register bits
Pattern Terminate mode:
Data to be matched must be stored in this register to allow terminate on match.
All other modes:
Unused.

NOTES:

\subsection*{11.0 HI-SPEED USB WITH ON-THEGO (OTG)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 51. "Hi-Speed USB with On-The-Go (OTG)" (DS60001232) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 embedded host, device, or OTG implementation with a minimum of external components.
The module supports Hi-Speed, Full-Speed, or LowSpeed in any of the operating modes. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCl or OHCl controller.
The USB module consists of the RAM controller, packet encode/decode, UTM synchronization, endpoint control, a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The USB module includes the following features:
- USB Hi-Speed, Full-Speed, and Low-Speed support for host and device
- USB OTG support with one or more Hi-Speed, Full-Speed, or Low-Speed device
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Transaction handshaking performed by hardware
- Integrated 8-channel DMA to access system RAM and Flash
- Seven transmit endpoints and seven receive endpoints, in addition to Endpoint 0
- Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) support
- Suspend and resume signaling support
- Dynamic FIFO sizing
- Integrated RAM for the FIFOs, eliminating the need for system RAM for the FIFOs
- Link power management support

Note 1: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.
2: If the USB module is used, the Primary Oscillator (POSC) is limited to either 12 MHz or 24 MHz .

11.1 USB OTG Control Registers


\footnotetext{

}
TABLE 11-1: USB REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & \(25 / 9\) & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{3028} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { FIFO2 }
\end{aligned}
\]} & 31:16 & \multicolumn{16}{|l|}{DATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{DATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{302 C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { FIFO3 }
\end{aligned}
\]} & 31:16 & \multicolumn{16}{|l|}{DATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{DATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3030} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { FIFO4 }
\end{aligned}
\]} & 31:16 & \multicolumn{16}{|l|}{DATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{DATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3034} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { FIFO5 }
\end{aligned}
\]} & 31:16 & \multicolumn{16}{|l|}{DATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{DATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3038} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { FIFO6 }
\end{aligned}
\]} & 31:16 & \multicolumn{16}{|l|}{DATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{DATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{303 C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { FIFO7 }
\end{aligned}
\]} & 31:16 & \multicolumn{16}{|l|}{DATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{DATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3060} & \multirow[t]{2}{*}{USBOTG} & 31:16 & - & - & - & RXDPB & \multicolumn{4}{|l|}{RXFIFOSZ<3:0>} & - & - & - & TXDPB & \multicolumn{4}{|l|}{TXFIFOSZ<3:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & TXEDMA & RXEDMA & BDEV & FSDEV & LSDEV & \multicolumn{2}{|l|}{VBUS<1:0>} & HOSTMODE & \multicolumn{2}{|l|}{HOSTREQ|SESSION} & 0080 \\
\hline \multirow[t]{2}{*}{3064} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { FIFOA }
\end{aligned}
\]} & 31:16 & - & - & - & \multicolumn{13}{|l|}{RXFIFOAD<12:0>} & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{13}{|l|}{TXFIFOAD<12:0>} & 0000 \\
\hline \multirow[t]{2}{*}{306 C} & \multirow[t]{2}{*}{USB HWVER} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & RC & \multicolumn{5}{|l|}{VERMAJOR<4:0>} & \multicolumn{10}{|l|}{VERMINOR<9:0>} & 0800 \\
\hline \multirow[t]{2}{*}{3078} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { INFO }
\end{aligned}
\]} & 31:16 & \multicolumn{8}{|l|}{VPLEN<7:0>} & \multicolumn{4}{|l|}{WTCON<3:0>} & \multicolumn{4}{|l|}{WTID<3:0>} & 3C5C \\
\hline & & 15:0 & \multicolumn{4}{|l|}{DMACHANS<3:0>} & \multicolumn{4}{|l|}{RAMBITS<3:0>} & \multicolumn{4}{|l|}{RXENDPTS<3:0>} & \multicolumn{4}{|l|}{TXENDPTS<3:0>} & 8C77 \\
\hline \multirow[t]{2}{*}{307 C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { EOFRST }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & NRSTX & NRST & \multicolumn{8}{|l|}{LSEOF<7:0>} & 0072 \\
\hline & & 15:0 & \multicolumn{8}{|l|}{FSEOF<7:0>} & \multicolumn{8}{|l|}{HSEOF<7:0>} & 7780 \\
\hline \multirow[t]{2}{*}{3080} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { EOTXA }
\end{aligned}
\]} & 31:16 & - & \multicolumn{7}{|l|}{TXHUBPRT<6:0>} & MULTTRAN & \multicolumn{7}{|l|}{TXHUBADD<6:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{TXFADDR<6:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3084} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { EORXA }
\end{aligned}
\]} & 31:16 & - & \multicolumn{7}{|l|}{RXHUBPRT<6:0>} & MULTTRAN & \multicolumn{7}{|l|}{RXHUBADD<6:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{3088} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { E1TXA }
\end{aligned}
\]} & 31:16 & - & \multicolumn{7}{|l|}{TXHUBPRT<6:0>} & MULTTRAN & \multicolumn{7}{|l|}{TXHUBADD<6:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{TXFADDR<6:0>} & 0000 \\
\hline \multirow[t]{2}{*}{308 C} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { USB } \\
\text { E1RXA }
\end{gathered}
\]} & 31:16 & - & \multicolumn{7}{|l|}{RXHUBPRT<6:0>} & MULTTRAN & \multicolumn{7}{|l|}{RXHUBADD<6:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{RXFADDR<6:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3090} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { E2TXA }
\end{aligned}
\]} & 31:16 & - & \multicolumn{7}{|l|}{TXHUBPRT<6:0>} & MULTTRAN & \multicolumn{7}{|l|}{TXHUBADD<6:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{TXFADDR<6:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3094} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { E2RXA }
\end{aligned}
\]} & 31:16 & - & \multicolumn{7}{|l|}{RXHUBPRT<6:0>} & MULTTRAN & \multicolumn{7}{|l|}{RXHUBADD<6:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{RXFADDR<6:0>} & 0000 \\
\hline \multirow[t]{2}{*}{3098} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { E3TXA }
\end{aligned}
\]} & 31:16 & - & \multicolumn{7}{|l|}{TXHUBPRT<6:0>} & MULTTRAN & \multicolumn{7}{|l|}{TXHUBADD<6:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{TXFADDR<6:0>} & 0000 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Legend: } & \quad x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note } & \text { 1: Device mode. }\end{array}\)
3: Definition for Endpoint 0 (ENDPOINT<3:0> \((\) USBCSR \(<19: 16>)=0)\).
4: Definition for Endpoints \(1-7(\) ENDPOINT \(<3: 0>(\) USBCSR \(<19: 16>)=1\) through 7\()\).
TABLE 11-1: USB REGISTER MAP (CONTINUED)

TABLE 11-1: USB REGISTER MAP (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{¢} \\
\hline  & & & 31/15 & 30/14 & 29/13 & 28/12 & \(27 / 11\) & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & \(21 / 5\) & \(20 / 4\) & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline 3128 & \[
\begin{aligned}
& \text { USB } \\
& \text { E2CSR2 }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE2CSR2} & 0000 \\
\hline 312 C & \[
\underset{\text { E2CSR }}{\text { USB }}
\] & \begin{tabular}{|l|}
\hline \(31: 16\) \\
\hline \(15: 0\) \\
\hline
\end{tabular} & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE2CSR3} & 0000 \\
\hline 3130 & \[
\begin{array}{|c|c|}
\hline \text { USB } \\
\text { E3CSRO } \\
\hline
\end{array}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE3CSR0} & 0000 \\
\hline 3134 & \[
\begin{array}{|c|c|c|c|c|}
\text { USBB }
\end{array}
\] & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE3CSR1} & 0000 \\
\hline 3138 & \[
\begin{aligned}
& \text { USB } \\
& \text { E3CSR2 }
\end{aligned}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE3CSR2} & 0000 \\
\hline 313 C & \[
\begin{aligned}
& \text { USB } \\
& \text { E3CSR3 }
\end{aligned}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE3CSR3} & 0000 \\
\hline 3140 & \[
\begin{aligned}
& \text { USB } \\
& \text { E4CSRO }
\end{aligned}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE4CSR0} & 0000 \\
\hline 3144 & \[
\begin{aligned}
& \text { USB } \\
& \text { E4CSR1 }
\end{aligned}
\] & \begin{tabular}{|c|}
\hline \(31: 16\) \\
\hline \(15: 0\) \\
\hline
\end{tabular} & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE4CSR1} & 0000 \\
\hline 3148 & \[
\begin{gathered}
\text { USB } \\
\text { E4CSR2 } \\
\hline
\end{gathered}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE4CSR2} & 0000 \\
\hline 314 C & \[
\underset{\text { E4CSR }}{\substack{\text { USB }}}
\] & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE4CSR3} & 0000 \\
\hline 3150 & \[
\begin{aligned}
& \text { USB } \\
& \text { E5CSRO }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE5CSR0} & 0000 \\
\hline 3154 & \[
\begin{gathered}
\text { USB } \\
\text { E5CSR1 }
\end{gathered}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE5CSR1} & 0000 \\
\hline 3158 & \[
\begin{gathered}
\text { USB } \\
\text { E5CSR2 }
\end{gathered}
\] & \[
\begin{array}{|l|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE5CSR2} & 0000 \\
\hline 315 C & \[
\begin{array}{|c}
\hline \text { USB } \\
\text { E5CSR3 }
\end{array}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE5CSR3} & 0000 \\
\hline 3160 & \[
\underset{\text { UGCSRO }}{\text { USB }}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE6CSRO} & 0000 \\
\hline 3164 & \[
\underset{\text { E6CSR1 }}{\text { USB }}
\] & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE6CSR1} & 0000 \\
\hline 3168 & \[
\underset{\text { E6CSR2 }}{\text { USB }}
\] & 31:16 & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE6CSR2} & 0000 \\
\hline 316 C & \[
\underset{\text { E6CSR3 }}{\text { USB }}
\] & \begin{tabular}{|r|}
\hline \(31: 16\) \\
\hline \(15: 0\) \\
\hline
\end{tabular} & \multicolumn{16}{|l|}{Indexed by the same bits in USBIE6CSR3} & 0000 \\
\hline \[
\begin{aligned}
& \text { Legen } \\
& \text { Note }
\end{aligned}
\] & \multicolumn{19}{|l|}{```
x = unknown value on Reset; - = unimplemented, read as ' 0'. Reset values are shown in hexadecim
Device mode.
Host mode.
Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).
Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).
```} \\
\hline
\end{tabular}
TABLE 11-1: USB REGISTER MAP (CONTINUED)

USB REGISTER MAP (CONTINUED)

TABLE 11-1: USB REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{3340} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { USB } \\
\text { DPBFD }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & EP7TXD & EP6TXD & EP5TXD & EP4TXD & EP3TXD & EP2TXD & EP1TXD & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & EP7RXD & EP6RXD & EP5RXD & EP4RXD & EP3RXD & EP2RXD & EP1RXD & - & 0000 \\
\hline \multirow[t]{2}{*}{3344} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { USB } \\
\text { TMCON1 }
\end{gathered}
\]} & 31:16 & \multicolumn{16}{|l|}{THHSRTN<15:0>} & 05E6 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TUCH<15:0>} & 4074 \\
\hline \multirow[t]{2}{*}{3348} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { TMCON2 }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{THSBT<3:0>} & 0000 \\
\hline \multirow[t]{3}{*}{3360} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { USB } \\
& \text { LPMR1 }
\end{aligned}
\]} & & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{LPM ERRIE} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { LPM } \\
\text { RESIE }
\end{gathered}
\]} & \multirow[t]{2}{*}{LPMACKIE} & \multirow[t]{2}{*}{LPMNYIE} & \multirow[t]{2}{*}{LPMSTIE} & \multirow[t]{2}{*}{LPMTOIE} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & LPMNAK \({ }^{(1)}\) & \multicolumn{2}{|l|}{LPMEN<1:0>} & \multirow[t]{2}{*}{LPMRES} & \multirow[t]{2}{*}{LPMXMT} & 0000 \\
\hline & & 31:16 & & & & & & & & & & & & \(-^{(2)}\) & \(-^{(2)}\) & \(-^{(2)}\) & & & 0000 \\
\hline & & 15:0 & \multicolumn{4}{|l|}{ENDPOINT<3:0>} & - & - & - & RMTWAK & & & <3:0> & & & LNKSTAT & 3:0> & & 0000 \\
\hline \multirow[t]{3}{*}{3364} & \multirow[t]{3}{*}{\begin{tabular}{l}
USB \\
LMPR2
\end{tabular}} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multirow[t]{2}{*}{-} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{LPMFADDR<6:0>}} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} & LPMERR \({ }^{(1)}\) & \multirow[t]{2}{*}{LPMRES} & \multirow[t]{2}{*}{LPMNC} & \multirow[t]{2}{*}{LPMACK} & \multirow[t]{2}{*}{LPMNY} & \multirow[t]{2}{*}{LPMST} & 0000 \\
\hline & & & & & & & & & & & & & \(\sim^{(2)}\) & & & & & & 0000 \\
\hline
\end{tabular}

\footnotetext{
\(\begin{array}{ll}\text { Legend: } & \quad x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note } & \text { 1: }\end{array}\)
}
\(\begin{array}{ll}\begin{array}{ll}\text { Legend: } \\ \text { Note } \\ \text { 1: }\end{array} & \begin{array}{l}\text { Device mode. } \\ \text { Host mode. }\end{array} \\ \text { H: }\end{array}\)
Definition for Endpoint \(0(\) ENDPOINT \(<3: 0>(\) USBCSR \(<19: 16>)=0)\).
Definition for Endpoints \(1-7(\) ENDPOINT \(<3: 0>(\) USBCSR<19:16>) \(=1\) through 7\()\).

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R-0, HS \\
\hline & EP7TXIF & EP6TXIF & EP5TXIF & EP4TXIF & EP3TXIF & EP2TXIF & EP1TXIF & EPOIF \\
\hline \multirow{3}{*}{15:8} & R/W-0 & R/W-0 & R/W-1 & R-0, HS & R-0 & R/W-0 & R-0, HC & R/W-0 \\
\hline & ISOUPD & SOFTCONN & \multirow[t]{2}{*}{HSEN} & \multirow[t]{2}{*}{HSMODE} & \multirow[t]{2}{*}{RESET} & \multirow[t]{2}{*}{RESUME} & \multirow[t]{2}{*}{SUSPMODE} & \multirow[t]{2}{*}{SUSPEN} \\
\hline & - & - & & & & & & \\
\hline \multirow{3}{*}{7:0} & U-0 & R/W-0 \\
\hline & \multirow[b]{2}{*}{-} & \multicolumn{7}{|c|}{FUNC<6:0>} \\
\hline & & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(-n=\) Value at POR
\[
\begin{array}{ll}
\text { HS = Hardware Settable } & \text { HC = Hardware Clearable } \\
\text { W = Writable bit } & U=\text { Unimplemented bit, read as ' } 0 \text { ' } \\
' 1 '=\text { Bit is set } & ' 0 \text { ' = Bit is cleared } \quad x=\text { Bit is unknown }
\end{array}
\]
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-17 EP7TXIF:EP1TXIF: Endpoint ' \(n\) ' TX Interrupt Flag bit
\(1=\) Endpoint has a transmit interrupt to be serviced
\(0=\) No interrupt event
bit 16 EPOIF: Endpoint 0 Interrupt bit
1 = Endpoint 0 has an interrupt to be serviced
\(0=\) No interrupt event
All EPxTX and EPO bits are cleared when the byte is read. Therefore, these bits must be read independently from the remaining bits in this register to avoid accidental clearing.
bit 15 ISOUPD: ISO Update bit (Device mode only; unimplemented in Host mode)
1 = USB module will wait for a SOF token from the time TXPKTRDY is set before sending the packet
\(0=\) No change in behavior
This bit only affects endpoints performing isochronous transfers when in Device mode. This bit is unimplemented in Host mode.
bit 14 SOFTCONN: Soft Connect/Disconnect Feature Selection bit
1 = The USB D+/D- lines are enabled and active
\(0=\) The USB D+/D- lines are disabled and are tri-stated
This bit is only available in Device mode.
bit 13 HSEN: Hi-Speed Enable bit
1 = The USB module will negotiate for Hi-Speed mode when the device is reset by the hub
\(0=\) Module only operates in Full-Speed mode
bit 12 HSMODE: Hi-Speed Mode Status bit
\(1=\mathrm{Hi}\)-Speed mode successfully negotiated during USB reset
\(0=\) Module is not in Hi -Speed mode
In Device mode, this bit becomes valid when a USB reset completes. In Host mode, it becomes valid when the RESET bit is cleared.
bit 11 RESET: Module Reset Status bit
\(1=\) Reset signaling is present on the bus
\(0=\) Normal module operation
In Device mode, this bit is read-only. In Host mode, this bit is read/write.

\section*{REGISTER 11-1: USBCSRO: USB CONTROL STATUS REGISTER 0 (CONTINUED)}
bit 10 RESUME: Resume from Suspend control bit
1 = Generate Resume signaling when the device is in Suspend mode
\(0=\) Stop Resume signaling
In Device mode, the software should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling. In Host mode, the software should clear this bit after 20 ms .
bit 9 SUSPMODE: Suspend Mode status bit
1 = The USB module is in Suspend mode
\(0=\) The USB module is in Normal operations
This bit is read-only in Device mode. In Host mode, it can be set by software, and is cleared by hardware.
bit 8 SUSPEN: Suspend Mode Enable bit
1 = Suspend mode is enabled
\(0=\) Suspend mode is not enabled
bit 7 Unimplemented: Read as ' 0 '
bit 6-0 FUNC<6:0>: Device Function Address bits
These bits are only available in Device mode. This field is written with the address received through a SET_ADDRESS command, which will then be used for decoding the function address in subsequent token packets.

REGISTER 11-2: USBCSR1: USB CONTROL STATUS REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R/W-1 & R/W-0 \\
\hline & EP7TXIE & EP6TXIE & EP5TXIE & EP4TXIE & EP3TXIE & EP2TXIE & EP1TXIE & EPOIE \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R-0, HS & U-0 \\
\hline & EP7RXIF & EP6RXIF & EP5RXIF & EP4RXIF & EP3RXIF & EP2RXIF & EP1RXIF & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-17 EP7TXIE:EP1TXIE: Endpoint ' \(n\) ' Transmit Interrupt Enable bits
1 = Endpoint Transmit interrupt events are enabled
\(0=\) Endpoint Transmit interrupt events are not enabled
bit 16 EPOIE: Endpoint 0 Interrupt Enable bit
1 = Endpoint 0 interrupt events are enabled
0 = Endpoint 0 interrupt events are not enabled
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-1 EP7RXIF:EP1RXIF: Endpoint ' \(n\) ' RX Interrupt bit
1 = Endpoint has a receive event to be serviced
\(0=\) No interrupt event
bit \(0 \quad\) Unimplemented: Read as ' 0 '

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 \\
\hline & VBUSIE & SESSRQIE & DISCONIE & CONNIE & SOFIE & RESETIE & RESUMEIE & SUSPIE \\
\hline \multirow[b]{2}{*}{23:16} & R-0, HS \\
\hline & VBUSIF & SESSRQIF & DISCONIF & CONNIF & SOFIF & RESETIF & RESUMEIF & SUSPIF \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-1 & U-0 \\
\hline & EP7RXIE & EP6RXIE & EP5RXIE & EP4RXIE & EP3RXIE & EP2RXIE & EP1RXIE & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Hardware Settable & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 VBUSIE: Vbus Error Interrupt Enable bit
1 = VBUS error interrupt is enabled
0 = VBUS error interrupt is disabled
bit 30 SESSRQIE: Session Request Interrupt Enable bit
1 = Session request interrupt is enabled
\(0=\) Session request interrupt is disabled
bit 29 DISCONIE: Device Disconnect Interrupt Enable bit
1 = Device disconnect interrupt is enabled
\(0=\) Device disconnect interrupt is disabled
bit 28 CONNIE: Device Connection Interrupt Enable bit
1 = Device connection interrupt is enabled
\(0=\) Device connection interrupt is disabled
bit 27
SOFIE: Start of Frame Interrupt Enable bit
1 = Start of Frame event interrupt is enabled
\(0=\) Start of Frame event interrupt is disabled
RESETIE: Reset/Babble Interrupt Enable bit
1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled
\(0=\) Reset/Babble interrupt is disabled
bit 25 RESUMEIE: Resume Interrupt Enable bit
1 = Resume signaling interrupt is enabled
\(0=\) Resume signaling interrupt is disabled
bit 24 SUSPIE: Suspend Interrupt Enable bit
1 = Suspend signaling interrupt is enabled
\(0=\) Suspend signaling interrupt is disabled
bit 23 VBUSIF: Vbus Error Interrupt bit
\(1=\) Vbus has dropped below the Vbus valid threshold during a session
\(0=\) No interrupt
bit 22 SESSRQIF: Session Request Interrupt bit
1 = Session request signaling has been detected
\(0=\) No session request detected
bit 21 DISCONIF: Device Disconnect Interrupt bit
1 = In Host mode, indicates when a device disconnect is detected. In Device mode, indicates when a session ends.
\(0=\) No device disconnect detected
bit 20 CONNIF: Device Connection Interrupt bit
\(1=\ln\) Host mode, indicates when a device connection is detected
\(0=\) No device connection detected

\section*{PIC32MZ Embedded Connectivity (EC) Family}
\begin{tabular}{|c|c|}
\hline REGIST & 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2 (CONTINUED) \\
\hline bit 19 & \begin{tabular}{l}
SOFIF: Start of Frame Interrupt bit \\
1 = A new frame has started \\
\(0=\) No start of frame detected
\end{tabular} \\
\hline bit 18 & \begin{tabular}{l}
RESETIF: Reset/Babble Interrupt bit \\
\(1=\operatorname{In}\) Host mode, indicates babble is detected. In Device mode, indicates reset signaling is detected on the bus. \\
\(0=\) No reset/babble detected
\end{tabular} \\
\hline bit 17 & \begin{tabular}{l}
RESUMEIF: Resume Interrupt bit \\
1 = Resume signaling is detected on the bus while USB module is in Suspend mode \\
\(0=\) No Resume signaling detected
\end{tabular} \\
\hline bit 16 & \begin{tabular}{l}
SUSPIF: Suspend Interrupt bit \\
1 = Suspend signaling is detected on the bus (Device mode) \\
\(0=\) No suspend signaling detected
\end{tabular} \\
\hline bit 15-8 & Unimplemented: Read as '0' \\
\hline bit 7-1 & EP7RXIE:EP1RXIE: Endpoint ' \(n\) ' Receive Interrupt Enable bit \(1=\) Receive interrupt is enabled for this endpoint \(0=\) Receive interrupt is not enabled \\
\hline bit 0 & Unimplemented: Read as ' 0 ' \\
\hline
\end{tabular}

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & Bit 29/21/13/5 & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 & R/W-0, HC & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & FORCEHST & FIFOACC & FORCEFS & FORCEHS & PACKET & TESTK & TESTJ & NAK \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{ENDPOINT<3:0>} \\
\hline \multirow[t]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{RFRMUM<10:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{RFRMNUM<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Cleared by hardware & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}

\section*{bit 31 FORCEHST: Test Mode Force Host Select bit}

1 = Forces USB module into Host mode, regardless of whether it is connected to any peripheral
0 = Normal operation
bit 30 FIFOACC: Test Mode Endpoint 0 FIFO Transfer Force bit
1 = Transfers the packet in the Endpoint 0 TX FIFO to the Endpoint 0 RX FIFO
\(0=\) No transfer
bit 29 FORCEFS: Test mode Force Full-Speed Mode Select bit
This bit is only active if FORCEHST \(=1\).
\(1=\) Forces USB module into Full-Speed mode. Undefined behavior if FORCEHS \(=1\).
\(0=\) If FORCEHS \(=0\), places USB module into Low-Speed mode.
bit 28 FORCEHS: Test mode Force Hi-Speed Mode Select bit
This bit is only active if FORCEHST \(=1\).
1 = Forces USB module into Hi-Speed mode. Undefined behavior if FORCEFS = 1 .
\(0=\) If FORCEFS \(=0\), places USB module into Low-Speed mode.
bit 27 PACKET: Test_Packet Test Mode Select bit
This bit is only active if module is in Hi -Speed mode.
1 = The USB module repetitively transmits on the bus a 53-byte test packet. Test packet must be loaded into the Endpoint 0 FIFO before the test mode is entered.
\(0=\) Normal operation
bit 26 TESTK: Test_K Test Mode Select bit
1 = Enters Test_K test mode. The USB module transmits a continuous \(K\) on the bus.
\(0=\) Normal operation
This bit is only active if the USB module is in Hi-Speed mode.
bit 25 TESTJ: Test_J Test Mode Select bit
1 = Enters Test_J test mode. The USB module transmits a continuous J on the bus.
\(0=\) Normal operation
This bit is only active if the USB module is in Hi-Speed mode.
bit 24
NAK: Test_SEO_NAK Test Mode Select bit
1 = Enter Test_SE0_NAK test mode. The USB module remains in Hi-Speed mode but responds to any valid IN token with a NAK
\(0=\) Normal operation
This mode is only active if module is in Hi -Speed mode.
bit 23-20 Unimplemented: Read as ' 0 '

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3 (CONTINUED)
bit 19-16 ENDPOINT<3:0>: Endpoint Registers Select bits
1111 = Reserved
-
-
-
\(1000=\) Reserved
\(0111=\) Endpoint 7
-
-
-
\(0000=\) Endpoint 0
These bits select which endpoint registers are accessed through addresses 3010-301F.
bit 15-11 Unimplemented: Read as ' 0 '
bit 10-0 RFRMNUM<10:0>: Last Received Frame Number bits

\section*{REGISTER 11-5: USBIEOCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{3}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0, HC & R/W-0 & R/W-0, HC \\
\hline & \multirow{2}{*}{-} & \multirow{2}{*}{-} & \multirow[b]{2}{*}{-} & \multirow{2}{*}{-} & - & - & - & \multirow{2}{*}{FLSHFIFO} \\
\hline & & & & & DISPING & DTWREN & DATATGGL & \\
\hline \multirow{3}{*}{23:16} & R/W-0, HC & R/W-0, HC & R/W-0, HC & R/C-0, HS & R/W-0, HS & R-0, HS & R-0 & R-0 \\
\hline & SVCSETEND & SVCRPR & SENDSTALL & SETUPEND & DATAEND & SENTSTALL & \multirow[b]{2}{*}{TXPKTRDY} & \multirow[b]{2}{*}{RXPKTRDY} \\
\hline & NAKTMOUT & STATPKT & REQPKT & ERROR & SETUPPKT & RXSTALL & & \\
\hline \multirow[t]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Cleared by hardware & HS Cleared by software \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-28 Unimplemented: Read as ' 0 '
bit 27 DISPING: Disable Ping tokens control bit (Host mode)
1 = USB Module will not issue PING tokens in data and status phases of a Hi-Speed Control transfer
\(0=\) Ping tokens are issued
bit 26 DTWREN: Data Toggle Write Enable bit (Host mode)
1 = Enable the current state of the Endpoint 0 data toggle to be written. Automatically cleared.
\(0=\) Disable data toggle write
bit 25 DATATGGL: Data Toggle bit (Host mode)
When read, this bit indicates the current state of the Endpoint 0 data toggle.
If DTWREN \(=1\), this bit is writable with the desired setting.
If \(D T W R E N=0\), this bit is read-only.
bit 24 FLSHFIFO: Flush FIFO Control bit
1 = Flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The FIFO pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared. Automatically cleared when the operation completes. Should only be used when TXPKTRDY/RXPKTRDY = 1 .
\(0=\) No Flush operation
bit 23 SVCSETEND: Clear SETUPEND Control bit (Device mode)
1 = Clear the SETUPEND bit in this register. This bit is automatically cleared.
\(0=\) Do not clear
NAKTMOUT: NAK Time-out Control bit (Host mode)
\(1=\) Endpoint 0 is halted following the receipt of NAK responses for longer than the time set by the NAKLIM<4:0> bits (USBICSR<28:24>)
\(0=\) Allow the endpoint to continue
bit 22 SVCRPR: Serviced RXPKTRDY Clear Control bit (Device mode)
1 = Clear the RXPKTRDY bit in this register. This bit is automatically cleared.
\(0=\) Do not clear
STATPKT: Status Stage Transaction Control bit (Host mode)
\(1=\) When set at the same time as the TXPKTRDY or REQPKT bit is set, performs a status stage transaction
\(0=\) Do not perform a status stage transaction

\section*{REGISTER 11-5: USBIEOCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0) (CONTINUED)}
bit 21 SENDSTALL: Send Stall Control bit (Device mode)
1 = Terminate the current transaction and transmit a STALL handshake. This bit is automatically cleared.
\(0=\) Do not send STALL handshake.
REQPKT: IN transaction Request Control bit (Host mode)
1 = Request an IN transaction. This bit is cleared when the RXPKTRDY bit is set.
\(0=\) Do not request an IN transaction
bit 20 SETUPEND: Early Control Transaction End Status bit (Device mode)
1 = A control transaction ended before the DATAEND bit has been set. An interrupt will be generated and the FIFO flushed at this time.
\(0=\) Normal operation
This bit is cleared by writing a ' 1 ' to the SVCSETEND bit in this register.
ERROR: No Response Error Status bit (Host mode)
1 = Three attempts have been made to perform a transaction with no response from the peripheral. An interrupt is generated.
\(0=\) Clear this flag. Software must write a ' 0 ' to this bit to clear it.
bit 19 DATAEND: End of Data Control bit (Device mode)
The software sets this bit when:
- Setting TXPKTRDY for the last data packet
- Clearing RXPKTRDY after unloading the last data packet
- Setting TXPKTRDY for a zero length data packet

Hardware clears this bit.

SETUPPKT: Send a SETUP token Control bit (Host mode)
1 = When set at the same time as the TXPKTRDY bit is set, the module sends a SETUP token instead of an OUT token for the transaction
\(0=\) Normal OUT token operation
Setting this bit also clears the Data Toggle.
bit 18 SENTSTALL: STALL sent status bit (Device mode)
1 = STALL handshake has been transmitted
\(0=\) Software clear of bit
RXSTALL: STALL handshake received Status bit (Host mode)
1 = STALL handshake was received
\(0=\) Software clear of bit
bit 17 TXPKTRDY: TX Packet Ready Control bit
1 = Data packet has been loaded into the FIFO. It is cleared automatically.
\(0=\) No data packet is ready for transmit
RXPKTRDY: RX Packet Ready Status bit
1 = Data packet has been received. Interrupt is generated (when enabled) when this bit is set.
\(0=\) No data packet has been received
This bit is cleared by setting the SVCRPR bit.
bit 15-0 Unimplemented: Read as ' 0 '

REGISTER 11-6: USBIEOCSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2 (ENDPOINT 0)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{NAKLIM<4:0>} \\
\hline \multirow{2}{*}{23:16} & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & \multicolumn{2}{|l|}{SPEED<1:0>} & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R-0 \\
\hline & - & \multicolumn{7}{|c|}{RXCNT<6:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{llll}
\(R=\) Readable bit & W \(=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-24 NAKLIM<4:0>: Endpoint 0 NAK Limit bits
The number of frames/microframes (Hi-Speed transfers) after which Endpoint 0 should time-out on receiving a stream of NAK responses.
bit 23-22 SPEED<1:0>: Operating Speed Control bits
11 = Low-Speed
\(10=\) Full-Speed
\(01=\mathrm{Hi}\)-Speed
\(00=\) Reserved
bit 21-7 Unimplemented: Read as ' 0 '
bit 6-0 RXCNT<6:0>: Receive Count bits
The number of received data bytes in the Endpoint 0 FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

REGISTER 11-7: USBIE0CSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 0)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{25 / 17 / 9 / 1}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-x & R-x & R-0 & R-x & R-x & R-x & R-1 & R-0 \\
\hline & MPRXEN & MPTXEN & BIGEND & HBRXEN & HBTXEN & DYNFIFOS & SOFTCONE & UTMIDWID \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31 MPRXEN: Automatic Amalgamation Option bit
\(1=\) Automatic amalgamation of bulk packets is done
\(0=\) No automatic amalgamation
bit 30 MPTXEN: Automatic Splitting Option bit
\(1=\) Automatic splitting of bulk packets is done
\(0=\) No automatic splitting
bit 29 BIGEND: Byte Ordering Option bit
1 = Big Endian ordering
\(0=\) Little Endian ordering
bit 28 HBRXEN: High-bandwidth RX ISO Option bit
1 = High-bandwidth RX ISO endpoint support is selected
\(0=\) No High-bandwidth RX ISO support
bit 27 HBTXEN: High-bandwidth TX ISO Option bit
1 = High-bandwidth TX ISO endpoint support is selected
\(0=\) No High-bandwidth TX ISO support
bit 26 DYNFIFOS: Dynamic FIFO Sizing Option bit
1 = Dynamic FIFO sizing is supported
\(0=\) No Dynamic FIFO sizing
bit 25 SOFTCONE: Soft Connect/Disconnect Option bit
1 = Soft Connect/Disconnect is supported
\(0=\) Soft Connect/Disconnect is not supported
bit 24 UTMIDWID: UTMI+ Data Width Option bit
Always ' 0 ', indicating 8 -bit UTMI+ data width
bit 23-0 Unimplemented: Read as ' 0 '

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{3}{*}{31:24} & R/W-0 \\
\hline & \multirow[b]{2}{*}{AUTOSET} & ISO & \multirow{2}{*}{MODE} & \multirow{2}{*}{DMAREQEN} & \multirow{2}{*}{FRCDATTG} & \multirow[b]{2}{*}{DMAREQMD} & - & - \\
\hline & & - & & & & & DATAWEN & DATATGGL \\
\hline \multirow{3}{*}{23:16} & R/W-0, HS & R/W-0, HC & R/W-0, HS & R/W-0 & R/W-0 & R/W-0, HS & R/W-0 & R/W-0, HC \\
\hline & INCOMPTX & \multirow[b]{2}{*}{CLRDT} & SENTSTALL & SENDSTALL & \multirow[b]{2}{*}{FLUSH} & UNDERRUN & \multirow[b]{2}{*}{FIFONE} & \multirow[b]{2}{*}{TXPKTRDY} \\
\hline & NAKTMOUT & & RXSTALL & SETUPPKT & & ERROR & & \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{5}{|c|}{MULT<4:0>} & \multicolumn{3}{|c|}{TXMAXP<10:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXMAXP<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) = Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31 AUTOSET: Auto Set Control bit
\(1=\) TXPKTRDY will be automatically set when data of the maximum packet size (value in TXMAXP) is loaded into the TX FIFO. If a packet of less than the maximum packet size is loaded, then TXPKTRDY will have to be set manually.
\(0=\) TXPKTRDY must be set manually for all packet sizes
bit 30 ISO: Isochronous TX Endpoint Enable bit (Device mode)
1 = Enables the endpoint for Isochronous transfers
\(0=\) Disables the endpoint for Isochronous transfers and enables it for Bulk or Interrupt transfers.
This bit only has an effect in Device mode. In Host mode, it always returns zero.
bit 29 MODE: Endpoint Direction Control bit
1 = Endpoint is TX
\(0=\) Endpoint is \(R X\)
This bit only has any effect where the same endpoint FIFO is used for both TX and RX transactions.
bit 28 DMAREQEN: Endpoint DMA Request Enable bit
1 = DMA requests are enabled for this endpoint
\(0=\) DMA requests are disabled for this endpoint
bit 27 FRCDATTG: Force Endpoint Data Toggle Control bit
1 = Forces the endpoint data toggle to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received.
\(0=\) No forced behavior
bit 26 DMAREQMD: Endpoint DMA Request Mode Control bit
1 = DMA Request Mode 1
\(0=\) DMA Request Mode 0
This bit must not be cleared either before or in the same cycle as the above DMAREQEN bit is cleared.
bit 25 DATAWEN: Data Toggle Write Enable bit (Host mode)
1 = Enable the current state of the TX Endpoint data toggle (DATATGGL) to be written
\(0=\) Disables writing the DATATGGL bit
bit 24 DATATGGL: Data Toggle Control bit (Host mode)
When read, this bit indicates the current state of the TX Endpoint data toggle. If DATAWEN \(=1\), this bit may be written with the required setting of the data toggle. If DATAWEN \(=0\), any value written to this bit is ignored.

\section*{REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)}
bit 23 INCOMPTX: Incomplete TX Status bit (Device mode)
1 = For high-bandwidth Isochronous endpoint, a large packet has been split into 2 or 3 packets for transmission but insufficient IN tokens have been received to send all the parts
\(0=\) Normal operation
In anything other than isochronous transfers, this bit will always return 0 .

NAKTMOUT: NAK Time-out status bit (Host mode)
\(1=\) TX endpoint is halted following the receipt of NAK responses for longer than the NAKLIM setting
\(0=\) Written by software to clear this bit
bit 22 CLRDT: Clear Data Toggle Control bit
\(1=\) Resets the endpoint data toggle to 0
\(0=\) Do not clear the data toggle
bit 21 SENTSTALL: STALL handshake transmission status bit (Device mode)
1 = STALL handshake is transmitted. The FIFO is flushed and the TXPKTRDY bit is cleared.
\(0=\) Written by software to clear this bit
RXSTALL: STALL receipt bit (Host mode)
1 = STALL handshake is received. Any DMA request in progress is stopped, the FIFO is completely flushed and the TXPKTRDY bit is cleared.
\(0=\) Written by software to clear this bit
bit 20 SENDSTALL: STALL handshake transmission control bit (Device mode)
1 = Issue a STALL handshake to an IN token
\(0=\) Terminate stall condition
This bit has no effect when the endpoint is being used for Isochronous transfers.

SETUPPKT: Definition bit (Host mode)
1 = When set at the same time as the TXPKTRDY bit is set, send a SETUP token instead of an OUT token for the transaction. This also clears the Data Toggle.
\(0=\) Normal OUT token for the transaction
bit 19 FLUSH: FIFO Flush control bit
1 = Flush the latest packet from the endpoint TX FIFO. The FIFO pointer is reset, TXPKTRDY is cleared and an interrupt is generated.
\(0=\) Do not flush the FIFO
bit 18 UNDERRUN: Underrun status bit (Device mode)
\(1=\) An IN token has been received when TXPKTRDY is not set.
\(0=\) Written by software to clear this bit.
ERROR: Handshake failure status bit (Host mode)
\(1=\) Three attempts have been made to send a packet and no handshake packet has been received
\(0=\) Written by software to clear this bit.
bit 17 FIFONE: FIFO Not Empty status bit
\(1=\) There is at least 1 packet in the TX FIFO
\(0=\) TX FIFO is empty
bit 16 TXPKTRDY: TX Packet Ready Control bit
The software sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. This bit is also automatically cleared prior to loading a second packet into a dou-ble-buffered FIFO.

\section*{REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)}
bit 15-11 MULT<4:0>: Multiplier Control bits
For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.
For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.
bit 10-0 TXMAXP<10:0>: Maximum TX Payload per transaction Control bits
This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.
TXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{array}{|c}
\text { Bit } \\
31 / 23 / 15 / 7
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
28 / 20 / 12 / 4
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{3}{*}{31:24} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0, HC & R-0 & R/W-0 \\
\hline & \multirow{2}{*}{AUTOCLR} & ISO & \multirow{2}{*}{DMAREQEN} & DISNYET & \multirow{2}{*}{DMAREQMD} & - & - & \multirow{2}{*}{INCOMPRX} \\
\hline & & AUTORQ & & PIDERR & & DATATWEN & DATATGGL & \\
\hline \multirow{3}{*}{23:16} & R/W-0, HC & R/W-0, HS & R/W-0 & R/W-0, HC & R-0, HS & R/W-0, HS & R-0, HSC & R/W-0, HS \\
\hline & \multirow[b]{2}{*}{CLRDT} & SENTSTALL & SENDSTALL & \multirow[t]{2}{*}{FLUSH} & DATAERR & OVERRUN & \multirow[b]{2}{*}{FIFOFULL} & \multirow[b]{2}{*}{RXPKTRDY} \\
\hline & & RXSTALL & REQPKT & & DERRNAKT & ERROR & & \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{5}{|c|}{MULT<4:0>} & \multicolumn{3}{|c|}{RXMAXP<10:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXMAXP<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(H C=\) Hardware Clearable & \(H S=\) Hardware Settable & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' \(0 '\) & \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(\prime 0\) ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 AUTOCLR: RXPKTRDY Automatic Clear Control bit
\(1=\) RXPKTRDY will be automatically cleared when a packet of RXMAXP bytes has been unloaded from the RX FIFO. When packets of less than the maximum packet size are unloaded, RXPKTRDY will have to be cleared manually. When using a DMA to unload the RX FIFO, data is read from the RX FIFO in 4-byte chunks regardless of the RXMAXP.
\(0=\) No automatic clearing of RXPKTRDY
This bit should not be set for high-bandwidth Isochronous endpoints.
ISO: Isochronous Endpoint Control bit (Device mode)
1 = Enable the RX endpoint for Isochronous transfers
\(0=\) Enable the RX endpoint for Bulk/Interrupt transfers
AUTORQ: Automatic Packet Request Control bit (Host mode)
\(1=\) REQPKT will be automatically set when RXPKTRDY bit is cleared.
\(0=\) No automatic packet request
This bit is automatically cleared when a short packet is received.
bit 29 DMAREQEN: DMA Request Enable Control bit
1 = Enable DMA requests for the RX endpoint.
\(0=\) Disable DMA requests for the RX endpoint.
bit 28 DISNYET: Disable NYET Handshakes Control/PID Error Status bit (Device mode)
1 = In Bulk/Interrupt transactions, disables the sending of NYET handshakes. All successfully received RX packets are ACKed including at the point at which the FIFO becomes full.
\(0=\) Normal operation.
In Bulk/Interrupt transactions, this bit only has any effect in Hi-Speed mode, in which mode it should be set for all Interrupt endpoints.

\section*{PIDERR: PID Error Status bit (Host mode)}
\(1=\ln\) ISO transactions, this indicates a PID error in the received packet.
\(0=\) No error
bit 27 DMAREQMD: DMA Request Mode Selection bit
1 = DMA Request Mode 1
\(0=\) DMA Request Mode 0

\section*{REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)}
bit 26 DATATWEN: Data Toggle Write Enable Control bit (Host mode)
1 = DATATGGL can be written
\(0=\) DATATGGL is not writable
bit 25 DATATGGL: Data Toggle bit (Host mode)
When read, this bit indicates the current state of the endpoint data toggle.
If DATATWEN \(=1\), this bit may be written with the required setting of the data toggle.
If DATATWEN \(=0\), any value written to this bit is ignored.
bit 24 INCOMPRX: Incomplete Packet Status bit
1 = The packet in the RX FIFO during a high-bandwidth Isochronous/Interrupt transfer is incomplete because parts of the data were not received
\(0=\) Written by then software to clear this bit
In anything other than Isochronous transfer, this bit will always return 0 .
bit 23 CLRDT: Clear Data Toggle Control bit
\(1=\) Reset the endpoint data toggle to 0
\(0=\) Leave endpoint data toggle alone
bit 22 SENTSTALL: STALL Handshake Status bit (Device mode)
1 = STALL handshake is transmitted
\(0=\) Written by the software to clear this bit

RXSTALL: STALL Handshake Receive Status bit (Host mode)
1 = A STALL handshake has been received. An interrupt is generated.
\(0=\) Written by the software to clear this bit
bit 21 SENDSTALL: STALL Handshake Control bit (Device mode)
1 = Issue a STALL handshake
\(0=\) Terminate stall condition
REQPKT: IN Transaction Request Control bit (Host mode)
\(1=\) Request an IN transaction.
\(0=\) No request
This bit is cleared when RXPKTRDY is set.
bit 20 FLUSH: Flush FIFO Control bit
1 = Flush the next packet to be read from the endpoint RX FIFO. The FIFO pointer is reset and the RXPKTRDY bit is cleared. This should only be used when RXPKTRDY is set. If the FIFO is doublebuffered, FLUSH may need to be set twice to completely clear the FIFO.
\(0=\) Normal FIFO operation
This bit is automatically cleared.
bit 19 DATAERR: Data Packet Error Status bit (Device mode)
1 = The data packet has a CRC or bit-stuff error.
\(0=\) No data error
This bit is cleared when RXPKTRDY is cleared. This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

DERRNAKT: Data Error/NAK Time-out Status bit (Host mode)
1 = The data packet has a CRC or bit-stuff error. In Bulk mode, the RX endpoint is halted following the receipt of NAK responses for longer than the time set as the NAK limit.
\(0=\) No data or NAK time-out error

\section*{REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)}
bit 18 OVERRUN: Data Overrun Status bit (Device mode)
1 = An OUT packet cannot be loaded into the RX FIFO.
\(0=\) Written by software to clear this bit
This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

ERROR: No Data Packet Received Status bit (Host mode)
1 = Three attempts have been made to receive a packet and no data packet has been received. An interrupt is generated.
\(0=\) Written by the software to clear this bit.
This bit is only valid when the RX endpoint is operating in Bulk or Interrupt mode. In ISO mode, it always returns zero.
bit 17 FIFOFULL: FIFO Full Status bit
\(1=\) No more packets can be loaded into the RX FIFO
\(0=\) The RX FIFO has at least one free space
bit 16 RXPKTRDY: Data Packet Reception Status bit
\(1=\) A data packet has been received. An interrupt is generated.
\(0=\) Written by software to clear this bit when the packet has been unloaded from the RX FIFO.
bit 15-11 MULT<4:0>: Multiplier Control bits
For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.
For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.
For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.
bit 10-0 RXMAXP<10:0>: Maximum RX Payload Per Transaction Control bits
This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.
RXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

REGISTER 11-10: USBIENCSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2 (ENDPOINT 1-7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
28 / 20 / 12 / 4
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXINTERV<7:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{2}{|l|}{SPEED<1:0>} & \multicolumn{2}{|l|}{PROTOCOL<1:0>} & \multicolumn{4}{|c|}{TEP<3:0>} \\
\hline \multirow[t]{2}{*}{15:8} & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & - & \multicolumn{6}{|c|}{RXCNT<13:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{RXCNT<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline Legend: & HC = Hardware Clearable HS = Hardware Settable \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 31-24 TXINTERV<7:0>: Endpoint TX Polling Interval/NAK Limit bits (Host mode)
For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.
The following table describes the valid values and interpretation for these bits:
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Transfer Type } & Speed & Valid Values (m) & \multicolumn{1}{c|}{ Interpretation } \\
\hline \hline \multirow{2}{*}{ Interrupt } & Low/Full & \(0 \times 01\) to \(0 \times F F\) & Polling interval is 'm' frames. \\
\cline { 2 - 4 } & High & \(0 \times 01\) to \(0 \times 10\) & Polling interval is \(2^{(m-1)}\) frames. \\
\hline Isochronous & Full or High & \(0 \times 01\) to \(0 \times 10\) & Polling interval is \(2^{(\mathrm{m}-1)}\) frames/microframes. \\
\hline Bulk & Full or High & \(0 \times 02\) to \(0 \times 10\) & \begin{tabular}{l}
NAK limit is \(2^{(m-1)}\) frames/microframes. A \\
value of ' 0 ' or ' 1 ' disables the NAK time-out \\
function.
\end{tabular} \\
\hline
\end{tabular}
bit 23-22 SPEED<1:0>: TX Endpoint Operating Speed Control bits (Host mode)
11 = Low-Speed
\(10=\) Full-Speed
01 = Hi-Speed
00 = Reserved
bit 21-20 PROTOCOL<1:0>: TX Endpoint Protocol Control bits
11 = Interrupt
10 = Bulk
01 = Isochronous
\(00=\) Control
bit 19-16 TEP<3:0>: TX Target Endpoint Number bits
This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.
bit 15-14 Unimplemented: Read as ' 0 '
bit 13-0 RXCNT<13:0>: Receive Count bits
The number of received data bytes in the endpoint RX FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3
(ENDPOINT 1-7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Bit \\
Range
\end{tabular} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-x \\
\hline & \multicolumn{4}{|c|}{RXFIFOSZ<3:0>} & \multicolumn{4}{|c|}{TXFIFOSZ<3:0>} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & \multicolumn{2}{|l|}{- -} & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXINTERV<7:0>} \\
\hline \multirow{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{2}{|l|}{SPEED<1:0>} & \multicolumn{2}{|l|}{PROTOCOL<1:0>} & \multicolumn{4}{|c|}{TEP<3:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits
```

1111 = Reserved
$1110=$ Reserved
$1101=8192$ bytes
$1100=4096$ bytes
-
-
-
$0011=8$ bytes
0010 = Reserved
0001 = Reserved
$0000=$ Reserved or endpoint has not been configured

```

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
bit 27-24 TXFIFOSZ<3:0>: Transmit FIFO Size bits
```

1111 = Reserved
1110 = Reserved
1101 = 8192 bytes
1100 = 4096 bytes
•
•
-
0011 = 8 bytes
0010 = Reserved
0001 = Reserved
0000=Reserved or endpoint has not been configured

```

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.
bit 23-16 Unimplemented: Read as ' 0 '

\section*{REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7) (CONTINUED)}
bit 15-8 RXINTERV<7:0>: Endpoint RX Polling Interval/NAK Limit bits
For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.
The following table describes the valid values and meaning for this field:
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Transfer Type } & Speed & Valid Values (m) & \multicolumn{1}{c|}{ Interpretation } \\
\hline \hline \multirow{2}{|c|}{ Interrupt } & Low/Full & \(0 \times 01\) to \(0 \times F F\) & Polling interval is 'm' frames. \\
\cline { 2 - 4 } & High & \(0 \times 01\) to \(0 \times 10\) & Polling interval is \(2^{(m-1)}\) frames. \\
\hline Isochronous & Full or High & \(0 \times 01\) to \(0 \times 10\) & Polling interval is \(2^{(m-1)}\) frames/microframes. \\
\hline Bulk & Full or High & \(0 \times 02\) to \(0 \times 10\) & \begin{tabular}{l}
NAK limit is \(2^{(m-1)}\) frames/microframes. A \\
value of ' 0 ' or ' 1 ' disables the NAK time-out \\
function.
\end{tabular} \\
\hline
\end{tabular}
bit 7-6 SPEED<1:0>: RX Endpoint Operating Speed Control bits
11 = Low-Speed
\(10=\) Full-Speed
\(01=\mathrm{Hi}\)-Speed
00 = Reserved
bit 5-4 PROTOCOL<1:0>: RX Endpoint Protocol Control bits
11 = Interrupt
10 = Bulk
01 = Isochronous
00 = Control
bit 3-0 TEP<3:0>: RX Target Endpoint Number bits
This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

REGISTER 11-12: USBFIFOx: USB FIFO DATA REGISTER ' \(x\) ' (' \(x\) ' \(=0-7\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DATA<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DATA<23:16>} \\
\hline \multirow[t]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DATA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DATA<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-0
DATA<31:0>: USB Transmit/Receive FIFO Data bits
Writes to this register loads data into the TxFIFO for the corresponding endpoint. Reading from this register unloads data from the RxFIFO for the corresponding endpoint.
Transfers may be 8 -bit, 16 -bit or 32 -bit as required, and any combination of access is allowed provided the data accessed is contiguous. However, all transfers associated with one packet must be of the same width so that data is consistently byte-, word- or double-word aligned. The last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-word transfer.

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & RXDPB & \multicolumn{4}{|c|}{RXFIFOSZ<3:0>} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & TXDPB & \multicolumn{4}{|c|}{TXFIFOSZ<3:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & TXEDMA & RXEDMA \\
\hline \multirow[b]{2}{*}{7:0} & R-1 & R-0 & R-0 & R-0 & R-0 & R-0 & R/W-0, HC & R/W-0 \\
\hline & BDEV & FSDEV & LSDEV & \multicolumn{2}{|c|}{VBUS<1:0>} & HOSTMODE & HOSTREQ & SESSION \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared
\end{tabular}\(x=\) Bit is unknown
bit 31-29 Unimplemented: Read as ' 0 '
bit 28 RXDPB: RX Endpoint Double-packet Buffering Control bit
1 = Double-packet buffer is supported. This doubles the size set in RXFIFOSZ.
\(0=\) Double-packet buffer is not supported
bit 27-24 RXFIFOSZ<3:0>: RX Endpoint FIFO Packet Size bits
The maximum packet size to allowed for (before any splitting within the FIFO of Bulk/High-Bandwidth packets prior to transmission)
1111 = Reserved
-
-
-
\(1010=\) Reserved
\(1001=4096\) bytes
\(1000=2048\) bytes
\(0111=1024\) bytes
\(0110=512\) bytes
\(0101=256\) bytes
\(0100=128\) bytes
\(0011=64\) bytes
\(0010=32\) bytes
\(0001=16\) bytes
\(0000=8\) bytes
bit 23-21 Unimplemented: Read as ' 0 '
bit 20 TXDPB: TX Endpoint Double-packet Buffering Control bit
\(1=\) Double-packet buffer is supported. This doubles the size set in TXFIFOSZ.
\(0=\) Double-packet buffer is not supported

\section*{REGISTER 11-13: USBOTG: USB OTG CONTROLSTATUS REGISTER (CONTINUED)}
bit 19-16 TXFIFOSZ<3:0>: TX Endpoint FIFO packet size bits
The maximum packet size to allowed for (before any splitting within the FIFO of Bulk/High-Bandwidth packets prior to transmission)
```

1111 = Reserved
-
-
-
1010 = Reserved
1001=4096 bytes
1000=2048 bytes
0111 = 1024 bytes
0110=512 bytes
0101 = 256 bytes
0100=128 bytes
0011 = 64 bytes
0010 = 32 bytes
0001=16 bytes
0000=8 bytes

```
bit 15-10 Unimplemented: Read as ' 0 '
bit 9 TXEDMA: TX Endpoint DMA Assertion Control bit
1 = DMA_REQ signal for all IN endpoints will be deasserted when MAXP-8 bytes have been written to an endpoint. This is Early mode.
\(0=\) DMA_REQ signal for all IN endpoints will be deasserted when MAXP bytes have been written to an endpoint. This is Late mode.
bit 8 RXEDMA: RX Endpoint DMA Assertion Control bit
1 = DMA_REQ signal for all OUT endpoints will be deasserted when MAXP-8 bytes have been written to an endpoint. This is Early mode.
\(0=\) DMA_REQ signal for all OUT endpoints will be deasserted when MAXP bytes have been written to an endpoint. This is Late mode.
bit 7 BDEV: USB Device Type bit
1 = USB is operating as a ' \(B\) ' device
\(0=\) USB is operating as an ' A ' device
bit \(6 \quad\) FSDEV: Full-Speed/Hi-Speed device detection bit (Host mode)
1 = A Full-Speed or Hi-Speed device has been detected being connected to the port
\(0=\) No Full-Speed or Hi-Speed device detected
bit 5 LSDEV: Low-Speed Device Detection bit (Host mode)
1 = A Low-Speed device has been detected being connected to the port
\(0=\) No Low-Speed device detected
bit 4-3 VBUS<1:0>: VBUS Level Detection bits
11 = Above Vbus Valid
10 = Above AValid, below Vbus Valid
11 = Above Session End, below AValid
00 = Below Session End
bit 2 HOSTMODE: Host Mode bit
1 = USB module is acting as a Host
\(0=\) USB module is not acting as a Host
bit 1 HOSTREQ: Host Request Control bit
'B' device only:
1 = USB module initiates the Host Negotiation when Suspend mode is entered. This bit is cleared when Host Negotiation is completed.
\(0=\) Host Negotiation is not taking place

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER (CONTINUED)
bit 0 SESSION: Active Session Control/Status bit
'A' device:
1 = Start a session
\(0=\) End a session
' B ' device:
\(1=\) (Read) Session has started or is in progress, (Write) Initiate the Session Request Protocol
\(0=\) When USB module is in Suspend mode, clearing this bit will cause a software disconnect
Clearing this bit when the USB module is not suspended will result in undefined behavior.

REGISTER 11-14: USBFIFOA: USB FIFO ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{RXFIFOAD<12:8>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXFIFOAD<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TXFIFOAD<12:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXFIFOAD<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-16 RXFIFOAD<12:0>: Receive Endpoint FIFO Address bits
Start address of the endpoint FIFO in units of 8 bytes as follows:
\(1111111111111=0 x F F F 8\)
-
-
-
\(0000000000010=0 x 0010\)
\(0000000000001=0 \times 0008\)
\(0000000000000=0 \times 0000\)
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-0 TXFIFOAD<12:0>: Transmit Endpoint FIFO Address bits
Start address of the endpoint FIFO in units of 8 bytes as follows:
\(1111111111111=0 x F F F 8\)
-
-
-
\(0000000000010=0 x 0010\)
\(0000000000001=0 \times 0008\)
\(0000000000000=0 x 0000\)

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 11-15: USBHWVER: USB HARDWARE VERSION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R-0 & R-0 & R-0 & R-0 & R-1 & R-0 & R-0 & R-0 \\
\hline & RC & \multicolumn{5}{|c|}{VERMAJOR<4:0>} & \multicolumn{2}{|l|}{VERMINOR<9:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{VERMINOR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(-n=\) Value at POR
\(W=\) Writable bit
\(' 1\) ' \(=\) Bit is set
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 RC: Release Candidate bit
1 = USB module was created using a release candidate
\(0=\) USB module was created using a full release
bit 14-10 VERMAJOR<4:0>: USB Module Major Version number bits
This read-only number is the Major version number for the USB module.
bit 9-0 VERMINOR<9:0>: USB Module Minor Version number bits
This read-only number is the Minor version number for the USB module.

REGISTER 11-16: USBINFO: USB INFORMATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{aligned}
& \text { Bit } \\
& 26 / 18 / 10 / 2
\end{aligned}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{VPLEN<7:0>} \\
\hline \multirow{2}{*}{23:16} & R/W-0 & R/W-1 & R/W-0 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-0 \\
\hline & \multicolumn{4}{|c|}{WTCON<3:0>} & \multicolumn{4}{|c|}{WTID<3:0>} \\
\hline \multirow{2}{*}{15:8} & R-1 & R-0 & R-0 & R-0 & R-1 & R-1 & R-0 & R-0 \\
\hline & \multicolumn{4}{|c|}{DMACHANS<3:0>} & \multicolumn{4}{|c|}{RAMBITS<3:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 & R-1 & R-1 & R-1 & R-0 & R-1 & R-1 & R-1 \\
\hline & \multicolumn{4}{|c|}{RXENDPTS<3:0>} & \multicolumn{4}{|c|}{TXENDPTS<3:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-24 VPLEN<7:0>: VBUS pulsing charge length bits
Sets the duration of the VBus pulsing charge in units of \(546.1 \mu \mathrm{~s}\). (The default setting corresponds to 32.77 ms .)
bit 23-20 WTCON<3:0>: Connect/Disconnect filter control bits
Sets the wait to be applied to allow for the connect/disconnect filter in units of 533.3 ns . The default setting corresponds to \(2.667 \mu \mathrm{~s}\).
bit 19-6 WTID<3:0>: ID delay valid control bits
Sets the delay to be applied from IDPULLUP being asserted to IDDIG being considered valid in units of 4.369 ms . The default setting corresponds to 52.43 ms .
bit 15-12 DMACHANS<3:0>: DMA Channels bits
These read-only bits provide the number of DMA channels in the USB module. For the PIC32MZ EC family, this number is 8 .
bit 11-8 RAMBITS<3:0>: RAM address bus width bits
These read-only bits provide the width of the RAM address bus. For the PIC32MZ EC family, this number is 12.
bit 7-4 RXENDPTS<3:0>: Included RX Endpoints bits
This read-only register gives the number of RX endpoints in the design. For the PIC32MZ EC family, this number is 7 .
bit 3-0 TXENDPTS<3:0>: Included TX Endpoints bits
These read-only bits provide the number of TX endpoints in the design. For the PIC32MZ EC family, this number is 7 .

REGISTER 11-17: USBEOFRST: USB END-OF-FRAME/SOFT RESET CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & NRSTX & NRST \\
\hline & R/W-0 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R.W-0 & R/W-1 & R/W-0 \\
\hline . 16 & \multicolumn{8}{|c|}{LSEOF<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R.W-1 & R/W-1 & R/W-1 \\
\hline & \multicolumn{8}{|c|}{FSEOF<7:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R.W-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HSEOF<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=B i t\) is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-26 Unimplemented: Read as ' 0 '
bit 25 NRSTX: Reset of XCLK Domain bit
1 = Reset the XCLK domain, which is clock recovered from the received data by the PHY
\(0=\) Normal operation
bit 24 NRST: Reset of CLK Domain bit
1 = Reset the CLK domain, which is clock recovered from the peripheral bus
\(0=\) Normal operation
bit 23-16 LSEOF<7:0>: Low-Speed EOF bits
These bits set the Low-Speed transaction in units of \(1.067 \mu \mathrm{~s}\) (default setting is \(121.6 \mu \mathrm{~s}\)) prior to the EOF to stop new transactions from beginning.
bit 15-8 FSEOF<7:0>: Full-Speed EOF bits
These bits set the Full-Speed transaction in units of \(533.3 \mu \mathrm{~s}\) (default setting is \(63.46 \mu \mathrm{~s}\)) prior to the EOF to stop new transactions from beginning.
bit 7-0 HSEOF<7:0>: Hi-Speed EOF bits
These bits set the Hi-Speed transaction in units of \(133.3 \mu \mathrm{~s}\) (default setting is \(17.07 \mu \mathrm{~s}\)) prior to the EOF to stop new transactions from beginning.

REGISTER 11-18: USBExTXA: USB ENDPOINT ' \(x\) ' TRANSMIT ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{TXHUBPRT<6:0>} \\
\hline \multirow{2}{*}{23:16} & R/W-0 \\
\hline & MULTTRAN & \multicolumn{7}{|c|}{TXHUBADD<6:0>} \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{TXFADDR<6:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) = Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31 Unimplemented: Read as ' 0 '
bit 30-24 TXHUBPRT<6:0>: TX Hub Port bits (Host mode)
When a low- or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.
bit 23 MULTTRAN: TX Hub Multiple Translators bit (Host mode)
1 = The USB 2.0 hub has multiple transaction translators
\(0=\) The USB 2.0 hub has a single transaction translator
bit 22-16 TXHUBADD<6:0>: TX Hub Address bits (Host mode)
When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 TXFADDR<6:0>: TX Functional Address bits (Host mode)
Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each TX endpoint that is used.

REGISTER 11-19: USBExRXA: USB ENDPOINT ' \(x\) ' RECEIVE ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{RXHUBPRT<6:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & MULTTRAN & \multicolumn{7}{|c|}{RXHUBADD<6:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{RXFADDR<6:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Hardware Clearable HS = Hardware Settable \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 Unimplemented: Read as ' 0 '
bit 30-24 RXHUBPRT<6:0>: RX Hub Port bits (Host mode)
When a low- or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.
bit 23 MULTTRAN: RX Hub Multiple Translators bit (Host mode)
1 = The USB 2.0 hub has multiple transaction translators
\(0=\) The USB 2.0 hub has a single transaction translator
bit 22-16 TXHUBADD<6:0>: RX Hub Address bits (Host mode)
When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.
bit 15-7 Unimplemented: Read as ' 0 '
bit 6-0 RXFADDR<6:0>: RX Functional Address bits (Host mode)
Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each RX endpoint that is used.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 11-20: USBDMAINT: USB DMA INTERRUPT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 10 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{R} / \mathrm{W}-0, \mathrm{HS}\) \\
\cline { 2 - 9 } & DMABIF & \(\mathrm{DMA7IF}\) & DMA6IF & DMA5IF & DMA4IF & DMA3IF & DMA2IF & \(\mathrm{DMA1IF}\) \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\end{tabular}
bit 31-8 Unimplemented: Read as ' 0 '
bit 7-0 DMAxIF: DMA Channel ' \(x\) ' Interrupt bit
\(1=\) The DMA channel has an interrupt event
\(0=\) No interrupt event
All bits are cleared on a read of the register.

REGISTER 11-21: USBDMAxC: USB DMA CHANNEL ' \(x\) ' CONTROL REGISTER (' \(x\) ' = 1-8)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{aligned}
& \text { Bit } \\
& 26 / 18 / 10 / 2
\end{aligned}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & \multicolumn{2}{|l|}{DMABRSTM<1:0>} & DMAERR \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{4}{|c|}{DMAEP<3:0>} & DMAIE & DMAMODE & DMADIR & DMAEN \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(0 '=\) Bit is cleared \\
\end{tabular}
bit 31-11 Unimplemented: Read as ' 0 '
bit 10-9 DMABRSTM<1:0>: DMA Burst Mode Selection bit
11 = Burst Mode 3: INCR16, INCR8, INCR4 or unspecified length
\(10=\) Burst Mode 2: INCR8, INCR4 or unspecified length
\(01=\) Burst Mode 1: INCR4 or unspecified length
\(00=\) Burst Mode 0: Bursts of unspecified length
bit 8 DMAERR: Bus Error bit
1 = A bus error has been observed on the input
\(0=\) The software writes this to clear the error
bit 7-4 DMAEP<3:0>: DMA Endpoint Assignment bits
These bits hold the endpoint that the DMA channel is assigned to. Valid values are 0-7.
bit 3 DMAIE: DMA Interrupt Enable bit
1 = Interrupt is enabled for this channel
\(0=\) Interrupt is disabled for this channel
bit 2 DMAMODE: DMA Transfer Mode bit
1 = DMA Mode1 Transfers
0 = DMA Mode0 Transfers
bit 1 DMADIR: DMA Transfer Direction bit
1 = DMA Read (TX endpoint)
\(0=\) DMA Write (RX endpoint)
bit 0 DMAEN: DMA Enable bit
1 = Enable the DMA transfer and start the transfer
\(0=\) Disable the DMA transfer

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 11-22: USBDMAxA: USB DMA CHANNEL ' \(x\) ' MEMORY ADDRESS REGISTER (' \(x\) ' = 1-8)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<31:24>} \\
\hline \multirow[t]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R-0 & R-0 \\
\hline & \multicolumn{8}{|c|}{DMAADDR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 DMAADDR<31:0>: DMA Memory Address bits
This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to ' 0 '. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

REGISTER 11-23: USBDMAxN: USB DMA CHANNEL ' \(x\) ' COUNT REGISTER (' \(X\) ' = 1-8)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DMACOUNT<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DMACOUNT<23:16>} \\
\hline \multirow[t]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DMACOUNT<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{DMACOUNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits
This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 11-24: USBExRPC: USB ENDPOINT ' \(x\) ' REQUEST PACKET COUNT REGISTER (HOST MODE ONLY) (' \(x\) ' = 1-7)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RQPKTCNT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RQPKTCNT<7:0>} \\
\hline
\end{tabular}

Legend:
\(R=\) Readable bit
\(\mathrm{W}=\) Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\(-n=\) Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 RQPKTCNT<15:0>: Request Packet Count bits
Sets the number of packets of size MAXP that are to be transferred in a block transfer. This register is only available in Host mode when AUTOREQ is set.

REGISTER 11-25: USBDPBFD: USB DOUBLE PACKET BUFFER DISABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 & U-0 \\
\hline & EP7TXD & EP6TXD & EP5TXD & EP4TXD & EP3TXD & EP2TXD & EP1TXD & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & U-0 \\
\hline & EP7RXD & EP6RXD & EP5RXD & EP4RXD & EP3RXD & EP2RXD & EP1RXD & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-17 EP7TXD:EP1TXD: TX Endpoint ' \(x\) ' Double Packet Buffer Disable bits
1 = TX double packet buffering is disabled for endpoint ' \(x\) '
\(0=\) TX double packet buffering is enabled for endpoint ' \(x\) '
bit 16 Unimplemented: Read as ' 0 '
bit 15-1 EP7RXD:EP1RXD: RX Endpoint ' \(x\) ' Double Packet Buffer Disable bits
1 = RX double packet buffering is disabled for endpoint ' \(x\) '
\(0=\) RX double packet buffering is enabled for endpoint ' \(x\) '
bit \(0 \quad\) Unimplemented: Read as ' 0 '

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 11-26: USBTMCON1: USB TIMING CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-1 \\
\hline & \multicolumn{8}{|c|}{THHSRTN<15:8>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{THHSRTN<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TUCH<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-1 & R/W-0 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TUCH<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 THHSRTN:<15:0>: Hi-Speed Resume Signaling Delay bits
These bits set the delay from the end of Hi -Speed resume signaling (acting as a Host) to enable the UTM normal operating mode.
bit 15-0 TUCH<15:0>: Chirp Time-out bits
These bits set the chirp time-out. This number, when multiplied by 4 , represents the number of USB module clock cycles before the time-out occurs.

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

REGISTER 11-27: USBTMCON2: USB TIMING CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{THBST \(<3: 0>\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-4 Unimplemented: Read as ' 0 '
bit 3-0 THBST<3:0>: High Speed Time-out Adder bits
These bits represent the value to be added to the minimum high speed time-out period of 736 bit times. The time-out period can be increased in increments of 64 Hi -Speed bit times (133 ns).

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & LPMERRIE & LPMRESIE & LPMACKIE & LPMNYIE & LPMSTIE & LPMTOIE \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0, HC & R/W-0, HC \\
\hline & - & - & - & LPMNAK & \multicolumn{2}{|l|}{LPMEN<1:0>} & LPMRES & LPMXMT \\
\hline \multirow[b]{2}{*}{15:8} & R-0 & R-0 & R-0 & R-0 & U-0 & U-0 & U-0 & R-0 \\
\hline & \multicolumn{4}{|c|}{ENDPOINT<3:0>} & - & - & - & RMTWAK \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{4}{|c|}{HIRD<3:0>} & \multicolumn{4}{|c|}{LNKSTATE<3:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & Hardware Clearable & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-30 Unimplemented: Read as ' 0 '
bit 29 LPMERRIE: LPM Error Interrupt Enable bit
\(1=\) LPMERR interrupt is enabled
0 = LPMERR interrupt is disabled
bit 28 LPMRESIE: LPM Resume Interrupt Enable bit
1 = LPMRES interrupt is enabled
0 = LPMRES interrupt is disabled
bit 27 LPMACKIE: LPM Acknowledge Interrupt Enable bit
1 = Enable the LPMACK Interrupt
\(0=\) Disable the LPMACK Interrupt
bit 26 LPMNYIE: LPM NYET Interrupt Enable bit
1 = Enable the LPMNYET Interrupt
\(0=\) Disable the LPMNYET Interrupt
bit 25 LPMSTIE: LPM STALL Interrupt Enable bit
1 = Enable the LPMST Interrupt
\(0=\) Disable the LPMST Interrupt
bit 24 LPMTOIE: LPM Time-out Interrupt Enable bit
1 = Enable the LPMTO Interrupt
\(0=\) Disable the LPMTO Interrupt
bit 23-21 Unimplemented: Read as ' 0 '
bit 20 LPMNAK: LPM-only Transaction Setting bit
1 = All endpoints will respond to all transactions other than a LPM transaction with a NAK
\(0=\) Normal transaction operation
Setting this bit to ' 1 ' will only take effect after the USB module as been LPM suspended.
bit 19-18 LPMEN<1:0>: LPM Enable bits (Device mode)
11 = LPM Extended transactions are supported
\(10=\) LPM and Extended transactions are not supported
\(01=\) LPM mode is not supported but Extended transactions are supported
\(00=\) LPM Extended transactions are supported
bit 17 LPMRES: LPM Resume bit
1 = Initiate resume (remote wake-up). Resume signaling is asserted for \(50 \mu \mathrm{~s}\).
\(0=\) No resume operation
This bit is self-clearing.

\section*{REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1 (CONTINUED)}
bit 16 LPMXMT: LPM Transition to the L1 State bit
When in Device mode:
1 = USB module will transition to the L1 state upon the receipt of the next LPM transaction. LPMEN must be set to '0b11. Both LPMXMT and LPMEN must be set in the same cycle.
\(0=\) Maintain current state
When LPMXMT and LPMEN are set, the USB module can respond in the following ways:
- If no data is pending (all TX FIFOs are empty), the USB module will respond with an ACK. The bit will self clear and a software interrupt will be generated.
- If data is pending (data resides in at least one TX FIFO), the USB module will respond with a NYET. In this case, the bit will not self clear however a software interrupt will be generated.

When in Host mode:
1 = USB module will transmit an LPM transaction. This bit is self clearing, and will be immediately cleared upon receipt of any Token or three time-outs have occurred.
\(0=\) Maintain current state
bit 15-12 ENDPOINT<3:0>: LPM Token Packet Endpoint bits
This is the endpoint in the token packet of the LPM transaction.
bit 11-9 Unimplemented: Read as ' 0 '
bit 8 RMTWAK: Remote Wake-up Enable bit
This bit is applied on a temporary basis only and is only applied to the current suspend state.
1 = Remote wake-up is enabled
\(0=\) Remote wake-up is disabled
bit 7-4 HIRD<3:0>: Host Initiated Resume Duration bits
The minimum time the host will drive resume on the bus. The value in this register corresponds to an actual resume time of:

Resume Time \(=50 \mu \mathrm{~s}+\) HIRD \(^{*} 75 \mu \mathrm{~s}\). The resulting range is \(50 \mu \mathrm{~s}\) to \(1200 \mu \mathrm{~s}\).
bit 3-0 LNKSTATE<3:0>: Link State bits
This value is provided by the host to the peripheral to indicate what state the peripheral must transition to after the receipt and acceptance of a LPM transaction. The only valid value for this register is ' 1 ' for Sleep State (L1). All other values are reserved.

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{LPMFADDR<6:0>} \\
\hline \multirow{2}{*}{7:0} & U-0 & U-0 & R-0 & R-0, HS & \(\mathrm{R}-\mathrm{O}\), HS & \(\mathrm{R}-\mathrm{O}, \mathrm{HS}\) & R-0, HS & R-0, HS \\
\hline & - & - & LPMERRIF & LPMRESIF & LPMNCIF & LPMACKIF & LPMNYIF & LPMSTIF \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Hardware Settable & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 31-15 Unimplemented: Read as '0'
bit 14-8 LPMFADDR<6:0>: LPM Payload Function Address bits
These bits contain the address of the LPM payload function.
bit 7-6 Unimplemented: Read as '0'
bit 5 LPMERRIF: LPM Error Interrupt Flag bit (Device mode)
1 = An LPM transaction was received that had a LINKSTATE field that is not supported. The response will
be a STALL.
0 = No error condition
bit 4 LPMRESIF: LPM Resume Interrupt Flag bit
1 = The USB module has resumed (for any reason)
0 = No Resume condition
bit 3 LPMNCIF: LPM NC Interrupt Flag bit
When in Device mode:
1 = The USB module received a LPM transaction and responded with a NYET due to data pending in the
RX FIFOs.
0= No NC interrupt condition

```
 When in Host mode:
 1 = A LPM transaction is transmitted and the device responded with an ACK
 \(0=\) No NC interrupt condition
bit 2 LPMACKIF: LPM ACK Interrupt Flag bit When in Device mode:
1 = A LPM transaction was received and the USB Module responded with an ACK
\(0=\) No ACK interrupt condition
When in Host mode:
1 = The LPM transaction is transmitted and the device responds with an ACK
\(0=\) No ACK interrupt condition
bit 1 LPMNYIF: LPM NYET Interrupt Flag bit
When in Device mode:
1 = A LPM transaction is received and the USB Module responded with a NYET
\(0=\) No NYET interrupt flag
When in Host mode:
1 = A LPM transaction is transmitted and the device responded with an NYET
\(0=\) No NYET interrupt flag

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2
bit 0 LPMSTIF: LPM STALL Interrupt Flag bit When in Device mode:
1 = A LPM transaction was received and the USB Module responded with a STALL
\(0=\) No Stall condition
When in Host mode:
1 = A LPM transaction was transmitted and the device responded with a STALL
\(0=\) No Stall condition

\subsection*{12.0 I/O PORTS}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32MZ EC family device to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with
alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.
Some of the key features of the I/O ports are:
- Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers
Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE

\footnotetext{
Legend: \(\quad R=\) Peripheral input buffer types may vary. Refer to Table 1-1 for peripheral details.
Note: \(\quad\) This block diagram is a general representation of a shared port/peripheral structure for illustration purposes only. The actual structure for any specific port/peripheral combination may be different than it is shown here.
}

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

\subsection*{12.1 Parallel I/O (PIO) Ports}

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a ' 1 ', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

\subsection*{12.1.1 OPEN-DRAIN CONFIGURATION}

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.
The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.
Refer to the pin name tables (Table 3 through Table 6) for the available pins and their functionality.

\subsection*{12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS}

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VoL) is converted by an analog peripheral, such as the ADC module or Comparator module.
When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).
Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

\subsection*{12.1.3 I/O PORT WRITE/READ TIMING}

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

\subsection*{12.1.4 INPUT CHANGE NOTIFICATION}

The input change notification function of the I/O ports allows the PIC32MZ EC devices to generate interrupt requests to the processor in response to a change-ofstate on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.
Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.
The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

\section*{Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.}

An additional control register (CNCONx) is shown in Register 12-3.

\subsection*{12.2 CLR, SET, and INV Registers}

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as ' 1 ' are modified. Bits specified as ' 0 ' are not modified.
Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

\subsection*{12.3 Peripheral Pin Select (PPS)}

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.
The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

\subsection*{12.3.1 AVAILABLE PINS}

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and " \(n\) " is the remappable port number.

\subsection*{12.3.2 AVAILABLE PERIPHERALS}

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART, SPI, and CAN), general purpose timer clock inputs, timer-related peripherals (input capture and output compare), interrupt-on-change inputs, and reference clocks (input and output).
In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include \(I^{2} \mathrm{C}\) among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).
A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

\subsection*{12.3.3 CONTROLLING PPS}

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

\subsection*{12.3.4 INPUT MAPPING}

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [pin name]R registers, where [pin name] refers to the peripheral pins listed in Table 12-1, are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 12-1.
For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 12-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

Note: For input only, PPS functionality does not have priority over TRISx settings. Therefore, when configuring RPn pin for input, the corresponding bit in the TRISx register must also be configured for input (set to ' 1 ').

TABLE 12-1: INPUT PIN SELECTION
\begin{tabular}{|c|c|c|c|}
\hline Peripheral Pin & [pin name]R SFR & [pin name]R bits & [pin name]R Value to RPn Pin Selection \\
\hline INT3 & INT3R & INT3R<3:0> & \multirow[t]{39}{*}{} \\
\hline T2CK & T2CKR & T2CKR<3:0> & \\
\hline T6CK & T6CKR & T6CKR<3:0> & \\
\hline IC3 & IC3R & IC3R<3:0> & \\
\hline IC7 & IC7R & IC7R<3:0> & \\
\hline U1RX & U1RXR & U1RXR<3:0> & \\
\hline \(\overline{\text { U2CTS }}\) & U2CTSR & U2CTSR<3:0> & \\
\hline U5RX & U5RXR & U5RXR<3:0> & \\
\hline \(\overline{\text { U6CTS }}\) & U6CTSR & U6CTSR<3:0> & \\
\hline SDI1 & SDI1R & SDI1R<3:0> & \\
\hline SDI3 & SDI3R & SDI3R<3:0> & \\
\hline SDI5 \({ }^{(1)}\) & SDI5R \({ }^{(1)}\) & SDI5R<3:0> \({ }^{(1)}\) & \\
\hline SS6 \({ }^{(1)}\) & SS6R \({ }^{(1)}\) & SS6R<3:0> \({ }^{(1)}\) & \\
\hline REFCLKI1 & REFCLKI1R & REFCLKI1R<3:0> & \\
\hline INT4 & INT4R & INT4R<3:0> & \\
\hline T5CK & T5CKR & T5CKR<3:0> & \\
\hline T7CK & T7CKR & T7CKR<3:0> & \\
\hline IC4 & IC4R & IC4R<3:0> & \\
\hline IC8 & IC8R & IC8R<3:0> & \\
\hline U3RX & U3RXR & U3RXR<3:0> & \\
\hline \(\overline{\text { U4CTS }}\) & U4CTSR & U4CTSR<3:0> & \\
\hline SDI2 & SDI2R & SDI2R<3:0> & \\
\hline SDI4 & SDI4R & SDI4R<3:0> & \\
\hline C1RX \({ }^{(3)}\) & C1RXR \({ }^{(3)}\) & C1RXR<3:0> \({ }^{(3)}\) & \\
\hline REFCLKI4 & REFCLKI4R & REFCLKI4R<3:0> & \\
\hline INT2 & INT2R & INT2R<3:0> & \\
\hline T3CK & T3CKR & T3CKR<3:0> & \\
\hline T8CK & T8CKR & T8CKR<3:0> & \\
\hline IC2 & IC2R & IC2R<3:0> & \\
\hline IC5 & IC5R & IC5R<3:0> & \\
\hline IC9 & IC9R & IC9R<3:0> & \\
\hline U1CTS & U1CTSR & U1CTSR<3:0> & \\
\hline U2RX & U2RXR & U2RXR<3:0> & \\
\hline U5CTS & U5CTSR & U5CTSR<3:0> & \\
\hline \(\overline{\text { SS1 }}\) & SS1R & SS1R<3:0> & \\
\hline \(\overline{\text { SS3 }}\) & SS3R & SS3R<3:0> & \\
\hline \(\overline{\text { SS4 }}\) & SS4R & SS4R<3:0> & \\
\hline \(\overline{\mathrm{SS5}}{ }^{(1)}\) & SS5R \({ }^{(1)}\) & SS5R<3:0>(1) & \\
\hline C2RX \({ }^{(3)}\) & \(\mathrm{C} 2 \mathrm{RXR}{ }^{(3)}\) & C2RXR<3:0> \({ }^{(3)}\) & \\
\hline
\end{tabular}

Note 1: This selection is not available on 64-pin devices.
2: This selection is not available on 64 -pin or 100-pin devices.
3: This selection is not available on devices without a CAN module.

TABLE 12-1: INPUT PIN SELECTION (CONTINUED)
\begin{tabular}{|c|c|c|c|}
\hline Peripheral Pin & [pin name]R SFR & [pin name]R bits & [pin name]R Value to RPn Pin Selection \\
\hline INT1 & INT1R & INT1R<3:0> & \multirow[t]{12}{*}{\[
\begin{aligned}
& 0000=\text { RPD1 } \\
& 0001=\text { RPG9 } \\
& 0010=\text { RPB14 } \\
& 0011=\text { RPD0 } \\
& 0100=\text { Reserved } \\
& 0101=\text { RPB6 } \\
& 0110=\text { RPD5 } \\
& 0111=\text { RPB2 } \\
& 1000=R P F 3 \\
& 1001=\operatorname{RPF}^{(1)} \\
& 1010=\operatorname{No} \operatorname{Connect~}^{(1)} \\
& 1011=\operatorname{RPF2}^{(1)} \\
& 1100=\operatorname{RPC2}^{(1)} \\
& 1101=\operatorname{RPE8}^{(1)} \\
& 1110=\operatorname{Reserved}^{2} \\
& 1111=\operatorname{Reserved}^{2}
\end{aligned}
\]} \\
\hline T4CK & T4CKR & T4CKR<3:0> & \\
\hline T9CK & T9CKR & T9CKR<3:0> & \\
\hline IC1 & IC1R & IC1R<3:0> & \\
\hline IC6 & IC6R & IC6R<3:0> & \\
\hline U3CTS & U3CTSR & U3CTSR<3:0> & \\
\hline U4RX & U4RXR & U4RXR<3:0> & \\
\hline U6RX & U6RXR & U6RXR<3:0> & \\
\hline \(\overline{\text { SS2 }}\) & SS2R & SS2R<3:0> & \\
\hline SDI6 \({ }^{(1)}\) & SDI6R \({ }^{(1)}\) & SDI6R<3:0> \({ }^{(1)}\) & \\
\hline OCFA & OCFAR & OCFAR<3:0> & \\
\hline REFCLKI3 & REFCLKI3R & REFCLKI3R<3:0> & \\
\hline
\end{tabular}

Note 1: This selection is not available on 64-pin devices.
2: This selection is not available on \(64-\) pin or 100 -pin devices.
3: This selection is not available on devices without a CAN module.

\subsection*{12.3.5 OUTPUT MAPPING}

In contrast to inputs, the outputs of the PPS options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [pin name]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).
A null output is associated with the output register reset value of ' 0 '. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPFO

\subsection*{12.3.6 CONTROLLING CONFIGURATION CHANGES}

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32MZ EC devices include two features to prevent alterations to the peripheral map:
- Control register lock sequence
- Configuration bit select lock

\subsection*{12.3.6.1 Control Register Lock}

Under normal operation, writes to the RPnR and [pin name \(]\) R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.
To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

\subsection*{12.3.6.2 Configuration Bit Select Lock}

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [pin name]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and reenable peripheral remapping is to perform a device Reset.
In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 12-2: OUTPUT PIN SELECTION
\begin{tabular}{|c|c|c|c|}
\hline RPn Port Pin & RPnR SFR & RPnR bits & RPnR Value to Peripheral Selection \\
\hline RPD2 & RPD2R & RPD2R<3:0> & \multirow[t]{41}{*}{\(0000=\) No Connect
\(0001=\) U3TX
\(0010=\) U4RTS
\(0011=\) Reserved
\(0100=\) Reserved
\(0101=\) SDO1
\(0110=\) SDO2
\(0111=\) SDO3
\(1000=\) Reserved
\(1001=\) SDO5
\(1 \times 1\)} \\
\hline RPG8 & RPG8R & RPG8R<3:0> & \\
\hline RPF4 & RPF4R & RPF4R<3:0> & \\
\hline RPD10 & RPD10R & RPD10R<3:0> & \\
\hline RPF1 & RPF1R & RPF1R<3:0> & \\
\hline RPB9 & RPB9R & RPB9R<3:0> & \\
\hline RPB10 & RPB10R & RPB10R<3:0> & \\
\hline RPC14 & RPC14R & RPC14R<3:0> & \\
\hline RPB5 & RPB5R & RPB5R<3:0> & \\
\hline RPC1 \({ }^{(1)}\) & RPC1R \({ }^{(1)}\) & RPC1R<3:0> \({ }^{(1)}\) & \\
\hline RPD14 \({ }^{(1)}\) & RPD14R \({ }^{(1)}\) & RPD14R<3:0> \({ }^{(1)}\) & \\
\hline RPG1 \({ }^{(1)}\) & RPG1R \({ }^{(1)}\) & RPG1R<3:0> \({ }^{(1)}\) & \\
\hline RPA14 \({ }^{(1)}\) & RPA14R \({ }^{(1)}\) & RPA14R<3:0> \({ }^{(1)}\) & \\
\hline RPD6 \({ }^{(2)}\) & RPD6R \({ }^{(2)}\) & RPD6R<3:0> \({ }^{(2)}\) & \\
\hline RPD3 & RPD3R & RPD3R<3:0> & \\
\hline RPG7 & RPG7R & RPG7R<3:0> & \\
\hline RPF5 & RPF5R & RPF5R<3:0> & \\
\hline RPD11 & RPD11R & RPD11R<3:0> & \\
\hline RPF0 & RPF0R & RPF0R<3:0> & \\
\hline RPB1 & RPB1R & RPB1R<3:0> & \\
\hline RPE5 & RPE5R & RPE5R<3:0> & \\
\hline RPC13 & RPC13R & RPC13R<3:0> & \\
\hline RPB3 & RPB3R & RPB3R<3:0> & \\
\hline RPC4 \({ }^{(1)}\) & RPC4R \({ }^{(1)}\) & RPC4R<3:0> \({ }^{(1)}\) & \\
\hline RPD15 \({ }^{(1)}\) & RPD15R \({ }^{(1)}\) & RPD15R<3:0> \({ }^{(1)}\) & \\
\hline RPG0 \({ }^{(1)}\) & RPG0R \({ }^{(1)}\) & RPG0R<3:0> \({ }^{(1)}\) & \\
\hline RPA15 \({ }^{(1)}\) & RPA15R \({ }^{(1)}\) & RPA15R<3:0> \({ }^{(1)}\) & \\
\hline RPD7 \({ }^{(2)}\) & RPD7R \({ }^{(2)}\) & RPD7R<3:0> \({ }^{(2)}\) & \\
\hline RPD9 & RPD9R & RPD9R<3:0> & \\
\hline RPG6 & RPG6R & RPG6R<3:0> & \\
\hline RPB8 & RPB8R & RPB8R<3:0> & \\
\hline RPB15 & RPB15R & RPB15R<3:0> & \\
\hline RPD4 & RPD4R & RPD4R<3:0> & \\
\hline RPB0 & RPB0R & RPB0R<3:0> & \\
\hline RPE3 & RPE3R & RPE3R<3:0> & \\
\hline RPB7 & RPB7R & RPB7R<3:0> & \\
\hline RPF12 \({ }^{(1)}\) & RPF12R \({ }^{(1)}\) & RPF12R<3:0> \({ }^{(1)}\) & \\
\hline RPD12 \({ }^{(1)}\) & RPD12R \({ }^{(1)}\) & RPD12R<3:0> \({ }^{(1)}\) & \\
\hline RPF8 \({ }^{(1)}\) & RPF8R \({ }^{(1)}\) & RPF8R<3:0> \({ }^{(1)}\) & \\
\hline RPC3 \({ }^{(1)}\) & RPC3R \({ }^{(1)}\) & \(R \mathrm{RC} 3 \mathrm{R}<3: 0>{ }^{(1)}\) & \\
\hline RPE9 \({ }^{(1)}\) & RPE9R \({ }^{(1)}\) & RPE9R<3:0>(1) & \\
\hline
\end{tabular}

Note 1: This selection is not available on 64-pin devices.
2: This selection is not available on 64 -pin or 100 -pin devices.
3: This selection is not available on devices without a CAN module.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)
\begin{tabular}{|c|c|c|c|}
\hline RPn Port Pin & RPnR SFR & RPnR bits & RPnR Value to Peripheral Selection \\
\hline RPD1 & RPD1R & RPD1R<3:0> & \multirow[t]{12}{*}{} \\
\hline RPG9 & RPG9R & RPG9R<3:0> & \\
\hline RPB14 & RPB14R & RPB14R<3:0> & \\
\hline RPD0 & RPD0R & RPD0R<3:0> & \\
\hline RPB6 & RPB6R & RPB6R<3:0> & \\
\hline RPD5 & RPD5R & RPD5R<3:0> & \\
\hline RPB2 & RPB2R & RPB2R<3:0> & \\
\hline RPF3 & RPF3R & RPF3R<3:0> & \\
\hline RPF13 \({ }^{(1)}\) & RPF13R \({ }^{(1)}\) & RPF13R<3:0> \({ }^{(1)}\) & \\
\hline RPC2 \({ }^{(1)}\) & RPC2R \({ }^{(1)}\) & RPC2R<3:0> \({ }^{(1)}\) & \\
\hline RPE8 \({ }^{(1)}\) & RPE8R \({ }^{(1)}\) & RPE8R<3:0> \({ }^{(1)}\) & \\
\hline RPF2 \({ }^{(1)}\) & RPF2R \({ }^{(1)}\) & RPF2R<3:0> \({ }^{(1)}\) & \\
\hline
\end{tabular}

Note 1: This selection is not available on 64-pin devices.
2: This selection is not available on 64-pin or 100-pin devices.
3: This selection is not available on devices without a CAN module.
12.4 I/O Ports Control Registers
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{3}{*}{} \\
\hline & & & \multirow[t]{2}{*}{31/15} & \multirow[t]{2}{*}{30/14} & \multirow[t]{2}{*}{29/13} & \multirow[t]{2}{*}{28/12} & \multirow[t]{2}{*}{27/11} & \multirow[t]{2}{*}{26/10} & \multirow[t]{2}{*}{25/9} & \multirow[t]{2}{*}{24/8} & \multirow[t]{2}{*}{23/7} & \multirow[t]{2}{*}{22/6} & \multirow[t]{2}{*}{21/5} & \multirow[t]{2}{*}{20/4} & \multirow[t]{2}{*}{19/3} & \multirow[t]{2}{*}{18/2} & \multirow[t]{2}{*}{\(17 / 1\)} & \multirow[t]{2}{*}{16/0} & \\
\hline & & & & & & & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{0000} & \multirow[t]{3}{*}{ANSELA} & 31:16 & & & & & & - & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & \\
\hline & & 15:0 & - & - & - & - & - & ANSA10 & ANSA9 & - & - & - & ANSA5 & - & - & - & ANSA1 & ANSAO & 0623 \\
\hline \multirow[t]{2}{*}{0010} & \multirow[t]{2}{*}{TRISA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & TRISA15 & TRISA14 & - & - & - & TRISA10 & TRISA9 & - & TRISA7 & TRISA6 & TRISA5 & TRISA4 & TRISA3 & TRISA2 & TRISA1 & TRISA0 & C6FF \\
\hline \multirow[t]{2}{*}{0020} & \multirow[t]{2}{*}{PORTA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & RA15 & RA14 & - & - & - & RA10 & RA9 & - & RA7 & RA6 & RA5 & RA4 & RA3 & RA2 & RA1 & RA0 & xxxx \\
\hline \multirow[t]{2}{*}{0030} & \multirow[t]{2}{*}{LATA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & LATA15 & LATA14 & - & - & - & LATA10 & LATA9 & - & LATA7 & LATA6 & LATA5 & LATA4 & LATA3 & LATA2 & LATA1 & LATAO & xxxx \\
\hline \multirow[t]{2}{*}{0040} & \multirow[t]{2}{*}{ODCA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ODCA15 & ODCA14 & - & - & - & ODCA10 & ODCA9 & - & ODCA7 & ODCA6 & - & ODCA4 & ODCA3 & ODCA2 & ODCA1 & ODCAO & 0000 \\
\hline \multirow[t]{2}{*}{0050} & \multirow[t]{2}{*}{CNPUA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPUA15 & CNPUA14 & - & - & - & CNPUA10 & CNPUA9 & - & CNPUA7 & CNPUA6 & CNPUA5 & CNPUA4 & CNPUA3 & CNPUA2 & CNPUA1 & CNPUAO & 0000 \\
\hline \multirow[t]{2}{*}{0060} & \multirow[t]{2}{*}{CNPDA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPDA15 & CNPDA14 & - & - & - & CNPDA10 & CNPDA9 & - & CNPDA7 & CNPDA6 & CNPDA5 & CNPDA4 & CNPDA3 & CNPDA2 & CNPDA1 & CNPDAO & 0000 \\
\hline \multirow[t]{2}{*}{0070} & \multirow[t]{2}{*}{CNCONA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0080} & \multirow[t]{2}{*}{CNENA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNIEA15 & CNIEA14 & - & - & - & CNIEA10 & CNIEA9 & - & CNIEA7 & CNIEA6 & CNIEA5 & CNIEA4 & CNIEA3 & CNIEA2 & CNIEA1 & CNIEAO & 0000 \\
\hline \multirow[t]{2}{*}{0090} & \multirow[t]{2}{*}{CNSTATA} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \[
\begin{gathered}
\text { CN } \\
\text { STATA15 }
\end{gathered}
\] & CN STATA14 & - & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATA10 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATA9 }
\end{gathered}
\] & - & \[
\begin{gathered}
\text { CN } \\
\text { STATA7 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATA6 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATA5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATA4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATA3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATA2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATA1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATAO }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}
Legend: \(\quad x=\) Unknown value on Reset; \(-=\) Unimplemented, read as ' 0 '; Reset values are shown in hexadecimal.

PORTB REGISTER MAP
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0100} & \multirow[t]{2}{*}{ANSELB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ANSB15 & ANSB14 & ANSB13 & ANSB12 & ANSB11 & ANSB10 & ANSB9 & ANSB8 & ANSB7 & ANSB6 & ANSB5 & ANSB41 & ANSB3 & ANSB2 & ANSB1 & ANSB0 & FFFF \\
\hline \multirow[t]{2}{*}{0110} & \multirow[t]{2}{*}{TRISB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & TRISB15 & TRISB14 & TRISB13 & TRISB12 & TRISB11 & TRISB10 & TRISB9 & TRISB8 & TRISB7 & TRISB6 & TRISB5 & TRISB4 & TRISB3 & TRISB2 & TRISB1 & TRISB0 & FFFF \\
\hline \multirow[t]{2}{*}{0120} & \multirow[t]{2}{*}{PORTB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & RB15 & RB14 & RB13 & RB12 & RB11 & RB10 & RB9 & RB8 & RB7 & RB6 & RB5 & RB4 & RB3 & RB2 & RB1 & RB0 & xxxx \\
\hline \multirow[t]{2}{*}{0130} & \multirow[t]{2}{*}{LATB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & LATB15 & LATB14 & LATB13 & LATB12 & LATB11 & LATB10 & LATB9 & LATB8 & LATB7 & LATB6 & LATB5 & LATB4 & LATB3 & LATB2 & LATB1 & LATB0 & xxxx \\
\hline \multirow[t]{2}{*}{0140} & \multirow[t]{2}{*}{ODCB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ODCB15 & ODCB14 & ODCB13 & ODCB12 & ODCB11 & ODCB10 & ODCB9 & ODCB8 & ODCB7 & ODCB6 & ODCB5 & ODCB4 & ODCB3 & ODCB2 & ODCB1 & ODCB0 & 0000 \\
\hline \multirow[t]{2}{*}{0150} & \multirow[t]{2}{*}{CNPUB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPUB15 & CNPUB14 & CNPUB13 & CNPUB12 & CNPUB11 & CNPUB10 & CNPUB9 & CNPUB8 & CNPUB7 & CNPUB6 & CNPUB5 & CNPUB4 & CNPUB3 & CNPUB2 & CNPUB1 & CNPUB0 & 0000 \\
\hline \multirow[t]{2}{*}{0160} & \multirow[t]{2}{*}{CNPDB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPDB15 & CNPDB14 & CNPDB13 & CNPDB12 & CNPDB11 & CNPDB10 & CNPDB9 & CNPDB8 & CNPDB7 & CNPDB6 & CNPDB5 & CNPDB4 & CNPDB3 & CNPDB2 & CNPDB1 & CNPDB0 & 0000 \\
\hline \multirow[t]{2}{*}{0170} & \multirow[t]{2}{*}{CNCONB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0180} & \multirow[t]{2}{*}{CNENB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNIEB15 & CNIEB14 & CNIEB13 & CNIEB12 & CNIEB11 & CNIEB10 & CNIEB9 & CNIEB8 & CNIEB7 & CNIEB6 & CNIEB5 & CNIEB4 & CNIEB3 & CNIEB2 & CNIEB1 & CNIEB0 & 0000 \\
\hline \multirow[t]{2}{*}{0190} & \multirow[t]{2}{*}{CNSTATB} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \begin{tabular}{l}
CN \\
STATB15
\end{tabular} & CN STATB14 & CN STATB13 & CN STATB12 & CN STATB11 & CN STATB10 & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATB9 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATB8 }
\end{gathered}
\] & CN STATB7 & \[
\begin{gathered}
\text { CN } \\
\text { STATB6 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATB5 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATB4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATB3 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATB2 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATB1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{CN} \\
\text { STATB0 }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}
Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of \(0 \times 4,0 \times 8\) and \(0 \times \mathrm{C}\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for
PORTC REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

PORTC REGISTER MAP FOR 64-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0210} & \multirow[t]{2}{*}{TRISC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & TRISC15 & TRISC14 & TRISC13 & TRISC12 & - & - & - & - & - & - & - & - & - & - & - & - & F000 \\
\hline \multirow[t]{2}{*}{0220} & \multirow[t]{2}{*}{PORTC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & RC15 & RC14 & RC13 & RC12 & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{0230} & \multirow[t]{2}{*}{LATC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & LATC15 & LATC14 & LATC13 & LATC12 & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{0240} & \multirow[t]{2}{*}{ODCC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ODCC15 & ODCC14 & ODCC13 & ODCC12 & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{0250} & \multirow[t]{2}{*}{CNPUC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPUC15 & CNPUC14 & CNPUC13 & CNPUC12 & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0260} & \multirow[t]{2}{*}{CNPDC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPDC15 & CNPDC14 & CNPDC13 & CNPDC12 & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0270} & \multirow[t]{2}{*}{CNCONC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0280} & \multirow[t]{2}{*}{CNENC} & 31:16 & - & - & & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNIEC15 & CNIEC14 & CNIEC13 & CNIEC12 & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0290} & \multirow[t]{2}{*}{CNSTATC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNSTATC15 & CNSTATC14 & CNSTATC13 & CNSTATC12 & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Legend: } & x=\text { Unknown value on Reset; }-==\text { Unimplemented, read as ' } 0 \text { '; Reset values are shown in hexadecimal. } \\ \text { Note } & \text { 1: }\end{array}\)
Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of \(0 \times 4,0 \times 8\) and \(0 \times C\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for
PORTD REGISTER MAP FOR 124－PIN AND 144－PIN DEVICES ONLY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\[
\underset{\text { stosey }}{\substack{\text { IIV }}}
\]} & \[
\left|\left\lvert\, \begin{array}{l|l|}
\hline 0 \\
\vdots \\
\hline
\end{array}\right.\right.
\] & \[
\begin{array}{|l|}
\hline 0 \\
0 \\
0 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|l|l|l|l|}
\hline 0 \\
\hline 0 & 1
\end{array}
\] & & & & & & & \[
\begin{array}{l|l|l}
\hline \\
b & \circ \\
\hline & \circ \\
\hline
\end{array}
\] & \[
\begin{array}{l|l|l}
0 \\
0 & \circ \\
0 & \circ \\
\hline & \circ \\
\hline
\end{array}
\] & \[
\begin{array}{l|l|}
\hline 0 \\
b \\
\vdots \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \stackrel{8}{8} \\
& \hline
\end{aligned}
\] \\
\hline \multirow{16}{*}{\[
\frac{\mathscr{y y}}{\dot{\omega}}
\]} & 응 & I & 1 & & & | & \[
1
\] & & \[
1
\] & \[
1 \begin{aligned}
& 0 \\
& \hline 0.0 \\
& 0 \\
& \hline 0
\end{aligned}
\] & 1 I & \[
1 \stackrel{\text { O}}{\underset{\sim}{u}}
\] & 1 & －＜ \\
\hline & N & I & 1 & & & \(1 \bar{\sim}_{\text {人x }}\) & \[
1 \left\lvert\, \begin{aligned}
& \overline{4} \\
& \hline
\end{aligned}\right.
\] & & & & 1 I & \[
1 \frac{\bar{a}}{\underset{\sim}{u}}
\] & 1 & \ll \\
\hline & \(\stackrel{\text { N }}{\text { ¢ }}\) & I & I & & & 1 N & \[
1
\] & N & & \[
1
\] & 1 I & & 1 & ころ \\
\hline & \(\stackrel{\text { ® }}{\text { ¢ }}\) & 1 & 1 & & & 1 ¢ & & & \[
1
\] & & 1 & \[
1 \frac{\stackrel{\sim}{e}}{\stackrel{\sim}{\sim}}
\] & 1 & zo \\
\hline & \(\stackrel{\#}{\text { N }}\) & 1 & 1 & & & 1 部 & \[
1 \left\lvert\, \begin{aligned}
& 4 \\
& \vdots \\
& \hline
\end{aligned}\right.
\] & & \[
1
\] & & 1 & & 1 & \\
\hline & \[
\stackrel{n}{\lambda}
\] & 1 & 1 & & & \(1 \stackrel{\text { ¢ }}{\substack{\text { ® }}}\) & & & & 1 & 111 & \[
1 \left\lvert\, \frac{\stackrel{n}{\mathrm{O}} \underset{\mathrm{u}}{\mathrm{u}}}{}\right.
\] & 1 & 2 \\
\hline & ํ． & 1 & 1 & & & \(1 \stackrel{\circ}{\text { O }}\) & & & 1 & 1 & 1 & \[
1 \left\lvert\, \begin{aligned}
& 0 \\
& \underset{\sim}{u} \\
& \hline
\end{aligned}\right.
\] & 1 & \\
\hline & \(\stackrel{\sim}{\text { N }}\) & 1 & 1 & & & 1 No & \[
1 \frac{\widehat{e}}{\frac{1}{4}}
\] & 该 & \[
1 \left\lvert\, \begin{aligned}
& \hat{0} \\
& \\
& \\
& \hline
\end{aligned}\right.
\] & 1 & 1 & \[
1 \frac{\hat{e}}{\underset{\sim}{u}}
\] & 1 & \\
\hline & \(\stackrel{\infty}{\sim}\) & 1 & 1 & 1 I & & I & 1 I & ｜I I & ｜ & 1 ｜ & 1 I & 1 I & I & 1 \\
\hline & \％ & 1 & 1 & & & 1 ） & & & & & 1 & \[
1 \left\lvert\, \frac{\underset{O}{0}}{\underset{\sim}{u}}\right.
\] & 1 & ＜ 3 \\
\hline & 웅 & 1 & 1 & & & \[
1 \left\lvert\, \frac{0}{\hat{\alpha}}\right.
\] & & & & & 1 & \[
1 \left\lvert\, \frac{\stackrel{0}{\dot{u}}}{\stackrel{u}{\mathrm{u}}}\right.
\] & 1 & － \\
\hline & \[
\underset{\underset{N}{\Sigma}}{\underset{N}{2}}
\] & 1 & 1 & & & \(1 \stackrel{\bar{y}}{\text { ¢ }}\) & & & \[
1
\] & & 1 & \(1 \mid\) & 1 & 乙 \\
\hline & \[
\underset{\underset{\sim}{\underset{\sim}{N}}}{\stackrel{N}{2}}
\] & 1 & 1 & & & \(1 \stackrel{N}{\text { N }}\) & & & & & 1 & \[
1 \underset{\sim}{\underset{\sim}{\underset{\sim}{u}}}
\] & 1 & ＜ \\
\hline & \[
\stackrel{\text { N }}{\stackrel{\sim}{N}}
\] & 1 & 1 & & & \(1{ }_{\text {c }}^{\text {c }}\) & & & & & \[
1 \frac{\bar{\partial}}{\bar{\omega}}
\] & & 1 & \\
\hline & \[
\underset{\sim}{\stackrel{\rightharpoonup}{E}}
\] & 1 & \[
\begin{array}{|c}
m \\
\vdots \\
0 \\
\vdots \\
\vdots \\
\hline
\end{array}
\] & & & \(1 \stackrel{\text { ¢ }}{\substack{\text { c }}}\) & & & & & 1 & & 1 & 亿 \\
\hline & \[
\stackrel{n}{\Gamma}
\] & & \[
\begin{aligned}
& \square \\
& \vdots \\
& 0 \\
& 0 \\
& 2 \\
& \hline
\end{aligned}
\] & & & & & & & & 1 z & & 1 & －\(\sim_{0}^{\text {¢ }}\) \\
\hline \multicolumn{2}{|r|}{әбиеу} & \[
\left\lvert\, \frac{0}{2}\right.
\] & : & \[
\begin{array}{|c|c}
\hline \stackrel{0}{\dot{m}} \\
\stackrel{\rightharpoonup}{c} \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \stackrel{\circ}{\stackrel{\rightharpoonup}{m}} \stackrel{\rightharpoonup}{\dot{m}}
\end{aligned}
\] & & \[
\stackrel{\stackrel{\rightharpoonup}{\dot{\rho}}}{\stackrel{\circ}{\circ}} \stackrel{\stackrel{\circ}{\dot{m}}}{\stackrel{\rightharpoonup}{m}}
\] & \[
\dot{C l}
\] & \[
\dot{C l}
\] & \[
\dot{B l}
\] & & \[
\dot{p}
\] & \(\stackrel{\circ}{\stackrel{\circ}{-}}\) \\
\hline \multicolumn{2}{|r|}{\[
\underset{\substack{\text { bistibey } \\ \text { puren }}}{ }
\]} & & & \[
\frac{\stackrel{Q}{n}}{\frac{\omega}{\mu}}
\] & & \[
\begin{aligned}
& \text { 음 } \\
& 00 \\
& 00
\end{aligned}
\] & 或 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\sum_{0}^{0}
\] & \[
\begin{aligned}
& \text { O} \\
& \sum_{0}^{n}
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
{\underset{\sim}{\sim}}_{\stackrel{0}{\sim}}
\] & & \\
\hline \multicolumn{2}{|l|}{} & \[
\begin{aligned}
& \hline \text { O} \\
& \hline
\end{aligned}
\] & & \[
\stackrel{\circ}{\bar{\prime}}
\] & & ㅇ్ల్రి & \[
\begin{aligned}
& \hline \stackrel{ల}{\circ}
\end{aligned}
\] & 웅 & 㖮 & \[
\begin{aligned}
& \hline \stackrel{\circ}{\circ} \\
& \hline
\end{aligned}
\] & \[
\stackrel{\stackrel{\rightharpoonup}{e}}{ }
\] & \[
\begin{aligned}
& \hline \stackrel{0}{\circ}
\end{aligned}
\] & & 응 \\
\hline
\end{tabular}
Legend：1：All registers in this table have corresponding CLR，SET and INV registers at its virtual address，plus an offset of \(0 \times 4,0 \times 8\) and \(0 \times \mathrm{C}\) ，respectively．See Section 12.2 ＂CLR，SET，and INV Registers＂for
more information．
PORTD REGISTER MAP FOR 100-PIN DEVICES ONLY

\(\begin{array}{lll}\text { Legend: } \\ \text { Note } & \text { 1: } \quad \text { All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text {, respectively. See Section } 12.2 \\ \text { "CLR }\end{array}\)
PORTD REGISTER MAP FOR 64-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{\[
\underset{\stackrel{y}{4}}{\stackrel{y}{0}}
\]} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & \(25 / 9\) & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0310} & \multirow[t]{2}{*}{TRISD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & TRISD11 & TRISD10 & TRISD9 & - & - & - & TRISD5 & TRISD4 & TRISD3 & TRISD2 & TRISD1 & TRISDO & OE3F \\
\hline \multirow[t]{2}{*}{0320} & \multirow[t]{2}{*}{PORTD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & RD11 & RD10 & RD9 & - & - & - & RD5 & RD4 & RD3 & RD2 & RD1 & RD0 & xxxx \\
\hline \multirow[t]{2}{*}{0330} & \multirow[t]{2}{*}{LATD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & LATD11 & LATD10 & LATD9 & - & - & - & LATD5 & LATD4 & LATD3 & LATD2 & LATD1 & LATD0 & xxxx \\
\hline \multirow[t]{2}{*}{0340} & \multirow[t]{2}{*}{ODCD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & ODCD11 & ODCD10 & ODCD9 & - & - & - & ODCD5 & ODCD4 & ODCD3 & ODCD2 & ODCD1 & ODCDO & 0000 \\
\hline \multirow[t]{2}{*}{0350} & \multirow[t]{2}{*}{CNPUD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & CNPUD11 & CNPUD10 & CNPUD9 & - & - & - & CNPUD5 & CNPUD4 & CNPUD3 & CNPUD2 & CNPUD1 & CNPUDO & 0000 \\
\hline \multirow[t]{2}{*}{0360} & \multirow[t]{2}{*}{CNPDD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & CNPDD11 & CNPDD10 & CNPDD9 & - & - & - & CNPDD5 & CNPDD4 & CNPDD3 & CNPDD2 & CNPDD1 & CNPDD0 & 0000 \\
\hline \multirow[t]{2}{*}{0370} & \multirow[t]{2}{*}{CNCOND} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0380} & \multirow[t]{2}{*}{CNEND} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & CNIED11 & CNIED10 & CNIED9 & - & - & - & CNIED5 & CNIED4 & CNIED3 & CNIED2 & CNIED1 & CNIEDO & 0000 \\
\hline \multirow[t]{2}{*}{0390} & \multirow[t]{2}{*}{CNSTATD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATD11 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATD10 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATD9 }
\end{gathered}
\] & - & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATD5 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATD4 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATD3 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATD2 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATD1 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATDO }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}

TABLE 12-10: PORTE REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0400} & \multirow[t]{2}{*}{ANSELE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & ANSE9 & ANSE8 & ANSE7 & ANSE6 & ANSE5 & ANSE4 & - & - & - & - & 03F0 \\
\hline \multirow[t]{2}{*}{0410} & \multirow[t]{2}{*}{TRISE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & TRISE9 & TRISE8 & TRISE7 & TRISE6 & TRISE5 & TRISE4 & TRISE3 & TRISE2 & TRISE1 & TRISE0 & 03FF \\
\hline \multirow[t]{2}{*}{0420} & \multirow[t]{2}{*}{PORTE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & RE9 & RE8 & RE7 & RE6 & RE5 & RE4 & RE3 & RE2 & RE1 & REO & xxxx \\
\hline \multirow[t]{2}{*}{0440} & \multirow[t]{2}{*}{LATE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & LATE9 & LATE8 & LATE7 & LATE6 & LATE5 & LATE4 & LATE3 & LATE2 & LATE1 & LATE0 & xxxx \\
\hline \multirow[t]{2}{*}{0440} & \multirow[t]{2}{*}{ODCE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & ODCE9 & ODCE8 & ODCE7 & ODCE6 & ODCE5 & ODCE4 & ODCE3 & ODCE2 & ODCE1 & ODCE0 & 0000 \\
\hline \multirow[t]{2}{*}{0450} & \multirow[t]{2}{*}{CNPUE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & CNPUE9 & CNPUE8 & CNPUE7 & CNPUE6 & CNPUE5 & CNPUE4 & CNPUE3 & CNPUE2 & CNPUE1 & CNPUEO & 0000 \\
\hline \multirow[t]{2}{*}{0460} & \multirow[t]{2}{*}{CNPDE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & CNPDE9 & CNPDE8 & CNPDE7 & CNPDE6 & CNPDE5 & CNPDE4 & CNPDE3 & CNPDE2 & CNPDE1 & CNPDE0 & 0000 \\
\hline \multirow[t]{2}{*}{0470} & \multirow[t]{2}{*}{CNCONE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0480} & \multirow[t]{2}{*}{CNENE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & CNIEE9 & CNIEE8 & CNIEE7 & CNIEE6 & CNIEE5 & CNIEE4 & CNIEE3 & CNIEE2 & CNIEE1 & CNIEE0 & 0000 \\
\hline \multirow[t]{2}{*}{0490} & \multirow[t]{2}{*}{CNSTATE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATE9 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE8 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE7 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE6 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE4 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATE3 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE2 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATE1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE0 }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}

TABLE 12-11: PORTE REGISTER MAP FOR 64-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & \(21 / 5\) & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0400} & \multirow[t]{2}{*}{ANSELE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & ANSE7 & ANSE6 & ANSE5 & ANSE4 & - & - & - & - & 00F0 \\
\hline \multirow[t]{2}{*}{0410} & \multirow[t]{2}{*}{TRISE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & TRISE7 & TRISE6 & TRISE5 & TRISE4 & TRISE3 & TRISE2 & TRISE1 & TRISE0 & 00FF \\
\hline \multirow[t]{2}{*}{0420} & \multirow[t]{2}{*}{PORTE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & RE7 & RE6 & RE5 & RE4 & RE3 & RE2 & RE1 & RE0 & \(x \times x\) \\
\hline \multirow[t]{2}{*}{0440} & \multirow[t]{2}{*}{LATE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & LATE7 & LATE6 & LATE5 & LATE4 & LATE3 & LATE2 & LATE1 & LATEO & xxxx \\
\hline \multirow[t]{2}{*}{0440} & \multirow[t]{2}{*}{ODCE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & ODCE7 & ODCE6 & ODCE5 & ODCE4 & ODCE3 & ODCE2 & ODCE1 & ODCEO & 0000 \\
\hline \multirow[t]{2}{*}{0450} & \multirow[t]{2}{*}{CNPUE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CNPUE7 & CNPUE6 & CNPUE5 & CNPUE4 & CNPUE3 & CNPUE2 & CNPUE1 & CNPUEO & 0000 \\
\hline \multirow[t]{2}{*}{0460} & \multirow[t]{2}{*}{CNPDE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CNPDE7 & CNPDE6 & CNPDE5 & CNPDE4 & CNPDE3 & CNPDE2 & CNPDE1 & CNPDEO & 0000 \\
\hline \multirow[t]{2}{*}{0470} & \multirow[t]{2}{*}{CNCONE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0480} & \multirow[t]{2}{*}{CNENE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CNIEE7 & CNIEE6 & CNIEE5 & CNIEE4 & CNIEE3 & CNIEE2 & CNIEE1 & CNIEE0 & 0000 \\
\hline \multirow[t]{2}{*}{0490} & \multirow[t]{2}{*}{CNSTATE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \[
\begin{aligned}
& \text { CN } \\
& \text { STATE7 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE6 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATE5 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATE3 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATE2 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CN} \\
& \text { STATE1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATEO }
\end{aligned}
\] & 0000 \\
\hline
\end{tabular}

TABLE 12-12: PORTF REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of \(0 \times 4,0 \times 8\) and \(0 \times \mathrm{C}\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for
TABLE 12-13: PORTF REGISTER MAP FOR 64-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0510} & \multirow[t]{2}{*}{TRISF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & TRISF5 & TRISF4 & TRISF3 & - & TRISF1 & TRISF0 & 003B \\
\hline \multirow[t]{2}{*}{0520} & \multirow[t]{2}{*}{PORTF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & RF5 & RF4 & RF3 & - & RF1 & RF0 & xxxx \\
\hline \multirow[t]{2}{*}{0530} & \multirow[t]{2}{*}{LATF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & LATF5 & LATF4 & LATF3 & - & LATF1 & LATF0 & xxxx \\
\hline \multirow[t]{2}{*}{0540} & \multirow[t]{2}{*}{ODCF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & ODCF5 & ODCF4 & ODCF3 & - & ODCF1 & ODCF0 & 0000 \\
\hline \multirow[t]{2}{*}{0550} & \multirow[t]{2}{*}{CNPUF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & CNPUF5 & CNPUF4 & CNPUF3 & - & CNPUF1 & CNPUFO & 0000 \\
\hline \multirow[t]{2}{*}{0560} & \multirow[t]{2}{*}{CNPDF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & CNPDF5 & CNPDF4 & CNPDF3 & - & CNPDF1 & CNPDF0 & 0000 \\
\hline \multirow[t]{2}{*}{0570} & \multirow[t]{2}{*}{CNCONF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0580} & \multirow[t]{2}{*}{CNENF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & CNIEF5 & CNIEF4 & CNIEF3 & - & CNIEF1 & CNIEFO & 0000 \\
\hline \multirow[t]{2}{*}{0590} & \multirow[t]{2}{*}{CNSTATF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATF5 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATF4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATF3 }
\end{gathered}
\] & - & \[
\begin{gathered}
\text { CN } \\
\text { STATF1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATF0 }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}

TABLE 12-14: PORTG REGISTER MAP FOR 100-PIN, 124-PIN, AND 144-PIN DEVICES ONLY

TABLE 12-15: PORTG REGISTER MAP FOR 64-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{\[
\overline{)_{0}^{4}}
\]} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0600} & \multirow[t]{2}{*}{ANSELG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & ANSG9 & ANSG8 & ANSG7 & ANSG6 & - & - & - & - & - & - & 03c0 \\
\hline \multirow[t]{2}{*}{0610} & \multirow[t]{2}{*}{TRISG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & TRISG9 & TRISG8 & TRISG7 & TRISG6 & - & - & - & - & - & - & 03c0 \\
\hline \multirow[t]{2}{*}{0620} & \multirow[t]{2}{*}{PORTG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & RG9 & RG8 & RG7 & RG6 & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{0630} & \multirow[t]{2}{*}{LATG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & LATG9 & LATG8 & LATG7 & LATG6 & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{0640} & \multirow[t]{2}{*}{ODCG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & ODCG9 & ODCG8 & ODCG7 & ODCG6 & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0650} & \multirow[t]{2}{*}{CNPUG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & CNPUG9 & CNPUG8 & CNPUG7 & CNPUG6 & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0660} & \multirow[t]{2}{*}{CNPDG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & CNPDG9 & CNPDG8 & CNPDG7 & CNPDG6 & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0670} & \multirow[t]{2}{*}{CNCONG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0680} & \multirow[t]{2}{*}{CNENG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & CNIEG9 & CNIEG8 & CNIEG7 & CNIEG6 & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0690} & \multirow[t]{2}{*}{CNSTATG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATG9 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATG8 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATG7 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CN } \\
& \text { STATG6 }
\end{aligned}
\] & - & - & - & - & - & - & 0000 \\
\hline
\end{tabular}
Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of \(0 \times 4,0 \times 8\) and \(0 \times \mathrm{C}\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for
TABLE 12-16: PORTH REGISTER MAP FOR 124-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{\[
\text { = } \begin{gathered}
\stackrel{y}{0} \\
\stackrel{0}{0} \\
\mathscr{O}
\end{gathered}
\]} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0700} & \multirow[t]{2}{*}{ANSELH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & ANSH6 & ANSH5 & ANSH4 & - & - & ANSH1 & ANSHO & 0073 \\
\hline \multirow[t]{2}{*}{0710} & \multirow[t]{2}{*}{TRISH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & TRISH13 & TRISH12 & - & TRISH10 & TRISH9 & TRISH8 & - & TRISH6 & TRISH5 & TRISH4 & - & - & TRISH1 & TRISHO & 3773 \\
\hline \multirow[t]{2}{*}{0720} & \multirow[t]{2}{*}{PORTH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & RH13 & RH12 & - & RH10 & RH9 & RH8 & - & RH6 & RH5 & RH4 & - & - & RH1 & RH0 & xxxx \\
\hline \multirow[t]{2}{*}{0730} & \multirow[t]{2}{*}{LATH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & LATH13 & LATH12 & - & LATH10 & LATH9 & LATH8 & - & LATH6 & LATH5 & LATH4 & - & - & LATH1 & LATHO & \(\times \times \times\) \\
\hline \multirow[t]{2}{*}{0740} & \multirow[t]{2}{*}{ODCH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & ODCH13 & ODCH12 & - & ODCH10 & ODCH9 & ODCH8 & - & ODCH6 & ODCH5 & ODCH4 & - & - & ODCH1 & ODCHO & 0000 \\
\hline \multirow[t]{2}{*}{0750} & \multirow[t]{2}{*}{CNPUH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & CNPUH13 & CNPUH12 & - & CNPUH10 & CNPUH9 & CNPUH8 & - & CNPUH6 & CNPUH5 & CNPUH4 & - & - & CNPUH1 & CNPUHO & 0000 \\
\hline \multirow[t]{2}{*}{0760} & \multirow[t]{2}{*}{CNPDH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & CNPDH13 & CNPDH12 & - & CNPDH10 & CNPDH9 & CNPDH8 & - & CNPDH6 & CNPDH5 & CNPDH4 & - & - & CNPDH1 & CNPDH0 & 0000 \\
\hline \multirow[t]{2}{*}{0770} & \multirow[t]{2}{*}{CNCONH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0780} & \multirow[t]{2}{*}{CNENH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & CNIEH13 & CNIEH12 & - & CNIEH10 & CNIEH9 & CNIEH8 & - & CNIEH6 & CNIEH5 & CNIEH4 & - & - & CNIEH1 & CNIEHO & 0000 \\
\hline \multirow[t]{2}{*}{0790} & \multirow[t]{2}{*}{CNSTATH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATH13 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATH12 }
\end{gathered}
\] & - & \[
\begin{array}{c|}
\hline \text { CN } \\
\text { STATH10 }
\end{array}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH9 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH8 }
\end{gathered}
\] & - & \[
\begin{gathered}
\text { CN } \\
\text { STATH6 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATH5 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATH4 }
\end{gathered}
\] & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATH1 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATHO }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}
Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of \(0 \times 4,0 \times 8\), and \(0 \times \mathrm{C}\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for
TABLE 12-17: PORTH REGISTER MAP FOR 144-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{¿呂} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0700} & \multirow[t]{2}{*}{ANSELH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & ANSH6 & ANSH5 & ANSH4 & - & - & ANSH1 & ANSHO & 0073 \\
\hline \multirow[t]{2}{*}{0710} & \multirow[t]{2}{*}{TRISH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & TRISH15 & TRISH14 & TRISH13 & TRISH12 & TRISH11 & TRISH10 & TRISH9 & TRISH8 & TRISH7 & TRISH6 & TRISH5 & TRISH4 & TRISH3 & TRISH2 & TRISH1 & TRISH0 & Fffr \\
\hline \multirow[t]{2}{*}{0720} & \multirow[t]{2}{*}{PORTH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & RH15 & RH14 & RH13 & RH12 & RH11 & RH10 & RH9 & RH8 & RH7 & RH6 & RH5 & RH4 & RH3 & RH2 & RH1 & RH0 & xxxx \\
\hline \multirow[t]{2}{*}{0730} & \multirow[t]{2}{*}{LATH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & LATH15 & LATH14 & LATH13 & LATH12 & LATH11 & LATH10 & LATH9 & LATH8 & LATH7 & LATH6 & LATH5 & LATH4 & LATH3 & LATH2 & LATH1 & LATHO & xxx \\
\hline \multirow[t]{2}{*}{0740} & \multirow[t]{2}{*}{ODCH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ODCH15 & ODCH14 & ODCH13 & ODCH12 & ODCH11 & ODCH10 & ODCH9 & ODCH8 & ODCH7 & ODCH6 & ODCH5 & ODCH4 & ODCH3 & ODCH2 & ODCH1 & ODCHO & 0000 \\
\hline \multirow[t]{2}{*}{0750} & \multirow[t]{2}{*}{CNPUH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPUH15 & CNPUH14 & CNPUH13 & CNPUH12 & CNPUH11 & CNPUH10 & CNPUH9 & CNPUH8 & CNPUH7 & CNPUH6 & CNPUH5 & CNPUH4 & CNPUH3 & CNPUH2 & CNPUH1 & CNPUHO & 0000 \\
\hline \multirow[t]{2}{*}{0760} & \multirow[t]{2}{*}{CNPDH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPDH15 & CNPDH14 & CNPDH13 & CNPDH12 & CNPDH11 & CNPDH10 & CNPDH9 & CNPDH8 & CNPDH7 & CNPDH6 & CNPDH5 & CNPDH4 & CNPDH3 & CNPDH2 & CNPDH1 & CNPDHO & 0000 \\
\hline \multirow[t]{2}{*}{0770} & \multirow[t]{2}{*}{CNCONH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0780} & \multirow[t]{2}{*}{CNENH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNIEH15 & CNIEH14 & CNIEH13 & CNIEH12 & CNIEH11 & CNIEH10 & CNIEH9 & CNIEH8 & CNIEH7 & CNIEH6 & CNIEH5 & CNIEH4 & CNIEH3 & CNIEH2 & CNIEH1 & CNIEHO & 0000 \\
\hline \multirow[t]{2}{*}{0790} & \multirow[t]{2}{*}{CNSTATH} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \[
\begin{array}{|c|}
\hline \text { CN } \\
\text { STATH15 }
\end{array}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH14 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH13 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH12 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH11 }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { CN } \\
\text { STATH10 }
\end{array}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH9 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH8 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATH7 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH6 }
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { CN } \\
\text { STATH5 }
\end{array}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATH3 }
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { CN } \\
\text { STATH2 }
\end{array}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATH1 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATHO }
\end{gathered}
\] & 000 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{ll}
Legend: & \\
Note 1: & \\
& \\
& All
\end{tabular}} & \multicolumn{18}{|l|}{\begin{tabular}{l}
\(x=\) Unknown value on Reset; \(=\) = Unimplemented, read as ' 0 '; Reset values are shown in hexadecimal. \\
All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0×4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.
\end{tabular}} \\
\hline
\end{tabular} Note 1. more information.
TABLE 12-18: PORTJ REGISTER MAP FOR 124-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0800} & \multirow[t]{2}{*}{ANSELJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & ANSJ11 & - & ANSJ9 & ANSJ8 & - & - & - & - & - & - & - & - & 0B00 \\
\hline \multirow[t]{2}{*}{0810} & \multirow[t]{2}{*}{TRISJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & TRISJ11 & - & TRISJ9 & TRISJ8 & - & - & - & TRISJ4 & - & TRISJ2 & TRISJ1 & TRISJ0 & 0B17 \\
\hline \multirow[t]{2}{*}{0820} & \multirow[t]{2}{*}{PORTJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & RJ11 & - & RJ9 & RJ8 & - & - & - & RJ4 & - & RJ2 & RJ1 & RJ0 & xxxx \\
\hline \multirow[t]{2}{*}{0830} & \multirow[t]{2}{*}{LATJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & LATJ11 & - & LATJ9 & LATJ8 & - & - & - & LATJ4 & - & LATJ2 & LATJ1 & LATJ0 & xxxx \\
\hline \multirow[t]{2}{*}{0840} & \multirow[t]{2}{*}{ODCJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & ODCJ11 & - & ODCJ9 & ODCJ8 & - & - & - & ODCJ4 & - & ODCJ2 & ODCJ1 & ODCJO & 0000 \\
\hline \multirow[t]{2}{*}{0850} & \multirow[t]{2}{*}{CNPUJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & CNPUJ11 & - & CNPUJ9 & CNPUJ8 & - & - & - & CNPUJ4 & - & CNPUJ2 & CNPUJ1 & CNPUJO & 0000 \\
\hline \multirow[t]{2}{*}{0860} & \multirow[t]{2}{*}{CNPDJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & CNPDJ11 & - & CNPDJ9 & CNPDJ8 & - & - & - & CNPDJ4 & - & CNPDJ2 & CNPDJ1 & CNPDJ0 & 0000 \\
\hline \multirow[t]{2}{*}{0870} & \multirow[t]{2}{*}{CNCONJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0880} & \multirow[t]{2}{*}{CNENJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & CNIEJ11 & - & CNIEJ9 & CNIEJ8 & - & - & - & CNIEJ4 & - & CNIEJ2 & CNIEJ1 & CNIEJO & 0000 \\
\hline \multirow[t]{2}{*}{0890} & \multirow[t]{2}{*}{CNSTATJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & CN STATJ11 & - & \[
\begin{gathered}
\text { CN } \\
\text { STATJ9 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ8 }
\end{gathered}
\] & - & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATJ4 }
\end{gathered}
\] & - & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATJ2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATJO }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}

TABLE 12-19: PORTJ REGISTER MAP FOR 144-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0800} & \multirow[t]{2}{*}{ANSELJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & ANSJ11 & - & ANSJ9 & ANSJ8 & - & - & - & - & - & - & - & - & OBOO \\
\hline \multirow[t]{2}{*}{0810} & \multirow[t]{2}{*}{TRISJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & TRISJ15 & TRISJ14 & TRISJ13 & TRISJ12 & TRISJ11 & TRISJ10 & TRISJ9 & TRISJ8 & TRISJ7 & TRISJ6 & TRISJ5 & TRISJ4 & TRISJ3 & TRISJ2 & TRISJ1 & TRISJO & Fffe \\
\hline \multirow[t]{2}{*}{0820} & \multirow[t]{2}{*}{PORTJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & RJ15 & RJ14 & RJ13 & RJ12 & RJ11 & RJ10 & RJ9 & RJ8 & RJ7 & RJ6 & RJ5 & RJ4 & RJ3 & RJ2 & RJ1 & RJ0 & xxxx \\
\hline \multirow[t]{2}{*}{0830} & \multirow[t]{2}{*}{LATJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & LATJ15 & LATJ14 & LATJ13 & LATJ12 & LATJ11 & LATJ10 & LATJ9 & LATJ8 & LATJ7 & LATJ6 & LATJ5 & LATJ4 & LATJ3 & LATJ2 & LATJ1 & LATJO & xxxx \\
\hline \multirow[t]{2}{*}{0840} & \multirow[t]{2}{*}{ODCJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ODCJ15 & ODCJ14 & ODCJ13 & ODCJ12 & ODCJ11 & ODCJ10 & ODCJ9 & ODCJ18 & ODCJ7 & ODCJ6 & ODCJ5 & ODCJ4 & ODCJ3 & ODCJ2 & ODCJ1 & ODCJO & 0000 \\
\hline \multirow[t]{2}{*}{0850} & \multirow[t]{2}{*}{CNPUJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPUJ15 & CNPUJ14 & CNPUJ13 & CNPUJ12 & CNPUJ11 & CNPUJ10 & CNPUJ9 & CNPUJ8 & CNPUJ7 & CNPUJ6 & CNPUJ5 & CNPUJ4 & CNPUJ3 & CNPUJ2 & CNPUJ1 & CNPUJO & 0000 \\
\hline \multirow[t]{2}{*}{0860} & \multirow[t]{2}{*}{CNPDJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNPDJ15 & CNPDJ14 & CNPDJ13 & CNPDJ12 & CNPDJ11 & CNPDJ10 & CNPDJ9 & CNPDJ8 & CNPDJ7 & CNPDJ6 & CNPDJ5 & CNPDJ4 & CNPDJ3 & CNPDJ2 & CNPDJ1 & CNPDJO & 0000 \\
\hline \multirow[t]{2}{*}{0870} & \multirow[t]{2}{*}{CNCONJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0880} & \multirow[t]{2}{*}{CNENJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CNIEJ15 & CNIEJ14 & CNIEJ13 & CNIEJ12 & CNIEJ11 & CNIEJ10 & CNIEJ9 & CNIEJ8 & CNIEJ7 & CNIEJ6 & CNIEJ5 & CNIEJ4 & CNIEJ3 & CNIEJ2 & CNIEJ1 & CNIEJO & 0000 \\
\hline \multirow[t]{2}{*}{0890} & \multirow[t]{2}{*}{CNSTATJ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \[
\begin{gathered}
\text { CN } \\
\text { STATJ15 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CN } \\
\text { STATJ14 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ13 }
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { CN } \\
\text { STATJ12 }
\end{array}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ11 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ10 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STAT.9 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ8 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ7 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ6 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJ4 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATJ3 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATJ2 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CN} \\
\text { STATJ1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATJO }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}
TABLE 12-20: PORTK REGISTER MAP FOR 144-PIN DEVICES ONLY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0910} & \multirow[t]{2}{*}{TRISK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & TRISK7 & TRISK6 & TRISK5 & TRISK4 & TRISK3 & TRISK2 & TRISK1 & TRISK0 & 00FF \\
\hline \multirow[t]{2}{*}{0920} & \multirow[t]{2}{*}{PORTK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & RK7 & RK6 & RK5 & RK4 & RK3 & RK2 & RK1 & RK0 & xxxx \\
\hline \multirow[t]{2}{*}{0930} & \multirow[t]{2}{*}{LATK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & LATK7 & LATK6 & LATK5 & LATK4 & LATK3 & LATK2 & LATK1 & LATK0 & xxxx \\
\hline \multirow[t]{2}{*}{0940} & \multirow[t]{2}{*}{ODCK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & ODCK7 & ODCK6 & ODCK5 & ODCK4 & ODCK3 & ODCK2 & ODCK1 & ODCK0 & 0000 \\
\hline \multirow[t]{2}{*}{0950} & \multirow[t]{2}{*}{CNPUK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CNPUK7 & CNPUK6 & CNPUK5 & CNPUK4 & CNPUK3 & CNPUK2 & CNPUK1 & CNPUKO & 0000 \\
\hline \multirow[t]{2}{*}{0960} & \multirow[t]{2}{*}{CNPDK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CNPDK7 & CNPDK6 & CNPDK5 & CNPDK4 & CNPDK3 & CNPDK2 & CNPDK1 & CNPDK0 & 0000 \\
\hline \multirow[t]{2}{*}{0970} & \multirow[t]{2}{*}{CNCONK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{0980} & \multirow[t]{2}{*}{CNENK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & CNIEK7 & CNIEK6 & CNIEK5 & CNIEK4 & CNIEK3 & CNIEK2 & CNIEK1 & CNIEKO & 0000 \\
\hline \multirow[t]{2}{*}{0990} & \multirow[t]{2}{*}{CNSTATK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \[
\begin{gathered}
\text { CN } \\
\text { STATK7 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATK6 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATK5 } \\
\hline
\end{gathered}
\] & CN
STATK4 & \[
\begin{gathered}
\text { CN } \\
\text { STATK3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATK2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATK1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { CN } \\
\text { STATKO }
\end{gathered}
\] & 0000 \\
\hline
\end{tabular}
 more information.
TABLE 12-21: PERIPHERAL PIN SELECT INPUT REGISTER MAP
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1404} & \multirow[t]{2}{*}{INT1R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{INT1R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1408} & \multirow[t]{2}{*}{INT2R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{INT2R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{140C} & \multirow[t]{2}{*}{INT3R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{INT3R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1410} & \multirow[t]{2}{*}{INT4R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{INT4R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1418} & \multirow[t]{2}{*}{T2CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T2CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{141C} & \multirow[t]{2}{*}{T3CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T3CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1420} & \multirow[t]{2}{*}{T4CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T4CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1424} & \multirow[t]{2}{*}{T5CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T5CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1428} & \multirow[t]{2}{*}{T6CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T6CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{142C} & \multirow[t]{2}{*}{T7CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T7CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1430} & \multirow[t]{2}{*}{T8CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T8CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1434} & \multirow[t]{2}{*}{T9CKR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{T9CKR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1438} & \multirow[t]{2}{*}{IC1R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{IC1R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{143C} & \multirow[t]{2}{*}{IC2R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{IC2R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1440} & \multirow[t]{2}{*}{IC3R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{IC3R<3:0>} & 0000 \\
\hline Legen Note & \begin{tabular}{l}
This \\
This
\end{tabular} & known v gister is gister is & ue on R ot availa ot availa & & mplemen devices s withou & d, read & \begin{tabular}{l}
‘o'. Rese \\
ule.
\end{tabular} & values ar & hown in & xadeci & & & & & & & & & \\
\hline
\end{tabular}
TABLE 12-21: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

Legend: \(\quad \mathrm{x}=\) unknown value on Reset; - = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
\(\begin{array}{lll}\text { Note 1: } & \text { This register is not available on } 64-\text { pin devices. } \\ & \text { 2: } & \text { This register is not available on devices without a CAN module }\end{array}\)
TABLE 12-21: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

TABLE 12-21: PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{14DC} & \multirow[t]{2}{*}{SS6R \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{SS6R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14E0} & \multirow[t]{2}{*}{C1RXR \({ }^{(2)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{C1RXR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14E4} & \multirow[t]{2}{*}{C2RXR \({ }^{(2)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{C2RXR<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14E8} & \multirow[t]{2}{*}{REFCLKI1R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{REFCLKI1R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14F0} & \multirow[t]{2}{*}{REFCLKI3R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{REFCLKI3R<3:0>} & 0000 \\
\hline \multirow[t]{2}{*}{14F4} & \multirow[t]{2}{*}{REFCLKI4R} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{4}{|l|}{REFCLKI4R<3:0>} & 0000 \\
\hline
\end{tabular}

\footnotetext{
Legend: \(x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: This register is not available on 64 -pin devices.
2: This register is not available on devices without a CAN module
}
TABLE 12-22: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

\footnotetext{
\(\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note 1: } & \text { This register is not available on } 64 \text {-pin devices. }\end{array}\)
}
TABLE 12-22: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

\footnotetext{
Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
\(\begin{array}{lll}\text { Note } & \text { : } & \text { This register is not available on } 64 \text {-pin devices. } \\ & \text { 2: } & \text { This register is not available on } 64 \text {-pin and } 100 \text {-pin devices }\end{array}\)
}
TABLE 12-22: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{[pin name \(] \mathrm{R}<3: 0>\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 31-4 Unimplemented: Read as ' 0 '
bit 3-0 [pin name]R<3:0>: Peripheral Pin Select Input bits
Where [pin name] refers to the pins that are used to configure peripheral input mapping. See Table 12-1 for input pin selection values.

Note: \(\quad\) Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) \(=0\).

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{RPnR<3:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-4 Unimplemented: Read as ' 0 '
bit 3-0 RPnR<3:0>: Peripheral Pin Select Output bits
See Table 12-2 for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) \(=0\).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 12-3: CNCONx: CHANGE NOTICE CONTROL FOR PORTx REGISTER (x = A - G)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Bit \\
Range
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) & U \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & ON & - & SIDL & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Change Notice (CN) Control ON bit
\(1=\mathrm{CN}\) is enabled \(0=\mathrm{CN}\) is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Control bit
1 = CPU Idle mode halts CN operation
\(0=\) CPU Idle mode does not affect CN operation
bit 12-0 Unimplemented: Read as ' 0 '

NOTES:

\subsection*{13.0 TIMER1}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS60001105) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EC devices feature one synchronous/asynchronous 16 -bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for real-time clock applications.

The following modes are supported by Timer1:
- Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

\subsection*{13.1 Additional Supported Features}
- Selectable clock prescaler
- Timer operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a real-time clock
- ADC event trigger

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

Note 1: The default state of the SOSCEN bit (\(O S C C O N<1>\)) during a device Reset is controlled by the FSOSCEN bit in Configuration Word, DEVCFG1.
13.2 Timer1 Control Register
 more information.

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & R/W-0 & R-0 & U-0 & U-0 & U-0 \\
\hline & ON & - & SIDL & TWDIS & TWIP & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & U-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & U-0 \\
\hline & TGATE & - & \multicolumn{2}{|r|}{TCKPS<1:0>} & - & TSYNC & TCS & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Timer On bit
1 = Timer is enabled
\(0=\) Timer is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode
\(0=\) Continue operation even in Idle mode
bit 12 TWDIS: Asynchronous Timer Write Disable bit
1 = Writes to TMR1 are ignored until pending write operation completes
\(0=\) Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11 TWIP: Asynchronous Timer Write in Progress bit
In Asynchronous Timer mode:
1 = Asynchronous write to TMR1 register in progress
0 = Asynchronous write to TMR1 register complete
In Synchronous Timer mode:
This bit is read as ' 0 '.
bit 10-8 Unimplemented: Read as ' 0 '
bit 7 TGATE: Timer Gated Time Accumulation Enable bit
When TCS = 1:
This bit is ignored.
When TCS = 0 :
1 = Gated time accumulation is enabled
\(0=\) Gated time accumulation is disabled
bit 6 Unimplemented: Read as ' 0 '
bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits
\(11=1: 256\) prescale value
\(10=1: 64\) prescale value
\(01=1: 8\) prescale value
\(00=1: 1\) prescale value
bit 3 Unimplemented: Read as ' 0 '
```

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)
bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit
When TCS = 1:
1 = External clock input is synchronized
0 = External clock input is not synchronized
When TCS = 0:
This bit is ignored.
bit 1 TCS: Timer Clock Source Select bit
1 = External clock from T1CKI pin
0 = Internal peripheral clock
bit 0 Unimplemented: Read as ' }0\mathrm{ '

```

\subsection*{14.0 TIMER2/3, TIMER4/5, TIMER6/7, AND TIMER8/9}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS60001105) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This family of devices features eight synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events.
The following modes are supported:
- Synchronous internal 16-bit timer
- Synchronous internal 16-bit gated timer
- Synchronous external 16-bit timer

Four 32-bit synchronous timers are available by combining Timer2 with Timer3, Timer4 with Timer5, Timer6 with Timer7, and Timer8 with Timer9.
The 32-bit timers can operate in one of three modes:
- Synchronous internal 32-bit timer
- Synchronous internal 32-bit gated timer
- Synchronous external 32-bit timer

\subsection*{14.1 Additional Features}
- Selectable clock prescaler
- Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 through Timer7 only)
- ADC event trigger (Timer3 and Timer5 only)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2 THROUGH TIMER9 BLOCK DIAGRAM (16-BIT)

FIGURE 14-2: TIMER2/3, TIMER4/5, TIMER6/7, AND TIMER8/9 BLOCK DIAGRAM (32-BIT)

Note 1: ADC event trigger is available only on the Timer2/3 and Tlmer4/5 pairs.
2: In this diagram, ' \(x\) ' represents Timer2, 4, 6, or 8, and ' \(y\) ' represents Timer3, 5, 7, or 9 .
14.2 Timer2-Timer9 Control Registers
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0200} & \multirow[t]{2}{*}{T2CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & \multicolumn{3}{|l|}{TCKPS<2:0>} & T32 & - & TCS & - & 0000 \\
\hline \multirow[t]{2}{*}{0210} & \multirow[t]{2}{*}{TMR2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR2<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0220} & \multirow[t]{2}{*}{PR2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR2<15:0>} & FFFF \\
\hline \multirow[t]{2}{*}{0400} & \multirow[t]{2}{*}{T3CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & \multicolumn{3}{|l|}{TCKPS<2:0>} & - & - & TCS & - & 0000 \\
\hline \multirow[t]{2}{*}{0410} & \multirow[t]{2}{*}{TMR3} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR3<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0420} & \multirow[t]{2}{*}{PR3} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR3<15:0>} & FFFF \\
\hline \multirow[t]{2}{*}{0600} & \multirow[t]{2}{*}{T4CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & \multicolumn{3}{|l|}{TCKPS<2:0>} & T32 & - & TCS & - & 0000 \\
\hline \multirow[t]{2}{*}{0610} & \multirow[t]{2}{*}{TMR4} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR4<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0620} & \multirow[t]{2}{*}{PR4} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR4<15:0>} & FFFF \\
\hline \multirow[t]{2}{*}{0800} & \multirow[t]{2}{*}{T5CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & \multicolumn{3}{|l|}{TCKPS<2:0>} & - & - & TCS & - & 0000 \\
\hline \multirow[t]{2}{*}{0810} & \multirow[t]{2}{*}{TMR5} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR5<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0820} & \multirow[t]{2}{*}{PR5} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR5<15:0>} & FFFF \\
\hline \multirow[t]{2}{*}{OA00} & \multirow[t]{2}{*}{T6CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & \multicolumn{3}{|l|}{TCKPS<2:0>} & T32 & - & TCS & - & 0000 \\
\hline \multirow[t]{2}{*}{0A10} & \multirow[t]{2}{*}{TMR6} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR2<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{OA20} & \multirow[t]{2}{*}{PR6} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR2<15:0>} & FFFF \\
\hline 0C00 & T7CON & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & & PS<2, & & - & - & TCS & - & 0000 \\
\hline
\end{tabular}

\footnotetext{

}
TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & \(23 / 7\) & 22/6 & \(21 / 5\) & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{OC10} & \multirow[t]{2}{*}{TMR7} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR3<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{OC20} & \multirow[t]{2}{*}{PR7} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR3<15:0>} & FFFF \\
\hline \multirow[t]{2}{*}{OE00} & \multirow[t]{2}{*}{T8CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & \multicolumn{3}{|l|}{TCKPS<2:0>} & T32 & - & TCS & - & 0000 \\
\hline \multirow[t]{2}{*}{0E10} & \multirow[t]{2}{*}{TMR8} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR4<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0E20} & \multirow[t]{2}{*}{PR8} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR4<15:0>} & FFFF \\
\hline \multirow[t]{2}{*}{1000} & \multirow[t]{2}{*}{T9CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & TGATE & \multicolumn{3}{|l|}{TCKPS<2:0>} & - & - & TCS & - & 0000 \\
\hline \multirow[t]{2}{*}{1010} & \multirow[t]{2}{*}{TMR9} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TMR5<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1020} & \multirow[t]{2}{*}{PR9} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PR5<15:0>} & FFFF \\
\hline
\end{tabular}
Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of \(0 \times 4,0 \times 8\) and \(0 \times C\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER (' \(x\) ' = 2-9)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & ON(1) & - & SIDL \({ }^{(2)}\) & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 \\
\hline & TGATE \({ }^{(1)}\) & \multicolumn{3}{|c|}{TCKPS<2:0>(1)} & T32 \({ }^{(3)}\) & - & TCS \({ }^{(1)}\) & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\(x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Timer On bit \({ }^{(1)}\)
\(1=\) Module is enabled
\(0=\) Module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit \({ }^{(2)}\)
1 = Discontinue operation when device enters Idle mode
\(0=\) Continue operation even in Idle mode
bit 12-8 Unimplemented: Read as ' 0 '
bit 7 TGATE: Timer Gated Time Accumulation Enable bit \({ }^{(1)}\)
When TCS = 1 :
This bit is ignored and is read as ' 0 '.
When TCS \(=0\) :
\(1=\) Gated time accumulation is enabled
\(0=\) Gated time accumulation is disabled
bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits \({ }^{(1)}\)
\(111=1: 256\) prescale value
\(110=1: 64\) prescale value
\(101=1: 32\) prescale value
\(100=1: 16\) prescale value
\(011=1: 8\) prescale value
\(010=1: 4\) prescale value
\(001=1: 2\) prescale value
\(000=1: 1\) prescale value
bit \(3 \quad\) T32: 32-Bit Timer Mode Select bit \({ }^{(3)}\)
1 = Odd numbered and even numbered timers form a 32 -bit timer
\(0=\) Odd numbered and even numbered timers form a separate 16-bit timer
Note 1: While operating in 32 -bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
2: While operating in 32 -bit mode, this bit must be cleared on odd numbered timers to enable the 32 -bit timer in Idle mode.
3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER (' \(x\) ' = 2-9) (CONTINUED)
bit 2 Unimplemented: Read as ' 0 '
bit 1 TCS: Timer Clock Source Select bit \({ }^{(1)}\)
1 = External clock from TxCK pin
\(0=\) Internal peripheral clock
bit \(0 \quad\) Unimplemented: Read as ' 0 '

Note 1: While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

\subsection*{15.0 DEADMAN TIMER (DMT)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.
The DMT consists of a 32-bit counter with a time-out count match value as specified by the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.
A Deadman Timer is typically used in mission critical and safety critical applications, where any single failure of the software functionality and sequencing must be detected.
Figure \(15-1\) shows a block diagram of the Deadman Timer module.

FIGURE 15-1: DEADMAN TIMER BLOCK DIAGRAM

15.1 Deadman Timer Control Registers

\footnotetext{
Legend: \(\quad \mathrm{x}=\) unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.
}

\section*{REGISTER 15-1: DMTCON: DEADMAN TIMER CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 \\
\hline & ON \({ }^{(1)}\) & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{ll}
\(R=\) Readable bit & \(W=\) Writable bit \\
\(-n=\) Bit Value at POR: (' 0 ', ' 1 ', \(x=\) unknown \()\) & \(U=\) Unimplemented bit \\
& \(P=\) Programmable bit \(\quad r=\) Reserved bit
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Deadman Timer Module Enable bit \({ }^{(1)}\)
1 = Deadman Timer module is enabled
\(0=\) Deadman Timer module is disabled
bit 13-0
Unimplemented: Read as ' 0 '

Note 1: This bit only has control when FDMTEN \((\) DEVCFG1<3>) \(=0\).

REGISTER 15-2: DMTPRECLR: DEADMAN TIMER PRECLEAR REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline & R/W-0 \\
\hline 15.8 & \multicolumn{8}{|c|}{STEP1<7:0>} \\
\hline \multirow{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit \\
\(-n=\) Bit Value at POR: (' 0 ', ' 1 ', \(x=\) unknown \()\) & \(P=\) Programmable bit \(\quad r=\) Reserved bit \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-8 STEP1<7:0>: Preclear Enable bits
\(01000000=\) Enables the Deadman Timer Preclear (Step 1)
All other write patterns = Set BAD1 flag.
These bits are cleared when a DMT reset event occurs. STEP1<7:0> is also cleared if the STEP2<7:0> bits are loaded with the correct value in the correct sequence.
bit 7-0
Unimplemented: Read as ' 0 '

REGISTER 15-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{STEP2<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{ll}
\(R=\) Readable bit & \(W=\) Writable bit \\
\(-n=\) Bit Value at POR: ('0', '1', \(x=\) unknown \()\) & \(U=\) Unimplemented bit \\
& \\
\(P=\) Programmable bit \(\quad r=\) Reserved bit
\end{tabular}
\begin{tabular}{ll}
bit 31-8 & Unimplemented: Read as ' 0 ' \\
bit 7-0 & STEP2<7:0>: Clear Timer bits
\end{tabular}
\(00001000=\) Clears STEP1<7:0>, STEP2<7:0> and the Deadman Timer if, and only if, preceded by correct loading of STEP1<7:0> bits in the correct sequence. The write to these bits may be verified by reading DMTCNT and observing the counter being reset.
All other write patterns = Set BAD2 bit, the value of STEP1<7:0> will remain unchanged, and the new value being written STEP2<7:0> will be captured. These bits are also cleared when a DMT reset event occurs.

\section*{REGISTER 15-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Bit Range } & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & \multirow{2}{*}{\(23: 16\)} & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\cline { 2 - 9 } & \(\mathrm{R}-0, \mathrm{HC}\) & \(\mathrm{R}-0, \mathrm{HC}\) & \(\mathrm{R}-0, \mathrm{HC}\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R}-0\) \\
\cline { 2 - 9 } & BAD 1 & BAD 2 & DMTEVENT & & & & WINOPN \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Cleared by Hardware & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit \\
\(-n=\) Bit Value at POR: ('0', ' 1 ', \(x=\) unknown \()\) & \(P=\) Programmable bit \(\quad r=\) Reserved bit \\
\hline
\end{tabular}
bit 31-8 Unimplemented: Read as ' 0 '
bit \(7 \quad\) BAD1: Bad STEP1<7:0> Value Detect bit
1 = Incorrect STEP1<7:0> value was detected
\(0=\) Incorrect STEP1<7:0> value was not detected
bit 6 BAD2: Bad STEP2<7:0> Value Detect bit
1 = Incorrect STEP2<7:0> value was detected
0 = Incorrect STEP2<7:0> value was not detected
bit 5 DMTEVENT: Deadman Timer Event bit
1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)
\(0=\) Deadman timer even was not detected
bit 4-1 Unimplemented: Read as ' 0 '
bit \(0 \quad\) WINOPN: Deadman Timer Clear Window bit
1 = Deadman timer clear window is open
\(0=\) Deadman timer clear window is not open

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 15-5: DMTCNT: DEADMAN TIMER COUNT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{COUNTER<31:24>} \\
\hline \multirow[t]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{COUNTER<23:16>} \\
\hline \multirow[t]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{COUNTER<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{COUNTER<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{ll}
\(R=\) Readable bit & \(W=\) Writable bit \\
\(-n=\) Bit Value at POR: (' 0 ', ' 1 ', \(x=\) unknown \()\) & \(U=\) Unimplemented bit \\
& \(P=\) Programmable bit \(\quad r=\) Reserved bit \\
\hline
\end{tabular}
bit 31-8 COUNTER<31:0>: Read current contents of DMT counter

REGISTER 15-6: DMTPSCNT: POST STATUS CONFIGURE DMT COUNT STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSCNT<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSCNT<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSCNT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSCNT<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit \\
\(-n=\) Bit Value at POR: (' 0 ', ' 1 ', \(x=\) unknown \()\) & \(U=\) Unimplemented bit \\
\hline
\end{tabular}
bit 31-8 PSCNT<31:0>: DMT Instruction Count Value Configuration Status bits
This is always the value of the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

REGISTER 15-7: DMTPSINTV: POST STATUS CONFIGURE DMT INTERVAL STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSINTV<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSINTV<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSINTV<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{PSINTV<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\(\begin{array}{ll}R=\text { Readable bit } & W=\text { Writable bit } \\ -n=\text { Bit Value at POR: (' } 0 \text { ', ' } 1 \text { ', } x=\text { unknown }) & U=\text { Unimplemented bit } \\ P=\text { Programmable bit } & r=\text { Reserved bit }\end{array}\)
bit 31-8 PSINTV<31:0>: DMT Window Interval Configuration Status bits
This is always the value of the DMTINTV<2:0> bits in the DEVCFG1 Configuration register.

\subsection*{16.0 WATCHDOG TIMER (WDT)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.
Some of the key features of the WDT module are:
- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

FIGURE 16-1: WATCHDOG TIMER BLOCK DIAGRAM

Note 1: Refer to Section 6.0 "Resets" for more information.

REGISTER 16-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 27/19/11/3 }}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & W-0 \\
\hline & \multicolumn{8}{|c|}{WDTCLRKEY<15:8>} \\
\hline \multirow[b]{2}{*}{23:16} & W-0 \\
\hline & \multicolumn{8}{|c|}{WDTCLRKEY<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 \\
\hline & ON \({ }^{(1)}\) & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R-y & R-y & R-y & R-y & R-y & R/W-0 & U-0 \\
\hline & - & \multicolumn{5}{|c|}{SWDTPS<4:0>} & WDTWINEN & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(y=\) Values set from Configuration bits on POR \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 WDTCLRKEY<15:0>: Watchdog Timer Clear Key bits
To clear the Watchdog Timer to prevent a time-out, software must write the value \(0 \times 5743\) to this location using a single 16-bit write.
bit 15 ON: Watchdog Timer Enable bit \({ }^{(1)}\)
1 = The WDT is enabled
\(0=\) The WDT is disabled
bit 14-7 Unimplemented: Read as ' 0 '
bit 6-2 SWDTPS<4:0>: Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits On reset, these bits are set to the values of the WDTPS <4:0> Configuration bits in DEVCFG1.
bit 1 WDTWINEN: Watchdog Timer Window Enable bit
1 = Enable windowed Watchdog Timer
\(0=\) Disable windowed Watchdog Timer
bit \(0 \quad\) Unimplemented: Read as ' 0 '

Note 1: This bit only has control when FWDTEN \((\) DEVCFG1<23> \()=0\).

\subsection*{17.0 INPUT CAPTURE}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122) of the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.
The Input Capture module captures the 16-bit or 32 -bit value of the selected Time Base registers when an event occurs at the ICx pin.

Capture events are caused by the following:
- Capture timer value on every edge (rising and falling), specified edge first
- Prescaler capture event modes:
- Capture timer value on every 4th rising edge of input at ICx pin
- Capture timer value on every 16 th rising edge of input at ICx pin
Each input capture channel can select between one of six 16 -bit timers for the time base, or two of six 16 -bit timers together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:
- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values; Interrupt optionally generated after \(1,2,3\), or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 17-1: INPUT CAPTURE BLOCK DIAGRAM

The timer source for each Input Capture module depends on the setting of the ICACLK bit in the CFGCON register. The available configurations are shown in Table 17-1.

TABLE 17-1: TIMER SOURCE CONFIGURATIONS
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Input Capture \\
Module
\end{tabular} & Timerx & Timery \\
\hline \hline ICACLK (CFGCON \(<\) 17>) = 0 \\
\hline IC1 & Timer2 & Timer3 \\
\(\bullet\) & \(\bullet\) & \(\bullet\) \\
\(\bullet\) & \(\bullet\) \\
IC9 & Timer 2 & Timer 3 \\
\hline ICACLK (CFGCON <17>) = 1 \\
\hline IC1 & Timer4 & Timer5 \\
\hline IC2 & Timer4 & Timer5 \\
\hline IC3 & Timer4 & Timer5 \\
\hline IC4 & Timer2 & Timer3 \\
\hline IC5 & Timer2 & Timer3 \\
\hline IC6 & Timer2 & Timer3 \\
\hline IC7 & Timer6 & Timer7 \\
\hline IC8 & Timer6 & Timer7 \\
\hline IC9 & Timer6 & Timer7 \\
\hline
\end{tabular}
17.1 Input Capture Control Registers
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{苋} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{2000} & \multirow[t]{2}{*}{IC1CON \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2010 & IC1BUF & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC1BUF<31:0>} & \\
\hline \multirow[t]{2}{*}{2200} & \multirow[t]{2}{*}{IC2CON \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2210 & IC2BUF & \begin{tabular}{|l|}
\hline \(31: 16\) \\
\hline \(15: 0\) \\
\hline
\end{tabular} & \multicolumn{16}{|l|}{IC2BUF<31:0>} & \(\frac{\mathrm{xxxx}}{\mathrm{xxxx}}\) \\
\hline \multirow[t]{2}{*}{2400} & \multirow[t]{2}{*}{IC3CON \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2410 & IC3BUF & \[
\begin{array}{|l|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC3BUF<31:0>} & \(\frac{\mathrm{xxxx}}{\mathrm{xxxx}}\) \\
\hline \multirow[t]{2}{*}{2600} & \multirow[t]{2}{*}{IC4CON \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2610 & IC4BUF & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC4BUF<31:0>} & \\
\hline \multirow[t]{2}{*}{2800} & \multirow[t]{2}{*}{IC5CON(1)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2810 & IC5BUF & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC5BUF<31:0>} & x \(\mathrm{x} \times \mathrm{x} \times\) \\
\hline \multirow[t]{2}{*}{2A00} & \multirow[t]{2}{*}{IC6CON \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2A10 & IC6BUF & \[
\begin{array}{|l|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC6BUF<31:0>} & \(\frac{x x x x}{x x x x^{\prime}}\) \\
\hline \multirow[t]{2}{*}{2C00} & \multirow[t]{2}{*}{IC7CON \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2C10 & IC7BUF & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC7BUF<31:0>} & \(\frac{x \times x x}{x x x x}\) \\
\hline \multirow[t]{2}{*}{2E00} & \multirow[t]{2}{*}{IC8CON(1)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & \multicolumn{2}{|l|}{ICI<1:0>} & ICOV & ICBNE & \multicolumn{3}{|l|}{ICM<2:0>} & 0000 \\
\hline 2E10 & IC8BUF & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC8BUF<31:0>} & \(\frac{\mathrm{xaxx}}{\mathrm{xxxx}}\) \\
\hline \multirow[t]{2}{*}{3000} & \multirow[t]{2}{*}{IC9CON \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & FEDGE & C32 & ICTMR & & & ICOV & ICBNE & & M<2:0 & & 0000 \\
\hline 3010 & IC9BUF & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{IC9BUF<31:0>} & \(\frac{x x x x}{x \times x}\) \\
\hline
\end{tabular}

\footnotetext{
Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of \(0 \times 4,0 \times 8\) and \(0 \times C\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for more
}

REGISTER 17-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Bit Range } & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 10 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 10 } & \multirow{2}{*}{\(15: 8\)} & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\cline { 2 - 9 } & ON & - & SIDL & - & - & - & FEDGE & C 32 \\
\cline { 2 - 9 } & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{ll}
\(R=\) Readable bit & \(W=\) Writable bit \\
\(-n=\) Bit Value at POR: ('0', ' 1 ', \(x=\) unknown) & \(U=\) Unimplemented bit \\
& \(P=\) Programmable bit \(\quad r=\) Reserved bit
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Input Capture Module Enable bit
1 = Module enabled
\(0=\) Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Control bit
1 = Halt in CPU Idle mode
\(0=\) Continue to operate in CPU Idle mode
bit 12-10 Unimplemented: Read as ' 0 '
bit 9
FEDGE: First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)
1 = Capture rising edge first
\(0=\) Capture falling edge first
bit \(8 \quad\) C32: 32-bit Capture Select bit
1 = 32-bit timer resource capture
\(0=16\)-bit timer resource capture
bit \(7 \quad\) ICTMR: Timer Select bit (Does not affect timer selection when \(\mathrm{C} 32(I \mathrm{CxCON}<8>\text {) is ' } 1 \text { ' })^{(\mathbf{1})}\)
\(0=\) Timery is the counter source for capture
\(1=\) Timerx is the counter source for capture
bit 6-5 \(\quad|C|<1: 0>\) : Interrupt Control bits
\(11=\) Interrupt on every fourth capture event
\(10=\) Interrupt on every third capture event
01 = Interrupt on every second capture event
\(00=\) Interrupt on every capture event
bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)
1 = Input capture overflow occurred
\(0=\) No input capture overflow occurred
bit \(3 \quad\) ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
1 = Input capture buffer is not empty; at least one more capture value can be read
\(0=\) Input capture buffer is empty
bit 2-0 ICM<2:0>: Input Capture Mode Select bits
111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)
110 = Simple Capture Event mode - every edge, specified edge first and every edge thereafter
101 = Prescaled Capture Event mode - every sixteenth rising edge
\(100=\) Prescaled Capture Event mode - every fourth rising edge
011 = Simple Capture Event mode - every rising edge
\(010=\) Simple Capture Event mode - every falling edge
001 = Edge Detect mode - every edge (rising and falling)
\(000=\) Input Capture module is disabled
Note 1: Refer to Table 17-1 for Timerx and Timery selections.

\subsection*{18.0 OUTPUT COMPARE}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events.
For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer.

When a match occurs, the Output Compare module generates an event based on the selected mode of operation.
The following are some of the key features:
- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16 -bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base
- ADC event trigger

FIGURE 18-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFGCON register. The available configurations are shown in Table 18-1.

TABLE 18-1: TIMER SOURCE CONFIGURATIONS
\begin{tabular}{|c|c|c|}
\hline Output Compare Module & Timerx & Timery \\
\hline \multicolumn{3}{|l|}{OCACLK (CFGCON<16>) \(=0\)} \\
\hline \[
\begin{gathered}
\hline \text { OC1 } \\
\cdot \\
\cdot \\
\text { OC9 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Timer2 } \\
\cdot \\
: \\
\text { Timer } 2
\end{gathered}
\] & \begin{tabular}{l}
Timer3 \\
Timer 3
\end{tabular} \\
\hline \multicolumn{3}{|l|}{OCACLK (CFGCON<16>) = 1} \\
\hline OC1 & Timer4 & Timer5 \\
\hline OC2 & Timer4 & Timer5 \\
\hline OC3 & Timer4 & Timer5 \\
\hline OC4 & Timer2 & Timer3 \\
\hline OC5 & Timer2 & Timer3 \\
\hline OC6 & Timer2 & Timer3 \\
\hline OC7 & Timer6 & Timer7 \\
\hline OC8 & Timer6 & Timer7 \\
\hline OC9 & Timer6 & Timer7 \\
\hline
\end{tabular}
18.1 Output Compare Control Registers
TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{y
0
0
0
¢
¢} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & \(23 / 7\) & 22/6 & 21/5 & \(20 / 4\) & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{4000} & \multirow[t]{2}{*}{OC1CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline \multirow[t]{2}{*}{4010} & \multirow[t]{2}{*}{OC1R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC1R<31:0>}} & \(x \times x\) x \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & \(x \times x\) \\
\hline \multirow[t]{2}{*}{4020} & \multirow[t]{2}{*}{OC1RS} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC1RS<31:0>}} & xxxx \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & \(x \times x\) \\
\hline \multirow[t]{2}{*}{4200} & \multirow[t]{2}{*}{OC2CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline \multirow[t]{2}{*}{4210} & \multirow[t]{2}{*}{OC2R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC2R<31:0>}} & \(x \times x\) x \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxx \\
\hline \multirow[t]{2}{*}{4220} & \multirow[t]{2}{*}{OC2RS} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC2RS<31:0>}} & \(x \times x\) \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & \(x \times x\) \\
\hline \multirow[t]{2}{*}{4400} & \multirow[t]{2}{*}{OC3CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline \multirow[t]{2}{*}{4410} & \multirow[t]{2}{*}{OC3R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC3R<31:0>}} & \(x \times x\) \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxx \({ }^{\text {x }}\) \\
\hline 4420 & OC3RS & \[
\begin{gathered}
31: 16 \\
15: 0
\end{gathered}
\] & \multicolumn{16}{|l|}{OC3RS<31:0>} & xxxx \\
\hline \multirow[t]{2}{*}{4600} & \multirow[t]{2}{*}{OC4CON} & 31.16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline \multirow[t]{2}{*}{4610} & \multirow[t]{2}{*}{OC4R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC4R<31:0>}} & xxxx \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxxx \\
\hline 4620 & OC4RS & \[
\begin{gathered}
31: 16 \\
15: 0
\end{gathered}
\] & \multicolumn{16}{|l|}{OC4RS<31:0>} & \(x \times x \times\) \\
\hline \multirow[t]{2}{*}{4800} & \multirow[t]{2}{*}{OC5CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline \multirow[t]{2}{*}{4810} & \multirow[t]{2}{*}{OC5R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC5R<31:0>}} & xxxx \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxxx \\
\hline \multirow[t]{2}{*}{4820} & \multirow[t]{2}{*}{OC5RS} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC5RS<31:0>}} & \(x \times x \times\) \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxxx \\
\hline
\end{tabular}
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of \(0 \times 4,0 \times 8\) and \(0 \times \mathrm{C}\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for
TABLE 18-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & \(20 / 4\) & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{4A00} & \multirow[t]{2}{*}{OC6CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline 4A10 & OC6R & 31:16 & \multicolumn{16}{|l|}{OC6R<31:0>} & xxxx \\
\hline \multirow[t]{2}{*}{4A20} & \multirow[t]{2}{*}{OC6RS} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC6RS<31:0>}} & xxxx \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxxx \\
\hline \multirow[t]{2}{*}{4C00} & \multirow[t]{2}{*}{OC7CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline \multirow[t]{2}{*}{4C10} & \multirow[t]{2}{*}{OC7R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC7R<31:0>}} & xxxx \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & \(x \times x \times\) \\
\hline \multirow[t]{2}{*}{4C20} & \multirow[t]{2}{*}{OC7RS} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC7RS<31:0>}} & \(x \mathrm{xxx}\) \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxxx \\
\hline \multirow[t]{2}{*}{4E00} & \multirow[t]{2}{*}{OC8CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & & CM<2 & & 0000 \\
\hline \multirow[t]{2}{*}{4E10} & \multirow[t]{2}{*}{OC8R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC8R<31:0>}} & xxxx \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxxx \\
\hline 4E20 & OC8RS & 31:16 & \multicolumn{16}{|l|}{OC8RS<31:0>} & \(x \times x\) \\
\hline \multirow[t]{2}{*}{5000} & \multirow[t]{2}{*}{OC9CON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & - & - & - & - & OC32 & OCFLT & OCTSEL & \multicolumn{3}{|l|}{OCM<2:0>} & 0000 \\
\hline \multirow[t]{2}{*}{5010} & \multirow[t]{2}{*}{OC9R} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{OC9R<31:0>}} & xxxx \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & xxxx \\
\hline 5020 & OC9RS & \[
\begin{gathered}
31: 16 \\
15: 0
\end{gathered}
\] & & & & & & & & OC9 & 1:0> & & & & & & & & xxx \\
\hline
\end{tabular}
Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
 Note 1: more information.

REGISTER 18-1: OCxCON: OUTPUT COMPARE ' \(x\) ' CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) & U \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & ON & - & SIDL & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\cline { 2 - 9 } & - & - & OC32 & OCFLT(1) & \(\mathrm{OCTSEL}^{(\mathbf{2})}\) & & \(\mathrm{OCM}<2: 0>\) & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Output Compare Peripheral On bit
1 = Output Compare peripheral is enabled
\(0=\) Output Compare peripheral is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when CPU enters Idle mode
\(0=\) Continue operation in Idle mode
bit 12-6 Unimplemented: Read as ' 0 '
bit 5 OC32: 32-bit Compare Mode bit
\(1=\mathrm{OCxR}<31: 0>\) and/or OCxRS<31:0> are used for comparisons to the 32-bit timer source
\(0=O C x R<15: 0>\) and \(O C x R S<15: 0>\) are used for comparisons to the 16-bit timer source
bit 4 OCFLT: PWM Fault Condition Status bit \({ }^{(1)}\)
\(1=\) PWM Fault condition has occurred (cleared in HW only)
\(0=\) No PWM Fault condition has occurred
bit 3 OCTSEL: Output Compare Timer Select bit \({ }^{(\mathbf{2})}\)
\(1=\) Timery is the clock source for this Output Compare module
\(0=\) Timerx is the clock source for this Output Compare module
bit 2-0 OCM<2:0>: Output Compare Mode Select bits
111 = PWM mode on OCx; Fault pin enabled
\(110=\) PWM mode on OCx; Fault pin disabled
101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
\(100=\) Initialize OCx pin low; generate single output pulse on OCx pin
011 = Compare event toggles OCx pin
\(010=\) Initialize OCx pin high; compare event forces OCx pin low
001 = Initialize OCx pin low; compare event forces OCx pin high
\(000=\) Output compare peripheral is disabled but continues to draw current

Note 1: This bit is only used when \(O C M<2: 0>=\) ' 111 '. It is read as ' 0 ' in all other modes.
2: Refer to Table 18-1 for Timerx and Timery selections.

NOTES:

\subsection*{19.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (\({ }^{2} \mathrm{~S}\))}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).
The SPI \(/ I^{2} \mathrm{~S}\) module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc.

The SPI/I \({ }^{2}\) S module is compatible with Motorola \({ }^{\circledR}\) SPI and SIOP interfaces.
The following are some of the key features of the SPI module:
- Master and Slave modes support
- Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
- FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during Sleep and Idle modes
- Audio Codec Support:
- I \({ }^{2}\) S protocol
- Left-justified
- Right-justified
- PCM

FIGURE 19-1: SPII²s MODULE BLOCK DIAGRAM

19.1 SPI Control Registers
\begin{tabular}{|c|}
\hline TAB & LE 19-1 & & SPl1 TH & ROUGH & SPI6 R & EGIST & R MAP & & & & & & & & & & & & \\
\hline \[
\begin{array}{|l|l}
\hline 0 \\
0
\end{array}
\] & & & & & & & & & & Bit & & & & & & & & & \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \(\stackrel{\text { ¢ }}{\text { ¢ }}\) \\
\hline 1000 & SPI & 31:16 & FRMEN & FRMSYNC & FRMPOL & MSSEN & FRMSYPW & & RMCNT<2:0 & & MCLKSEL & - & - & - & - & - & SPIFE & ENHBUF & 0000 \\
\hline & , & 15:0 & ON & - & SIDL & DISSDO & MODE32 & MODE16 & SMP & CKE & SSEN & CKP & MSTEN & DISSDI & STXIS & 1:0> & SRXIS & L<1:0> & 0000 \\
\hline 1010 & SPI1STAT & 31:16 & - & - & - & & RXB & UFELM<4: & & & - & - & - & & & FELM & & & 0000 \\
\hline 1010 & Spistat & 15:0 & - & - & - & FRMERR & SPIBUSY & - & - & SPITUR & SRMT & SPIROV & SPIRBE & - & SPITBE & - & SPITBF & SPIRBF & 0008 \\
\hline 1020 & SPI1BUF & |31:16 & & & & & & & & DATA< & 31:0> & & & & & & & & 0000 \\
\hline & & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 1030 & SPI1BRG & 15:0 & - & - & - & & & & & & & RG<12:0> & & & & & & & 0000 \\
\hline & & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 1040 & SPI1CON2 & 15:0 & \[
\begin{gathered}
\text { SPI } \\
\text { SGNEXT }
\end{gathered}
\] & - & - & \[
\begin{gathered}
\text { FRM } \\
\text { ERREN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { ROVEN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { TUREN }
\end{gathered}
\] & IGNROV & IGNTUR & AUDEN & - & - & - & AUD MONO & - & AUDM & D<1:0> & 0000 \\
\hline & SPI2CON & 31:16 & FRMEN & FRMSYNC & FRMPOL & MSSEN & FRMSYPW & & RMCNT<2:0> & & MCLKSEL & - & - & - & - & - & SPIFE & ENHBUF & 0000 \\
\hline 1200 & SPI2CON & 15:0 & ON & - & SIDL & DISSDO & MODE32 & MODE16 & SMP & CKE & SSEN & CKP & MSTEN & DISSDI & STXIS & 1:0> & SRXIS & L<1:0> & 0000 \\
\hline 1210 & SPI2STAT & 31:16 & - & - & - & & RXB & UFELM<4: & & & - & - & - & & & FELM & & & 0000 \\
\hline 1210 & & 15:0 & - & - & - & FRMERR & SPIBUSY & - & - & SPITUR & SRMT & SPIROV & SPIRBE & - & SPITBE & - & SPITBF & SPIRBF & 0008 \\
\hline 1220 & SPI2BUF & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & & & & & & & & DATA< & 31:0> & & & & & & & & 0000 \\
\hline & SPI2BRG & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 1230 & SPI2BRG & 15:0 & - & - & - & - & - & - & - & & & & & BRG<8:0> & & & & & 0000 \\
\hline & & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 1240 & SPI2CON2 & 15:0 & \[
\begin{gathered}
\text { SPI } \\
\text { SGNEXT }
\end{gathered}
\] & - & - & \[
\begin{gathered}
\text { FRM } \\
\text { ERREN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { ROVEN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { TUREN }
\end{gathered}
\] & IGNROV & IGNTUR & AUDEN & - & - & - & AUD MONO & - & AUDM & D<1:0> & 0000 \\
\hline 1400 & SPI3CON & 31:16 & FRMEN & FRMSYNC & FRMPOL & MSSEN & FRMSYPW & & RMCNT<2:0 & & MCLKSEL & - & - & - & - & - & SPIFE & ENHBUF & 0000 \\
\hline 1400 & & 15:0 & ON & - & SIDL & DISSDO & MODE32 & MODE16 & SMP & CKE & SSEN & CKP & MSTEN & DISSDI & STXIS & <1:0> & SRXIS & L<1:0> & 0000 \\
\hline & & 31:16 & - & - & - & & RXB & UFELM<4: & & & - & - & - & & & FELM & & & 0000 \\
\hline 1410 & SPI3STAT & 15:0 & - & - & - & FRMERR & SPIBUSY & - & - & SPITUR & SRMT & SPIROV & SPIRBE & - & SPITBE & - & SPITBF & SPIRBF & 0008 \\
\hline 1420 & SPI3BUF & \begin{tabular}{|c|}
\hline \(31: 16\) \\
\hline \(15: 0\) \\
\hline
\end{tabular} & & & & & & & & DATA & <31:0> & & & & & & & & 0000 \\
\hline 1430 & SPI3BRG & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 1430 & SPIJBRG & 15:0 & - & - & - & - & - & - & - & & & & & BRG<8:0> & & & & & 0000 \\
\hline & & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 1440 & SPI3CON2 & 15:0 & \[
\begin{gathered}
\text { SPI } \\
\text { SGNEXT }
\end{gathered}
\] & - & - & \[
\begin{gathered}
\text { FRM } \\
\text { ERREN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { ROVEN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { TUREN }
\end{gathered}
\] & IGNROV & IGNTUR & AUDEN & - & - & - & AUD MONO & - & AUDM & D<1:0> & 0000 \\
\hline
\end{tabular}

TABLE 19-1: SPI1 THROUGH SPI6 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \% & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1600} & \multirow[t]{2}{*}{SPI4CON} & 31:16 & FRMEN & FRMSYNC & FRMPOL & MSSEN & FRMSYPW & \multicolumn{3}{|l|}{FRMCNT<2:0>} & MCLKSEL & - & - & - & - & - & SPIFE & ENHBUF & 0000 \\
\hline & & 15:0 & ON & - & SIDL & DISSDO & MODE32 & MODE16 & SMP & CKE & SSEN & CKP & MSTEN & DISSDI & \multicolumn{2}{|l|}{STXISEL<1:0>} & \multicolumn{2}{|l|}{SRXISEL<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1610} & \multirow[t]{2}{*}{SPI4STAT} & 31:16 & - & - & - & \multicolumn{5}{|l|}{RXBUFELM<4:0>} & - & - & - & \multicolumn{5}{|l|}{TXBUFELM<4:0>} & 0000 \\
\hline & & 15:0 & - & - & - & FRMERR & SPIBUSY & - & - & SPITUR & SRMT & SPIROV & SPIRBE & - & SPITBE & - & SPITBF & SPIRBF & 0008 \\
\hline 1620 & SPI4BUF & 31:16 & \multicolumn{16}{|l|}{DATA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1630} & \multirow[t]{2}{*}{SPI4BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & \multicolumn{9}{|l|}{BRG<8:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1640} & \multirow[t]{2}{*}{SPI4CON2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \[
\begin{gathered}
\hline \text { SPI } \\
\text { SGNEXT }
\end{gathered}
\] & - & - & \[
\begin{gathered}
\text { FRM } \\
\text { ERREN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { ROVEN }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{SPI} \\
\text { TUREN }
\end{gathered}
\] & IGNROV & IGNTUR & AUDEN & - & - & - & \[
\begin{aligned}
& \text { AUD } \\
& \text { MONO }
\end{aligned}
\] & - & \multicolumn{2}{|l|}{AUDMOD<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1800} & \multirow[t]{2}{*}{SPI5CON} & 31:16 & FRMEN & FRMSYNC & FRMPOL & MSSEN & FRMSYPW & \multicolumn{3}{|l|}{FRMCNT<2:0>} & MCLKSEL & - & - & - & - & - & SPIFE & ENHBUF & 0000 \\
\hline & & 15:0 & ON & - & SIDL & DISSDO & MODE32 & MODE16 & SMP & CKE & SSEN & CKP & MSTEN & DISSDI & \multicolumn{2}{|l|}{STXISEL<1:0>} & \multicolumn{2}{|l|}{SRXISEL<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1810} & \multirow[t]{2}{*}{SPI5STAT} & 31:16 & - & - & - & \multicolumn{5}{|l|}{RXBUFELM<4:0>} & - & - & - & \multicolumn{5}{|l|}{TXBUFELM<4:0>} & 0000 \\
\hline & & 15:0 & - & - & - & FRMERR & SPIBUSY & - & - & SPITUR & SRMT & SPIROV & SPIRBE & - & SPITBE & - & SPITBF & SPIRBF & 0008 \\
\hline 1820 & SPI5BUF & 31:16 & \multicolumn{16}{|l|}{DATA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1830} & \multirow[t]{2}{*}{SPI5BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & \multicolumn{9}{|l|}{BRG<8:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1840} & \multirow[t]{2}{*}{SPI5CON2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \[
\begin{gathered}
\text { SPI } \\
\text { SGNEXT }
\end{gathered}
\] & - & - & \[
\begin{gathered}
\text { FRM } \\
\text { ERREN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { ROVEN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { TUREN }
\end{gathered}
\] & IGNROV & IGNTUR & AUDEN & - & - & - & \[
\begin{aligned}
& \text { AUD } \\
& \text { MONO }
\end{aligned}
\] & - & \multicolumn{2}{|l|}{AUDMOD<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1A00} & \multirow[t]{2}{*}{SPI6CON} & 31:16 & FRMEN & FRMSYNC & FRMPOL & MSSEN & FRMSYPW & \multicolumn{3}{|l|}{FRMCNT<2:0>} & MCLKSEL & - & - & - & - & - & SPIFE & ENHBUF & 0000 \\
\hline & & 15:0 & ON & - & SIDL & DISSDO & MODE32 & MODE16 & SMP & CKE & SSEN & CKP & MSTEN & DISSDI & \multicolumn{2}{|l|}{STXISEL<1:0>} & \multicolumn{2}{|l|}{SRXISEL<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1A10} & \multirow[t]{2}{*}{SPI6STAT} & 31:16 & - & - & - & \multicolumn{5}{|l|}{RXBUFELM<4:0>} & - & - & - & \multicolumn{5}{|l|}{TXBUFELM<4:0>} & 0000 \\
\hline & & 15:0 & - & - & - & FRMERR & SPIBUSY & - & - & SPITUR & SRMT & SPIROV & SPIRBE & - & SPITBE & - & SPITBF & SPIRBF & 0008 \\
\hline 1A20 & SPI6BUF & \[
\begin{array}{|l|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{DATA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1A30} & \multirow[t]{2}{*}{SPI6BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & \multicolumn{9}{|l|}{BRG<8:0>} & 0000 \\
\hline & & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline 1A40 & SPI6CON2 & 15:0 & \[
\begin{gathered}
\text { SPI } \\
\text { SGNEXT }
\end{gathered}
\] & - & - & \[
\begin{aligned}
& \text { FRM } \\
& \text { ERREN }
\end{aligned}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { ROVEN }
\end{gathered}
\] & \[
\begin{gathered}
\text { SPI } \\
\text { TUREN }
\end{gathered}
\] & IGNROV & IGNTUR & AUDEN & - & - & - & \[
\begin{aligned}
& \text { AUD } \\
& \text { MONO }
\end{aligned}
\] & - & AUDM & D<1:0> & 0000 \\
\hline
\end{tabular}

REGISTER 19-1: SPIxCON: SPI CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FRMEN & FRMSYNC & FRMPOL & MSSEN & FRMSYPW & \multicolumn{3}{|c|}{FRMCNT<2:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & MCLKSEL \({ }^{(1)}\) & - & - & - & - & - & SPIFE & ENHBUF \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & ON & - & SIDL & DISSDO \({ }^{(4)}\) & MODE32 & MODE16 & SMP & CKE \({ }^{(2)}\) \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & SSEN & CKP \({ }^{(3)}\) & MSTEN & DISSDI \({ }^{(4)}\) & \multicolumn{2}{|l|}{STXISEL<1:0>} & \multicolumn{2}{|l|}{SRXISEL<1:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31 FRMEN: Framed SPI Support bit
1 = Framed SPI support is enabled (\(\overline{\text { SSx }}\) pin used as FSYNC input/output)
\(0=\) Framed SPI support is disabled
bit 30 FRMSYNC: Frame Sync Pulse Direction Control on \(\overline{\text { SSx }}\) pin bit (Framed SPI mode only)
1 = Frame sync pulse input (Slave mode)
\(0=\) Frame sync pulse output (Master mode)
bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
1 = Frame pulse is active-high
\(0=\) Frame pulse is active-low
bit 28 MSSEN: Master Mode Slave Select Enable bit
1 = Slave select SPI support enabled. The \(\overline{\mathrm{SS}}\) pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
0 = Slave select SPI support is disabled.
bit 27
FRMSYPW: Frame Sync Pulse Width bit
1 = Frame sync pulse is one character wide
\(0=\) Frame sync pulse is one clock wide
bit 26-24 FRMCNT<2:0>: Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed mode.
111 = Reserved
\(110=\) Reserved
101 = Generate a frame sync pulse on every 32 data characters
\(100=\) Generate a frame sync pulse on every 16 data characters
011 = Generate a frame sync pulse on every 8 data characters
\(010=\) Generate a frame sync pulse on every 4 data characters
\(001=\) Generate a frame sync pulse on every 2 data characters
\(000=\) Generate a frame sync pulse on every data character
bit 23 MCLKSEL: Master Clock Enable bit \({ }^{(1)}\)
\(1=\) REFCLKO1 is used by the Baud Rate Generator
\(0=\) PBCLK2 is used by the Baud Rate Generator
bit 22-18 Unimplemented: Read as ' 0 '
Note 1: This bit can only be written when the ON bit = 0. Refer to Section 37.0 "Electrical Characteristics" for maximum clock frequency requirements.
2: This bit is not used in the Framed SPI mode. The user should program this bit to ' 0 ' for the Framed SPI mode (FRMEN = 1).
3: When AUDEN = 1 , the \(\mathrm{SPI} / /^{2} \mathrm{~S}\) module functions as if the CKP bit is equal to ' 1 ', regardless of the actual value of the CKP bit.
4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.3 "Peripheral Pin Select (PPS)" for more information).

\section*{REGISTER 19-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)}
bit 17 SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
1 = Frame synchronization pulse coincides with the first bit clock
\(0=\) Frame synchronization pulse precedes the first bit clock
bit 16 ENHBUF: Enhanced Buffer Enable bit \({ }^{(1)}\)
1 = Enhanced Buffer mode is enabled
\(0=\) Enhanced Buffer mode is disabled
bit 15 ON: \(\mathrm{SPI} / \mathrm{I}^{2} \mathrm{~S}\) Module On bit
\(1=S P I / I^{2} S\) module is enabled
\(0=\mathrm{SP} / / /^{2} \mathrm{~S}\) module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when CPU enters in Idle mode
\(0=\) Continue operation in Idle mode
bit 12 DISSDO: Disable SDOx pin bit \({ }^{(4)}\)
1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
\(0=\) SDOx pin is controlled by the module
bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits
When AUDEN = 1:
\begin{tabular}{ccl}
MODE32 & MODE16 & Communication \\
1 & 1 & 24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame \\
1 & 0 & 32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame \\
0 & 1 & 16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame \\
0 & 0 & 16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame
\end{tabular}

When AUDEN = 0:
MODE32 MODE16
Communication
1 x 32-bit
\(\begin{array}{lll}0 & 1 & \text { 16-bit }\end{array}\)
\(0 \quad 0 \quad\) 8-bit
bit 9 SMP: SPI Data Input Sample Phase bit
Master mode (MSTEN = 1):
1 = Input data sampled at end of data output time
\(0=\) Input data sampled at middle of data output time
Slave mode (MSTEN = 0):
SMP value is ignored when SPI is used in Slave mode. The module always uses SMP \(=0\).
bit 8 CKE: SPI Clock Edge Select bit \({ }^{(2)}\)
1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
\(0=\) Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
bit \(7 \quad\) SSEN: Slave Select Enable (Slave mode) bit
\(1=\overline{S S x}\) pin used for Slave mode
\(0=\overline{S S x}\) pin not used for Slave mode, pin controlled by port function.
bit \(6 \quad\) CKP: Clock Polarity Select bit \({ }^{(3)}\)
1 = Idle state for clock is a high level; active state is a low level
\(0=\) Idle state for clock is a low level; active state is a high level
Note 1: This bit can only be written when the ON bit = 0. Refer to Section 37.0 "Electrical Characteristics" for maximum clock frequency requirements.
2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
3: When AUDEN \(=1\), the \(\mathrm{SPI} / I^{2}\) S module functions as if the CKP bit is equal to ' 1 ', regardless of the actual value of the CKP bit.
4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.3 "Peripheral Pin Select (PPS)" for more information).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 19-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)}
bit 5 MSTEN: Master Mode Enable bit
1 = Master mode
0 = Slave mode
bit 4 DISSDI: Disable SDI bit \({ }^{(4)}\)
1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
\(0=\) SDI pin is controlled by the SPI module
bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
\(11=\) Interrupt is generated when the buffer is not full (has one or more empty elements)
\(10=\) Interrupt is generated when the buffer is empty by one-half or more
\(01=\) Interrupt is generated when the buffer is completely empty
\(00=\) Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
11 = Interrupt is generated when the buffer is full
\(10=\) Interrupt is generated when the buffer is full by one-half or more
\(01=\) Interrupt is generated when the buffer is not empty
\(00=\) Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)

Note 1: This bit can only be written when the ON bit = 0. Refer to Section 37.0 "Electrical Characteristics" for maximum clock frequency requirements.
2: This bit is not used in the Framed SPI mode. The user should program this bit to ' 0 ' for the Framed SPI mode (FRMEN = 1).
3: When \(\operatorname{AUDEN}=1\), the \(\mathrm{SPI} / /^{2} \mathrm{~S}\) module functions as if the CKP bit is equal to ' 1 ', regardless of the actual value of the CKP bit.
4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.3 "Peripheral Pin Select (PPS)" for more information).

REGISTER 19-2: SPIxCON2: SPI CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{25 / 17 / 9 / 1}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & SPISGNEXT & - & - & FRMERREN & SPIROVEN & SPITUREN & IGNROV & IGNTUR \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & U-0 & R/W-0 & R/W-0 \\
\hline & AUDEN \({ }^{(1)}\) & - & - & - & AUDMONO \({ }^{(1,2)}\) & - & \multicolumn{2}{|l|}{AUDMOD<1:0> \({ }^{(1,2)}\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
1 = Data from RX FIFO is sign extended
\(0=\) Data from RX FIFO is not sign extended
bit 14-13 Unimplemented: Read as ' 0 '
bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit
1 = Frame Error overflow generates error events
\(0=\) Frame Error does not generate error events
bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
1 = Receive overflow generates error events
0 = Receive overflow does not generate error events
bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
1 = Transmit Underrun Generates Error Events
0 = Transmit Underrun Does Not Generates Error Events
bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data
\(0=A\) ROV is a critical error which stop SPI operation
bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
\(0=A\) TUR is a critical error which stop SPI operation
bit \(7 \quad\) AUDEN: Enable Audio CODEC Support bit \({ }^{(1)}\)
1 = Audio protocol enabled
\(0=\) Audio protocol disabled
bit 6-5 Unimplemented: Read as ' 0 '
bit 3 AUDMONO: Transmit Audio Data Format bit \({ }^{(1,2)}\)
1 = Audio data is mono (Each data word is transmitted on both left and right channels)
\(0=\) Audio data is stereo
bit 2 Unimplemented: Read as ' 0 '
bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit \({ }^{(1,2)}\)
11 = PCM/DSP mode
\(10=\) Right Justified mode
\(01=\) Left Justified mode
\(00=I^{2} S\) mode

Note 1: This bit can only be written when the ON bit \(=0\).
2: \(\quad\) This bit is only valid for \(\operatorname{AUDEN}=1\).

\section*{REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{RXBUFELM<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TXBUFELM<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/C-0, HS & R-0 & U-0 & U-0 & R-0 \\
\hline & - & - & - & FRMERR & SPIBUSY & - & - & SPITUR \\
\hline \multirow[b]{2}{*}{7:0} & R-0 & R/W-0 & R-0 & U-0 & R-1 & U-0 & R-0 & R-0 \\
\hline & SRMT & SPIROV & SPIRBE & - & SPITBE & - & SPITBF & SPIRBF \\
\hline
\end{tabular}
\begin{tabular}{lll|}
\hline Legend: & \(C=\) Clearable bit & \(H S=\) Set in hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF = 1)
bit 23-21 Unimplemented: Read as ' 0 '
bit 20-16 TXBUFELM<4:0>: Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
bit 15-13 Unimplemented: Read as ' 0 '
bit 12 FRMERR: SPI Frame Error status bit
1 = Frame error detected
\(0=\) No Frame error detected
This bit is only valid when FRMEN = 1 .
bit 11 SPIBUSY: SPI Activity Status bit
1 = SPI peripheral is currently busy with some transactions
\(0=\) SPI peripheral is currently idle
bit 10-9 Unimplemented: Read as ' 0 '
bit \(8 \quad\) SPITUR: Transmit Under Run bit
1 = Transmit buffer has encountered an underrun condition
\(0=\) Transmit buffer has no underrun condition
This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.
bit 7 SRMT: Shift Register Empty bit (valid only when ENHBUF = 1)
1 = When SPI module shift register is empty
\(0=\) When SPI module shift register is not empty
bit 6 SPIROV: Receive Overflow Flag bit
1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
\(0=\) No overflow has occurred
This bit is set in hardware; can only be cleared (= 0) in software.
bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1)
1 = RX FIFO is empty (CRPTR = SWPTR)
\(0=\) RX FIFO is not empty (CRPTR \(\neq\) SWPTR)
bit 4 Unimplemented: Read as ' 0 '

\section*{REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER}
\begin{tabular}{|c|c|}
\hline \multirow[t]{5}{*}{bit 3} & SPITBE: SPI Transmit Buffer Empty Status bit \\
\hline & 1 = Transmit buffer, SPIxTXB is empty \\
\hline & \(0=\) Transmit buffer, SPIxTXB is not empty \\
\hline & Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. \\
\hline & Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB. \\
\hline bit 2 & Unimplemented: Read as '0' \\
\hline \multirow[t]{8}{*}{bit 1} & SPITBF: SPI Transmit Buffer Full Status bit \\
\hline & 1 = Transmit not yet started, SPITXB is full \\
\hline & \(0=\) Transmit buffer is not full \\
\hline & Standard Buffer Mode: \\
\hline & Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. \\
\hline & Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR. \\
\hline & Enhanced Buffer Mode: \\
\hline & Set when CWPTR + 1 = SRPTR; cleared otherwise \\
\hline \multirow[t]{7}{*}{bit 0} & SPIRBF: SPI Receive Buffer Full Status bit \\
\hline & \(1=\) Receive buffer, SPIxRXB is full \\
\hline & \(0=\) Receive buffer, SPIxRXB is not full \\
\hline & Standard Buffer Mode: \\
\hline & Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. \\
\hline & Enhanced Buffer Mode: \\
\hline & Set when SWPTR + 1 = CRPTR; cleared otherwise \\
\hline
\end{tabular}

NOTES:

\subsection*{20.0 SERIAL QUAD INTERFACE (SQI)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 46. "Serial Quad Interface (SQI)" in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The SQI module is a synchronous serial interface that provides access to serial Flash memories and other serial devices. The SQI module supports Single Lane (identical to SPI), Dual Lane, and Quad Lane modes.
The SQI module offers the following key features:
- Supports Single, Dual, and Quad Lane modes
- Programmable command sequence
- eXecute-In-Place (XIP)
- Data transfer:
- Programmed I/O mode (PIO)
- Buffer descriptor DMA
- Supports High-Speed Serial Flash mode and SPI Mode 0 and Mode 3
- Programmable Clock Polarity (CPOL) and Clock Phase (CPHA) bits
- Supports up to two Chip Selects
- Supports up to four bytes of Flash address
- Programmable interrupt thresholds
- 32-byte transmit data buffer
- 32-byte receive data buffer
- 4-word controller buffer

Note: Once the SQI module is configured, external devices are memory mapped into KSEG2 (see Figure 4-1 through Figure 4-4 in Section 4.0 "Memory Organization" for more information). The MMU must be enabled and the TLB must be set up to access this memory (see Section 50. "CPU for Devices with microAptiv \({ }^{\text {TM }}\) Core" (DS60001192) in the "PIC32 Family Reference Manual" for more information).

FIGURE 20-1: SQI MODULE BLOCK DIAGRAM

20.1 SQI Control Registers
TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \stackrel{y}{\ddot{0}} \\
& \stackrel{y}{0} \\
& \stackrel{N}{\mathbb{\alpha}}
\end{aligned}
\]} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & \(17 / 1\) & 16/0 & \\
\hline \multirow[t]{2}{*}{2000} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SQI1 } \\
\text { XCON1 }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{3}{|l|}{DUMMYBYTES<2:0>} & \multicolumn{3}{|l|}{ADDRBYTES<2:0>} & \multicolumn{2}{|l|}{READOPCODE<7:6>} & 0000 \\
\hline & & 15:0 & \multicolumn{6}{|l|}{READOPCODE<5:0>} & \multicolumn{2}{|l|}{TYPEDATA<1:0>} & \multicolumn{2}{|l|}{TYPEDUMMY<1:0>} & \multicolumn{2}{|l|}{TYPEMODE<1:0>} & \multicolumn{2}{|l|}{TYPEADDR<1:0>} & \multicolumn{2}{|l|}{TYPECMD<1:0>} & 0c00 \\
\hline \multirow[t]{2}{*}{2004} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SQI1 } \\
\text { XCON2 }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & \multicolumn{2}{|l|}{DEVSEL<1:0>} & \multicolumn{2}{|l|}{MODEBYTES<1:0>} & \multicolumn{8}{|l|}{MODECODE<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2008} & \multirow[t]{2}{*}{SQI1CFG} & 31:16 & SQIEN & - & - & - & - & - & \multicolumn{2}{|l|}{CSEN<1:0>} & - & - & \multicolumn{2}{|l|}{DATAEN<1:0>} & - & - & - & RESET & 0000 \\
\hline & & 15:0 & - & - & - & BURSTEN & - & HOLD & WP & SERMODE & RXLATCH & - & LSBF & CPOL & CPHA & \multicolumn{3}{|l|}{MODE<2:0>} & 0000 \\
\hline \multirow[t]{2}{*}{200C} & \multirow[t]{2}{*}{SQI1CON} & 31:16 & - & - & - & - & - & - & - & - & - & DASSERT & \multicolumn{2}{|l|}{DEVSEL<1:0>} & \multicolumn{2}{|l|}{LANEMODE<1:0>} & \multicolumn{2}{|l|}{CMDINIT<1:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TXRXCOUNT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2010} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SQI1 } \\
\text { CLKCON }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{8}{|l|}{CLKDIV<7:0>} & - & - & - & - & - & - & STABLE & EN & 0000 \\
\hline \multirow[t]{2}{*}{2014} & \multirow[t]{2}{*}{SQI1 CMDTHR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{5}{|l|}{TXCMDTHR<4:0>} & - & - & - & \multicolumn{5}{|l|}{RXCMDTHR<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2018} & \multirow[t]{2}{*}{SQI1 INTTHR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{5}{|l|}{TXINTTHR<4:0>} & - & - & - & \multicolumn{5}{|l|}{RXINTTHR<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{201C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SQI1 } \\
& \text { INTEN }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & \[
\begin{gathered}
\text { PKT } \\
\text { COMPIE }
\end{gathered}
\] & & \[
\begin{gathered}
\text { CON } \\
\text { THRIE }
\end{gathered}
\] & CON
EMPTYIE & \[
\begin{gathered}
\text { CON } \\
\text { FULLIE }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RX} \\
\text { THRIE }
\end{gathered}
\] & RX FULLIE & RX EMPTYIE & \[
\begin{gathered}
\text { TX } \\
\text { THRIE }
\end{gathered}
\] & \[
\begin{gathered}
\text { TX } \\
\text { FULLIE }
\end{gathered}
\] & TX EMPTYIE & 0000 \\
\hline \multirow[t]{2}{*}{2020} & \multirow[t]{2}{*}{\begin{tabular}{l}
SQI1 \\
INTSTAT
\end{tabular}} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & \[
\begin{array}{|c|}
\hline \text { PKT } \\
\text { COMPIF }
\end{array}
\] & \[
\begin{gathered}
\text { BD } \\
\text { DONEIF }
\end{gathered}
\] & \[
\begin{gathered}
\text { CON } \\
\text { THRIF }
\end{gathered}
\] & \[
\begin{gathered}
\text { CON } \\
\text { EMPTYIF }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CON } \\
& \text { FULLIF }
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{RX} \\
\text { THRIF }
\end{gathered}
\] & \[
\begin{gathered}
\text { RX } \\
\text { FULLIF }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RX} \\
\text { EMPTYIF }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { TX } \\
\text { THRIF }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { TX } \\
\text { FULLIF }
\end{gathered}
\] & TX EMPTYIF & 0000 \\
\hline \multirow[t]{2}{*}{2024} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { SQI1 } \\
\text { TXDATA } \\
\hline
\end{gathered}
\]} & 31:16 & \multicolumn{16}{|l|}{TXDATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{TXDATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2028} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SQI1 } \\
\text { RXDATA }
\end{gathered}
\]} & 31:16 & \multicolumn{16}{|l|}{RXDATA<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{RXDATA<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{202C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SQI1 } \\
& \text { STAT1 }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{TXFIFOFREE<7:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{RXFIFOCNT<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2030} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SQI1 } \\
& \text { STAT2 }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & SQID3 & SQID2 & SQID1 & SQID0 & - & RXUN & TXOV & 00x0 \\
\hline \multirow[t]{2}{*}{2034} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { SQI1 } \\
\text { BDCON }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & START & POLLEN & DMAEN & 0000 \\
\hline \multirow[t]{2}{*}{2038} & \multirow[t]{2}{*}{SQI1BD CURADD} & 31:16 & \multicolumn{16}{|l|}{BDCURRADDR<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{BDCURRADDR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2040} & \multirow[t]{2}{*}{SQI1BD BASEADD} & 31:16 & \multicolumn{16}{|l|}{BDADDR<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{BDADDR<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2044} & \multirow[t]{2}{*}{SQI1BD STAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & & BDST & TE<3:0> & & DMASTART & DMAACTV & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{BDCON<15:0>} & 0000 \\
\hline
\end{tabular}
TABLE 20-1: SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & \(25 / 9\) & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{2048} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { SQI1BD } \\
\text { POLLCON }
\end{array}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{POLLCON<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{204C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SQI1BD } \\
& \text { TXDSTAT }
\end{aligned}
\]} & 31:16 & - & - & - & \multicolumn{4}{|l|}{TXSTATE<3:0>} & - & - & - & - & & & XBUFCNT & 4:0> & & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{TXCURBUFLEN \(<7: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{2050} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { SQI1BD } \\
\text { RXDSTAT }
\end{gathered}
\]} & 31:16 & - & - & - & \multicolumn{4}{|l|}{RXSTATE<3:0>} & - & - & - & - & \multicolumn{5}{|l|}{RXBUFCNT<4:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{RXCURBUFLEN<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2054} & \multirow[t]{2}{*}{SQ11THR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{THRES<6:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2058} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { SQ111NT } \\
& \text { SEN }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & \[
\begin{array}{|c|}
\hline \text { PKT } \\
\text { DONEISE } \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline \mathrm{BD} \\
\text { DONEISE } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { CON } \\
\text { THRISE }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { CON } \\
\text { EMPTYISE } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { CON } \\
& \text { FULLISE }
\end{aligned}
\] & \[
\begin{gathered}
\text { RX } \\
\text { THRISE }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \mathrm{RX} \\
\text { FULLISE } \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\mathrm{RX} \\
\hline \text { EMPTYISE } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { TX } \\
\text { TRRISE }
\end{gathered}
\] & TX
FULISE & \[
\begin{array}{|c|}
\hline \text { TX } \\
\text { EMPTYISE } \\
\hline
\end{array}
\] & 0000 \\
\hline
\end{tabular}

REGISTER 20-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{3}{|c|}{DUMMYBYTES<2:0>} & \multicolumn{3}{|c|}{ADDRBYTES<2:0>} & \multicolumn{2}{|l|}{READOPCODE<7:6>} \\
\hline \multirow[b]{2}{*}{15:8} & & & & & & & R/W-0 & R/W-0 \\
\hline & \multicolumn{6}{|c|}{READOPCODE<5:0>} & \multicolumn{2}{|l|}{TYPEDATA<1:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{2}{|l|}{TYPEDUMMY<1:0>} & \multicolumn{2}{|l|}{TYPEMODE<1:0>} & \multicolumn{2}{|l|}{TYPEADDR<1:0>} & \multicolumn{2}{|l|}{TYPECMD<1:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-21 DUMMYBYTES<2:0>: Transmit Dummy Bytes bits
111 = Transmit seven dummy bytes after the address bytes
-
-
-
011 = Transmit three dummy bytes after the address bytes
010 = Transmit two dummy bytes after the address bytes
001 = Transmit one dummy bytes after the address bytes
\(000=\) Transmit zero dummy bytes after the address bytes
bit 20-18 ADDRBYTES<2:0>: Address Cycle bits
111 = Reserved
-
-
-
101 = Reserved
\(100=\) Four address bytes
011 = Three address bytes
010 = Two address bytes
001 = One address bytes
\(000=\) Zero address bytes
bit 17-10 READOPCODE<7:0>: Op code Value for Read Operation bits
These bits contain the 8-bit op code value for read operation.
bit 9-8 TYPEDATA<1:0>: SQI Type Data Enable bits
The boot controller will receive the data in Single Lane, Dual Lane, or Quad Lane.
11 = Reserved
\(10=\) Quad Lane mode data is enabled
01 = Dual Lane mode data is enabled
\(00=\) Single Lane mode data is enabled
bit 7-6 TYPEDUMMY<1:0>: SQI Type Dummy Enable bits
The boot controller will send the dummy in Single Lane, Dual Lane, or Quad Lane.
11 = Reserved
\(10=\) Quad Lane mode dummy is enabled
01 = Dual Lane mode dummy is enabled
\(00=\) Single Lane mode dummy is enabled

\section*{REGISTER 20-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1 (CONTINUED)}
bit 5-4 TYPEMODE<1:0>: SQI Type Mode Enable bits
The boot controller will send the mode in Single Lane, Dual Lane, or Quad Lane.
11 = Reserved
\(10=\) Quad Lane mode is enabled
01 = Dual Lane mode is enabled
\(00=\) Single Lane mode is enabled
bit 3-2 TYPEADDR<1:0>: SQI Type Address Enable bits
The boot controller will send the address in Single Lane, Dual Lane, or Quad Lane.
11 = Reserved
\(10=\) Quad Lane mode address is enabled
01 = Dual Lane mode address is enabled
\(00=\) Single Lane mode address is enabled
bit 1-0 TYPECMD<1:0>: SQl Type Command Enable bits
The boot controller will send the command in Single Lane, Dual Lane, or Quad Lane.
11 = Reserved
\(10=\) Quad Lane mode command is enabled
\(01=\) Dual Lane mode command is enabled
\(00=\) Single Lane mode command is enabled

REGISTER 20-2: SQI1XCON2: SQI XIP CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{2}{|l|}{DEVSEL<1:0>} & \multicolumn{2}{|l|}{MODEBYTES<1:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MODECODE<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-12 Unimplemented: Read as ' 0 '
bit 11-10 DEVSEL<1:0>: Device Select bits
11 = Reserved
10 = Reserved
01 = Device 1 is selected
\(00=\) Device 0 is selected
bit 9-8 MODEBYTES<1:0>: Mode Byte Cycle Enable bits
\(11=\) Three cycles
10 = Two cycles
01 = One cycle
00 = Zero cycles
bit 7-0 MODECODE<7:0>: Mode Code Value bits
These bits contain the 8 -bit code value for the mode bits.

REGISTER 20-3: SQI1CFG: SQI CONFIGURATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & SQIEN & - & - & - & - & - & \multicolumn{2}{|r|}{CSEN<1:0>} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0, HC \\
\hline & - & - & \multicolumn{2}{|l|}{DATAEN<1:0>} & - & - & - & RESET \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & r-0 & r-0 & R/W-0 & r-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & BURSTEN \({ }^{(1)}\) & - & HOLD & WP & SERMODE \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & RXLATCH & - & LSBF & CPOL & CPHA & \multicolumn{3}{|c|}{MODE<2:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Cleared by hardware & \(r=\) Reserved \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 SQIEN: SQI Enable bit
1 = SQI module is enabled
\(0=\) SQI module is disabled
bit 30-26 Unimplemented: Read as ' 0 '
bit 25-24 CSEN<1:0>: Chip Select Output Enable bits
\(11=\) Chip Select 0 and Chip Select 1 are used
\(10=\) Chip Select 1 is used (Chip Select 0 is not used)
\(01=\) Chip Select 0 is used (Chip Select 1 is not used)
\(00=\) Chip Select 0 and Chip Select 1 are not used
bit 23-22 Unimplemented: Read as ' 0 '
bit 21-20 DATAEN<1:0>: Data Output Enable bits
11 = Reserved
10 = SQID3-SQID0 outputs are enabled
01 = SQID1 and SQID0 data outputs are enabled
\(00=\) SQID0 data output is enabled
bit 19-17 Unimplemented: Read as ' 0 '
bit 16 RESET: Software Reset Select bit
This bit is automatically cleared by the SQI module. All of the internal state machines and FIFO pointers are reset by this reset pulse.
\(1=\) A reset pulse is generated
\(0=\) A reset pulse is not generated
bit 15 Unimplemented: Read as ' 0 '
bit 14-13 Reserved: Must be programmed as ' 0 '
bit 12 BURSTEN: Burst Configuration bit \({ }^{(1)}\)
1 = Burst is enabled
\(0=\) Burst is not enabled
bit 11 Reserved: Must be programmed as ' 0 '
bit 10 HOLD: Hold bit
In Single Lane or Dual Lane mode, this bit is used to drive the SQID3 pin, which can be used for devices with a HOLD input pin. The meaning of the values for this bit will depend on the device to which SQID3 is connected.

Note 1: This bit must be programmed as ' 1 '.

\section*{PIC32MZ Embedded Connectivity (EC) Family}
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{bit 9} & WP: Write Protect bit \\
\hline & In Single Lane or Dual Lane mode, this bit is used to drive the SQID2 pin, which can be used with devices with a write-protect pin. The meaning of the values for this bit will depend on the device to which SQID2 is connected. \\
\hline \multirow[t]{2}{*}{bit 8} & SERMODE: Serial Flash Mode Select bit \\
\hline & \begin{tabular}{l}
1 = Hardware ignores CPHA and CPOL bit settings and sends and latches negative edge of SQI CLK \\
\(0=\) Clock phase and polarity are controlled by the CPHA and CPOL bit settings
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 7} & RXLATCH: RX Latch Control During TX Mode bit \\
\hline & \(1=\) RX Data sent to RX FIFO when CMDINIT<1:0> (SQICON<17:16>) is set to TX \(0=\) RX Data is discarded when CMDINIT (SQICON<17:16>) is set to TX \\
\hline bit 6 & Unimplemented: Read as '0' \\
\hline \multirow[t]{2}{*}{bit 5} & LSBF: Data Format Select bit \\
\hline & \begin{tabular}{l}
\(1=\) LSB is sent or received first \\
\(0=\) MSB is sent or received first
\end{tabular} \\
\hline \multirow[t]{3}{*}{bit 4} & CPOL: Clock Polarity Select bit \\
\hline & 1 = Active-low SQICLK (SQICLK high is the Idle state) \\
\hline & \(0=\) Active-high SQICLK (SQICLK low is the Idle state) \\
\hline \multirow[t]{3}{*}{bit 3} & CPHA: Clock Phase Select bit \\
\hline & 1 = SQICLK starts toggling at the start of the first data bit \\
\hline & \(0=\) SQICLK starts toggling at the middle of the first data bit \\
\hline \multirow[t]{10}{*}{bit 2-0} & MODE<2:0>: Mode Select bits \\
\hline & 111 = Reserved \\
\hline & - \\
\hline & - \\
\hline & - \\
\hline & 100 Reserved \\
\hline & 011 = XIP mode is selected (when this mode is entered, the module behaves as if executing in place (XIP), but uses the register data to control timing) \\
\hline & 010 = DMA mode is selected \\
\hline & 001 = CPU mode is selected (the module is controlled by the CPU in PIO mode. This mode is entered when leaving Boot or XIP mode) \\
\hline & 000 = Reserved \\
\hline
\end{tabular}

Note 1: This bit must be programmed as ' 1 '.

REGISTER 20-4: SQI1CON: SQI CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & DASSERT & \multicolumn{2}{|l|}{DEVSEL<1:0>} & \multicolumn{2}{|l|}{LANEMODE<1:0>} & \multicolumn{2}{|l|}{CMDINIT<1:0>} \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXRXCOUNT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXRXCOUNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-23 Unimplemented: Read as ' 0 '
bit 22 DASSERT: Chip Select Assert bit
1 = Chip Select is deasserted after transmission or reception of the specified number of bytes
\(0=\) Chip Select is not deasserted after transmission or reception of the specified number of bytes
bit 21-20 DEVSEL<1:0>: SQI Device Select bits
11 = Reserved
\(10=\) Reserved
01 = Select Device 1
\(00=\) Select Device 0
bit 19-18 LANEMODE<1:0>: SQI Lane Mode Select bits
11 = Reserved
\(10=\) Quad Lane mode
01 = Dual Lane mode
\(00=\) Single Lane mode
bit 17-16 CMDINIT<1:0>: Command Initiation Mode Select bits
If it is Transmit, commands are initiated based on a write to the transmit register or the contents of TX FIFO. If CMDINIT is Receive, commands are initiated based on reads to the read register or RX FIFO availability.
11 = Reserved
\(10=\) Receive
01 = Transmit
\(00=\) Idle
bit 15-0 TXRXCOUNT<15:0>: Transmit/Receive Count bits
These bits specify the total number of bytes to transmit or received (based on CMDINIT)

REGISTER 20-5: SQI1CLKCON: SQI CLOCK CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CLKDIV<7:0>(1)} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R-0 & R/W-0 \\
\hline & - & - & - & - & - & - & STABLE & EN \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-8 CLKDIV<7:0>: SQI Clock TsQI Frequency Select bit \({ }^{(1)}\)
\(10000000=\) Base clock TBC is divided by 512
\(01000000=\) Base clock TBC is divided by 256
\(00100000=\) Base clock TBC is divided by 128
\(00010000=\) Base clock TBC is divided by 64
\(00001000=\) Base clock TBC is divided by 32
\(00000100=\) Base clock TBC is divided by 16
\(00000010=\) Base clock TBC is divided by 8
\(00000001=\) Base clock TBC is divided by 4
\(00000000=\) Base clock TBC is divided by 2
Setting these bits to ' 00000000 ' specifies the highest frequency of the SQI clock.
bit 7-2 Unimplemented: Read as ' 0 '
bit 1 STABLE: TsQI Clock Stable Select bit
This bit is set to ' 1 ' when the SQI clock, TSQI, is stable after writing a ' 1 ' to the EN bit.
1 = TsQI clock is stable
\(0=\) TSQI clock is not stable
bit \(0 \quad\) EN: TsQI Clock Enable Select bit
When clock oscillation is stable, the SQI module will set the STABLE bit to ' 1 '.
1 = Enable the SQI clock (TSQI) (when clock oscillation is stable, the SQI module sets the STABLE bit to ' 1 ')
\(0=\) Disable the SQI clock (TsQI) (the SQI module should stop its clock to enter a low power state); SFRs can still be accessed, as they use PBCLK5

Note 1: Refer to Table in Section 37.0 "Electrical Characteristics" for the maximum clock frequency specifications.

\section*{REGISTER 20-6: SQI1CMDTHR: SQI COMMAND THRESHOLD REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TXCMDTHR<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{RXCMDTHR<4:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as '0' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-13 Unimplemented: Read as ' 0 '
bit 12-8 TXCMDTHR<4:0>: Transmit Command Threshold bits In transmit initiation mode, the SQI module performs a transmit operation when transmit command threshold bytes are present in the TX FIFO. For 16 -bit mode, the value should be multiple of 2 . These bits should usually be set to ' 1 ' for normal Flash commands, and set to a higher value for page programming. For 16 -bit mode, the value should be a multiple of 2.
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 RXCMDTHR<4:0>: Receive Command Threshold bits \({ }^{(1)}\)
In receive initiation mode, the SQI module attempts to perform receive operations to fetch the receive command threshold number of bytes in the receive buffer. If space for these bytes is not present in the FIFO, the SQI will not initiate a transfer. For 16 -bit mode, the value should be a multiple of 2 .

If software performs any reads, thereby reducing the FIFO count, hardware would initiate a receive transfer to make the FIFO count equal to the value in these bits. If software would not like any more words latched into the FIFO, command initiation mode needs to be changed to Idle before any FIFO reads by software.

In the case of Boot/XIP mode, the SQI module will use the System Bus burst size, instead of the receive command threshold value.

Note 1: These bits should only be programmed when a receive is not active (i.e., during Idle mode or a transmit).

REGISTER 20-7: SQIIINTTHR: SQI INTERRUPT THRESHOLD REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TXINTTHR<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{RXINTTHR<4:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-13 Unimplemented: Read as ' 0 '
bit 12-8 TXINTTHR<4:0>: Transmit Interrupt Threshold bits
A transmit interrupt is set when the transmit FIFO has more space than the transmit interrupt threshold bytes. For 16 -bit mode, the value should be a multiple of 2 .
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 RXINTTHR<4:0>: Receive Interrupt Threshold bits
A receive interrupt is set when the receive FIFO count is larger than or equal to the receive interrupt threshold value. RXINTTHR is the number of bytes in the receive FIFO. For 16-bit mode, the value should be multiple of 2 .

REGISTER 20-8: SQ11INTEN: SQI INTERRUPT ENABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & -2 & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{-}-0\) \\
\cline { 2 - 9 } & \(7: 0\) & - & - & - & - & - & PKTCOMPIE & BDDONEIE \\
CONTHRIE \\
\cline { 2 - 9 } & CONEMPTYIE & CONFULLIE & RXTHRIE & RXFULLIE & RXEMPTYIE & TXTHRIE & TXFULLIE & TXEMPTYIE \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by hardware & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-11 Unimplemented: Read as ' 0 '
bit 10 PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit
1 = Interrupts are enabled
\(0=\) Interrupts are not enabled
bit 9 BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 8 CONTHRIE: Control Buffer Threshold Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 7 CONEMPTYIE: Control Buffer Empty Interrupt bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 6 CONFULLIE: Control Buffer Full Interrupt Enable bit
This bit enables an interrupt when the receive FIFO buffer is full.
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 5 RXTHRIE: Receive Buffer Threshold Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 4 RXFULLIE: Receive Buffer Full Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 3 RXEMPTYIE: Receive Buffer Empty Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 2 TXTHRIE: Transmit Threshold Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit 1 TXFULLIE: Transmit Buffer Full Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled
bit \(0 \quad\) TXEMPTYIE: Transmit Buffer Empty Interrupt Enable bit
1 = Interrupt is enabled
\(0=\) Interrupt is disabled

REGISTER 20-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & HS, R/W-0 & HS, R/W-0 & HS, R/W-0 \\
\hline & - & - & - & - & - & PKT COMPIF & \[
\begin{gathered}
\hline \text { BD } \\
\text { DONEIF }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { CON } \\
\text { THRIF }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{7:0} & HS, R/W-1 & HS, R/W-0 & HS, R/W-1 & HS, R/W-0 & HS, R/W-1 & HS, R/W-1 & HS, R/W-0 & HS, R/W-1 \\
\hline & \[
\begin{gathered}
\text { CON } \\
\text { EMPTYIF }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CON } \\
& \text { FULLIF }
\end{aligned}
\] & RXTHRIF \({ }^{(1)}\) & RXFULLIF & \[
\begin{gathered}
\text { RX } \\
\text { EMPTYIF }
\end{gathered}
\] & TXTHRIF & TXFULLIF & TX EMPTYIF \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by hardware & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-11 Unimplemented: Read as ' 0 '
bit 10 PKTCOMPIF: DMA Buffer Descriptor Processor Packet Completion Interrupt Status bit
1 = DMA BD packet is complete
\(0=\mathrm{DMA}\) BD packet is in progress
bit 9 BDDONEIF: DMA Buffer Descriptor Done Interrupt Status bit
\(1=\) DMA BD process is done
\(0=\) DMA BD process is in progress
bit 8 CONTHRIF: Control Buffer Threshold Interrupt Status bit
\(1=\) The control buffer has more than THRES words of space available
\(0=\) The control buffer has less than THRES words of space available
bit 7 CONEMPTYIF: Control Buffer Empty Interrupt Status bit
1 = Control buffer is empty
\(0=\) Control buffer is not empty
bit 6 CONFULLIF: Control Buffer Full Interrupt Status bit
1 = Control buffer is full
\(0=\) Control buffer is not full
bit 5 RXTHRIF: Receive Buffer Threshold Interrupt Status bit \({ }^{(1)}\)
1 = Receive buffer has more than RXINTTHR words of space available
\(0=\) Receive buffer has less than RXINTTHR words of space available
bit 4 RXFULLIF: Receive Buffer Full Interrupt Status bit
1 = Receive buffer is full
\(0=\) Receive buffer is not full
bit 3 RXEMPTYIF: Receive Buffer Empty Interrupt Status bit
1 = Receive buffer is empty
0 = Receive buffer is not empty
bit 2 TXTHRIF: Transmit Buffer Interrupt Status bit
1 = Transmit buffer has more than TXINTTHR words of space available
\(0=\) Transmit buffer has less than TXINTTHR words of space available

Note 1: In the case of Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a ' 1 ', immediately after a POR until a read request on the System Bus bus is received.

Note: The bits in the register are cleared by writing a ' 1 ' to the corresponding bit position.

\section*{REGISTER 20-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER (CONTINUED)}
bit 1 TXFULLIF: Transmit Buffer Full Interrupt Status bit
\(1=\) The transmit buffer is full
\(0=\) The transmit buffer is not full
bit 0 TXEMPTYIF: Transmit Buffer Empty Interrupt Status bit
1 = The transmit buffer is empty
\(0=\) The transmit buffer has content

Note 1: In the case of Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a ' 1 ', immediately after a POR until a read request on the System Bus bus is received.

Note: The bits in the register are cleared by writing a ' 1 ' to the corresponding bit position.

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 20-10: SQI1TXDATA: SQI TRANSMIT DATA BUFFER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXDATA<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXDATA<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXDATA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXDATA<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-0 TXDATA<31:0>: Transmit Command Data bits
Data is loaded into this register before being transmitted. Just prior to the beginning of a data transfer, the data in TXDATA is loaded into the shift register (SFDR).
Multiple writes to TXDATA can occur even while a transfer is already in progress. There can be a maximum of eight commands that can be queued.

REGISTER 20-11: SQI1RXDATA: SQI RECEIVE DATA BUFFER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{RXDATA<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{RXDATA<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{RXDATA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{RXDATA<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-0 RXDATA<31:0>: Receive Data Buffer bits
At the end of a data transfer, the data in the shift register is loaded into the RXDATA register. This register works like a FIFO. The depth of the receive buffer is eight words. These bits indicate the starting write block address for an erase operation.

REGISTER 20-12: SQI1STAT1: SQI STATUS REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{TXFIFOFREE<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{RXFIFOCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-16 TXFIFOFREE<7:0>: Transmit FIFO Available Word Space bits
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-0 RXFIFOCNT<7:0>: Number of words of read data in the FIFO

REGISTER 20-13: SQI1STAT2: SQI STATUS REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(U-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(U-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(U-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(U-0\) & U-0 & R-0 & R-0 & R-0 & \(U-0\) & \(R-0\) & \(\mathrm{R}-0\) \\
\cline { 2 - 9 } & - & SQID3 & SQID2 & SQID1 & SQID0 & - & \(R X U N\) & TXOV \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-7 Unimplemented: Read as ' 0 '
bit 6 SQID3: SQID3 Status bits
1 = Data is present on SQID3
0 = Data is not present on SQID3
bit 5 SQID2: SQID2 Status bits
1 = Data is present on SQID2
0 = Data is not present on SQID2
bit 4 SQID1: SQID1 Status bits
1 = Data is present on SQID1
0 = Data is not present on SQID1
bit 3 SQID0: SQID0 Status bits
1 = Data is present on SQID0
0 = Data is not present on SQID0
bit 2 Unimplemented: Read as ' 0 '
bit 1 RXUN: Receive FIFO Underflow Status bit 1 = Receive FIFO Underflow has occurred \(0=\) Receive FIFO underflow has not occurred
bit \(0 \quad\) TXOV: Transmit FIFO Overflow Status bit
1 = Transmit FIFO overflow has occurred
\(0=\) Transmit FIFO overflow has not occurred

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 20-14: SQI1BDCON: SQI BUFFER DESCRIPTOR CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & - & \(\mathrm{U}-0\) \\
\hline \multirow{2}{*}{\(7: 0\)} & - & - & - & - & - & - & - & - \\
\cline { 2 - 9 } & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & START & POLLEN & DMAEN \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-3 Unimplemented: Read as ' 0 '
bit 2 START: Buffer Descriptor Processor Start bit 1 = Start the buffer descriptor processor \(0=\) Disable the buffer descriptor processor
bit 1 POLLEN: Buffer Descriptor Poll Enable bit
1 = BDP poll enabled
\(0=\) BDP poll is not enabled
bit 0 DMAEN: DMA Enable bit
\(1=\) DMA is enabled
\(0=\) DMA is disabled

REGISTER 20-15: SQI1BDCURADD: SQI BUFFER DESCRIPTOR CURRENT ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\underset{30 / 22 / 14 / 6}{\text { Bit }}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDCURRADDR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDCURRADDR<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDCURRADDR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDCURRADDR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 BDCURRADDR<31:0>: Current Buffer Descriptor Address bits
These bits contain the address of the current descriptor being processed by the Buffer Descriptor Processor.

REGISTER 20-16: SQI1BDBASEADD: SQI BUFFER DESCRIPTOR BASE ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BDADDR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BDADDR<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BDADDR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BDADDR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-0 BDADDR<31:0>: DMA Base Address bits
These bits contain the base address of the DMA. This register should be updated only when the DMA is idle.

REGISTER 20-17: SQI1BDSTAT: SQI BUFFER DESCRIPTOR STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { Bit } \\
27 / 19 / 11 / 3
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & R-x & R-x & R-x & R-x & R-x & R-x \\
\hline & - & - & \multicolumn{4}{|c|}{BDSTATE<3:0>} & DMASTART & DMAACTV \\
\hline \multirow[t]{2}{*}{15:8} & R-x & R -x \\
\hline & \multicolumn{8}{|c|}{BDCON<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R-x \\
\hline & \multicolumn{8}{|c|}{BDCON<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-22 Unimplemented: Read as ' 0 '
bit 21-18 BDSTATE<3:0>: DMA Buffer Descriptor Processor State Status bits
These bits return the current state of the buffer descriptor processor:
\(5=\) Fetched buffer descriptor is disabled
4 = Descriptor is done
3 = Data phase
2 = Buffer descriptor is loading
1 = Descriptor fetch request is pending
0 = Idle
bit 17 DMASTART: DMA Buffer Descriptor Processor Start Status bit
1 = DMA has started
\(0=\) DMA has not started
bit 16 DMAACTV: DMA Buffer Descriptor Processor Active Status bit
1 = Buffer Descriptor Processor is active
\(0=\) Buffer Descriptor Processor is idle
bit 15-0 BDCON<15:0>: DMA Buffer Descriptor Control Word bits
These bits contain the current buffer descriptor control word.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 20-18: SQI1BDPOLLCON: SQI BUFFER DESCRIPTOR POLL CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline & R/W-0 \\
\hline 15:8 & \multicolumn{8}{|c|}{POLLCON<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{POLLCON<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 POLLCON<15:0>: Buffer Descriptor Processor Poll Status bits
These bits indicate the number of cycles the BDP block would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

\section*{REGISTER 20-19: SQI1BDTXDSTAT: SQI BUFFER DESCRIPTOR DMA TRANSMIT STATUS} REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R-x & R-x & R-x & R-x & U-0 \\
\hline & - & - & - & \multicolumn{4}{|c|}{TXSTATE<3:0>} & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R-x & R-x & R-x & R-x & R-x \\
\hline & - & - & - & \multicolumn{5}{|c|}{TXBUFCNT<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R-x \\
\hline & \multicolumn{8}{|c|}{TXCURBUFLEN<7:0>} \\
\hline
\end{tabular}

Legend:
\begin{tabular}{|lll|}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-25 TXSTATE<3:0>: Current DMA Transmit State Status bits
These bits provide information on the current DMA receive states.
bit 24-21 Unimplemented: Read as ' 0 '
bit 20-16 TXBUFCNT<4:0>: DMA Buffer Byte Count Status bits
These bits provide information on the internal FIFO space.
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-0 TXCURBUFLEN<7:0>: Current DMA Transmit Buffer Length Status bits
These bits provide the length of the current DMA transmit buffer.

\section*{REGISTER 20-20: SQI1BDRXDSTAT: SQI BUFFER DESCRIPTOR DMA RECEIVE STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R-x & R-x & R-x & R-x & U-0 \\
\hline & - & - & - & \multicolumn{4}{|c|}{RXSTATE<3:0>} & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R-x & R-x & R-x & R-x & R-x \\
\hline & - & - & - & \multicolumn{5}{|c|}{RXBUFCNT<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R-x \\
\hline & \multicolumn{8}{|c|}{RXCURBUFLEN<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(\prime 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-25 RXSTATE<3:0>: Current DMA Receive State Status bits
These bits provide information on the current DMA receive states.
bit 24-21 Unimplemented: Read as ' 0 '
bit 20-16 RXBUFCNT<4:0>: DMA Buffer Byte Count Status bits
These bits provide information on the internal FIFO space.
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-0 RXCURBUFLEN<7:0>: Current DMA Receive Buffer Length Status bits These bits provide the length of the current DMA receive buffer.

REGISTER 20-21: SQI1THR: SQI THRESHOLD CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{THRES<6:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-7 Unimplemented: Read as ' 0 '
bit 6-0 THRES<6:0>: SQI Control Threshold Value bits
The SQI control threshold interrupt is asserted when the amount of space in indicated by THRES<6:0> is available in the SQI control buffer.

REGISTER 20-22: SQI1INTSEN: SQI INTERRUPT SIGNAL ENABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{25 / 17 / 9 / 1}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & \begin{tabular}{l}
PKT \\
DONEISE
\end{tabular} & BD DONEISE & \[
\begin{gathered}
\text { CON } \\
\text { THRISE }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \begin{tabular}{l}
CON \\
EMPTYISE
\end{tabular} & CON
FULLISE & \[
\begin{gathered}
\text { RX } \\
\text { THRISE }
\end{gathered}
\] & RX
FULLISE & \begin{tabular}{l}
RX \\
EMPTYISE
\end{tabular} & \[
\begin{gathered}
\text { TX } \\
\text { THRISE }
\end{gathered}
\] & TX
FULLISE & \begin{tabular}{l}
TX \\
EMPTYISE
\end{tabular} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-11 Unimplemented: Read as ' 0 '
bit 10 PKTDONEISE: Receive Error Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 9 BDDONEISE: Transmit Error Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 8 CONTHRISE: Control Buffer Threshold Interrupt Signal Enable bit
\(1=\) Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 7 CONEMPTYISE: Control Buffer Empty Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 6 CONFULLISE: Control Buffer Full Interrupt Signal Enable bit
\(1=\) Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 5 RXTHRISE: Receive Buffer Threshold Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 4 RXFULLISE: Receive Buffer Full Interrupt Signal Enable bit
\(1=\) Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 3 RXEMPTYISE: Receive Buffer Empty Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 2 TXTHRISE: Transmit Buffer Threshold Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 1 TXFULLISE: Transmit Buffer Full Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled
bit 0 TXEMPTYISE: Transmit Buffer Empty Interrupt Signal Enable bit
1 = Interrupt signal is enabled
\(0=\) Interrupt signal is disabled

\subsection*{21.0 INTER-INTEGRATED \\ CIRCUIT \({ }^{\text {TM }}\left(I^{2} C^{\text {TM }}\right.\))}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit \({ }^{\text {TM }}\) (\(\mathrm{I}^{2} \mathrm{C}^{\text {TM }}\))" (DS60001116) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The \(\mathrm{I}^{2} \mathrm{C}\) module provides complete hardware support for both Slave and Multi-Master modes of the \(I^{2} \mathrm{C}\) serial communication standard.
Each \(\mathrm{I}^{2} \mathrm{C}\) module has a 2-pin interface:
- SCLx pin is clock
- SDAx pin is data

Each \(\mathrm{I}^{2} \mathrm{C}\) module offers the following key features:
- \(I^{2} \mathrm{C}\) interface supporting both master and slave operation
- \(1^{2} \mathrm{C}\) Slave mode supports 7 -bit and 10 -bit addressing
- \(1^{2} \mathrm{C}\) Master mode supports 7 -bit and 10 -bit addressing
- \(I^{2} \mathrm{C}\) port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the \(I^{2} \mathrm{C}\) port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- \(I^{2} \mathrm{C}\) supports multi-master operation; detects bus collision and arbitrates accordingly
- Provides support for address bit masking
- SMBus support

Figure 21-1 illustrates the \(\mathrm{I}^{2} \mathrm{C}\) module block diagram.

FIGURE 21-1: \(\quad \mathbf{I}^{2} \mathrm{C}^{\text {TM }}\) BLOCK DIAGRAM

\(21.1 \quad I^{2} \mathrm{C}\) Control Registers
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0000} & \multirow[t]{2}{*}{I2C1CON} & 31:16 & - & - & - & - & - & - & - & - & - & PCIE & SCIE & BOEN & SDAHT & SBCDE & AHEN & DHEN & 0000 \\
\hline & & 15:0 & ON & - & SIDL & SCLREL & STRICT & A10M & DISSLW & SMEN & GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN & 1000 \\
\hline \multirow[t]{2}{*}{0010} & \multirow[t]{2}{*}{I2C1STAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ACKSTAT & TRSTAT & ACKTIM & - & - & BCL & GCSTAT & ADD10 & IWCOL & I2COV & D/A & P & S & R/W & RBF & TBF & 0000 \\
\hline \multirow[t]{2}{*}{0020} & \multirow[t]{2}{*}{I2C1ADD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Register} & 0000 \\
\hline \multirow[t]{2}{*}{0030} & \multirow[t]{2}{*}{I2C1MSK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Mask Register} & 0000 \\
\hline \multirow[t]{2}{*}{0040} & \multirow[t]{2}{*}{I2C1BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Register} & 0000 \\
\hline \multirow[t]{2}{*}{0050} & \multirow[t]{2}{*}{I2C1TRN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{0060} & \multirow[t]{2}{*}{I2C1RCV} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & & & & Receive & Register & & & & 0000 \\
\hline \multirow[t]{2}{*}{0200} & \multirow[t]{2}{*}{I2C2CON} & 31:16 & - & - & - & - & - & - & - & - & - & PCIE & SCIE & BOEN & SDAHT & SBCDE & AHEN & DHEN & 0000 \\
\hline & & 15:0 & ON & - & SIDL & SCLREL & STRICT & A10M & DISSLW & SMEN & GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN & 1000 \\
\hline \multirow[t]{2}{*}{0210} & \multirow[t]{2}{*}{I2C2STAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ACKSTAT & TRSTAT & ACKTIM & - & - & BCL & GCSTAT & ADD10 & IWCOL & I2COV & D/A & P & S & R/W & RBF & TBF & 0000 \\
\hline \multirow[t]{2}{*}{0220} & \multirow[t]{2}{*}{I2C2ADD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Register} & 0000 \\
\hline \multirow[t]{2}{*}{0230} & \multirow[t]{2}{*}{I2C2MSK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Mask Register} & 0000 \\
\hline \multirow[t]{2}{*}{0240} & \multirow[t]{2}{*}{I2C2BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Register} & 0000 \\
\hline \multirow[t]{2}{*}{0250} & \multirow[t]{2}{*}{I2C2TRN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{0260} & \multirow[t]{2}{*}{I2C2RCV} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{0400} & \multirow[t]{2}{*}{I2C3CON} & 31:16 & - & - & - & - & - & - & - & - & - & PCIE & SCIE & BOEN & SDAHT & SBCDE & AHEN & DHEN & 0000 \\
\hline & & 15:0 & ON & - & SIDL & SCLREL & STRICT & A10M & DISSLW & SMEN & GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN & 1000 \\
\hline \multirow[t]{2}{*}{0410} & \multirow[t]{2}{*}{I2C3STAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ACKSTAT & TRSTAT & ACKTIM & - & - & BCL & GCSTAT & ADD10 & IWCOL & I2COV & D/A & P & S & R/W & RBF & TBF & 0000 \\
\hline \multirow[t]{2}{*}{0420} & \multirow[t]{2}{*}{I2C3ADD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Register} & 0000 \\
\hline
\end{tabular}

\footnotetext{
Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal

}
TABLE 21-1: I2C1 THROUGH I2C5 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & \(27 / 11\) & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0430} & \multirow[t]{2}{*}{I2C3MSK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Mask Register} & 0000 \\
\hline \multirow[t]{2}{*}{0440} & \multirow[t]{2}{*}{I2C3BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Register} & 0000 \\
\hline \multirow[t]{2}{*}{0450} & \multirow[t]{2}{*}{I2C3TRN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{0460} & \multirow[t]{2}{*}{I2C3RCV} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{0600} & \multirow[t]{2}{*}{I2C4CON} & 31:16 & - & - & - & - & - & - & - & - & - & PCIE & SCIE & BOEN & SDAHT & SBCDE & AHEN & DHEN & 0000 \\
\hline & & 15:0 & ON & - & SIDL & SCLREL & STRICT & A10M & DISSLW & SMEN & GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN & 1000 \\
\hline \multirow[t]{2}{*}{0610} & \multirow[t]{2}{*}{I2C4STAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ACKSTAT & TRSTAT & ACKTIM & - & - & BCL & GCSTAT & ADD10 & IWCOL & I2COV & D/A & P & S & R/W & RBF & TBF & 0000 \\
\hline \multirow[t]{2}{*}{0620} & \multirow[t]{2}{*}{I2C4ADD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Register} & 0000 \\
\hline \multirow[t]{2}{*}{0630} & \multirow[t]{2}{*}{I2C4MSK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Mask Register} & 0000 \\
\hline \multirow[t]{2}{*}{0640} & \multirow[t]{2}{*}{I2C4BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Register} & 0000 \\
\hline \multirow[t]{2}{*}{0650} & \multirow[t]{2}{*}{I2C4TRN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{0660} & \multirow[t]{2}{*}{I2C4RCV} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{0800} & \multirow[t]{2}{*}{I2C5CON} & 31:16 & - & - & - & - & - & - & - & - & - & PCIE & SCIE & BOEN & SDAHT & SBCDE & AHEN & DHEN & 0000 \\
\hline & & 15:0 & ON & - & SIDL & SCLREL & STRICT & A10M & DISSLW & SMEN & GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN & 1000 \\
\hline \multirow[t]{2}{*}{0810} & \multirow[t]{2}{*}{I2C5STAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ACKSTAT & TRSTAT & ACKTIM & - & - & BCL & GCSTAT & ADD10 & IWCOL & I2COV & D/A & P & S & R/W & RBF & TBF & 0000 \\
\hline \multirow[t]{2}{*}{0820} & \multirow[t]{2}{*}{I2C5ADD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Register} & 0000 \\
\hline \multirow[t]{2}{*}{0830} & \multirow[t]{2}{*}{I2C5MSK} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & \multicolumn{10}{|l|}{Address Mask Register} & 0000 \\
\hline \multirow[t]{2}{*}{0840} & \multirow[t]{2}{*}{I2C5BRG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Register} & 0000 \\
\hline \multirow[t]{2}{*}{0850} & \multirow[t]{2}{*}{I2C5TRN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{0860} & \multirow[t]{2}{*}{I2C5RCV} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline
\end{tabular}

\section*{REGISTER 21-1: I2CxCON: \(I^{2} \mathrm{C}^{\text {TM }}\) CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & R/W-0 \\
\hline & - & PCIE & SCIE & BOEN & SDAHT & SBCDE & AHEN & DHEN \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & R/W-1, HC & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & ON & - & SIDL & SCKREL & STRICT & A10M & DISSLW & SMEN \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0, HC \\
\hline & GCEN & STREN & ACKDT & ACKEN & RCEN & PEN & RSEN & SEN \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Cleared in Hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-23 Unimplemented: Read as ' 0 '
bit 22 PCIE: Stop Condition Interrupt Enable bit (\(I^{2}\) C Slave mode only)
1 = Enable interrupt on detection of Stop condition
0 = Stop detection interrupts are disabled
bit 21 SCIE: Start Condition Interrupt Enable bit (\(I^{2} \mathrm{C}\) Slave mode only)
1 = Enable interrupt on detection of Start or Restart conditions \(0=\) Start detection interrupts are disabled
bit 20 BOEN: Buffer Overwrite Enable bit (\(1^{2} \mathrm{C}\) Slave mode only)
\(1=12 C x R C V\) is updated and \(\overline{A C K}\) is generated for a received address/data byte, ignoring the state of the I2COV bit (I2CxSTAT<6>) only if the RBF bit (I2CxSTAT<2>) \(=0\)
\(0=12 \mathrm{CxRCV}\) is only updated when the I2COV bit (I2CxSTAT<6>) is clear
bit 19 SDAHT: SDA Hold Time Selection bit
\(1=\) Minimum of 300 ns hold time on SDA after the falling edge of SCL
\(0=\) Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 18 SBCDE: Slave Mode Bus Collision Detect Enable bit (\(I^{2} \mathrm{C}\) Slave mode only)
1 = Enable slave bus collision interrupts
0 = Slave bus collision interrupts are disabled
bit 18 AHEN: Address Hold Enable bit (Slave mode only)
1 = Following the 8th falling edge of SCL for a matching received address byte; SCKREL bit will be cleared and the SCL will be held low.
\(0=\) Address holding is disabled
bit 16 DHEN: Data Hold Enable bit (\(I^{2} \mathrm{C}\) Slave mode only)
1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the SCKREL bit and SCL is held low
\(0=\) Data holding is disabled
bit 15
ON: \(I^{2} C\) Enable bit
\(1=\) Enables the \(I^{2} C\) module and configures the SDA and SCL pins as serial port pins
\(0=\) Disables the \(\mathrm{I}^{2} \mathrm{C}\) module; all \(\mathrm{I}^{2} \mathrm{C}\) pins are controlled by PORT functions
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{REGISTER 21-1: I2CxCON: \({ }^{2} \mathrm{C}^{\text {TM }}\) CONTROL REGISTER (CONTINUED)} \\
\hline \multirow[t]{7}{*}{12} & SCLREL: SCLx Release Control bit (when operating as \({ }^{2} \mathrm{C}\) c slave) \\
\hline & 1 = Release SCLx clock \\
\hline & 0 = Hold SCLx clock low (clock stretch) \\
\hline & If STREN = 1: \\
\hline & Bit is R/W (i.e., software can write ' 0 ' to initiate stretch and write ' 1 ' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception. \\
\hline & If STREN \(=0\) \\
\hline & Bit is R/S (i.e., software can only write ' 1 ' to release clock). Hardware clear at beginning of slave transmission. \\
\hline \multirow[t]{2}{*}{bit 11} & STRICT: Strict \({ }^{2} \mathrm{C}\) C Reserved Address Rule Enable bit \\
\hline & \(\begin{aligned} 1 & =\text { Strict reserved addressing is enforced. Device does not respond to reserved address space or generate } \\ & \text { addresses in reserved address space. } \\ 0 & =\text { Strict } 1^{2} \mathrm{C} \text { Reserved Address Rule not enabled }\end{aligned}\) \\
\hline \multirow[t]{3}{*}{bit 10} & A10M: 10-bit Slave Address bit \\
\hline & \(1=12 \mathrm{CxADD}\) is a 10 -bit slave address \\
\hline & \(0=12 \mathrm{C} \times\) ADD is a 7 -bit slave address \\
\hline \multirow[t]{3}{*}{bit 9} & DISSLW: Disable Slew Rate Control bit \\
\hline & 1 = Slew rate control disabled \\
\hline & 0 = Slew rate control enabled \\
\hline \multirow[t]{3}{*}{bit 8} & SMEN: SMBus Input Levels bit \\
\hline & 1 = Enable I/O pin thresholds compliant with SMBus specification \\
\hline & \(0=\) Disable SMBus input thresholds \\
\hline \multirow[t]{3}{*}{bit 7} & GCEN: General Call Enable bit (when operating as \({ }^{2} \mathrm{C}\) slave) \\
\hline & 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) \\
\hline & \(0=\) General call address disabled \\
\hline \multirow[t]{4}{*}{bit 6} & STREN: SCLx Clock Stretch Enable bit (when operating as \({ }^{2} \mathrm{C}\) c slave) \\
\hline & Used in conjunction with SCLREL bit. \\
\hline & 1 = Enable software or receive clock stretching \\
\hline & \(0=\) Disable software or receive clock stretching \\
\hline \multirow[t]{4}{*}{bit 5} & ACKDT: Acknowledge Data bit (when operating as \(\mathrm{I}^{2} \mathrm{C}\) master, applicable during master receive) \\
\hline & Value that is transmitted when the software initiates an Acknowledge sequence. \\
\hline & 1 = Send NACK during Acknowledge \\
\hline & \(0=\) Send ACK during Acknowledge \\
\hline \multirow[t]{3}{*}{bit 4} & ACKEN: Acknowledge Sequence Enable bit (when operating as \({ }^{2} \mathrm{C}\) master, applicable during master receive) \\
\hline & 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. \\
\hline & \(0=\) Acknowledge sequence not in progress \\
\hline \multirow[t]{2}{*}{bit 3} & RCEN: Receive Enable bit (when operating as \(I^{2} \mathrm{C}\) master) \\
\hline & \begin{tabular}{l}
1 = Enables Receive mode for \(I^{2} C\). Hardware clear at end of eighth bit of master receive data byte. \\
\(0=\) Receive sequence not in progress
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 2} & PEN: Stop Condition Enable bit (when operating as \({ }^{2} \mathrm{C}\) master) \\
\hline & \begin{tabular}{l}
1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. \\
\(0=\) Stop condition not in progress
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 1} & RSEN: Repeated Start Condition Enable bit (when operating as \({ }^{2} \mathrm{C}\) master) \\
\hline & \begin{tabular}{l}
\(1=\) Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. \\
\(0=\) Repeated Start condition not in progress
\end{tabular} \\
\hline \multirow[t]{2}{*}{bit 0} & SEN: Start Condition Enable bit (when operating as \(\mathrm{I}^{2} \mathrm{C}\) master) \\
\hline & \begin{tabular}{l}
\(1=\) Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. \\
\(0=\) Start condition not in progress
\end{tabular} \\
\hline
\end{tabular}
bit 12 SCLREL: SCLx Release Control bit (when operating as \({ }^{2} \mathrm{C}\) s slave)
1 = Release SCLx clock
\(0=\) Hold SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software can write '0' to initiate stretch and write ' 1 ' to release clock). Hardware clear at

If STREN \(=0\) :
Bit is R/S (i.e., software can only write ' 1 ' to release clock). Hardware clear at beginning of slave transmission.
bit 11 STRICT: Strict I \({ }^{2} \mathrm{C}\) Reserved Address Rule Enable bit
\(1=\) Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
\(0=\) Strict \(\mathrm{I}^{2} \mathrm{C}\) Reserved Address Rule not enabled
bit 10 A10M: 10-bit Slave Address bit
\(1=I 2 C \times A D D\) is a 10 -bit slave address
\(0=12 \mathrm{CxADD}\) is a 7 -bit slave address
1 = Slew rate control disabled
0 = Slew rate control enabled
bit 8 SMEN: SMBus Input Levels bit
1 = Enable I/O pin thresholds compliant with SMBus specification
0 = Disable SMBus input thresholds
bit 7 GCEN: General Call Enable bit (when operating as \(I^{2} \mathrm{C}\) slave)
1 = Enable interrupt when a general call address is received in the I2CxRSR
(module is enabled for reception)
\(0=\) General call address disabled
Used in conjunction with SCLREL bit.
1 = Enable software or receive clock stretching
- Disable software or receive clock stretching

Value that is transmitted when the software initiates an Acknowledge sequence.
\(1=\) Send NACK during Acknowledge
\(0=\) Send ACK during Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit
(when operating as \({ }^{2} \mathrm{C}\) master, applicable during master receive)
\(1=\) Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.
Hardware clear at end of master Acknowledge sequence.
\(0=\) Acknowledge sequence not in progress
bit \(3 \quad\) RCEN: Receive Enable bit (when operating as \(I^{2} \mathrm{C}\) master)
1 = Enables Receive mode for \(\mathrm{I}^{2} \mathrm{C}\). Hardware clear at end of eighth bit of master receive data byte.
\(0=\) Receive sequence not in progress
bit 2 PEN: Stop Condition Enable bit (when operating as \({ }^{2} \mathrm{C}\) master)
\(1=\) Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.
Stop condition not in progress
\(1=\) Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of
master Repeated Start sequence.
\(0=\) Repeated Start condition not in progress
\(1=\) Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.
\(0=\) Start condition not in progress

\section*{REGISTER 21-2: I2CxSTAT: \(I^{2} C^{\text {TM }}\) STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R-0, HSC & R-0, HSC & R/C-0, HSC & U-0 & U-0 & R/C-0, HS & R-0, HSC & R-0, HSC \\
\hline & ACKSTAT & TRSTAT & ACKTIM & - & - & BCL & GCSTAT & ADD10 \\
\hline \multirow[b]{2}{*}{7:0} & R/C-0, HS & R/C-0, HS & R-0, HSC & R/C-0, HSC & R/C-0, HSC & R-0, HSC & R-0, HSC & R-0, HSC \\
\hline & IWCOL & I2COV & D_A & P & S & R_W & RBF & TBF \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS \(=\) Set in hardware & HSC \(=\) Hardware set/cleared \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' Bit is set & 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ACKSTAT: Acknowledge Status bit
(when operating as \(\mathrm{I}^{2} \mathrm{C}^{\mathrm{TM}}\) master, applicable to master transmit operation)
\(1=\) NACK received from slave
\(0=\) ACK received from slave
Hardware set or clear at end of slave Acknowledge.
bit 14 TRSTAT: Transmit Status bit (when operating as \(I^{2} \mathrm{C}\) master, applicable to master transmit operation)
1 = Master transmit is in progress (8 bits + ACK)
\(0=\) Master transmit is not in progress
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
bit 13 ACKTIM: Acknowledge Time Status bit (Valid in I \({ }^{2}\) C Slave mode only)
\(1=I^{2} \mathrm{C}\) bus is in an Acknowledge sequence, set on 8th falling edge of SCL clock
\(0=\) Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
bit 12-11 Unimplemented: Read as ' 0 '
bit \(10 \quad\) BCL: Master Bus Collision Detect bit
1 = A bus collision has been detected during a master operation
\(0=\) No collision
Hardware set at detection of bus collision.
bit 9 GCSTAT: General Call Status bit
1 = General call address was received
\(0=\) General call address was not received
Hardware set when address matches general call address. Hardware clear at Stop detection.
bit 8 ADD10: 10-bit Address Status bit
1 = 10-bit address was matched
\(0=10\)-bit address was not matched
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
bit 7 IWCOL: Write Collision Detect bit
1 = An attempt to write the I2CxTRN register failed because the \(\mathrm{I}^{2} \mathrm{C}\) module is busy
\(0=\) No collision
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
bit \(6 \quad\) I2COV: Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register is still holding the previous byte
\(0=\) No overflow
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 21-2: I2CxSTAT: \(I^{2} C^{\text {TM }}\) STATUS REGISTER (CONTINUED)}
bit 5 D_A: Data/Address bit (when operating as \(I^{2} C\) slave)
1 = Indicates that the last byte received was data
\(0=\) Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte.
bit \(4 \quad\) P: Stop bit
1 = Indicates that a Stop bit has been detected last
\(0=\) Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit 3 S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
\(0=\) Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2 R_W: Read/Write Information bit (when operating as I \({ }^{2} \mathrm{C}\) slave)
\(1=\) Read - indicates data transfer is output from slave
\(0=\) Write - indicates data transfer is input to slave
Hardware set or clear after reception of \(I^{2} \mathrm{C}\) device address byte.
bit 1 RBF: Receive Buffer Full Status bit
1 = Receive complete, I2CxRCV is full
\(0=\) Receive not complete, I2CxRCV is empty
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0 TBF: Transmit Buffer Full Status bit
1 = Transmit in progress, I2CxTRN is full
\(0=\) Transmit complete, I2CxTRN is empty
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

\subsection*{22.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The UART module is one of the serial I/O modules available in PIC32MZ EC family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA \({ }^{\circledR}\). The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The following are primary features of the UART module:
- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 25 Mbps at 100 MHz (PBCLK2)
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support
Figure 22-1 illustrates a simplified block diagram of the UART module.

FIGURE 22-1: UART SIMPLIFIED BLOCK DIAGRAM

22.1 UART Control Registers
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{2000} & \multirow[t]{2}{*}{U1MODE \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & IREN & RTSMD & - & \multicolumn{2}{|l|}{UEN<1:0>} & WAKE & LPBACK & ABAUD & RXINV & BRGH & \multicolumn{2}{|l|}{PDSEL<1:0>} & STSEL & 0000 \\
\hline \multirow[t]{2}{*}{2010} & \multirow[t]{2}{*}{U1STA \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & ADM_EN & \multicolumn{8}{|l|}{ADDR<7:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{2}{|l|}{UTXISEL<1:0>} & UTXINV & URXEN & UTXBRK & UTXEN & UTXBF & TRMT & \multicolumn{2}{|l|}{URXISEL<1:0>} & ADDEN & RIDLE & PERR & FERR & OERR & URXDA & 0110 \\
\hline \multirow[t]{2}{*}{2020} & \multirow[t]{2}{*}{U1TXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & TX8 & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{2030} & \multirow[t]{2}{*}{U1RXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & RX8 & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{2040} & \multirow[t]{2}{*}{U1BRG \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Prescaler} & 0000 \\
\hline \multirow[t]{2}{*}{2200} & \multirow[t]{2}{*}{U2MODE \({ }^{(1)}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
31: 16 \\
15: 0
\end{gathered}
\]} & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & & ON & - & SIDL & IREN & RTSMD & - & \multicolumn{2}{|l|}{UEN<1:0>} & WAKE & LPBACK & ABAUD & RXINV & BRGH & \multicolumn{2}{|l|}{PDSEL<1:0>} & STSEL & 0000 \\
\hline \multirow[t]{2}{*}{2210} & \multirow[t]{2}{*}{U2STA \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & ADM_EN & \multicolumn{8}{|l|}{ADDR<7:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{2}{|l|}{UTXISEL<1:0>} & UTXINV & URXEN & UTXBRK & UTXEN & UTXBF & TRMT & \multicolumn{2}{|l|}{URXISEL<1:0>} & ADDEN & RIDLE & PERR & FERR & OERR & URXDA & 0110 \\
\hline \multirow[t]{2}{*}{2220} & \multirow[t]{2}{*}{U2TXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & TX8 & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{2230} & \multirow[t]{2}{*}{U2RXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & RX8 & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{2240} & \multirow[t]{2}{*}{U2BRG \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Prescaler} & 0000 \\
\hline \multirow[t]{2}{*}{2400} & \multirow[t]{2}{*}{U3MODE \({ }^{(1)}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
31: 16 \\
15: 0
\end{gathered}
\]} & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & & ON & - & SIDL & IREN & RTSMD & - & \multicolumn{2}{|l|}{UEN < 1:0>} & WAKE & LPBACK & ABAUD & RXINV & BRGH & \multicolumn{2}{|l|}{PDSEL<1:0>} & STSEL & 0000 \\
\hline \multirow[t]{2}{*}{2410} & \multirow[t]{2}{*}{U3STA \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & ADM_EN & \multicolumn{8}{|l|}{ADDR<7:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{2}{|l|}{UTXISEL<1:0>} & UTXINV & URXEN & UTXBRK & UTXEN & UTXBF & TRMT & \multicolumn{2}{|l|}{URXISEL<1:0>} & ADDEN & RIDLE & PERR & FERR & OERR & URXDA & 0110 \\
\hline \multirow[t]{2}{*}{2420} & \multirow[t]{2}{*}{U3TXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & TX8 & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{2430} & \multirow[t]{2}{*}{U3RXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & RX8 & & & & Receive & Register & & & & 0000 \\
\hline \multirow[t]{2}{*}{2440} & \multirow[t]{2}{*}{U3BRG \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Prescaler} & 0000 \\
\hline
\end{tabular}
Legend: \(x=\) unknown value on Reset; — = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.

TABLE 22-1: UART1 THROUGH UART6 REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{2600} & \multirow[t]{2}{*}{U4MODE \({ }^{(1)}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline 31: 16 \\
15: 0
\end{gathered}
\]} & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & & ON & - & SIDL & IREN & RTSMD & - & \multicolumn{2}{|l|}{UEN<1:0>} & WAKE & LPBACK & ABAUD & RXINV & BRGH & \multicolumn{2}{|l|}{PDSEL<1:0>} & STSEL & 0000 \\
\hline \multirow[t]{2}{*}{2610} & \multirow[t]{2}{*}{U4STA \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & ADM_EN & \multicolumn{8}{|l|}{ADDR<7:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{2}{|l|}{UTXISEL<1:0>} & UTXINV & URXEN & UTXBRK & UTXEN & UTXBF & TRMT & URXIS & L<1:0> & ADDEN & RIDLE & PERR & FERR & OERR & URXDA & 0110 \\
\hline \multirow[t]{2}{*}{2620} & \multirow[t]{2}{*}{U4TXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & TX8 & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{2630} & \multirow[t]{2}{*}{U4RXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & RX8 & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{2640} & \multirow[t]{2}{*}{U4BRG \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Prescaler} & 0000 \\
\hline \multirow[t]{2}{*}{2800} & \multirow[t]{2}{*}{U5MODE \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & IREN & RTSMD & - & \multicolumn{2}{|l|}{UEN<1:0>} & WAKE & LPBACK & ABAUD & RXINV & BRGH & \multicolumn{2}{|l|}{PDSEL<1:0>} & STSEL & 0000 \\
\hline \multirow[t]{2}{*}{2810} & \multirow[t]{2}{*}{U5STA \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & ADM_EN & \multicolumn{8}{|l|}{ADDR<7:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{2}{|l|}{UTXISEL<1:0>} & UTXINV & URXEN & UTXBRK & UTXEN & UTXBF & TRMT & \multicolumn{2}{|l|}{URXISEL<1:0>} & ADDEN & RIDLE & PERR & FERR & OERR & URXDA & 0110 \\
\hline \multirow[t]{2}{*}{2820} & \multirow[t]{2}{*}{U5TXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & TX8 & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{2830} & \multirow[t]{2}{*}{U5RXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & R×8 & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{2840} & \multirow[t]{2}{*}{U5BRG \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Prescaler} & 0000 \\
\hline \multirow[t]{2}{*}{2A00} & \multirow[t]{2}{*}{U6MODE \({ }^{(1)}\)} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline 31: 16 \\
15: 0 \\
\hline
\end{array}
\]} & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & & ON & - & SIDL & IREN & RTSMD & - & \multicolumn{2}{|l|}{UEN<1:0>} & WAKE & LPBACK & ABAUD & RXINV & BRGH & \multicolumn{2}{|l|}{PDSEL<1:0>} & STSEL & 0000 \\
\hline \multirow[t]{2}{*}{2A10} & \multirow[t]{2}{*}{U6STA \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & ADM_EN & \multicolumn{8}{|l|}{ADDR<7:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{2}{|l|}{UTXISEL <1:0>} & UTXINV & URXEN & UTXBRK & UTXEN & UTXBF & TRMT & URXIS & L<1:0> & ADDEN & RIDLE & PERR & FERR & OERR & URXDA & 0110 \\
\hline \multirow[t]{2}{*}{2A20} & \multirow[t]{2}{*}{U6TXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & TX8 & \multicolumn{8}{|l|}{Transmit Register} & 0000 \\
\hline \multirow[t]{2}{*}{2A30} & \multirow[t]{2}{*}{U6RXREG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & RX8 & \multicolumn{8}{|l|}{Receive Register} & 0000 \\
\hline \multirow[t]{2}{*}{2A40} & \multirow[t]{2}{*}{U6BRG \({ }^{(1)}\)} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{Baud Rate Generator Prescaler} & 0000 \\
\hline \multicolumn{20}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Legend: \(\mathrm{x}=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. \\
Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of \(0 \times 4,0 \times 8\) and \(0 \times 6\), respectively. See Section 12.2 "CLR, SET, and INV Registers" for tion.
\end{tabular}}} \\
\hline & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

REGISTER 22-1: UxMODE: UARTx MODE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 \\
\hline & ON & - & SIDL & IREN & RTSMD & - & \multicolumn{2}{|r|}{UEN<1:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & WAKE & LPBACK & ABAUD & RXINV & BRGH & \multicolumn{2}{|l|}{PDSEL<1:0>} & STSEL \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: UARTx Enable bit
\(1=\) UARTx is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
\(0=\) UARTx is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx and LATx registers; UARTx power consumption is minimal
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode
\(0=\) Continue operation in Idle mode
bit 12 IREN: IrDA Encoder and Decoder Enable bit
\(1=\operatorname{IrDA}\) is enabled
\(0=\operatorname{lrDA}\) is disabled
bit 11 RTSMD: Mode Selection for \(\overline{U x R T S}\) Pin bit
\(1=\overline{\text { UxRTS }}\) pin is in Simplex mode
\(0=\overline{\text { UxRTS }}\) pin is in Flow Control mode
bit 10 Unimplemented: Read as ' 0 '
bit 9-8 UEN<1:0>: UARTx Enable bits \({ }^{(1)}\)
\(11=U x T X, U x R X\) and UxBCLK pins are enabled and used; \(\overline{U x C T S}\) pin is controlled by corresponding bits in the PORTx register
\(10=U x T X\), UxRX, UxCTS and UxRTS pins are enabled and used
\(01=\) UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
\(00=U x T X\) and UxRX pins are enabled and used; \(\overline{U x C T S}\) and \(\overline{U x R T S} / U x B C L K\) pins are controlled by corresponding bits in the PORTx register
bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
1 = Wake-up enabled
\(0=\) Wake-up disabled
bit 6 LPBACK: UARTx Loopback Mode Select bit
1 = Loopback mode is enabled
\(0=\) Loopback mode is disabled

Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see Section 12.3 "Peripheral Pin Select (PPS)" for more information).

\section*{REGISTER 22-1: UxMODE: UARTx MODE REGISTER (CONTINUED)}
bit 5 ABAUD: Auto-Baud Enable bit
1 = Enable baud rate measurement on the next character - requires reception of Sync character (0x55); cleared by hardware upon completion
\(0=\) Baud rate measurement disabled or completed
bit 4 RXINV: Receive Polarity Inversion bit
1 = UxRX Idle state is ' 0 '
\(0=U \times R X\) Idle state is ' 1 '
bit 3 BRGH: High Baud Rate Enable bit
1 = High-Speed mode \(-4 x\) baud clock enabled
\(0=\) Standard Speed mode \(-16 x\) baud clock enabled
bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
11 = 9-bit data, no parity
\(10=8\)-bit data, odd parity
\(01=8\)-bit data, even parity
00 = 8-bit data, no parity
bit 0 STSEL: Stop Selection bit
1 = 2 Stop bits
\(0=1\) Stop bit

Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see Section 12.3 "Peripheral Pin Select (PPS)" for more information).

\section*{REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & R/W-0 \\
\hline & - & - & - & - & - & - & - & ADM_EN \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADDR<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R-0 & R-1 \\
\hline & \multicolumn{2}{|l|}{UTXISEL<1:0>} & UTXINV & URXEN & UTXBRK & UTXEN & UTXBF & TRMT \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R-1 & R-0 & R-0 & R/W-0 & R-0 \\
\hline & \multicolumn{2}{|l|}{URXISEL<1:0>} & ADDEN & RIDLE & PERR & FERR & OERR & URXDA \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-25 Unimplemented: Read as ' 0 '
bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
\(1=\) Automatic Address Detect mode is enabled
\(0=\) Automatic Address Detect mode is disabled
bit 23-16 ADDR<7:0>: Automatic Address Mask bits
When the ADM_EN bit is ' 1 ', this value defines the address character to use for automatic address detection.
bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits
11 = Reserved, do not use
\(10=\) Interrupt is generated and asserted while the transmit buffer is empty
01 = Interrupt is generated and asserted when all characters have been transmitted
\(00=\) Interrupt is generated and asserted while the transmit buffer contains at least one empty space
bit 13 UTXINV: Transmit Polarity Inversion bit
If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is ' 0 '):
\(1=U x T X\) Idle state is ' 0 '
\(0=U \times T X\) Idle state is ' 1 '
If \(\operatorname{IrDA}\) mode is enabled (i.e., \(\operatorname{IREN}(\mathrm{UxMODE}<12>\)) is ' 1 '):
1 = IrDA encoded UxTX Idle state is ' 1 '
\(0=\operatorname{IrDA}\) encoded UxTX Idle state is ' 0 '
bit 12 URXEN: Receiver Enable bit
1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
\(0=\) UARTx receiver is disabled. UxRX pin is ignored by the UARTx module
bit 11 UTXBRK: Transmit Break bit
1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
\(0=\) Break transmission is disabled or completed
bit 10 UTXEN: Transmit Enable bit
\(1=\) UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
\(0=\) UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset
bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
1 = Transmit buffer is full
\(0=\) Transmit buffer is not full, at least one more character can be written
bit 8 TRMT: Transmit Shift Register is Empty bit (read-only)
1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
\(0=\) Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer

\section*{REGISTER 22-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)}
bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit
11 = Reserved
\(10=\) Interrupt flag bit is asserted while receive buffer is \(3 / 4\) or more full
01 = Interrupt flag bit is asserted while receive buffer is \(1 / 2\) or more full
\(00=\) Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5 ADDEN: Address Character Detect bit (bit 8 of received data \(=1\))
1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect
\(0=\) Address Detect mode is disabled
bit 4 RIDLE: Receiver Idle bit (read-only)
1 = Receiver is Idle
\(0=\) Data is being received
bit 3 PERR: Parity Error Status bit (read-only)
1 = Parity error has been detected for the current character
\(0=\) Parity error has not been detected
bit 2 FERR: Framing Error Status bit (read-only)
1 = Framing error has been detected for the current character
\(0=\) Framing error has not been detected
bit 1 OERR: Receive Buffer Overrun Error Status bit.
This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
1 = Receive buffer has overflowed
\(0=\) Receive buffer has not overflowed
bit 0 URXDA: Receive Buffer Data Available bit (read-only)
\(1=\) Receive buffer has data, at least one more character can be read
\(0=\) Receive buffer is empty

\section*{PIC32MZ Embedded Connectivity (EC) Family}

Figure 22-2 and Figure 22-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 22-2: UART RECEPTION

FIGURE 22-3: \(\quad\) TRANSMISSION (8-BIT OR 9-BIT DATA)

\subsection*{23.0 PARALLEL MASTER PORT (PMP)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable.

Key features of the PMP module include:
- 8-bit,16-bit interface
- Up to 16 programmable address lines
- Up to two Chip Select lines
- Programmable strobe options:
- Individual read and write strobes, or
- Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- Parallel Slave Port support:
- Legacy addressable
- Address support
- 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Operate during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers
Note: On 64-pin devices, data pins PMD<15:8> are not available in 16 -bit Master modes.

FIGURE 23-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.
23.1 PMP Control Registers
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{E000} & \multirow[t]{2}{*}{PMCON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & ON & - & SIDL & \multicolumn{2}{|l|}{ADRMUX<1:0>} & PMPTTL & PTWREN & PTRDEN & \multicolumn{2}{|l|}{CSF \(<1: 0>\)} & ALP & CS2P & CS1P & - & WRSP & RDSP & 0000 \\
\hline \multirow[t]{2}{*}{E010} & \multirow[t]{2}{*}{PMMODE} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & BUSY & \multicolumn{2}{|l|}{|RQM<1:0>} & \multicolumn{2}{|l|}{INCM<1:0>} & MODE16 & \multicolumn{2}{|l|}{MODE<1:0>} & \multicolumn{2}{|l|}{WAITB<1:0>} & \multicolumn{4}{|l|}{WAITM<3:0>} & \multicolumn{2}{|l|}{WAITE<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{E020} & \multirow[t]{2}{*}{PMADDR} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & CS2 & CS1 & \multicolumn{14}{|l|}{ADDR<13:0>} & 0000 \\
\hline \multirow[t]{2}{*}{E030} & \multirow[t]{2}{*}{PMDOUT} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{DATAOUT<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{E040} & \multirow[t]{2}{*}{PMDIN} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{DATAIN \(<31: 0>\)}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{E050} & \multirow[t]{2}{*}{PMAEN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PTEN<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{E060} & \multirow[t]{2}{*}{PMSTAT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & IBF & IBOV & - & - & IB3F & IB2F & IB1F & IBOF & OBE & OBUF & - & - & OB3E & OB2E & OB1E & OBOE & 008E \\
\hline
\end{tabular}
 more information.

REGISTER 23-1: PMCON: PARALLEL PORT CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & ON & - & SIDL & \multicolumn{2}{|l|}{ADRMUX<1:0>} & PMPTTL & PTWREN & PTRDEN \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{2}{|r|}{CSF<1:0> \({ }^{(1)}\)} & ALP(1) & CS2P(1) & CS1P(1) & - & WRSP & RDSP \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Parallel Master Port Enable bit
1 = PMP enabled
\(0=\) PMP disabled, no off-chip access performed
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
\(0=\) Continue module operation in Idle mode
bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins; upper 8 bits are not used
\(10=\) All 16 bits of address are multiplexed on PMD<15:0> pins
\(01=\) Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
\(00=\) Address and data appear on separate pins
bit \(10 \quad\) PMPTTL: PMP Module TTL Input Buffer Select bit
1 = PMP module uses TTL input buffers
\(0=\) PMP module uses Schmitt Trigger input buffer
bit 9 PTWREN: Write Enable Strobe Port Enable bit
1 = PMWR/PMENB port enabled
\(0=\) PMWR/PMENB port disabled
bit 8 PTRDEN: Read/Write Strobe Port Enable bit
1 = PMRD/PMWR port enabled
\(0=\) PMRD/PMWR port disabled
bit 7-6 CSF<1:0>: Chip Select Function bits \({ }^{(1)}\)
11 = Reserved
\(10=\) PMCS1 and PMCS2 function as Chip Select
01 = PMCS2 functions as Chip Select and PMCS1 functions as address bit 14
\(00=\) PMCS1 and PMCS2 function as address bit 14 and address bit 15
bit 5 ALP: Address Latch Polarity bit \({ }^{(1)}\)
\(1=\) Active-high (PMALL and PMALH)
\(0=\) Active-low (\(\overline{\text { PMALL }}\) and \(\overline{\text { PMALH }})\)
bit \(4 \quad\) CS2P: Chip Select 2 Polarity bit \({ }^{(1)}\)
1 = Active-high (PMCS2)
\(0=\) Active-low (PMCS2)
Note 1: These bits have no effect when their corresponding pins are used as address lines.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

Note 1: These bits have no effect when their corresponding pins are used as address lines.

\section*{REGISTER 23-2: PMMODE: PARALLEL PORT MODE REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & R-0 & R/W-0 \\
\hline & BUSY & \multicolumn{2}{|c|}{IRQM<1:0>} & \multicolumn{2}{|c|}{INCM<1:0>} & MODE16 & \multicolumn{2}{|r|}{MODE<1:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{2}{|l|}{WAITB<1:0> \({ }^{(1)}\)} & \multicolumn{4}{|c|}{WAITM<3:0> \({ }^{(1)}\)} & \multicolumn{2}{|l|}{WAITE<1:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 BUSY: Busy bit (Master mode only)
1 = Port is busy
\(0=\) Port is not busy
bit 14-13 IRQM<1:0>: Interrupt Request Mode bits
11 = Reserved, do not use
\(10=\) Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> \(=11\) (Addressable Slave mode only)
\(01=\) Interrupt generated at the end of the read/write cycle
\(00=\) No Interrupt generated
bit 12-11 INCM<1:0>: Increment Mode bits
11 = Slave mode read and write buffers auto-increment (MODE<1:0> \(=00\) only)
\(10=\) Decrement ADDR<15:0> and ADDR<14> by 1 every read/write cycle \({ }^{(2)}\)
\(01=\) Increment ADDR<15:0> and ADDR<14> by 1 every read/write cycle \({ }^{(2)}\)
\(00=\) No increment or decrement of address
bit 10 MODE16: 8/16-bit Mode bit
\(1=16\)-bit mode: a read or write to the data register invokes a single 16-bit transfer
\(0=8\)-bit mode: a read or write to the data register invokes a single 8-bit transfer
bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
\(11=\) Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA \(<x: 0>\), and \(P M D<15: 0>)^{(3)}\)
\(10=\) Master mode 2 (PMCSx, PMRD, PMWR, PMA \(<x: 0>\), and PMD<15:0>) \()^{(3)}\)
01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCSx, PMD \(<7: 0>\), and PMA \(<1: 0>\))
\(00=\) Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCSx, and PMD<7:0>)
bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits \({ }^{(1)}\)
11 = Data wait of 4 TPBCLK2; multiplexed address phase of 4 TPBCLK2
10 = Data wait of 3 TPBCLK2; multiplexed address phase of 3 TPBCLK2
01 = Data wait of 2 TPBCLK2; multiplexed address phase of 2 TPBCLK2
00 = Data wait of 1 TPBCLK2; multiplexed address phase of 1 TPBCLK2 (default)

Note 1: Whenever WAITM \(<3: 0>=0000\), WAITB and WAITE bits are ignored and forced to 1 TPBCLK2 cycle for a write operation; WAITB = 1 TPBCLK2 cycle, WAITE \(=0\) TPBCLK2 cycles for a read operation.
2: Address bits 14 and 15 are is not subject to auto-increment/decrement if configured as Chip Select.
3: The \(\mathrm{PMD}<15: 8>\) bits are not active is the MODE16 bit \(=1\).

\section*{REGISTER 23-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)}
bit 5-2 WAITM<3:0>: Data Read/Write Strobe Wait States bits \({ }^{(1)}\)
1111 = Wait of 16 TPBCLK2
-
-
-
0001 = Wait of 2 TPBCLK2
\(0000=\) Wait of 1 TPBCLK2 (default)
bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits \({ }^{(1)}\)
11 = Wait of 4 TPBCLK2
\(10=\) Wait of 3 TPBCLK2
\(01=\) Wait of 2 TPBCLK2
\(00=\) Wait of 1 TPBCLK2 (default)
For Read operations:
11 = Wait of 3 TPBCLK2
\(10=\) Wait of 2 TPBCLK2
01 = Wait of 1 TPBCLK2
\(00=\) Wait of 0 TPBCLK2 (default)
Note 1: Whenever WAITM \(<3: 0>=0000\), WAITB and WAITE bits are ignored and forced to 1 TPBCLK2 cycle for a write operation; WAITB = 1 TPBCLK2 cycle, WAITE \(=0\) TPBCLK2 cycles for a read operation.
2: Address bits 14 and 15 are is not subject to auto-increment/decrement if configured as Chip Select.
3: The \(\mathrm{PMD}<15: 8>\) bits are not active is the MODE16 bit \(=1\).

REGISTER 23-3: PMADDR: PARALLEL PORT ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit
31/23/15/7 & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{aligned}
& \text { Bit } \\
& \text { 27/19/11/3 }
\end{aligned}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{\(31: 24\)} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & CS2 & CS1 & \multicolumn{6}{|c|}{ADDR<13:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADDR<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 31-16 Unimplemented: Read as ' }0\mathrm{ '
bit 15 CS2: Chip Select 2 bit
When CSF<1:0> = 10 or 01:
1 = Chip Select 2 is active
0 = Chip Select 2 is inactive
When CSF<1:0> = 00:
ADDR<15>: Address bit 15
bit 14 CS1: Chip Select 1 bit
When CSF<1:0> = 10:
1 = Chip Select 1 is active
0 = Chip Select 1 is inactive
When CSF<1:0> = 00:
ADDR<14>: Address bit 14
bit 13-0 ADDR<13:0>: Destination Address bits

```

REGISTER 23-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{2}{|l|}{PTEN<15:14>} & \multicolumn{6}{|c|}{PTEN<13:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PTEN<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(\prime 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-15 Unimplemented: Read as '0'
bit 15-14 PTEN<15:14>: PMCS1 Strobe Enable bits
\(1=\) PMA15 and PMA14 function as either PMA <15:14> or PMCS1 and PMCS2 \({ }^{(1)}\)
\(0=\) PMA15 and PMA14 function as port I/O
bit 13-2 PTEN<13:2>: PMP Address Port Enable bits
1 = PMA<13:2> function as PMP address lines
\(0=\) PMA<13:2> function as port I/O
bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits
\(1=\) PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL \({ }^{(2)}\)
\(0=\) PMA1 and PMA0 pads function as port I/O
Note 1: The use of these pins as PMA15 and PMA14 or CS1 and CS2 is selected by the CSF \(<1: 0>\) bits in the PMCON register.
2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by bits ADRMUX<1:0> in the PMCON register.

REGISTER 23-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & R-0 & R/W-0, HSC & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & IBF & IBOV & - & - & IB3F & IB2F & IB1F & IB0F \\
\hline \multirow[b]{2}{*}{7:0} & R-1 & R/W-0, HSC & U-0 & U-0 & R-1 & R-1 & R-1 & R-1 \\
\hline & OBE & OBUF & - & - & OB3E & OB2E & OB1E & OBOE \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HSC = Set by Hardware; Cleared by Software \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 IBF: Input Buffer Full Status bit
1 = All writable input buffer registers are full
\(0=\) Some or all of the writable input buffer registers are empty
bit 14 IBOV: Input Buffer Overflow Status bit
1 = A write attempt to a full input byte buffer occurred (must be cleared in software)
\(0=\) No overflow occurred
bit 13-12 Unimplemented: Read as ' 0 '
bit 11-8 IBxF: Input Buffer \(\times\) Status Full bits
1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
\(0=\) Input Buffer does not contain any unread data
bit 7 OBE: Output Buffer Empty Status bit
1 = All readable output buffer registers are empty
\(0=\) Some or all of the readable output buffer registers are full
bit 6 OBUF: Output Buffer Underflow Status bit
1 = A read occurred from an empty output byte buffer (must be cleared in software)
\(0=\) No underflow occurred
bit 5-4 Unimplemented: Read as ' 0 '
bit 3-0 OBxE: Output Buffer x Status Empty bits
1 = Output buffer is empty (writing data to the buffer will clear this bit)
\(0=\) Output buffer contains data that has not been transmitted

NOTES:

\subsection*{24.0 EXTERNAL BUS INTERFACE (EBI)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 47. "External Bus Interface (EBI)" in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The External Bus Interface (EBI) module provides a high-speed, convenient way to interface external parallel memory devices to the PIC32MZ EC family device.
With the EBI module, it is possible to connect asynchronous SRAM and NOR Flash devices, as well as non-memory devices such as camera sensors and LCDs.
The features of the EBI module depend on the pin count of the PIC32MZ EC device, as shown in Table 24-1.

TABLE 24-1: EBI MODULE FEATURES
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Feature }} & \multicolumn{3}{|c|}{\begin{tabular}{c}
Number of Device \\
Pins
\end{tabular}} \\
\cline { 2 - 4 } & \(\mathbf{1 0 0}\) & \(\mathbf{1 2 4}\) & \(\mathbf{1 4 4}\) \\
\hline \hline Async SRAM & Y & Y & Y \\
\hline Async NOR Flash & Y & Y & Y \\
\hline Available address lines & 20 & 20 & 24 \\
\hline 8-bit data bus support & Y & Y & Y \\
\hline 16-bit data bus support & Y & Y & Y \\
\hline Available Chip Selects & 1 & 1 & 4 \\
\hline Timing mode sets & 3 & 3 & 3 \\
\hline 8-bit R/W from 16-bit bus & N & N & Y \\
\hline Non-memory device & Y & Y & Y \\
\hline LCD & Y & Y & Y \\
\hline
\end{tabular}

Note: Once the EBI module is configured, external devices will be memory mapped and can be access from KSEG2 memory space (see Figure 4-1 through Figure 4-4 in Section 4.0 "Memory Organization" for more information). The MMU must be enabled and the TLB must be set up to access this memory (see Section 50. "CPU for Devices with microAptiv \({ }^{T M}\) Core" (DS60001192) in the "PIC32 Family Reference Manual" for more information).

FIGURE 24-1: EBI SYSTEM BLOCK DIAGRAM

24.1 EBI Control Registers
 Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. \(\begin{array}{ll}\text { Note } & \text { 1: This register is not available on } 64-\text { pin devices. } \\ & \text { 2: } \text { This register is available on } 144 \text {-pin devices only. }\end{array}\)

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 24-1: EBICSx: EXTERNAL BUS INTERFACE CHIP SELECT REGISTER (' \(\mathbf{x}\) ' = 0-3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CSADDR<15:8>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CSADDR<7:0>} \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 CSADDR<15:0>: Base Address for Device bits
Address in physical memory, which will select the external device.
bit 15-0 Unimplemented: Read as ' 0 '

REGISTER 24-2: EBIMSKx: EXTERNAL BUS INTERFACE ADDRESS MASK REGISTER (' \(x\) ' = 0-3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{REGSEL<2:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{3}{|c|}{MEMTYPE<2:0>} & \multicolumn{5}{|c|}{MEMSIZE<4:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=B i t\) is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-11 Unimplemented: Read as ' 0 '
bit 10-8 REGSEL<2:0>: Timing Register Set for Chip Select ' \(x\) ' bits
111 = Reserved
.
.
011 = Reserved
010 = Use EBISMT2
001 = Use EBISMT1
\(000=\) Use EBISMTO
bit 7-5 MEMTYPE<2:0>: Select Memory Type for Chip Select ' \(x\) ' bits
111 = Reserved
-
-
011 = Reserved
\(010=\) NOR-Flash
001 = SRAM
\(000=\) Reserved
bit 4-0 MEMSIZE<4:0>: Select Memory Size for Chip Select ' \(x\) ' bits \({ }^{(1)}\)
11111 = Reserved
.
\(\cdot\)
01010 = Reserved
\(01001=16\) MB
\(01000=8 \mathrm{MB}\)
\(00111=4 \mathrm{MB}\)
\(00110=2 \mathrm{MB}\)
\(00101=1\) MB
\(00100=512 K B\)
\(00011=256 \mathrm{~KB}\)
\(00010=128 \mathrm{~KB}\)
\(00001=64 \mathrm{~KB}\) (smaller memories alias within this range)
\(00000=\) Chip Select is not used
Note 1: The specified value for these bits depends on the number of available address lines. Refer to the specific device pin table (Table 3 through Table 6) for the available address lines.

\section*{REGISTER 24-3: EBISMTx: EXTERNAL BUS INTERFACE STATIC MEMORY TIMING REGISTER} (' \(x\) ' \(=0-2\))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & RDYMODE & \multicolumn{2}{|l|}{PAGESIZE<1:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 \\
\hline & PAGEMODE & \multicolumn{4}{|c|}{TPRC<3:0> \({ }^{(1)}\)} & \multicolumn{3}{|c|}{TBTA<2:0>(1)} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-1 \\
\hline & \multicolumn{6}{|c|}{TWP<5:0> \({ }^{(1)}\)} & \multicolumn{2}{|l|}{TWR<1:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-1 & R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 \\
\hline & \multicolumn{2}{|c|}{TAS<1:0> \({ }^{(1)}\)} & \multicolumn{6}{|c|}{TRC<5:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-27 Unimplemented: Read as '0'
bit 26 RDYMODE: Data Ready Device Select bit
The device associated with register set ' \(x\) ' is a data-ready device, and will use the EBIRDYx pin.
1 = EBIRDYx input is used
\(0=\) EBIRDYx input is not used
bit 25-24 PAGESIZE<1:0>: Page Size for Page Mode Device bits
11 = 32-word page
\(10=16\)-word page
\(01=8\)-word page
\(00=4\)-word page
bit 23 PAGEMODE: Memory Device Page Mode Support bit
1 = Device supports Page mode
\(0=\) Device does not support Page mode
bit 22-19 TPRC<3:0>: Page Mode Read Cycle Time bits \({ }^{(1)}\)
Read cycle time is TPRC + 1 clock cycle.
bit 18-16 TBTA<2:0>: Data Bus Turnaround Time bits \({ }^{(1)}\)
Clock cycles (0-7) for static memory between read-to-write, write-to-read, and read-to-read when Chip Select changes.
bit 15-10 TWP<5:0>: Write Pulse Width bits \({ }^{(1)}\)
Write pulse width is TWP +1 clock cycle.
bit 9-8 TWR<1:0>: Write Address/Data Hold Time bits \({ }^{(1)}\)
Number of clock cycles to hold address or data on the bus.
bit 7-6 TAS<1:0>: Write Address Setup Time bits \({ }^{(1)}\)
Clock cycles for address setup time. A value of ' 0 ' is only valid in the case of SSRAM.
bit 5-0 TRC<5:0>: Read Cycle Time bits \({ }^{(1)}\)
Read cycle time is TRC +1 clock cycle.
Note 1: Please refer to Section 47. "External Bus Interface (EBI)" in the "PIC32 Family Reference Manual" for the EBI timing diagrams and additional information.

REGISTER 24-4: EBIFTRPD: EXTERNAL BUS INTERFACE FLASH TIMING REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{TRPD<11:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TRPD<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=B i t\) is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-12 Unimplemented: Read as ' 0 '
bit 11-0 TRPD<11:0>: Flash Timing bits
These bits define the number of clock cycles to wait after resetting the external Flash memory before any read/write access.

REGISTER 24-5: EBISMCON: EXTERNAL BUS INTERFACE STATIC MEMORY CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 & R/W-0 \\
\hline & \multicolumn{3}{|c|}{SMDWIDTH2<2:0>} & \multicolumn{3}{|c|}{SMDWIDTH1<2:0>} & \multicolumn{2}{|l|}{SMDWIDTH0<2:1>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-1 \\
\hline & SMDWIDTH0<0> & - & - & - & - & - & - & SMRP \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-13 SMDWIDTH2<2:0>: Static Memory Width for Register EBISMT2 bits
111 = Reserved
\(110=\) Reserved
101 = Reserved
\(100=8\) bits
011 = Reserved
\(010=\) Reserved
\(001=\) Reserved
\(000=16\) bits
bit 12-10 SMDWIDTH1<2:0>: Static Memory Width for Register EBISMT1 bits
111 = Reserved
\(110=\) Reserved
101 = Reserved
\(100=8\) bits
\(011=\) Reserved
\(010=\) Reserved
001 = Reserved
\(000=16\) bits
bit 9-7 SMDWIDTH0<2:0>: Static Memory Width for Register EBISMT0 bits
111 = Reserved
\(110=\) Reserved
101 = Reserved
\(100=8\) bits
011 = Reserved
\(010=\) Reserved
\(001=\) Reserved
\(000=16\) bits
bit 6-1 Unimplemented: Read as ' 0 '
bit \(0 \quad\) SMRP: Flash Reset/Power-down mode Select bit
After a Reset, the controller internally performs a power-down for Flash, and then sets this bit to ' 1 '.
1 = Flash is taken out of Power-down mode
\(0=\) Flash is forced into Power-down mode

NOTES:

\subsection*{25.0 REAL-TIME CLOCK AND CALENDAR (RTCC)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time.

The following are key features of the RTCC module:
- Time: hours, minutes and seconds
- 24-hour format (military time)
- Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month, and one year
- Alarm repeat with decrementing counter
- Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- Leap year correction
- BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: \(\pm 0.66\) seconds error per month
- Calibrates up to 260 ppm of crystal error
- Uses external 32.768 kHz crystal or 32 kHz internal oscillator
- Alarm pulse, seconds clock, or internal clock output on RTCC pin

FIGURE 25-1: RTCC BLOCK DIAGRAM

RTCC Control Registers

 more information.

REGISTER 25-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
30 / 22 / 14 / 6
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
28 / 20 / 12 / 4
\end{array}
\] & \[
\underset{\text { Bit }}{\text { 27/19/11/3 }}
\] & \[
\begin{array}{|c}
\text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & \multicolumn{2}{|r|}{CAL<9:8>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CAL<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & ON(1) & - & SIDL & - & - & \multicolumn{2}{|l|}{RTCCLKSEL<1:0>} & \[
\begin{gathered}
\text { RTC } \\
\text { OUTSEL<1>(2) }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R-0 & U-0 & U-0 & R/W-0 & R-0 & R-0 & R/W-0 \\
\hline & \[
\begin{gathered}
\text { RTC } \\
\text { OUTSEL<0>(2) }
\end{gathered}
\] & \[
\begin{gathered}
\text { RTC } \\
\text { CLKON }
\end{gathered}
\] & - & - & RTC WREN \({ }^{(3)}\) & RTC SYNC & HALFSEC \({ }^{(4)}\) & RTCOE \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-26 Unimplemented: Read as ' 0 '
bit 25-16 CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value
0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute
-
.
\(0000000001=\) Minimum positive adjustment, adds 1 real-time clock pulse every one minute
\(0000000000=\) No adjustment
1111111111 = Minimum negative adjustment, subtracts 1 real-time clock pulse every one minute
-
.
\(1000000000=\) Maximum negative adjustment, subtracts 512 real-time clock pulses every one minute
bit 15 ON: RTCC On bit \({ }^{(1)}\)
\(1=\) RTCC module is enabled
\(0=\) RTCC module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in Idle Mode bit
1 = Disables RTCC operation when CPU enters Idle mode
\(0=\) Continue normal operation when CPU enters Idle mode
bit 12-11 Unimplemented: Read as ' 0 '

Note 1: \(\quad\) The ON bit is only writable when RTCWREN \(=1\).
2: Requires RTCOE \(=1(\) RTCCON \(<0>)\) for the output to be active.
3: The RTCWREN bit can be set only when the write sequence is enabled.
4: This bit is read-only. It is cleared to ' 0 ' on a write to the seconds bit fields (RTCTIME<14:8>).
5: This bit is undefined when RTCCLKSEL<1:0> = 00 (LPRC is the clock source).

\section*{Note: \(\quad\) This register is reset only on a Power-on Reset (POR).}

\section*{REGISTER 25-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER}

\section*{bit 10-9 RTCCLKSEL<1:0>: RTCC Clock Select bits}

When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.
11 = Reserved
10 = Reserved
01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC)
\(00=\) RTCC uses the internal 32 kHz oscillator (LPRC)
bit 8-7 RTCOUTSEL<1:0>: RTCC Output Data Select bits \({ }^{(2)}\)
11 = Reserved
\(10=\) RTCC Clock is presented on the RTCC pin
01 = Seconds Clock is presented on the RTCC pin
\(00=\) Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
bit \(6 \quad\) RTCCLKON: RTCC Clock Enable Status bit \({ }^{(5)}\)
\(1=\) RTCC Clock is actively running
\(0=\) RTCC Clock is not running
bit 5-4 Unimplemented: Read as ' 0 '
bit \(3 \quad\) RTCWREN: Real-Time Clock Value Registers Write Enable bit \({ }^{(3)}\)
1 = Real-Time Clock Value registers can be written to by the user
\(0=\) Real-Time Clock Value registers are locked out from being written to by the user
bit 2 RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
\(0=\) Real-time clock value registers can be read without concern about a rollover ripple
bit 1 HALFSEC: Half-Second Status bit \({ }^{(4)}\)
1 = Second half period of a second
\(0=\) First half period of a second
bit \(0 \quad\) RTCOE: RTCC Output Enable bit
\(1=\) RTCC output is enabled
\(0=\) RTCC output is not enabled
Note 1: The ON bit is only writable when RTCWREN \(=1\).
2: Requires \(\mathrm{RTCOE}=1(\mathrm{RTCCON}<0>)\) for the output to be active.
3: The RTCWREN bit can be set only when the write sequence is enabled.
4: This bit is read-only. It is cleared to ' 0 ' on a write to the seconds bit fields (RTCTIME<14:8>).
5: This bit is undefined when RTCCLKSEL<1:0> \(=00\) (LPRC is the clock source).

\footnotetext{
Note: This register is reset only on a Power-on Reset (POR).
}

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
27 / 19 / 11 / 3
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-0 & R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & ALRMEN \({ }^{(1,2)}\) & \(\mathrm{CHIME}^{(2)}\) & PIV \({ }^{(2)}\) & ALRMSYNC & \multicolumn{4}{|c|}{AMASK<3:0> \({ }^{(2)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ARPT<7:0> \({ }^{(2)}\)} \\
\hline \multicolumn{9}{|l|}{Legend:} \\
\hline \multicolumn{3}{|l|}{\(R=\) Readable bit} & \multicolumn{2}{|l|}{W = Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline \multicolumn{3}{|l|}{\(-\mathrm{n}=\) Value at POR} & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ALRMEN: Alarm Enable bit \({ }^{(1,2)}\)
1 = Alarm is enabled
0 = Alarm is disabled
bit 14 CHIME: Chime Enable bit \({ }^{(2)}\)
1 = Chime is enabled \(-\mathrm{ARPT}<7: 0>\) is allowed to rollover from \(0 \times 00\) to \(0 \times F F\)
\(0=\) Chime is disabled - ARPT<7:0> stops once it reaches \(0 \times 00\)
bit 13 PIV: Alarm Pulse Initial Value bit \({ }^{(2)}\)
When ALRMEN \(=0\), PIV is writable and determines the initial value of the Alarm Pulse.
When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.
bit 12 ALRMSYNC: Alarm Sync bit
1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read.
The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
\(0=\mathrm{ARPT}<7: 0>\) and ALRMEN can be read without concerns of rollover because the prescaler is more than
32 real-time clocks away from a half-second rollover
bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits \({ }^{(2)}\)
\(0000=\) Every half-second
0001 = Every second
\(0010=\) Every 10 seconds
0011 = Every minute
0100 = Every 10 minutes
0101 = Every hour
\(0110=\) Once a day
0111 = Once a week
\(1000=\) Once a month
1001 = Once a year (except when configured for February 29, once every four years)
1010 = Reserved
1011 = Reserved
11xx = Reserved

Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> =00 and CHIME \(=0\).
2: This field should not be written when the RTCC ON bit = ' 1 ' (RTCCON<15>) and ALRMSYNC \(=1\).

\section*{Note: \(\quad\) This register is reset only on a Power-on Reset (POR).}

REGISTER 25-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER (CONTINUED)
bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits \({ }^{(2)}\)
1111111 = Alarm will trigger 256 times
:
-
\(00000000=\) Alarm will trigger one time
The counter decrements on any alarm event. The counter only rolls over from \(0 \times 00\) to \(0 \times F F\) if \(C H I M E=1\).
Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT \(<7: 0>=00\) and CHIME \(=0\).
2: This field should not be written when the RTCC ON bit = ' 1 ’ (RTCCON<15>) and ALRMSYNC = 1 .

Note: \(\quad\) This register is reset only on a Power-on Reset (POR).

REGISTER 25-3: RTCTIME: REAL-TIME CLOCK TIME VALUE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Bit \\
Range
\end{tabular} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-x \\
\hline & \multicolumn{4}{|c|}{HR10<3:0>} & \multicolumn{4}{|c|}{HR01<3:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-x \\
\hline & \multicolumn{4}{|c|}{MIN10<3:0>} & \multicolumn{4}{|c|}{MIN01<3:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-x \\
\hline & \multicolumn{4}{|c|}{SEC10<3:0>} & \multicolumn{4}{|c|}{SEC01<3:0>} \\
\hline \multirow{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as ' 0 '

Note: \(\quad\) This register is only writable when RTCWREN \(=1\) (RTCCON<3>).

REGISTER 25-4: RTCDATE: REAL-TIME CLOCK DATE VALUE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-x \\
\hline & \multicolumn{4}{|c|}{YEAR10<3:0>} & \multicolumn{4}{|c|}{YEAR01<3:0>} \\
\hline \multirow[t]{2}{*}{23:16} & R/W-x \\
\hline & \multicolumn{4}{|c|}{MONTH10<3:0>} & \multicolumn{4}{|c|}{MONTH01<3:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-x \\
\hline & \multicolumn{4}{|c|}{DAY10<3:0>} & \multicolumn{4}{|c|}{DAY01<3:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{WDAY01<3:0>} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{Legend:} \\
\hline \multicolumn{3}{|l|}{\(\mathrm{R}=\) Readable bit} & \multicolumn{2}{|l|}{W = Writable bit} & \multicolumn{4}{|l|}{\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '} \\
\hline \multicolumn{3}{|l|}{-n = Value at POR} & \multicolumn{2}{|l|}{' 1 ' = Bit is set} & \multicolumn{2}{|l|}{' 0 ' = Bit is cleared} & \multicolumn{2}{|l|}{\(x=\) Bit is unknown} \\
\hline
\end{tabular}
bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits
bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit
bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1
bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9
bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3
bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9
bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits, 1 digit; contains a value from 0 to 6

\section*{Note: \(\quad\) This register is only writable when RTCWREN \(=1(\) RTCCON \(<3>)\).}

REGISTER 25-5: ALRMTIME: ALARM TIME VALUE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-x \\
\hline & \multicolumn{4}{|c|}{HR10<3:0>} & \multicolumn{4}{|c|}{HR01<3:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-x \\
\hline & \multicolumn{4}{|c|}{MIN10<3:0>} & \multicolumn{4}{|c|}{MIN01<3:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-x \\
\hline & \multicolumn{4}{|c|}{SEC10<3:0>} & \multicolumn{4}{|c|}{SEC01<3:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10 digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1 digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10 digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1 digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10 digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1 digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as ' 0 '

REGISTER 25-6: ALRMDATE: ALARM DATE VALUE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
27 / 19 / 11 / 3
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R/W-x \\
\hline & \multicolumn{4}{|c|}{MONTH10<3:0>} & \multicolumn{4}{|c|}{MONTH01<3:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-x \\
\hline & \multicolumn{4}{|c|}{DAY10<1:0>} & \multicolumn{4}{|c|}{DAY01<3:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-x & R/W-x & R/W-x & R/W-x \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{WDAY01<3:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1
bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9
bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3
bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9
bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

\subsection*{26.0 CRYPTO ENGINE}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/ PIC32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced, and actions such as encryption, decryption, and authentication can execute much more quickly.
The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/ gather data fetching). An intelligent state machine schedules the Crypto Engines based on the protocol selection and packet boundaries. The hardware engines can perform the encryption and authentication in sequence or in parallel.
The following are key features of the Crypto Engine:
- Bulk ciphers and hash engines
- Integrated DMA to off-load processing:
- Buffer descriptor-based
- Secure association per buffer descriptor
- Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:
- AES:
- 128-bit, 192-bit, and 256-bit key sizes
- CBC, ECB, CTR, CFB, and OFB modes
- DES/TDES:
- CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:
- SHA-1
- SHA-256
- MD-5
- AES-GCM
- HMAC operation (for all authentication engines)

The rate of data that can be processed by the Crypto Engine depends on a number of factors, including:
- Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine
Table 26-1 shows typical performance for various engines.

TABLE 26-1: CRYPTO ENGINE PERFORMANCE
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c}
Engine/ \\
Algorithm
\end{tabular} & \begin{tabular}{c}
Performance \\
Factor \\
(Mbps/MHz)
\end{tabular} & \begin{tabular}{c}
Maximum Mbps \\
(PBCLK5 = 100 MHz)
\end{tabular} \\
\hline \hline DES & 14.4 & 1440 \\
\hline TDES & 6.6 & 660 \\
\hline AES-128 & 9.0 & 900 \\
\hline AES-192 & 7.9 & 790 \\
\hline AES-256 & 7.2 & 720 \\
\hline MD5 & 15.6 & 1560 \\
\hline SHA-1 & 13.2 & 1320 \\
\hline SHA-256 & 9.3 & 930 \\
\hline
\end{tabular}

FIGURE 26-1: CRYPTO ENGINE BLOCK DIAGRAM

26.1 Crypto Engine Control Registers
TABLE 26-2: CRYPTO ENGINE REGISTER MAP
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{y
\(\stackrel{0}{0}\)
¢
¢
¢} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{5000} & \multirow[t]{2}{*}{CEVER} & 31:16 & \multicolumn{8}{|l|}{REVISION<7:0>} & \multicolumn{8}{|l|}{VERSION<7:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ID<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{5004} & \multirow[t]{2}{*}{CECON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & SWRST & SWAPEN & - & - & BDPCHST & BDPPLEN & DMAEN & 0000 \\
\hline \multirow[t]{2}{*}{5008} & \multirow[t]{2}{*}{CEBDADDR} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{BDPADDR<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{500C} & \multirow[t]{2}{*}{CEBDPADDR} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{BASEADDR<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{5010} & \multirow[t]{2}{*}{CESTAT} & 31:16 & \multicolumn{3}{|l|}{ERRMODE<2:0>} & \multicolumn{3}{|l|}{ERROP<2:0>} & \multicolumn{2}{|l|}{ERRPHASE<1:0>} & - & - & \multicolumn{4}{|l|}{BDSTATE<3:0>} & START & ACTIVE & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{BDCTRL<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{5014} & \multirow[t]{2}{*}{CEINTSRC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & AREIF & PKTIF & CBDIF & PENDIF & 0000 \\
\hline \multirow[t]{2}{*}{5018} & \multirow[t]{2}{*}{CEINTEN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & AREIE & PKTIE & CBDIE & PENDIE & 0000 \\
\hline \multirow[t]{2}{*}{501C} & \multirow[t]{2}{*}{CEPOLLCON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{BDPPLCON<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{5020} & \multirow[t]{2}{*}{CEHDLEN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{HDRLEN<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{5024} & \multirow[t]{2}{*}{CETRLLEN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{TRLRLEN<7:0>} & 0000 \\
\hline
\end{tabular}

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 26-1: CEVER: CRYPTO ENGINE REVISION, VERSION, AND ID REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{REVISION<7:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{VERSION<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{ID<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{ID<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-24 REVISION<7:0>: Crypto Engine Revision bits
bit 23-16 VERSION<7:0>: Crypto Engine Version bits
bit 15-0 ID<15:0>: Crypto Engine Identification bits

REGISTER 26-2: CECON: CRYPTO ENGINE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & -2 & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & - & \(\mathrm{U}-0\) & \(\mathrm{R} W-0, \mathrm{HC}\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\cline { 2 - 9 } & - & SWRST & SWAPEN & - & - & BDPCHST & BDPPLEN & DMAEN \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & HC = Cleared by hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-7 Unimplemented: Read as ' 0 '
bit 6 SWRST: Software Reset bit
1 = Initiate a software reset of the Crypto Engine
0 = Normal operation
bit 5 SWAPEN: I/O Swap Enable bit
1 = Input data is byte swapped when read by dedicated DMA
\(0=\) Input data is not byte swapped when read by dedicated DMA
bit 4-3 Unimplemented: Read as ' 0 '
bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit
This bit should be enabled only after all DMA descriptor programming is completed.
\(1=\) BDP descriptor fetch is enabled
\(0=\) BDP descriptor fetch is disabled
bit 1 BDPPLEN: Buffer Descriptor Processor Poll Enable bit
This bit should be enabled only after all DMA descriptor programming is completed.
\(1=\) Poll for descriptor until valid bit is set
\(0=\) Do not poll
bit 0
DMAEN: DMA Enable bit
1 = Crypto Engine DMA is enabled
\(0=\) Crypto Engine DMA is disabled

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 26-3: CEBDADDR: CRYPTO ENGINE BUFFER DESCRIPTOR REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline & R-0 \\
\hline 31.24 & \multicolumn{8}{|c|}{BDPADDR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDPADDR<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDPADDR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDPADDR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 BDPADDR<31:0>: Current Buffer Descriptor Process Address Status bits
These bits contain the current descriptor address that is being processed by the Buffer Descriptor Processor (BDP).

\section*{REGISTER 26-4: CEBDPADDR: CRYPTO ENGINE BUFFER DESCRIPTOR PROCESSOR REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BASEADDR<31:24>} \\
\hline \multirow{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BASEADDR<23:16>} \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BASEADDR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BASEADDR<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{llll|}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(\mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 BASEADDR<31:0>: Buffer Descriptor Base Address bits
These bits contain the physical address of the first Buffer Descriptor in the Buffer Descriptor chain. When enabled, the Crypto DMA begins fetching Buffer Descriptors from this address.

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{3}{|c|}{ERRMODE<2:0>} & \multicolumn{3}{|c|}{ERROP<2:0>} & \multicolumn{2}{|l|}{ERRPHASE<1:0>} \\
\hline \multirow{2}{*}{23:16} & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & - & \multicolumn{4}{|c|}{BDSTATE} & START & ACTIVE \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDCTRL<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{BDCTRL<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-29 ERRMOD<2:0>: Internal Error Mode Status bits
111 = Reserved
110 = Reserved
101 = Reserved
\(100=\) Reserved
011 = CEK operation
\(010=\) KEK operation
001 = Preboot authentication
\(000=\) Normal operation
bit 28-26 ERROP<2:0>: Internal Error Operation Status bits
111 = Reserved
\(110=\) Reserved
101 = Reserved
\(100=\) Authentication
011 = Reserved
010 = Decryption
001 = Encryption
\(000=\) Reserved
bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits
11 = Destination data
\(10=\) Source data
01 = Security Association (SA) access
\(00=\) Buffer Descriptor (BD) access
bit 23-22 Unimplemented: Read as ' 0 '
bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits
These bits contain a number, which indicates the current state of the BDP:
1111 = Reserved
-
0111 = Reserved
\(0110=\) SA fetch
\(0101=\) Fetch BDP is disabled
\(0100=\) Descriptor is done
0011 = Data phase
\(0010=\) BDP is loading
\(0001=\) Descriptor fetch request is pending
\(0000=\) BDP is idle
bit 17 START: DMA Start Status bit
1 = DMA start has occurred
\(0=\) DMA start has not occurred

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 26-5: CESTAT: CRYPTO ENGINE STATUS REGISTER (CONTINUED)
bit 16 ACTIVE: Buffer Descriptor Processor Status bit
\(1=\mathrm{BDP}\) is active
\(0=\mathrm{BDP}\) is idle
bit 15-0 BDCTRL<15:0>: Descriptor Control Word Status bits
These bits contain the current descriptor control word.

REGISTER 26-6: CEINTSRC: CRYPTO ENGINE INTERRUPT SOURCE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Bit \\
Range
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 10 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & - & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) \\
\cline { 2 - 9 } & - & - & - & R-0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-4 Unimplemented: Read as ' 0 '
bit 3 AREIF: Access Response Error Interrupt bit
1 = Error occurred trying to access memory outside the Crypto Engine
\(0=\) No error has occurred
bit 2 PKTIF: DMA Packet Completion Interrupt Status bit
1 = DMA packet was completed
\(0=\) DMA packet was not completed
bit 1 CBDIF: BD Transmit Status bit
1 = Last BD transmit was processed
\(0=\) Last BD transmit has not been processed
bit \(0 \quad\) PENDIF: Crypto Engine Interrupt Pending Status bit
1 = Crypto Engine interrupt is pending (this value is the result of an OR of all interrupts in the Crypto Engine)
\(0=\) Crypto Engine interrupt is not pending

REGISTER 26-7: CEINTEN: CRYPTO ENGINE INTERRUPT ENABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & AREIE & PKTIE & BDPIE & PENDIE \({ }^{(1)}\) \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-4 Unimplemented: Read as ' 0 '
bit 3 AREIE: Access Response Error Interrupt Enable bit
1 = Access response error interrupts are enabled
\(0=\) Access response error interrupts are not enabled
bit 2 PKTIE: DMA Packet Completion Interrupt Enable bit
1 = DMA packet completion interrupts are enabled
\(0=\) DMA packet completion interrupts are not enabled
bit 1 BDPIE: DMA Buffer Descriptor Processor Interrupt Enable bit
1 = BDP interrupts are enabled
\(0=\) BDP interrupts are not enabled
bit \(0 \quad\) PENDIE: Master Interrupt Enable bit \({ }^{(1)}\)
1 = Crypto Engine interrupts are enabled
\(0=\) Crypto Engine interrupts are not enabled

Note 1: The PENDIE bit is a Global enable bit and must be enabled together with the other interrupts desired.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 26-8: CEPOLLCON: CRYPTO ENGINE POLL CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BDPPLCON<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{BDPPLCON<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 BDPPLCON<15:0>: Buffer Descriptor Processor Poll Control bits
These bits determine the number of SYSCLK cycles that the Crypto DMA would wait before refetching the descriptor control word if the Buffer Descriptor fetched was disabled.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 26-9: CEHDLEN: CRYPTO ENGINE HEADER LENGTH REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit 31/23/15/7 & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & Bit 29/21/13/5 & Bit 28/20/12/4 & Bit 27/19/11/3 & Bit 26/18/10/2 & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HDRLEN<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-8 Unimplemented: Read as ' 0 '
bit 7-0 HDRLEN<7:0>: DMA Header Length bits
For every packet, skip this length of locations and start filling the data.

REGISTER 26-10: CETRLLEN: CRYPTO ENGINE TRAILER LENGTH REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TRLRLEN<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}

\footnotetext{
bit 31-8 Unimplemented: Read as ' 0 '
bit 7-0 TRLRLEN<7:0>: DMA Trailer Length bits
For every packet, skip this length of locations at the end of the current packet and start putting the next packet.
}

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{26.2 Crypto Engine Buffer Descriptors}

Host software creates a linked list of buffer descriptors and the hardware updates them. Table 26-3 provides a list of the Crypto Engine buffer descriptors, followed by format descriptions of each buffer descriptor (see Figure 26-2 through Figure 26-9).

TABLE 26-3: CRYPTO ENGINE BUFFER DESCRIPTORS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Name (see Note 1)} & \[
\begin{gathered}
\text { Bit } \\
31 / 2315 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{BD_CTRL} & 31:24 & DESC_EN & - & \multicolumn{3}{|c|}{CRY_MODE<2:0>} & - & - & - \\
\hline & 23:16 & - & SA_FETCH_EN & - & - & LAST_BD & LIFM & PKT_INT_EN & CBD_INT_EN \\
\hline & 15:8 & \multicolumn{8}{|c|}{BD_BUFLEN<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{BD_BUFLEN<7:0>} \\
\hline \multirow[t]{4}{*}{BD_SA_ADDR} & 31:24 & \multicolumn{8}{|c|}{BD_SAADDR<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{BD_SAADDR<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{BD_SAADDR<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{BD_SAADR<7:0>} \\
\hline \multirow[t]{4}{*}{BD_SCRADDR} & 31:24 & \multicolumn{8}{|c|}{BD_SRCADDR<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{BD_SRCADDR<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{BD_SRCADDR<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{BD_SRCADDR<7:0>} \\
\hline \multirow[t]{4}{*}{BD_DSTADDR} & 31:24 & \multicolumn{8}{|c|}{BD_DSTADDR<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{BD_DSTADDR<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{BD_DSTADDR<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{BD_DSTADDR<7:0>} \\
\hline \multirow[t]{4}{*}{BD_NXTPTR} & 31:24 & \multicolumn{8}{|c|}{BD_NXTADDR<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{BD_NXTADDR<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{BD_NXTADDR<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{BD_NXTADDR<7:0>} \\
\hline \multirow[t]{4}{*}{BD_UPDPTR} & 31:24 & \multicolumn{8}{|c|}{BD_UPDADDR<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{BD_UPDADDR<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{BD_UPDADDR<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{BD_UPDADDR<7:0>} \\
\hline \multirow[t]{4}{*}{BD_MSG_LEN} & 31:24 & \multicolumn{8}{|c|}{MSG_LENGTH<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{MSG_LENGTH<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{MSG_LENGTH<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{MSG_LENGTH<7:0>} \\
\hline \multirow[t]{4}{*}{BD_ENC_OFF} & 31:24 & \multicolumn{8}{|c|}{ENCR_OFFSET<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCR_OFFSET<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCR_OFFSET<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCR_OFFSET<7:0>} \\
\hline
\end{tabular}

Note 1: The buffer descriptor must be allocated in memory on a 64-bit boundary.

FIGURE 26-2: FORMAT OF BD_CTRL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{aligned}
& \text { Bit } \\
& \text { 25/17/9/1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & DESC_EN & - & \multicolumn{3}{|c|}{CRY_MODE<2:0>} & - & - & - \\
\hline 23-16 & - & \[
\begin{gathered}
\text { SA_-} \\
\text { FETCH_EN }
\end{gathered}
\] & - & - & LAST_BD & LIFM & \[
\begin{aligned}
& \text { PKT_} \\
& \text { INT_EN }
\end{aligned}
\] & \[
\begin{gathered}
\text { CBD_- } \\
\text { INT_EN }
\end{gathered}
\] \\
\hline 15-8 & \multicolumn{8}{|c|}{BD_BUFLEN<15:8>} \\
\hline 7-0 & \multicolumn{8}{|c|}{BD_BUFLEN<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline bit 31 & \begin{tabular}{l}
DESC_EN: Descriptor Enable \\
1 = The descriptor is owned by hardware. After processing the BD, hardware resets this bit to ' 0 '. \\
\(0=\) The descriptor is owned by software
\end{tabular} \\
\hline bit 30 & Unimplemented: Must be written as ' 0 ' \\
\hline \multirow[t]{9}{*}{bit 29-27} & CRY_MODE<2:0>: Crypto Mode \\
\hline & 111 = Reserved \\
\hline & \(110=\) Reserved \\
\hline & 101 = Reserved \\
\hline & \(100=\) Reserved \\
\hline & 011 = CEK operation \\
\hline & 010 K KEK operation \\
\hline & 001 = Preboot authentication \\
\hline & \(000=\) Normal operation \\
\hline \multirow[t]{3}{*}{bit 22} & SA_FETCH_EN: Fetch Security Association From External Memory \\
\hline & \(1=\) Fetch SA from the SA pointer. This bit needs to be set to ' 1 ' for every new packet. \\
\hline & \(0=\) Use current fetched SA or the internal SA \\
\hline bit 21-20 & Unimplemented: Must be written as ' 0 ' \\
\hline \multirow[t]{4}{*}{bit 19} & LAST_BD: Last Buffer Descriptors \\
\hline & 1 = Last Buffer Descriptor in the chain \\
\hline & \(0=\) More Buffer Descriptors in the chain \\
\hline & After the last BD, the CEBDADDR goes to the base address in CEBDPADDR. \\
\hline \multirow[t]{2}{*}{bit 18} & LIFM: Last In Frame \\
\hline & In case of Receive Packets (from H/W-> Host), this field is filled by the Hardware to indicate whether the packet goes across multiple buffer descriptors. In case of transmit packets (from Host -> H/W), this field indicates whether this BD is the last in the frame. \\
\hline \multirow[t]{2}{*}{bit 17} & PKT_INT_EN: Packet Interrupt Enable \\
\hline & Generate an interrupt after processing the current buffer descriptor, if it is the end of the packet. \\
\hline \multirow[t]{2}{*}{bit 16} & CBD_INT_EN: CBD Interrupt Enable \\
\hline & Generate an interrupt after processing the current buffer descriptor. \\
\hline \multirow[t]{2}{*}{bit 15-0} & BD_BUFLEN<15:0>: Buffer Descriptor Length \\
\hline & This field contains the length of the buffer and is updated with the actual length filled by the receiver. \\
\hline
\end{tabular}

FIGURE 26-3: FORMAT OF BD_SADDR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & \multicolumn{8}{|c|}{BD_SAADDR<31:24>} \\
\hline 23-16 & \multicolumn{8}{|c|}{BD_SAADDR<23:16>} \\
\hline 15-8 & \multicolumn{8}{|c|}{BD_SAADDR<15:8>} \\
\hline 7-0 & \multicolumn{8}{|c|}{BD_SAADDR<7:0>} \\
\hline
\end{tabular}
\(\begin{aligned} \text { bit 31-0 } & \text { BD_SAADDR<31:0>: Security Association IP Session Address } \\ & \text { The sessions' SA pointer has the keys and IV values. }\end{aligned}\)

\section*{PIC32MZ Embedded Connectivity (EC) Family}

FIGURE 26-4: FORMAT OF BD_SRCADDR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\underset{30 / 22 / 14 / 6}{\text { Bit }}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & \multicolumn{8}{|c|}{BD_SCRADDR<31:24>} \\
\hline 23-16 & \multicolumn{8}{|c|}{BD_SCRADDR<23:16>} \\
\hline 15-8 & \multicolumn{8}{|c|}{BD_SCRADDR<15:8>} \\
\hline 7-0 & \multicolumn{8}{|c|}{BD_SCRADDR<7:0>} \\
\hline
\end{tabular}
bit 31-0 BD_SCRADDR: Buffer Source Address
The source address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-5: FORMAT OF BD_DSTADDR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & \multicolumn{8}{|c|}{BD_DSTADDR<31:24>} \\
\hline 23-16 & \multicolumn{8}{|c|}{BD_DSTADDR<23:16>} \\
\hline 15-8 & \multicolumn{8}{|c|}{BD_DSTADDR<15:8>} \\
\hline 7-0 & \multicolumn{8}{|c|}{BD_DSTADDR<7:0>} \\
\hline
\end{tabular}
bit 31-0 BD_DSTADDR: Buffer Destination Address
The destination address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 26-6: FORMAT OF BD_NXTADDR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & \multicolumn{8}{|c|}{BD_NXTADDR<31:24>} \\
\hline 23-16 & \multicolumn{8}{|c|}{BD_NXTADDR<23:16>} \\
\hline 15-8 & \multicolumn{8}{|c|}{BD_NXTADDR<15:8>} \\
\hline 7-0 & \multicolumn{8}{|c|}{BD_NXTADDR<7:0>} \\
\hline
\end{tabular}

\footnotetext{
bit 31-0 BD_NXTADDR: Next BD Pointer Address Has Next Buffer Descriptor
The next buffer can be a next segment of the previous buffer or a new packet.
}

\section*{PIC32MZ Embedded Connectivity (EC) Family}

FIGURE 26-7: FORMAT OF BD_UPDPTR
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & \multicolumn{8}{|c|}{BD_UPDADDR<31:24>} \\
\hline 23-16 & \multicolumn{8}{|c|}{BD_UPDADDR<23:16>} \\
\hline 15-8 & \multicolumn{8}{|c|}{BD_UPDADDR<15:8>} \\
\hline 7-0 & \multicolumn{8}{|c|}{BD_UPDADDR<7:0>} \\
\hline
\end{tabular}
bit 31-0 BD_UPDADDR: UPD Address Location
The update address has the location where the CRDMA results are posted. The updated results are the ICV values, key output values as needed.

FIGURE 26-8: FORMAT OF BD_MSG_LEN
\(\left.\begin{array}{|cccccccc|}\hline \text { Bit } & \text { Bit } \\ \text { Range } & \mathbf{3 1 / 2 3 / 1 5 / 7} & \mathbf{3 0 / 2 2 / 1 4 / 6} & \text { 29/21/13/5 } & \text { 28/20/12/4 } & \text { 27/19/11/3 } & \text { 26/18/10/2 } & \text { 25/17/9/1 } \\ \text { 24/16/8/0 }\end{array}\right]\)
bit 31-0 MSG_LENGTH: Total Message Length
Total message length for the hash and HMAC algorithms in bytes. Total number of crypto bytes in case of GCM algorithm (LEN-C).

FIGURE 26-9: FORMAT OF BD_ENC_OFF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & \multicolumn{8}{|c|}{ENCR_OFFSET<31:24>} \\
\hline 23-16 & \multicolumn{8}{|c|}{ENCR_OFFSET<23:16>} \\
\hline 15-8 & \multicolumn{8}{|c|}{ENCR_OFFSET<15:8>} \\
\hline 7-0 & \multicolumn{8}{|c|}{ENCR_OFFSET<7:0>} \\
\hline
\end{tabular}
bit 31-0 ENCR_OFFSET: Encryption Offset
Encryption offset for the multi-task test cases (both encryption and authentication). The number of AAD bytes in the case of GCM algorithm (LEN-A).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{26.3 Security Association Structure}

Table 26-4 shows the Security Association Structure.
The Crypto Engine uses the Security Association to determine the settings for processing a Buffer Descriptor Processor. The Security Association contains:
- Which algorithm to use
- Whether to use engines in parallel (for both authentication and encryption/decryption)
- The size of the key
- Authentication key
- Encryption/decryption key
- Authentication Initialization Vector (IV)
- Encryption IV

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Name} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{SA_CTRL} & 31:24 & - & - & VERIFY & - & NO_RX & OR_EN & ICVONLY & IRFLAG \\
\hline & 23:16 & LNC & LOADIV & FB & FLAGS & - & - & - & ALGO<6> \\
\hline & 15:8 & \multicolumn{6}{|c|}{ALGO<5:0>} & ENCTYPE & KEYSIZE<1> \\
\hline & 7:0 & KEYSIZE<0> & \multicolumn{3}{|c|}{MULTITASK<2:0>} & \multicolumn{4}{|c|}{CRYPTOALGO<3:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY1} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY2} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY3} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY4} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY5} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY6} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY7} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHKEY8} & 31:24 & \multicolumn{8}{|c|}{AUTHKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCKEY1} & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline SA_ENCKEY2 & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline
\end{tabular}

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Name} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCKEY3} & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCKEY4} & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCKEY5} & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCKEY6} & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCKEY7} & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCKEY8} & 31:24 & \multicolumn{8}{|c|}{ENCKEY<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCKEY<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCKEY<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCKEY<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV1} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV2} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV3} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV4} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV5} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV6} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV7} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_AUTHIV8} & 31:24 & \multicolumn{8}{|c|}{AUTHIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{AUTHIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{AUTHIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{AUTHIV<7:0>} \\
\hline
\end{tabular}

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 26-4: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Name} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\underset{30 / 22 / 14 / 6}{\text { Bit }}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 27/19/11/3 }}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[t]{4}{*}{SA_ENCIV1} & 31:24 & \multicolumn{8}{|c|}{ENCIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCIV2} & 31:24 & \multicolumn{8}{|c|}{ENCIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCIV3} & 31:24 & \multicolumn{8}{|c|}{ENCIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCIV<7:0>} \\
\hline \multirow[t]{4}{*}{SA_ENCIV4} & 31:24 & \multicolumn{8}{|c|}{ENCIV<31:24>} \\
\hline & 23:16 & \multicolumn{8}{|c|}{ENCIV<23:16>} \\
\hline & 15:8 & \multicolumn{8}{|c|}{ENCIV<15:8>} \\
\hline & 7:0 & \multicolumn{8}{|c|}{ENCIV<7:0>} \\
\hline
\end{tabular}

Figure 26-10 shows the Security Association control word structure.
The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

FIGURE 26-10: FORMAT OF SA_CTRL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline 31-24 & - & - & VERIFY & - & NO_RX & OR_EN & ICVONLY & IRFLAG \\
\hline 23-16 & LNC & LOADIV & FB & FLAGS & - & - & - & ALGO<6> \\
\hline 15-8 & \multicolumn{6}{|c|}{ALGO<5:0>} & ENC & \[
\begin{gathered}
\text { KEY } \\
\text { SIZE<1> }
\end{gathered}
\] \\
\hline 7-0 & \[
\begin{gathered}
\text { KEY } \\
\text { SIZE<0> }
\end{gathered}
\] & \multicolumn{3}{|c|}{MULTITASK<2:0>} & \multicolumn{4}{|c|}{CRYPTOALGO<3:0>} \\
\hline
\end{tabular}
bit 31-30 Reserved: Do not use
bit 29 VERIFY: NIST Procedure Verification Setting
1 = NIST procedures are to be used
0 = Do not use NIST procedures
bit 28 Reserved: Do not use
bit 27 NO_RX: Receive DMA Control Setting
1 = Only calculate ICV for authentication calculations
\(0=\) Normal processing
bit 26 OR_EN: OR Register Bits Enable Setting
\(1=\) OR the register bits with the internal value of the CSR register
\(0=\) Normal processing
bit 25 ICVONLY: Incomplete Check Value Only Flag
This affects the SHA-1 algorithm only. It has no effect on the AES algorithm.
1 = Only three words of the HMAC result are available
\(0=\) All results from the HMAC result are available
bit 24 IRFLAG: Immediate Result of Hash Setting
This bit is set when the immediate result for hashing is requested.
1 = Save the immediate result for hashing
\(0=\) Do not save the immediate result
bit 23 LNC: Load New Keys Setting
1 = Load a new set of keys for encryption and authentication
\(0=\) Do not load new keys
bit 22 LOADIV: Load IV Setting
1 = Load the IV from this Security Association
\(0=\) Use the next IV
bit 21 FB: First Block Setting
This bit indicates that this is the first block of data to feed the IV value.
1 = Indicates this is the first block of data
\(0=\) Indicates this is not the first block of data
bit 20 FLAGS: Incoming/Outgoing Flow Setting
1 = Security Association is associated with an outgoing flow
\(0=\) Security Association is associated with an incoming flow
bit 19-17 Reserved: Do not use

Figure 26-10: Format of SA_CTRL (Continued)
bit 16-10 ALGO<6:0>: Type of Algorithm to Use
1xxxxxx = HMAC 1
x1xxxxx = SHA-256
\(x \mathrm{x} 1 \mathrm{xxxx}=\) SHA1
\(\mathrm{xxx} 1 \mathrm{xxx}=\) MD5
\(\mathrm{xxxx} 1 \mathrm{xx}=\) AES
xxxxx1x = TDES
xxxxxx1 = DES
bit 9 ENC: Type of Encryption Setting
1 = Encryption
0 = Decryption
bit 8-7 KEYSIZE<1:0>: Size of Keys in SA_AUTHKEYx or SA_ENCKEYx
11 = Reserved; do not use
\(10=256\) bits
\(01=192\) bits
\(00=128\) bits \(^{(1)}\)
bit 6-4 MULTITASK<2:0>: How to Combine Parallel Operations in the Crypto Engine
111 = Parallel pass (decrypt and authenticate incoming data in parallel)
101 = Pipe pass (encrypt the incoming data, and then perform authentication on the encrypted data)
011 = Reserved
010 = Reserved
001 = Reserved
\(000=\) Encryption or authentication or decryption (no pass)
bit 3-0 CRYPTOALGO: Mode of operation for the Crypto Algorithm
1111 = Reserved
1110 = AES_GCM (for AES processing)
\(1101=\) RCTR \(\quad\) (for AES processing)
\(1100=\) RCBC_MAC (for AES processing)
1011 = ROFB (for AES processing)
\(1010=\) RCFB \(\quad\) (for AES processing)
\(1001=\) RCBC \(\quad\) (for AES processing)
\(1000=\) REBC \(\quad\) (for AES processing)
\(0111=\) TOFB \(\quad\) (for Triple-DES processing)
\(0110=\) TCFB \(\quad\) (for Triple-DES processing)
\(0101=\) TCBC \(\quad\) (for Triple-DES processing)
\(0100=\) TECB \(\quad\) (for Triple-DES processing)
0011 = OFB (for DES processing)
\(0010=\) CFB \(\quad\) (for DES processing)
\(0001=\) CBC \(\quad\) (for DES processing)
\(0000=\) ECB (for DES processing)

Note 1: This setting does not alter the size of SA_AUTHKEYx or SA_ENCKEYx in the Security Association, only the number of bits of SA_AUTHKEYx and SA_ENCKEYx that are used.

\subsection*{27.0 RANDOM NUMBER GENERATOR (RNG)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Random Number Generator (RNG) core implements a thermal noise-based, True Random Number Generator (TRNG) and a cryptographically secure Pseudo-Random Number Generator (PRNG).
The TRNG uses multiple ring oscillators and the inherent thermal noise of integrated circuits to generate true random numbers that can initialize the PRNG.

The PRNG is a flexible LSFR, which is capable of manifesting a maximal length LFSR of up to 64-bits.
The following are some of the key features of the Random Number Generator:
- TRNG:
- Up to 25 Mbps of random bits
- Multi-Ring Oscillator based design
- Built-in Bias Corrector
- PRNG:
- LSFR-based
- Up to 64-bit polynomial length
- Programmable polynomial
- TRNG can be seed value

TABLE 27-1: RANDOM NUMBER GENERATOR BLOCK DIAGRAM

27.1 RNG Control Registers
TABLE 27-2: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{6000} & \multirow[t]{2}{*}{RNGVER} & 31:16 & \multicolumn{16}{|l|}{ID<15:0>} & xxxx \\
\hline & & 15:0 & \multicolumn{8}{|l|}{VERSION<7:0>} & \multicolumn{8}{|l|}{REVISION<7:0>} & xxxx \\
\hline \multirow[t]{2}{*}{6004} & \multirow[t]{2}{*}{RNGCON} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & LOAD & - & CONT & PRNGEN & TRNGEN & \multicolumn{8}{|l|}{PLEN<7:0>} & 0064 \\
\hline \multirow[t]{2}{*}{6008} & \multirow[t]{2}{*}{RNGPOLY1} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{POLY<31:0>}} & FFFF \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{600C} & \multirow[t]{2}{*}{RNGPOLY2} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{POLY<31:0>}} & FFFF \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{6010} & \multirow[t]{2}{*}{RNGNUMGEN1} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{RNG<31:0>}} & FFFF \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & FFFF \\
\hline \multirow[t]{2}{*}{6014} & \multirow[t]{2}{*}{RNGNUMGEN2} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{RNG<31:0>}} & FFFF \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & FFFF \\
\hline \multirow[t]{2}{*}{6018} & \multirow[t]{2}{*}{RNGSEED1} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{SEED<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{601C} & \multirow[t]{2}{*}{RNGSEED2} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{SEED<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{6020} & \multirow[t]{2}{*}{RNGCNT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{RCNT<6:0>} & 0000 \\
\hline
\end{tabular}

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 27-1: RNGVER: RANDOM NUMBER GENERATOR VERSION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{ID<15:8>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{ID<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{VERSION<7:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{REVISION<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(\prime 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 ID<15:0>: Block Identification bits
bit 15-8 VERSION<7:0>: Block Version bits
bit 7-0 REVISION<7:0>: Block Revision bits

REGISTER 27-2: RNGCON: RANDOM NUMBER GENERATOR CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & LOAD & - & CONT & PRNGEN & TRNGEN \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PLEN<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-13 Unimplemented: Read as ' 0 '
bit 12 LOAD: Device Select bit
This bit is self-clearing and is used to load the seed from the TRNG (i.e., the random value) as a seed to the PRNG.
bit 11 Unimplemented: Read as ' 0 '
bit 10 CONT: PRNG Number Shift Enable bit
1 = The PRNG random number is shifted every cycle
\(0=\) The PRNG random number is shifted when the previous value is removed
bit 9 PRNGEN: PRNG Operation Enable bit
1 = PRNG operation is enabled
\(0=\) PRNG operation is not enabled
bit 8 TRNGEN: TRNG Operation Enable bit
1 = TRNG operation is enabled
\(0=\) TRNG operation is not enabled
bit 7-0 PLEN<7:0>: PRNG Polynomial Length bits
These bits contain the length of the polynomial used for the PRNG.

REGISTER 27-3: RNGPOLYx: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER ' \(x\) ' (\(\times x\) ' = 1 OR 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{POLY<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{POLY<23:16>} \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{POLY<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{POLY<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=B i t\) is cleared \\
\hline
\end{tabular}
bit 31-0 POLY<31:0>: PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

REGISTER 27-4: RNGNUMGENx: RANDOM NUMBER GENERATOR REGISTER ' \(x\) ' (' \(x\) ' = 1 OR 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
27 / 19 / 11 / 3
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{RNG<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{RNG<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{RNG<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-1 \\
\hline & \multicolumn{8}{|c|}{RNG<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

REGISTER 27-5: RNGSEEDx: TRUE RANDOM NUMBER GENERATOR SEED REGISTER ' \(x\) ' (' \(x\) ' = 1 OR 2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{SEED<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{SEED<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{SEED<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{SEED<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-0 SEED<31:0>: TRNG MSb/LSb Value bits (RNGSEED1 \(=\) LSb, RNGSEED2 \(=\mathrm{MSb}\))

REGISTER 27-6: RNGCNT: TRUE RANDOM NUMBER GENERATOR COUNT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{RCNT<6:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-7 Unimplemented: Read as ' 0 '
bit 6-0 RCNT<6:0>: Number of Valid TRNG MSB 32 bits

\subsection*{28.0 PIPELINED ANALOG-TODIGITAL CONVERTER (ADC)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "12-bit Pipelined Analog-to-Digital Converter (ADC)" (DS60001194) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MZ EC Pipelined Analog-to-Digital Converter (ADC) includes the following features:
- 10-bit resolution
- Six-stage conversion pipeline
- External voltage reference input pins
- Six Sample and Hold (S\&H) circuits, SH0-SH5:
- Five dedicated S\&H circuits with individual input selection and individual conversion trigger selection for high-speed conversions
- One shared S\&H circuit with automatic Input Scan mode and common conversion trigger selection
- Up to 48 analog input sources, in addition to the internal voltage reference and an internal temperature sensor
- 32-bit conversion result registers with dedicated interrupts:
- Conversion result can be formatted as unsigned or signed fractional or integer data
- Six digital comparators with dedicated interrupts:
- Multiple comparison options
- Assignable to specific analog input
- Six oversampling filters with dedicated interrupts:
- Provides increased resolution
- Assignable to specific analog input
- Operation during Sleep and Idle modes

A simplified block diagram of the ADC1 module is illustrated in Figure 28-1.
Besides the analog inputs that can be converted, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins, and can also be used by other analog module references.
The analog inputs are connected through multiplexers (MUXs) to the S\&H circuits. Each of the dedicated S\&H circuits, is assigned to analog inputs, and can optionally use another analog input in a differential configuration. The dedicated S\&H circuits are used for high-speed and precise sampling/conversion of time sensitive or transient inputs.
The sixth S\&H circuit, SH5, can be used in Input Scan mode and is connected to all the available analog inputs on a device, along with internal voltage
reference and the temperature sensor signals. Input Scan mode sequentially converts user-specified analog input sources. The control registers specify the analog input sources that are included in the scanning sequence.

\subsection*{28.1 ADC Configuration Requirements}

Note: A related code example is available in the latest release of MPLAB Harmony (visit http://www.micochip.com/harmony for more information).
To meet ADC specifications, the following steps must be performed:
1. Set the ADC Configuration words, as follows:
```

AD1CAL1 = 0xF8894530;
AD1CAL2 = 0x01E4AF69;
AD1CAL3 = 0x0FBBBBB8;
AD1CAL4 = 0x000004AC;
AD1CAL5 = 0x02000002;

```
2. Perform self-calibration. The input mode for SHO-SH5 must be set to the unipolar differential input mode by setting the \(S H \times M O D<1: 0>\) bits (AD1MOD<1:0>) = 10 .
Note: SH 0 through SH 4 functionality is not supported, but is required for autocalibration. Sampling must be performed on SH5 only.
3. ADC module access directly by the CPU of any Special Function Registers while the module is operating is not supported. ADC must be configured in DMA mode to read result registers.
4. The ADC Clock (i.e., TAD) must be limited to 1 MHz \(\leq\) TAD \(\leq 16 \mathrm{MHz}\) (i.e., \(1000 \mathrm{~ns} \leq\) TAD \(\leq 62.5 \mathrm{~ns}\).
5. ADC maximum conversion rate:

For ADC SH5: SR = ((SAMC + 1) TAD + 4TAD \()\), SAMC \((\min)=3\).
6. ADC throughput rate:
- Use \(16 x\) hardware oversampling for 125 ksps maximum throughput rate
- Use \(4 x\) hardware oversampling for 500 ksps maximum throughput rate.
Note: Hardware oversampling gives a different bit-length result, depending on the oversampling selected. Refer to the OVRSAM<2:0> bits (AD1FLTRn<28:26>) for details on the output data result for the available oversampling.
7. The first conversion in Oversampling mode after enabling the ADC, regardless of the ADC hardware oversampling filter selected, must be discarded.
8. Use of external low noise voltage reference sources is required (set VREFSEL<2:0> (AD1CON3<12:10>) = 'b011), with a dedicated external voltage source connected to VREF+, and with VREF- tied to external AVss.

FIGURE 28-1: ADC1 MODULE BLOCK DIAGRAM

FIGURE 28-2: DEDICATED S\&H 0-4 BLOCK DIAGRAM

FIGURE 28-3: SHARED S\&H 5 BLOCK DIAGRAM

28.2 ADC Control Registers
TABLE 28-1: ADC REGISTER MA
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Register Name} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \stackrel{y}{0} \\
& \ddot{0} \\
& 0 \\
& \stackrel{\alpha}{4} \\
& \overline{\text { }}
\end{aligned}
\]} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{B000} & \multirow[t]{2}{*}{AD1CON1} & 31:16 & \multicolumn{5}{|l|}{FILTRDLY4:0>} & \multicolumn{5}{|l|}{STRGSRC<4:0>} & - & - & - & \multicolumn{3}{|l|}{EIE<2:0>} & 0000 \\
\hline & & 15:0 & ADCEN & - & ADSIDL & - & FRACT & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{B004} & \multirow[t]{2}{*}{AD1CON2} & 31:16 & ADCRDY & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{SAMC<7:0>} & 0000 \\
\hline & & 15:0 & - & BOOST & LOWPWR & - & - & - & \multicolumn{2}{|l|}{ADCSEL<1:0>} & - & \multicolumn{7}{|l|}{ADCDIV<6:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B008} & \multirow[t]{2}{*}{AD1CON3} & 31:16 & CAL & GSWTRG & RQCNVRT & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{3}{|l|}{VREFSEL<2:0>} & - & - & - & - & \multicolumn{6}{|l|}{ADINSEL<5:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B00C} & \multirow[t]{2}{*}{AD1IMOD} & 31:16 & - & - & - & - & - & - & \multicolumn{2}{|l|}{SH4ALT<1:0>} & \multicolumn{2}{|l|}{SH3ALT<1:0>} & SH2AL & T<1:0> & SH1AL & T<1:0> & SHOAL & T<1:0> & 0000 \\
\hline & & 15:0 & - & - & - & - & \multicolumn{2}{|l|}{SH5MOD<1:0>} & \multicolumn{2}{|l|}{SH4MOD<1:0>} & \multicolumn{2}{|l|}{SH3MOD<1:0>} & \multicolumn{2}{|l|}{SH2MOD<1:0>} & \multicolumn{2}{|l|}{SH1MOD<1:0>} & \multicolumn{2}{|l|}{SH0MOD<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B010} & \multirow[t]{2}{*}{AD1GIRQEN1} & 31:16 & AGIEN31 & AGIEN30 & AGIEN29 & AGIEN28 & AGIEN27 & AGIEN26 & AGIEN25 & AGIEN24 & AGIEN23 & AGIEN22 & AGIEN21 & AGIEN20 & AGIEN19 & AGIEN18 & AGIEN17 & AGIEN16 & 0000 \\
\hline & & 15:0 & AGIEN15 & AGIEN14 & AGIEN13 & AGIEN12 & AGIEN11 & AGIEN10 & AGIEN9 & AGIEN8 & AGIEN7 & AGIEN6 & AGIEN5 & AGIEN4 & AGIEN3 & AGIEN2 & AGIEN1 & AGIEN0 & 0000 \\
\hline \multirow[t]{2}{*}{B014} & \multirow[t]{2}{*}{AD1GIRQEN2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & AGIEN44 & AGIEN43 & AGIEN42 & AGIEN41 & AGIEN40 & AGIEN39 & AGIEN38 & AGIEN37 & AGIEN36 & AGIEN35 & AGIEN34 & AGIEN33 & AGIEN32 & 0000 \\
\hline \multirow[t]{2}{*}{B018} & \multirow[t]{2}{*}{AD1CSS1} & 31:16 & CSS31 & CSS30 & CSS29 & CSS28 & CSS27 & CSS26 & CSS25 & CSS24 & CSS23 & CSS22 & CSS21 & CSS20 & CSS19 & CSS18 & CSS17 & CSS16 & 0000 \\
\hline & & 15:0 & CSS15 & CSS14 & CSS13 & CSS12 & CSS11 & CSS10 & CSS9 & CSS8 & CSS7 & CSS6 & CSS5 & CSS4 & CSS3 & CSS2 & CSS1 & CSSO & 0000 \\
\hline \multirow[t]{2}{*}{B01C} & \multirow[t]{2}{*}{AD1CSS2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & CSS44 & CSS43 & CSS42 & CSS41 & CSS40 & CSS39 & CSS38 & CSS37 & CSS36 & CSS35 & CSS34 & CSS33 & CSS32 & 0000 \\
\hline \multirow[t]{2}{*}{B020} & \multirow[t]{2}{*}{AD1DSTAT1} & 31:16 & ARDY31 & ARDY30 & ARDY29 & ARDY28 & ARDY27 & ARDY26 & ARDY25 & ARDY24 & ARDY23 & ARDY22 & ARDY21 & ARDY20 & ARDY19 & ARDY18 & ARDY17 & ARDY16 & 0000 \\
\hline & & 15:0 & ARDY15 & ARDY14 & ARDY13 & ARDY12 & ARDY11 & ARDY10 & ARDY9 & ARDY9 & ARDY7 & ARDY6 & ARDY5 & ARDY4 & ARDY3 & ARDY2 & ARDY1 & ARDY0 & 0000 \\
\hline \multirow[t]{2}{*}{B024} & \multirow[t]{2}{*}{AD1DSTAT2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & ARDY44 & ARDY43 & ARDY42 & ARDY41 & ARDY40 & ARDY39 & ARDY38 & ARDY37 & ARDY36 & ARDY35 & ARDY34 & ARDY33 & ARDY32 & 0000 \\
\hline \multirow[t]{2}{*}{B028} & \multirow[t]{2}{*}{AD1CMPEN1} & 31:16 & CMPE31 & CMPE30 & CMPE29 & CMPE28 & CMPE27 & CMPE26 & CMPE25 & CMPE24 & CMPE23 & CMPE22 & CMPE21 & CMPE20 & CMPE19 & CMPE18 & CMPE17 & CMPE16 & 0000 \\
\hline & & 15:0 & CMPE15 & CMPE14 & CMPE13 & CMPE12 & CMPE11 & CMPE10 & CMPE9 & CMPE8 & CMPE7 & CMPE6 & CMPE5 & CMPE4 & CMPE3 & CMPE2 & CMPE1 & CMPE0 & 0000 \\
\hline \multirow[t]{2}{*}{B02C} & \multirow[t]{2}{*}{AD1CMP1} & 31:16 & \multicolumn{16}{|l|}{ACMPHI<15:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADCMPLO<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B030} & \multirow[t]{2}{*}{AD1CMPEN2} & 31:16 & CMPE31 & CMPE30 & CMPE29 & CMPE28 & CMPE27 & CMPE26 & CMPE25 & CMPE24 & CMPE23 & CMPE22 & CMPE21 & CMPE20 & CMPE19 & CMPE18 & CMPE17 & CMPE16 & 0000 \\
\hline & & 15:0 & CMPE15 & CMPE14 & CMPE13 & CMPE12 & CMPE11 & CMPE10 & CMPE9 & CMPE8 & CMPE7 & CMPE6 & CMPE5 & CMPE4 & CMPE3 & CMPE2 & CMPE1 & CMPE0 & 0000 \\
\hline \multirow[t]{2}{*}{B034} & \multirow[t]{2}{*}{AD1CMP2} & 31:16 & \multicolumn{16}{|l|}{ADCMPHI<15:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADCMPLO<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B038} & \multirow[t]{2}{*}{AD1CMPEN3} & 31:16 & CMPE31 & CMPE30 & CMPE29 & CMPE28 & CMPE27 & CMPE26 & CMPE25 & CMPE24 & CMPE23 & CMPE22 & CMPE21 & CMPE20 & CMPE19 & CMPE18 & CMPE17 & CMPE16 & 0000 \\
\hline & & 15:0 & CMPE15 & CMPE14 & CMPE13 & CMPE12 & CMPE11 & CMPE10 & CMPE9 & CMPE8 & CMPE7 & CMPE6 & CMPE5 & CMPE4 & CMPE3 & CMPE2 & CMPE1 & CMPE0 & 0000 \\
\hline \multirow[t]{2}{*}{B03C} & \multirow[t]{2}{*}{AD1CMP3} & 31:16 & \multicolumn{16}{|l|}{ADCMPHI<15:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADCMPLO<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B040} & \multirow[t]{2}{*}{AD1CMPEN4} & 31:16 & CMPE31 & CMPE30 & CMPE29 & CMPE28 & CMPE27 & CMPE26 & CMPE25 & CMPE24 & CMPE23 & CMPE22 & CMPE21 & CMPE20 & CMPE19 & CMPE18 & CMPE17 & CMPE16 & 0000 \\
\hline & & 15:0 & CMPE15 & CMPE14 & CMPE13 & CMPE12 & CMPE11 & CMPE10 & CMPE9 & CMPE8 & CMPE7 & CMPE6 & CMPE5 & CMPE4 & CMPE3 & CMPE2 & CMPE1 & CMPE0 & 0000 \\
\hline \multirow[t]{2}{*}{B044} & \multirow[t]{2}{*}{AD1CMP4} & 31:16 & \multicolumn{16}{|l|}{ADCMPHI<15:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADCMPLO<15:0>} & 0000 \\
\hline
\end{tabular}
Legend: \(\mathrm{x}=\) unknown value on Reset; - = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
ADC REGISTER MAP (CONTINUED)

TABLE 28-1: ADC REGISTER MAP (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Register Name} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{B0B8} & \multirow[t]{2}{*}{AD1DATA0} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(0<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(0<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0BC} & \multirow[t]{2}{*}{AD1DATA1} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(1<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(1<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0C0} & \multirow[t]{2}{*}{AD1DATA2} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(2<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(2<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0C4} & \multirow[t]{2}{*}{AD1DATA3} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(3<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 3 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0C8} & \multirow[t]{2}{*}{AD1DATA4} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(4<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(4<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0CC} & \multirow[t]{2}{*}{AD1DATA5} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(5<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0D0} & \multirow[t]{2}{*}{AD1DATA6} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register 6 <31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 6 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0D4} & \multirow[t]{2}{*}{AD1DATA7} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(7<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(7<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0D8} & \multirow[t]{2}{*}{AD1DATA8} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(8<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 8 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0DC} & \multirow[t]{2}{*}{AD1DATA9} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(9<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 9 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{BOEO} & \multirow[t]{2}{*}{AD1DATA10} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(10<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(10<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0E4} & \multirow[t]{2}{*}{AD1DATA11} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register 11 <31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 11 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0E8} & \multirow[t]{2}{*}{AD1DATA12} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register \(12<31: 16>\)} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(12<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0EC} & \multirow[t]{2}{*}{AD1DATA13} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register 13 <31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 13 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0FO} & \multirow[t]{2}{*}{AD1DATA14} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register 14 <31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 14 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0F4} & \multirow[t]{2}{*}{AD1DATA15} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register 15 <31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register \(15<15: 0>\)} & 0000 \\
\hline \multirow[t]{2}{*}{B0F8} & \multirow[t]{2}{*}{AD1DATA16} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register 16 <31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 16 <15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B0FC} & \multirow[t]{2}{*}{AD1DATA17} & 31:16 & \multicolumn{16}{|l|}{ADC Output Register 17 <31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Output Register 17<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{B100} & \multirow[t]{2}{*}{AD1DATA18} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{ADC Output Register 18 <31:16>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline
\end{tabular}
ADC REGISTER MAP (CONTINUED)

TABLE 28-1: ADC REGISTER MAP (CONTINUED)

REGISTER 28-1: AD1CON1: ADC1 CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{5}{|c|}{FILTRDLY<4:0>} & \multicolumn{3}{|c|}{STRGSRC<4:2>} \\
\hline \multirow[t]{2}{*}{23:16} & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{2}{|l|}{STRGSRC<1:0>} & - & - & - & \multicolumn{3}{|c|}{EIE<2:0>(1)} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline & ADCEN \({ }^{(2,4)}\) & - & ADSIDL & - & FRACT & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-27 FILTRDLY<4:0>: Oversampling Digital Filter Delay bits
Specifies the sampling time for subsequent automatic triggers when using the Oversampling Digital Filter.
Sample time is \(1.5+\) FILTRDLY<4:0> TAD.
11111 = Sample time is 32.5 TAD
\(11110=\) Sample time is 31.5 TAD
\(\cdot\)
00001 = Sample time is 2.5 TAD
\(00000=\) Sample time is 1.5 TAD
bit 26-22 STRGSRC<4:0>: Scan Trigger Source Select bits
11111 = Reserved
\(\stackrel{\rightharpoonup}{\bullet}\)
01101 = Reserved
\(01100=\) Comparator \(2 \operatorname{COUT}^{(3)}\)
\(01011=\) Comparator 1 COUT \(^{(3)}\)
\(01010=\) OCMP5 \({ }^{(3)}\)
\(01001=\) OCMP3 \(^{(3)}\)
\(01000=\mathrm{OCMP}_{1}{ }^{(3)}\)
00111 = TMR5 match
\(00110=\) TMR3 match
00101 = TMR1 match
00100 = INT0
00011 = Reserved
\(00010=\) Reserved
\(00001=\) Global software trigger (GSWTRG)
\(00000=\) No trigger
Note 1: The early interrupt feature should not be used if polling any of the ARDY bits to determine if the conversion is complete. Early interrupts should be used only when all results from the ADC module are retrieved using an individual interrupt routine to fetch ADC results.
2: The ADCEN bit should be set only after the ADC module has been configured. Changing ADC Configuration bits when ADCEN \(=1\), will result in unpredictable behavior. When ADCEN \(=0\), the ADC clocks are disabled, the internal control logic is reset, and all status flags used by the module are cleared. However, the SFRs are available for reading and writing.
3: The rising edge of the module output signal triggers an ADC conversion. See Figure 18-1 in Section 18.0 "Output Compare" and Figure 31-1 in Section 31.0 "Comparator" for more information.
4: See 28.1 "ADC Configuration Requirements" for detailed ADC calibration information.
Note: The ADC module is not available for normal operations until the ADCRDY bit (AD1CON2<31>) is set.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{REGISTER 28-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)} \\
\hline bit 21-19 & Unimplemented: Read as ' 0 ' \\
\hline \multirow[t]{11}{*}{bit 18-16} & EIE<2:0>: Early Interrupt Enable bits \({ }^{(1)}\) \\
\hline & These bits select the number of clocks prior to the actual arrival of valid data when the associated \\
\hline & ARDYx bit is set. Since the ARDYx bit triggers an interrupt, these bits allow for early interrupt generation. \\
\hline & 111 = The data ready bit, ARDYx, is set 7 TAD clocks prior to when the data is ready \\
\hline & \(110=\) The data ready bit, ARDYx, is set 6 TAD clocks prior to when the data is ready \\
\hline & 101 = The data ready bit, ARDYx, is set 5 TAD clocks prior to when the data is ready \\
\hline & \(100=\) The data ready bit, ARDYx, is set 4 TAD clocks prior to when the data is ready \\
\hline & 011 = The data ready bit, ARDYx, is set 3 TAD clocks prior to when the data is ready \\
\hline & 010 = The data ready bit, ARDYx, is set 2 TAD clocks prior to when the data is ready \\
\hline & 001 = The data ready bit, ARDYx, is set 1 TAD clock prior to when the data is ready \\
\hline & \(000=\) The data ready bit, ARDYx, when the data is ready \\
\hline \multirow[t]{3}{*}{bit 15} & ADCEN: ADC Operating Mode bit \({ }^{(2,4)}\) \\
\hline & 1 = ADC module is enabled \\
\hline & \(0=\) ADC module is off \\
\hline bit 14 & Unimplemented: Read as 'o' \\
\hline \multirow[t]{3}{*}{bit 13} & ADSIDL: Stop in Idle Mode bit \\
\hline & 1 = Discontinue module operation when device enters Idle mode \\
\hline & 0 = Continue module operation in Idle mode \\
\hline bit 12 & Unimplemented: Read as '0' \\
\hline bit 11 & FRACT: Fractional Data Output Format bit \\
\hline & 1 = Fractional \\
\hline & \(0=\) Integer \\
\hline bit 10-0 & Unimplemented: Read as '0' \\
\hline
\end{tabular}

Note 1: The early interrupt feature should not be used if polling any of the ARDY bits to determine if the conversion is complete. Early interrupts should be used only when all results from the ADC module are retrieved using an individual interrupt routine to fetch ADC results.
2: The ADCEN bit should be set only after the ADC module has been configured. Changing ADC Configuration bits when ADCEN \(=1\), will result in unpredictable behavior. When ADCEN \(=0\), the ADC clocks are disabled, the internal control logic is reset, and all status flags used by the module are cleared. However, the SFRs are available for reading and writing.
3: The rising edge of the module output signal triggers an ADC conversion. See Figure 18-1 in Section 18.0 "Output Compare" and Figure 31-1 in Section 31.0 "Comparator" for more information.
4: See 28.1 "ADC Configuration Requirements" for detailed ADC calibration information.
Note: The ADC module is not available for normal operations until the ADCRDY bit (AD1CON2<31>) is set.

REGISTER 28-2: AD1CON2: ADC1 CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & HS, HC, R-0 & U-0 \\
\hline & ADCRDY \({ }^{(1)}\) & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{SAMC<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & BOOST & LOWPWR & - & - & - & \multicolumn{2}{|l|}{ADCSEL<1:0> \({ }^{(2)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{ADCDIV<6:0> \({ }^{(2)}\)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by Hardware & HC = Cleared by Hardware \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}

ADCRDY: ADC Ready bit \({ }^{(1)}\)
1 = ADC module is ready for normal operation
\(0=A D C\) is not ready for use
bit 30-24 Unimplemented: Read as ' 0 '
bit 23-16 SAMC<7:0>: Sample Time for Shared S\&H bits
\(11111111=256\) TAD
\(\cdot\)
\(00000001=2\) TAD
\(00000000=1\) TAD
This field specifies the number of ADC clock cycles allocated to the ADC sample time for the shared S\&H circuit.
bit 15 Unimplemented: Read as ' 0 '
bit 14 BOOST: Voltage Reference Boost bit
1 = Boost VREF
\(0=\) Do not boost VREF
Changing the state of this bit requires that the ADC module be recalibrated by setting the CAL bit (AD1CON3<31>).
bit 13 LOWPWR: ADC Low-power bit
1 = Force the ADC module into a low-power state
0 = Exit ADC low-power state
bit 12-10 Unimplemented: Read as ' 0 '
bit 9-8 ADCSEL<1:0>: ADC Clock Source (TQ) bits \({ }^{(\mathbf{2})}\)
11 = FRC
10 = REFCLKO3
01 = SYSCLK
00 = Reserved
bit \(7 \quad\) Unimplemented: Read as ' 0 '

Note 1: This bit is set to ' 0 ' when ADCEN (AD1CON1<15>) \(=0\).
2: These bits should be configured prior to enabling the ADC by setting the ADCEN bit (AD1CON1<15>) = 1 .

\section*{REGISTER 28-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)}
bit 6-0 ADCDIV<6:0>: ADC Input Clock Divider bits \({ }^{(2)}\)
These bits divide the selected clock source to derive the desired ADC clock rate (TAD).
```

1111111 = 2 TQ * (ADCDIV<6:0>) = 254 * TQ = TAD
-
0000011 = 2 TQ * (ADCDIV<6:0>) = 6 * TQ = TAD
0000010 = 2 TQ * (ADCDIV<6:0>) = 4 * TQ = TAD
0000001 = 2 TQ * (ADCDIV<6:0>) = 2 * TQ = TAD
0000000 = TQ = TAD

```

Note 1: This bit is set to ' 0 ' when ADCEN (AD1CON1<15>) \(=0\).
2: These bits should be configured prior to enabling the ADC by setting the ADCEN bit (AD1CON1<15>) = 1 .

REGISTER 28-3: AD1CON3: ADC1 CONTROL REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & Bit 29/21/13/5 & \[
\begin{gathered}
\hline \text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0, HC & R/W-0, HC & R/W-0, HC & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & CAL \({ }^{(2)}\) & GSWTRG & RQCNVRT & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline & - & - & - & \multicolumn{3}{|c|}{VREFSEL<2:0>(1)} & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & \multicolumn{6}{|c|}{ADINSEL<5:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HC = Cleared by Hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit \(31 \quad\) CAL: Calibration bit \({ }^{(2)}\)
1 = Initiate an ADC calibration cycle
\(0=\) Calibration cycle is not in progress
bit 30 GSWTRG: Global Software Trigger bit
1 = Trigger analog-to-digital conversion for ADC inputs that have selected the GSWTRG bit as the trigger signal, either through the associated TRGSRC<4:0> bits in the AD1TRGn registers or through the STRGSRC<4:0> bits in the AD1CON1 register
\(0=\) This bit is automatically cleared
bit 29 RQCNVRT: Individual ADC Input Conversion Request bit
This bit and its associated ADINSEL<5:0> bits enable the user to individually request an analog-to-digital conversion of an analog input without having to reprogram the TRGSRC<4:0> bits or the STRGSRC<4:0> bits. This is very useful during debugging or error handling situations where the user software needs to obtain an immediate ADC result of a specific input.
\(1=\) Trigger the conversion of the selected ADC input as specified by the ADINSEL<5:0> bits
\(0=\) This bit is automatically cleared
bit 28-13 Unimplemented: Read as ' 0 '
bit 12-10 VREFSEL<2:0>: VREF Input Selection bits \({ }^{(1)}\)
\begin{tabular}{|c|c|c|}
\hline VREFSEL<2:0> & Vrefh & Vrefl \\
\hline \hline 111 & Reserved & Reserved \\
\hline 110 & Reserved & Reserved \\
\hline 101 & Reserved & Reserved \\
\hline 100 & Reserved & Reserved \\
\hline 011 & VREF+ & VREF- \\
\hline 010 & AVDD & VREF- \\
\hline 001 & VREF+ & AVss \\
\hline 000 & AVDD & AVss \\
\hline
\end{tabular}
bit 9-6 Unimplemented: Read as ' 0 '

Note 1: These bits should be configured prior to enabling the ADC module by setting the ADCEN bit (AD1CON1<15> = 1).
2: See 28.1 "ADC Configuration Requirements" for detailed ADC calibration information.

\section*{REGISTER 28-3: AD1CON3: ADC1 CONTROL REGISTER 3 (CONTINUED)}
bit 5-0 ADINSEL<5:0>: ADC Input Select bits
This binary encoded bit-field selects the ADC module input to be converted when the RQCNVRT bit is set.
111111 = Reserved
-
-
-
101101 = Reserved
101100 = IVTEMP
\(101011=\) IVREF
\(101010=\) AN42
-
-
-
\(000010=\) AN2
\(000001=\) AN1
\(000000=\) ANO

Note 1: These bits should be configured prior to enabling the ADC module by setting the ADCEN bit (AD1CON1<15> = 1).
2: See 28.1 "ADC Configuration Requirements" for detailed ADC calibration information.

REGISTER 28-4: AD1IMOD: ADC1 INPUT MODE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit
\[
31 / 23 / 15 / 7
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & Bit
28/20/12/4 & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & \multicolumn{2}{|l|}{SH4ALT \(<1: 0>{ }^{(1,2)}\)} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{2}{|l|}{SH3ALT<1:0> \({ }^{(1,2)}\)} & \multicolumn{2}{|l|}{SH2ALT<1:0> \({ }^{(1,2)}\)} & \multicolumn{2}{|l|}{SH1ALT \(<1: 0>^{(1,2)}\)} & \multicolumn{2}{|l|}{SHOALT<1:0> \({ }^{(1,2)}\)} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & \multicolumn{2}{|l|}{SH5MOD<1:0>} & \multicolumn{2}{|l|}{SH4MOD<1:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{2}{|l|}{SH3MOD<1:0>} & \multicolumn{2}{|l|}{SH2MOD<1:0>} & \multicolumn{2}{|l|}{SH1MOD<1:0>} & \multicolumn{2}{|l|}{SH0MOD<1:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-26 Unimplemented: Read as ' 0 '
bit 25-24 SH4ALT<1:0>: Analog Input to Dedicated S\&H 4 (SH4) Select bits \({ }^{(1,2)}\)
11 = Reserved
\(10=\) Reserved
01 = Alternate input AN49
00 = Default Class 1 input AN4
bit 23-22 SH3ALT<1:0>: Analog Input to Dedicated S\&H 3 (SH3) Select bits \({ }^{(1,2)}\)
11 = Reserved
\(10=\) Reserved
01 = Alternate input AN48
\(00=\) Default Class 1 input AN3
bit 21-20 SH2ALT<1:0>: Analog Input to Dedicated S\&H 2 (SH2) Select bits \({ }^{(1,2)}\)
11 = Reserved
\(10=\) Reserved
01 = Alternate input AN47
00 = Default Class 1 input AN2
bit 19-18 SH1ALT<1:0>: Analog Input to Dedicated S\&H 1 (SH1) Select bits \({ }^{(1,2)}\)
11 = Reserved
\(10=\) Reserved
01 = Alternate input AN46
\(00=\) Default Class 1 input AN1
bit 17-16 SH0ALT<1:0>: Analog Input to Dedicated S\&H 0 (SH0) Select bits \({ }^{(1,2)}\)
11 = Reserved
10 = Reserved
01 = Alternate input AN45
\(00=\) Default Class 1 input ANO
bit 15-12 Unimplemented: Read as ' 0 '

Note 1: Alternate inputs are only available for Class 1 Inputs.
2: When an alternate input is selected (\(\mathrm{SH} x \mathrm{ALT}<1: 0>\neq 0\)), the data, status, and control registers for the default Class 1 input are still used. Selecting an alternate input changes the physical input source only.

\author{
REGISTER 28-4: AD1IMOD: ADC1 INPUT MODE CONTROL REGISTER (CONTINUED) \\ bit 11-10 SH5MOD<1:0>: Input Configuration for S\&H 5 (SH5) Select bits \\ 11 = Differential inputs, two's complement (signed) data output \\ \(10=\) Differential inputs, unipolar encoded (unsigned) data output \\ \(01=\) Single ended inputs, two's complement (signed) data output \\ \(00=\) Single ended inputs, unipolar encoded (unsigned) data output \\ bit 9-8 SH4MOD<1:0>: Input Configuration for S\&H 4 (SH4) Select bits \\ 11 = Differential inputs, two's complement (signed) data output \\ \(10=\) Differential inputs, unipolar encoded (unsigned) data output \\ 01 = Single ended inputs, two's complement (signed) data output \\ \(00=\) Single ended inputs, unipolar encoded (unsigned) data output \\ bit 7-6 SH3MOD<1:0>: Input Configuration for S\&H 3 (SH3) Select bits \\ 11 = Differential inputs, two's complement (signed) data output \\ \(10=\) Differential inputs, unipolar encoded (unsigned) data output \\ 01 = Single ended inputs, two's complement (signed) data output \\ \(00=\) Single ended inputs, unipolar encoded (unsigned) data output \\ bit 5-4 SH2MOD<1:0>: Input Configuration for S\&H 2 (SH2) Select bits \\ 11 = Differential inputs, two's complement (signed) data output \\ \(10=\) Differential inputs, unipolar encoded (unsigned) data output \\ 01 = Single ended inputs, two's complement (signed) data output \\ \(00=\) Single ended inputs, unipolar encoded (unsigned) data output \\ bit 3-2 SH1MOD<1:0>: Input Configuration for S\&H 1 (SH1) Select bits \\ 11 = Differential inputs, two's complement (signed) data output \\ \(10=\) Differential inputs, unipolar encoded (unsigned) data output \\ 01 = Single ended inputs, two's complement (signed) data output \\ \(00=\) Single ended inputs, unipolar encoded (unsigned) data output \\ bit 1-0 SHOMOD<1:0>: Input Configuration for S\&H 0 (SHO) Select bits \\ 11 = Differential inputs, two's complement (signed) data output \\ \(10=\) Differential inputs, unipolar encoded (unsigned) data output \\ 01 = Single ended inputs, two's complement (signed) data output \\ \(00=\) Single ended inputs, unipolar encoded (unsigned) data output
}

Note 1: Alternate inputs are only available for Class 1 Inputs.
2: When an alternate input is selected (\(\mathrm{SH} x \mathrm{ALT}<1: 0>\neq 0\)), the data, status, and control registers for the default Class 1 input are still used. Selecting an alternate input changes the physical input source only.

REGISTER 28-5: AD1GIRQEN1: ADC1 GLOBAL INTERRUPT ENABLE REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & AGIEN31 & AGIEN30 & AGIEN29 & AGIEN28 & AGIEN27 & AGIEN26 & AGIEN25 & AGIEN24 \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & AGIEN23 & AGIEN22 & AGIEN21 & AGIEN20 & AGIEN19 & AGIEN18 & AGIEN17 & AGIEN16 \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & AGIEN15 & AGIEN14 & AGIEN13 & AGIEN12 & AGIEN11 & AGIEN10 & AGIEN9 & AGIEN8 \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & AGIEN7 & AGIEN6 & AGIEN5 & AGIEN4 & AGIEN3 & AGIEN2 & AGIEN1 & AGIEN0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 AGIENx: Global ADC Interrupt Enable bits (' \(x\) ' \(=0-31\))
1 = A data ready event (transition from 0 to 1 of the ARDYx bit) will generate a Global ADC interrupt
\(0=\) No global interrupt is generated on a data ready event
The Global ADC Interrupt is enabled by setting a bit in the IECx registers (refer to Section 7.0 "CPU Exceptions and Interrupt Controller" for details).

Note 1: The enable bits do not affect assertion of the individual interrupt output. Interrupts generated for individual ARDY events are enabled in the IECx register.
2: \(\quad\) AGIENx \(=A N x\), where ' \(x\) ' \(=0-31\).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 28-6: AD1GIRQEN2: ADC1 GLOBAL INTERRUPT ENABLE REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\underset{\text { Bit }}{31 / 23 / 15 / 7}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0 \\
\hline
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & AGIEN44 & AGIEN43 & AGIEN42 & AGIEN41 & AGIEN40 \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & AGIEN39 & AGIEN38 & AGIEN37 & AGIEN36 & AGIEN35 & AGIEN34 & AGIEN33 & AGIEN32 \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-13 Unimplemented: Read as ' 0 '
bit 12-0 AGIENx: Global ADC Interrupt Enable bits (' \(x\) ' \(=32-44\))
1 = A data ready event (transition from 0 to 1 of the ARDYx bit) will generate a Global ADC interrupt
\(0=\) No global interrupt is generated on a data ready event

Note 1: The enable bits do not affect assertion of the individual interrupt output. Interrupts generated for individual ARDYx events are enabled in the IECx register.
2: AGIENx = ANx, where ' \(x\) ' \(=32-42\), AGIEN43 \(=\) IVREF, and AGIEN44 \(=\) IVTEMP.

REGISTER 28-7: AD1CSS1: ADC1 INPUT SCAN SELECT REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{array}{|c|}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{31:24} & R/W-0 \\
\hline & CSS31 & CSS30 & CSS29 & CSS28 & CSS27 & CSS26 & CSS25 & CSS24 \\
\hline \multirow[t]{2}{*}{23:16} & R/W-0 \\
\hline & CSS23 & CSS22 & CSS21 & CSS20 & CSS19 & CSS18 & CSS17 & CSS16 \\
\hline \multirow[t]{2}{*}{15:8} & R/W-0 \\
\hline & CSS15 & CSS14 & CSS13 & CSS12 & CSS11 & CSS10 & CSS9 & CSS8 \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & CSS7 & CSS6 & CSS5 & CSS4 & CSS3 & CSS2 & CSS1 & CSS0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{llll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared & \(x=\) Bit is unknown
\end{tabular}
bit 31-0 CSSx: ADC Input Scan Select bits (' \(x\) ' \(=0-31\))
\(1=\) Select ANx for input scan
\(0=\) Skip ANx for input scan

\section*{Note 1: CSSx = ANx, where ' \(x\) ' \(=0-31\).}

2: Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSSx bits. Refer to the bit descriptions in the AD1TRGn register (Register 28-15) for selecting the STRIG option.

REGISTER 28-8: AD1CSS2: ADC1 INPUT SCAN SELECT REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{array}{|c}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & CSS44 & CSS43 & CSS42 & CSS41 & CSS40 \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & CSS39 & CSS38 & CSS37 & CSS36 & CSS35 & CSS34 & CSS33 & CSS32 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-13 Unimplemented: Read as ' 0 '
bit 12-0 CSSx: ADC Input Scan Select bits (' \(x\) ' = 32-44)
1 = Select ANx for input scan
\(0=\) Skip ANx for input scan
Note 1: \(\operatorname{CSS} x=A N x\), where ' \(x\) ' \(=32-42\), CSS43 \(=\) IVREF, and CS44 \(=\) IVTEMP.
2: Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSSx bits. Refer to the bit descriptions in the AD1TRGn register (Register 28-15) for selecting the STRIG option.

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 28-9: AD1DSTAT1: ADC1 DATA READY STATUS REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit
\[
31 / 23 / 15 / 7
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & Bit 29/21/13/5 & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & Bit 27/19/11/3 & \[
\begin{array}{|c}
\text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & HS, HC, R-0 \\
\hline & ARDY31 & ARDY30 & ARDY29 & ARDY28 & ARDY27 & ARDY26 & ARDY25 & ARDY24 \\
\hline \multirow{2}{*}{23:16} & HS, HC, R-0 \\
\hline & ARDY23 & ARDY22 & ARDY21 & ARDY20 & ARDY19 & ARDY18 & ARDY17 & ARDY16 \\
\hline \multirow[b]{2}{*}{15:8} & HS, HC, R-0 \\
\hline & ARDY15 & ARDY14 & ARDY13 & ARDY12 & ARDY11 & ARDY10 & ARDY9 & ARDY8 \\
\hline \multirow[b]{2}{*}{7:0} & HS, HC, R-0 \\
\hline & ARDY7 & ARDY6 & ARDY5 & ARDY4 & ARDY3 & ARDY2 & ARDY1 & ARDY0 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by Hardware & HC = Cleared by Hardware \\
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' \(0 \prime\) \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 ARDYx: Conversion Data Ready for Corresponding Analog Input Ready bits (' \(x\) ' \(=31-0\))
\(1=\) This bit is set when data is ready in the buffer. An interrupt will be generated if the appropriate bit in the IECx register is set or if enabled for the ADC Global interrupt in the AD1GIRQEN register.
\(0=\) This bit is cleared when the associated data register is read

Note: \(\quad\) ARDYx \(=A N x\), where ' \(x\) ' \(=0-31\).

REGISTER 28-10: AD1DSTAT2: ADC1 DATA READY STATUS REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & HS, HC, R-0 \\
\hline & - & - & - & ARDY44 & ARDY43 & ARDY42 & ARDY41 & ARDY40 \\
\hline \multirow[b]{2}{*}{7:0} & HS, HC, R-0 \\
\hline & ARDY39 & ARDY38 & ARDY37 & ARDY36 & ARDY35 & ARDY34 & ARDY33 & ARDY32 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS \(=\) Set by Hardware & HC = Cleared by Hardware \\
\(R=\) Readable bit & W \(=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-13 Unimplemented: Read as '0'
bit 12-0 ARDYx: Conversion Data Ready for Corresponding Analog Input Ready bits (' \(x\) ' \(=32-44\))
\(1=\) This bit is set when data is ready in the buffer. An interrupt will be generated if the appropriate bit in the IECx register is set or if enabled for the ADC Global interrupt in the AD1GIRQEN register.
\(0=\) This bit is cleared when the associated data register is read

\footnotetext{
Note: \(\quad\) ARDYx \(=\) ANx, where ' \(x\) ' \(=32-42\), ARDY43 \(=\) IVREF, and ARDY44 \(=\) IVTEMP.
}

REGISTER 28-11: AD1CMPCONn: ADC1 DIGITAL COMPARATOR CONTROL REGISTER ' n ’ (' \(n\) ' \(=1,2,3,4,5\), OR 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & HS, HC, R-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{AINID<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & HS, HC, R-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & ENDCMP & DCMPGIEN \({ }^{(1)}\) & DCMPED & IEBTWN \({ }^{(1)}\) & IEHIH| \({ }^{(1)}\) & IEHILO \({ }^{(1)}\) & IELOHI \({ }^{(1)}\) & IELOLO \({ }^{(1)}\) \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by Hardware & HC = Cleared by Hardware \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-13 Unimplemented: Read as '0'
bit 12-8 AINID<4:0>: Analog Input Identification (ID) bits
When a digital comparator event occurs, these read-only bits contain the analog input identification number. AINID \(=A N x\), where ' \(x\) ' \(=0-31\).
bit 7 ENDCMP: Digital Comparator Enable bit
1 = Digital Comparator is enabled
\(0=\) Digital Comparator is not enabled, and the DCMPED status bit is cleared
bit 6 DCMPGIEN: Digital Comparator Global ADC Interrupt Enable bit \({ }^{(1)}\)
1 = A Digital Comparator Event (DCMPED transitions from ' 0 ' to ' 1 ') will generate a Global ADC interrupt.
\(0=\) A Digital Comparator Event will not generate a Global ADC interrupt.
bit 5 DCMPED: Digital Comparator Event Detected Status bit
\(1=\) This bit is set by the digital comparator hardware when a comparison event is detected. An interrupt will be generated if the appropriate bit in the IECx register is set or if enabled for the ADC Global interrupt in the DCMPGIEN bit.
\(0=\) This bit is cleared by reading the AINID<4:0> bits or when the ADC module is disabled
bit 4 IEBTWN: Between Low/High Digital Comparator Event bit \({ }^{(1)}\)
1 = Generate a digital comparator event when ADCMPLO<15:0> \(\leq\) DATA \(<31: 0><\) ADCMPHI<15:0>
\(0=\) Do not generate a digital comparator event
bit 3 IEHIHI: High/High Digital Comparator Event bit \({ }^{(1)}\)
1 = Generate a Digital Comparator Event when ADCMPHI<15:0> \(\leq\) DATA<31:0>
\(0=\) Do not generate a digital comparator event when ADCMPHI<15:0> \(\leq\) DATA<31:0>
bit 2 IEHILO: High/Low Digital Comparator Event bit \({ }^{(1)}\)
1 = Generate a Digital Comparator Event when DATA<31:0> < ADCMPHI<15:0>
\(0=\) Do not generate a digital comparator event when DATA<31:0> < ADCMPHI<15:0>
bit 1 IELOHI: Low/High Digital Comparator Event bit \({ }^{(1)}\)
1 = Generate a Digital Comparator Event when ADCMPLO<15:0> \(\leq\) DATA<31:0>
\(0=\) Do not generate a digital comparator event when ADCMPLO<15:0> \(\leq\) DATA \(<31: 0>\)
bit 0
IELOLO: Low/Low Digital Comparator Event bit \({ }^{(1)}\)
1 = Generate a Digital Comparator Event when DATA<31:0> < ADCMPLO<15:0>
\(0=\) Do not generate a digital comparator event when DATA<31:0> < ADCMPLO<15:0>
Note 1: Changing these bits while the Digital Comparator is enabled (ENDCMP =1) can result in unpredictable behavior.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 28-12: AD1CMPENn: ADC1 DIGITAL COMPARATOR ENABLE REGISTER ' \(n\) ' (' \(n\) ' = 1, 2, 3, 4, 5 OR 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & R/W-0 \\
\cline { 2 - 10 } & CMPE31 & CMPE30 & CMPE29 & CMPE28 & CMPE27 & CMPE26 & CMPE25 & CMPE24 \\
\hline \multirow{2}{*}{\(23: 16\)} & R/W-0 \\
\cline { 2 - 11 } & CMPE23 & CMPE22 & CMPE21 & CMPE20 & CMPE19 & CMPE18 & CMPE17 & CMPE16 \\
\hline \multirow{2}{*}{\(15: 8\)} & R/W-0 \\
\cline { 2 - 11 } & CMPE15 & CMPE14 & CMPE13 & CMPE12 & CMPE11 & CMPE10 & CMPE9 & CMPE8 \\
\hline \multirow{2}{*}{\(7: 0\)} & R/W-0 \\
\cline { 2 - 10 } & CMPE7 & CMPE6 & CMPE5 & CMPE4 & CMPE3 & CMPE2 & CMPE1 & CMPE0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 CMPE31:CMPE0: ADC1 Digital Comparator Enable bits
These bits enable conversion results corresponding to the Analog Input to be processed by the digital comparator.

Note 1: CMPEx \(=A N x\), where ' \(x\) ' \(=0-31\).
2: Changing the bits in this register while the Digital Comparator is enabled (ENDCMP =1) can result in unpredictable behavior.

REGISTER 28-13: AD1CMPn: ADC1 DIGITAL COMPARATOR REGISTER ' \(n\) ' (' \(n\) ' = 1, 2, 3, 4, 5 OR 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{aligned}
& \text { Bit } \\
& \text { 25/17/9/1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCMPHI<15:8>} \\
\hline \multirow{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCMPHI<7:0>} \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCMPLO<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCMPLO<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' = Bit is cleared
\end{tabular} \(\mathrm{x=} \mathrm{Bit} \mathrm{is} \mathrm{unknown}\)
bit 31-16 ADCMPHI<15:0>: Digital Analog Comparator High Limit Value bits
These bits store the high limit value, which is used for comparisons with the analog-to-digital conversion data. The user is responsible for formatting the data as signed or unsigned to match the data format as specified by the \(S H x M O D<1: 0>\) bits for the associated \(S \& H\) circuit and the FRACT bit.
bit 15-0 ADCMPLO<15:0>: Digital Analog Comparator Low Limit Value bits
These bits store the low limit value, which is used for comparisons with the analog-to-digital conversion data. The user is responsible for formatting the data as signed or unsigned to match the data format as specified by the SHxMOD<1:0> bits for the associated S\&H circuit and the FRACT bit.

Note: Changing the bits in this register while the Digital Comparator is enabled (ENDCMP \(=1\)) can result in unpredictable behavior.

REGISTER 28-14: AD1FLTRn: ADC1 FILTER REGISTER ' \(n\) ' (' \(n\) ' = 1, 2, 3, 4, 5, OR 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0, HS \\
\hline & AFEN & - & - & \multicolumn{3}{|c|}{OVRSAM<2:0>} & AFGIEN & AFRDY \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & \multicolumn{6}{|c|}{CHNLID<5:0>} \\
\hline \multirow[b]{2}{*}{15:8} & HS, HC, R-0 \\
\hline & \multicolumn{8}{|c|}{FLTRDATA<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & HS, HC, R-0 \\
\hline & \multicolumn{8}{|c|}{FLTRDATA<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & HS = Set by Hardware & HC = Cleared by Hardware \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 AFEN: Oversampling Filter Enable bit
1 = Oversampling filter is enabled
\(0=\) Oversampling filter is disabled and the AFRDY bit is cleared
bit 30-29 Unimplemented: Read as ' 0 '
bit 28-26 OVRSAM<2:0>: Oversampling Filter Ratio bits
\(111=128 x\) (shift sum 3 bits to right, output data is in 15.1 format)
\(110=32 x\) (shift sum 2 bits to right, output data is in 14.1 format)
\(101=8 x\) (shift sum 1 bit to right, output data is in 13.1 format)
\(100=2 x\) (shift sum 0 bits to right, output data is in 12.1 format)
\(011=256 x\) (shift sum 4 bits to right, output data is 16 bits)
\(010=64 x\) (shift sum 3 bits to right, output data is 15 bits)
\(001=16 x\) (shift sum 2 bits to right, output data is 14 bits)
\(000=4 x\) (shift sum 1 bit to right, output data is 13 bits)
bit 25
AFGIEN: Oversampling Filter Global ADC Interrupt Enable bit
1 = An Oversampling Filter Data Ready event (AFRDY transitions from ' 0 ' to ' 1 ') will generate an ADC Global Interrupt
\(0=\) An Oversampling Filter Data Ready event will not generate an ADC Global Interrupt
bit 24
AFRDY: Oversampling Filter Data Ready Flag bit
\(1=\) This bit is set when data is ready in the FLTRDATA<15:0> bits
\(0=\) This bit is cleared when FLTRDATA<15:0> is read, or if the module is disabled
bit 23-22 Unimplemented: Read as ' 0 '
bit 21-16 CHNLID<5:0>: Channel ID Selection bits
These bits specify the analog input to be used as the oversampling filter data source.
111111 = Reserved
-
\(\cdot\)
101101 = Reserved
101100 = IVTEMP
101011 = IVREF
\(101010=\) AN42
-
-
\(000010=\) AN2
\(000001=\) AN1
\(000000=\) ANO
bit 15-0 FLTRDATA<15:0>: Oversampling Filter Data Output Value bits
These bits contain the oversampling filter result.

REGISTER 28-15: AD1TRG1: ADC1 INPUT CONVERT CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{array}{|c}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{array}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\underset{\text { Bit }}{27 / 19 / 11 / 3}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC3<4:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC2<4:0>(1)} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC1<4:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC0<4:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\(x=\) Bit is unknown
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Channel AN3 Select bits \({ }^{(1)}\)
11111 = Reserved
-
-

01101 = Reserved
\(01100=\) Comparator \(2 \operatorname{COUT}^{(\mathbf{2})}\)
\(01011=\) Comparator 1 COUT \(^{(2)}\)
\(01010=\) OCMP5 \(^{(2)}\)
\(01001=\) OCMP3 \(^{(2)}\)
\(01000=\) OCMP1 \(^{(2)}\)
\(00111=\) TMR5 match
\(00110=\) TMR3 match
00101 = TMR1 match
\(00100=\) INT0
\(00011=\) STRIG \(^{(3)}\)
\(00010=\) Reserved
\(00001=\) Global software trigger (GSWTRG)
\(00000=\) No trigger
bit 23-21 Unimplemented: Read as ' 0 '
bit 20-16 TRGSRC2<4:0>: Trigger Source for Conversion of Analog Channel AN2 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 TRGSRC1<4:0>: Trigger Source for Conversion of Analog Channel AN1 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 TRGSRC0<4:0>: Trigger Source for Conversion of Analog Channel ANO Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.

Note 1: If the same trigger source is used for multiple ANx channels, the trigger source must wait until the hold time for all channels has completed (due to the last trigger) and the sample time for all ANx channels is satisfied before issuing the next trigger. This condition can cause hole insertions into the ADC pipeline and affect overall ADC throughput.
2: The rising edge of the associated module output signal triggers the conversion. Refer to the block diagram of the specific module for more information.
3: Using STRIG as the trigger source specifies this input to use the Scan Trigger source for its trigger. The STRGSRC<4:0> bits (AD1CON1<26:22>), as well as the appropriate CSSx bit(s) in the AD1CSS1 and AD1CSS2 registers must be set for proper scan operation.

REGISTER 28-16: AD1TRG2: ADC1 INPUT CONVERT CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC7<4:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC6<4:0>(1)} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC5<4:0>(1)} \\
\hline \multirow[t]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC4<4:0>(1)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{R}=\) Readable bit & W = Writable bit & \(\mathrm{U}=\) Unimplement & ad as '0' \\
\hline \(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-29 Unimplemented: Read as '0’
bit 28-24 TRGSRC7<4:0>: Trigger Source for Conversion of Analog Channel AN7 Select bits \({ }^{(1)}\)
11111 = Reserved
-
\(\cdot\)

01101 = Reserved
\(01100=\) Comparator \(2 \operatorname{COUT}^{(\mathbf{2})}\)
\(01011=\) Comparator 1 COUT \(^{(2)}\)
\(01010=\) OCMP5 \({ }^{(2)}\)
\(01001=\) OCMP3 \(^{(2)}\)
\(01000=\) OCMP1 \({ }^{(2)}\)
00111 = TMR5 match
\(00110=\) TMR3 match
00101 = TMR1 match
\(00100=\) INTO
\(00011=\) STRIG \(^{(3)}\)
\(00010=\) Reserved
\(00001=\) Global software trigger (GSWTRG)
\(00000=\) No trigger
bit 23-21 Unimplemented: Read as ' 0 '
bit 20-16 TRGSRC6<4:0>: Trigger Source for Conversion of Analog Channel AN6 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 TRGSRC5<4:0>: Trigger Source for Conversion of Analog Channel AN5 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 TRGSRC4<4:0>: Trigger Source for Conversion of Analog Channel AN4 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.

Note 1: If the same trigger source is used for multiple ANx channels, the trigger source must wait until the hold time for all channels has completed (due to the last trigger) and the sample time for all ANx channels is satisfied before issuing the next trigger. This condition can cause hole insertions into the ADC pipeline and affect overall ADC throughput.
2: The rising edge of the associated module output signal triggers the conversion. Refer to the block diagram of the specific module for more information.
3: Using STRIG as the trigger source specifies this input to use the Scan Trigger source for its trigger. The STRGSRC<4:0> bits (AD1CON1<26:22>), as well as the appropriate CSSx bit(s) in the AD1CSS1 and AD1CSS2 registers must be set for proper scan operation.

REGISTER 28-17: AD1TRG3: ADC1 INPUT CONVERT CONTROL REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{array}{|c|}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{array}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 27/19/11/3 }}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC11<4:0>(1)} \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC10<4:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC9<4:0> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{TRGSRC8<4:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{llll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared & \(x=\) Bit is unknown
\end{tabular}
bit 31-29 Unimplemented: Read as ' 0 '
bit 28-24 TRGSRC11<4:0>: Trigger Source for Conversion of Analog Channel AN11 Select bits \({ }^{(1)}\)
11111 = Reserved
-
-

01101 = Reserved
\(01100=\) Comparator \(2 \operatorname{COUT}^{(\mathbf{2})}\)
\(01011=\) Comparator 1 COUT \(^{(2)}\)
\(01010=\) OCMP5 \(^{(2)}\)
\(01001=\) OCMP3 \(^{(2)}\)
\(01000=\) OCMP1 \(^{(2)}\)
\(00111=\) TMR5 match
\(00110=\) TMR3 match
00101 = TMR1 match
\(00100=\) INT0
\(00011=\) STRIG \(^{(3)}\)
\(00010=\) Reserved
\(00001=\) Global software trigger (GSWTRG)
\(00000=\) No trigger
bit 23-21 Unimplemented: Read as ' 0 '
bit 20-16 TRGSRC10<4:0>: Trigger Source for Conversion of Analog Channel AN10 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.
bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 TRGSRC9<4:0>: Trigger Source for Conversion of Analog Channel AN9 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.
bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 TRGSRC8<4:0>: Trigger Source for Conversion of Analog Channel AN8 Select bits \({ }^{(1)}\)
See bits 28-24 for bit value definitions.

Note 1: If the same trigger source is used for multiple ANx channels, the trigger source must wait until the hold time for all channels has completed (due to the last trigger) and the sample time for all ANx channels is satisfied before issuing the next trigger. This condition can cause hole insertions into the ADC pipeline and affect overall ADC throughput.
2: The rising edge of the associated module output signal triggers the conversion. Refer to the block diagram of the specific module for more information.
3: Using STRIG as the trigger source specifies this input to use the Scan Trigger source for its trigger. The STRGSRC<4:0> bits (AD1CON1<26:22>), as well as the appropriate CSSx bit(s) in the AD1CSS1 and AD1CSS2 registers must be set for proper scan operation.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 28-18: AD1DATAn: ADC1 DATA OUTPUT REGISTER (' n ' = 0 through 44)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit
31/23/15/7 & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & \multicolumn{8}{|c|}{DATA<31:24>} \\
\hline \multirow{2}{*}{23:16} & R-0 \\
\hline & \multicolumn{8}{|c|}{DATA<23:16>} \\
\hline \multirow{2}{*}{15:8} & R-0 \\
\hline & \multicolumn{8}{|c|}{DATA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & \multicolumn{8}{|c|}{DATA<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(\prime 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 DATA<31:0>: Data Output Value bits (formatted as specified by the \(\mathrm{SHxMOD}<1: 0>\) bits for the associated S\&H circuits and the FRACT bit)

Note: AD1DATAn \(=\) ANx, where ' \(x\) ' and ' \(n\) ' \(=0-42\), AD1DATA \(43=\) IVREF, and AD1DATA44 \(=\) IVTEMP.

REGISTER 28-19: AD1CALx: ADC1 CALIBRATION REGISTER ' \(x\) ' (' \(x\) ' = 1-5)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit 31/23/15/7 & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \begin{tabular}{l}
Bit \\
28/20/12/4
\end{tabular} & Bit 27/19/11/3 & Bit 26/18/10/2 & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCAL<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCAL<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCAL<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ADCAL<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 ADCAL<31:0>: Calibration Data for the ADC Module bits
This data must be copied from the corresponding DEVADCx register. Refer to Section 34.1 "Configuration Bits" for more information.

NOTES:

\subsection*{29.0 CONTROLLER AREA NETWORK (CAN)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Controller Area Network (CAN) module supports the following key features:
- Standards Compliance:
- Full CAN 2.0B compliance
- Programmable bit rate up to 1 Mbps
- Message Reception and Transmission:
- 32 message FIFOs
- Each FIFO can have up to 32 messages for a total of 1024 messages
- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 32 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet \({ }^{\text {TM }}\) addressing support
- Additional Features:
- Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring
- Low-power operating modes
- CAN module is a bus master on the PIC32 System Bus
- Use of DMA is not required
- Dedicated time-stamp timer
- Dedicated DMA channels
- Data-only Message Reception mode

Figure 29-1 illustrates the general structure of the CAN module.

FIGURE 29-1: PIC32 CAN MODULE BLOCK DIAGRAM

29.1 CAN Control Registers
Note: The 'i' shown in register names denotes
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0000} & \multirow[t]{2}{*}{C1CON} & 31:16 & - & - & - & - & ABAT & \multicolumn{3}{|l|}{REQOP<2:0>} & \multicolumn{3}{|l|}{OPMOD<2:0>} & CANCAP & - & - & - & - & 0480 \\
\hline & & 15:0 & ON & - & SIDLE & - & CANBUSY & - & - & - & - & - & - & \multicolumn{5}{|l|}{DNCNT<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0010} & \multirow[t]{2}{*}{C1CFG} & 31:16 & - & - & - & - & - & - & - & - & - & WAKFIL & - & - & - & S & G2PH<2:0> & & 0000 \\
\hline & & 15:0 & SEG2PHTS & SAM & \multicolumn{3}{|l|}{SEG1PH<2:0>} & \multicolumn{3}{|l|}{PRSEG<2:0>} & \multicolumn{2}{|l|}{SJW<1:0>} & \multicolumn{6}{|l|}{BRP<5:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0020} & \multirow[t]{2}{*}{C1INT} & 31:16 & IVRIE & WAKIE & CERRIE & SERRIE & RBOVIE & - & - & - & - & - & - & - & MODIE & CTMRIE & RBIE & TBIE & 0000 \\
\hline & & 15:0 & IVRIF & WAKIF & CERRIF & SERRIF & RBOVIF & - & - & - & - & - & - & - & MODIF & CTMRIF & RBIF & TBIF & 0000 \\
\hline \multirow[t]{2}{*}{0030} & \multirow[t]{2}{*}{C1VEC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{5}{|l|}{FILHIT<4:0>} & - & \multicolumn{7}{|l|}{ICODE<6:0>} & 0040 \\
\hline \multirow[t]{2}{*}{0040} & \multirow[t]{2}{*}{C1TREC} & 31:16 & - & - & - & - & - & - & - & - & - & - & TXBO & TXBP & RXBP & TXWARN & RXWARN & EWARN & 0000 \\
\hline & & 15:0 & \multicolumn{8}{|l|}{TERRCNT<7:0>} & \multicolumn{8}{|l|}{RERRCNT<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0050} & \multirow[t]{2}{*}{C1FSTAT} & 31:16 & FIFOIP31 & FIFOIP30 & FIFOIP29 & FIFOIP28 & FIFOIP27 & FIFOIP26 & FIFOIP25 & FIFOIP24 & FIFOIP23 & FIFOIP22 & FIFOIP21 & FIFOIP20 & FIFOIP19 & FIFOIP18 & FIFOIP17 & FIFOIP16 & 0000 \\
\hline & & 15:0 & FIFOIP15 & FIFOIP14 & FIFOIP13 & FIFOIP12 & FIFOIP11 & FIFOIP10 & FIFOIP9 & FIFOIP8 & FIFOIP7 & FIFOIP6 & FIFOIP5 & FIFOIP4 & FIFOIP3 & FIFOIP2 & FIFOIP1 & FIFOIP0 & 0000 \\
\hline \multirow[t]{2}{*}{0060} & \multirow[t]{2}{*}{C1RXOVF} & 31:16 & RXOVF31 & RXOVF30 & RXOVF29 & RXOVF28 & RXOVF27 & RXOVF26 & RXOVF25 & RXOVF24 & RXOVF23 & RXOVF22 & RXOVF21 & RXOVF20 & RXOVF19 & RXOVF18 & RXOVF17 & RXOVF16 & 0000 \\
\hline & & 15:0 & RXOVF15 & RXOVF14 & RXOVF13 & RXOVF12 & RXOVF11 & RXOVF10 & RXOVF9 & RXOVF8 & RXOVF7 & RXOVF6 & RXOVF5 & RXOVF4 & RXOVF3 & RXOVF2 & RXOVF1 & RXOVFO & 0000 \\
\hline \multirow[t]{2}{*}{0070} & \multirow[t]{2}{*}{C1TMR} & 31:16 & \multicolumn{16}{|l|}{CANTS<15:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CANTSPRE<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0080} & \multirow[t]{2}{*}{C1RXM0} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<17 & 7:16> & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxx \\
\hline \multirow[t]{2}{*}{0090} & \multirow[t]{2}{*}{C1RXM1} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<17 & 7:16> & xxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxx \\
\hline \multirow[t]{2}{*}{00A0} & \multirow[t]{2}{*}{C1RXM2} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<1 & 7:16> & xxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxxx \\
\hline \multirow[t]{2}{*}{00B0} & \multirow[t]{2}{*}{C1RXM3} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<17 & 7:16> & xxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxxx \\
\hline \multirow[t]{2}{*}{00C0} & \multirow[t]{2}{*}{C1FLTCON0} & 31:16 & FLTEN3 & \multicolumn{2}{|l|}{MSEL3<1:0>} & \multicolumn{5}{|l|}{FSEL3<4:0>} & FLTEN2 & \multicolumn{2}{|l|}{MSEL2<1:0>} & \multicolumn{5}{|l|}{FSEL2<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN1 & \multicolumn{2}{|l|}{MSEL1<1:0>} & \multicolumn{5}{|l|}{FSEL1<4:0>} & FLTEN0 & \multicolumn{2}{|l|}{MSEL0<1:0>} & \multicolumn{5}{|l|}{FSEL0<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{00D0} & \multirow[t]{2}{*}{C1FLTCON1} & 31:16 & FLTEN7 & MSEL7 & 7<1:0> & \multicolumn{5}{|l|}{FSEL7<4:0>} & FLTEN6 & MSEL6 & <<1:0> & \multicolumn{5}{|l|}{FSEL6<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN5 & MSEL5 & 5<1:0> & \multicolumn{5}{|l|}{FSEL5<4:0>} & FLTEN4 & MSEL4 & 4<1:0> & \multicolumn{5}{|l|}{FSEL4<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{00E0} & \multirow[t]{2}{*}{C1FLTCON2} & 31:16 & FLTEN11 & MSEL1 & 11<1:0> & \multicolumn{5}{|l|}{FSEL11<4:0>} & FLTEN10 & MSEL1 & 0<1:0> & \multicolumn{5}{|l|}{FSEL10<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN9 & \multicolumn{2}{|l|}{MSEL9<1:0>} & \multicolumn{5}{|l|}{FSEL9<4:0>} & FLTEN8 & \multicolumn{2}{|l|}{MSEL8<1:0>} & \multicolumn{5}{|l|}{FSEL8<4:0>} & 0000 \\
\hline
\end{tabular}
TABLE 29-1: CAN1 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & \(21 / 5\) & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{00FO} & \multirow[t]{2}{*}{C1FLTCON3} & 31:16 & FLTEN15 & \multicolumn{2}{|l|}{MSEL 15<1:0>} & \multicolumn{5}{|l|}{FSEL15<4:0>} & FLTEN14 & \multicolumn{2}{|l|}{MSEL14<1:0>} & \multicolumn{5}{|l|}{FSEL14<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN13 & \multicolumn{2}{|l|}{MSEL 13<1:0>} & \multicolumn{5}{|l|}{FSEL13<4:0>} & FLTEN12 & \multicolumn{2}{|l|}{MSEL12<1:0>} & \multicolumn{5}{|l|}{FSEL12<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0100} & \multirow[t]{2}{*}{C1FLTCON4} & 31:16 & FLTEN19 & \multicolumn{2}{|l|}{MSEL 19<1:0>} & \multicolumn{5}{|l|}{FSEL 19<4:0>} & FLTEN18 & \multicolumn{2}{|l|}{MSEL 18<1:0>} & \multicolumn{5}{|l|}{FSEL18<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN17 & \multicolumn{2}{|l|}{MSEL17<1:0>} & \multicolumn{5}{|l|}{FSEL17<4:0>} & FLTEN16 & \multicolumn{2}{|l|}{MSEL \(16<1: 0>\)} & \multicolumn{5}{|l|}{FSEL16<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0110} & \multirow[t]{2}{*}{C1FLTCON5} & 31:16 & FLTEN23 & \multicolumn{2}{|l|}{MSEL23<1:0>} & \multicolumn{5}{|l|}{FSEL23<4:0>} & FLTEN22 & \multicolumn{2}{|l|}{MSEL22<1:0>} & \multicolumn{5}{|l|}{FSEL22<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN21 & \multicolumn{2}{|l|}{MSEL21<1:0>} & \multicolumn{5}{|l|}{FSEL21<4:0>} & FLTEN20 & \multicolumn{2}{|l|}{MSEL20<1:0>} & \multicolumn{5}{|l|}{FSEL20<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0120} & \multirow[t]{2}{*}{C1FLTCON6} & 31:16 & FLTEN27 & \multicolumn{2}{|l|}{MSEL27<1:0>} & \multicolumn{5}{|l|}{FSEL27<4:0>} & FLTEN26 & \multicolumn{2}{|l|}{MSEL26<1:0>} & \multicolumn{5}{|l|}{FSEL26<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN25 & \multicolumn{2}{|l|}{MSEL25<1:0>} & \multicolumn{5}{|l|}{FSEL25<4:0>} & FLTEN24 & \multicolumn{2}{|l|}{MSEL24<1:0>} & \multicolumn{5}{|l|}{FSEL24<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0130} & \multirow[t]{2}{*}{C1FLTCON7} & 31:16 & FLTEN31 & \multicolumn{2}{|l|}{MSEL31<1:0>} & \multicolumn{5}{|l|}{FSEL31<4:0>} & FLTEN30 & \multicolumn{2}{|l|}{MSEL30<1:0>} & \multicolumn{5}{|l|}{FSEL30<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN29 & \multicolumn{2}{|l|}{MSEL29<1:0>} & \multicolumn{5}{|l|}{FSEL29<4:0>} & FLTEN28 & \multicolumn{2}{|l|}{MSEL28<1:0>} & \multicolumn{5}{|l|}{FSEL28<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline 0140- \\
0330
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { C1RXFn } \\
& (n=0-31)
\end{aligned}
\]} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & EXID & - & \multicolumn{2}{|l|}{EID<17:16>} & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxxx \\
\hline 0340 & C1FIFOBA & \[
\begin{gathered}
\hline 31: 16 \\
15: 0
\end{gathered}
\] & \multicolumn{16}{|l|}{C1FIFOBA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0350} & \multirow[t]{2}{*}{C1FIFOCONn
\[
(n=0)
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{5}{|l|}{FSIZE<4:0>} & 0000 \\
\hline & & 15:0 & - & FRESET & UINC & DONLY & - & - & - & - & TXEN & TXABAT & TXLARB & TXERR & TXREQ & RTREN & \multicolumn{2}{|l|}{TXPRI<1:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0360} & \multirow[t]{2}{*}{C1FIFOINTn
\((n=0)\) (\(\mathrm{n}=0\))} & 31:16 & - & - & - & - & - & TXNFULLIE & TXHALFIE & TXEMPTYIE & - & - & - & - & RXOVFLIE & RXFULLIE & RXHALFIE & \[
\begin{gathered}
\text { RXN } \\
\text { EMPTYIE }
\end{gathered}
\] & 0000 \\
\hline & & 15:0 & - & - & - & - & - & TXNFULLIF & TXHALFIF & TXEMPTYIF & - & - & - & - & RXOVFLIF & RXFULLIF & RXHALFIF & RXN
EMPTYIF & 0000 \\
\hline 0370 & \[
\begin{aligned}
& \text { C1FIFOUAn } \\
& (n=0)
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 31: 16 \\
\hline 15: 0 \\
\hline
\end{array}
\] & \multicolumn{16}{|l|}{C1FIFOUA<31:0>} & 0000 \\
\hline \multirow[t]{2}{*}{0380} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { C1FIFOCIn } \\
(n=0)
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{5}{|l|}{C1FIFOCI<4:0>} & 0000 \\
\hline \multirow[t]{8}{*}{\[
\begin{array}{|l|l|}
\hline 0390- \\
\text { OB40 }
\end{array}
\]} & \multirow[t]{8}{*}{C1FIFOCONn C1FIFOINTn C1FIFOUAn C1FIFOCIn (\(n=1-31\))} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & \multicolumn{5}{|l|}{FSIZE<4:0>} & 0000 \\
\hline & & 15:0 & - & FRESET & UINC & DONLY & - & - & - & - & TXEN & TXABAT & TXLARB & TXERR & TXREQ & RTREN & TXPRI & <1:0> & 0000 \\
\hline & & 31:16 & - & - & - & - & - & TXNFULLIE & TXHALFIE & TXEMPTYIE & - & - & - & - & RXOVFLIE & RXFULLIE & RXHALFIE & & 0000 \\
\hline & & 15:0 & - & - & - & - & - & TXNFULLIF & TXHALFIF & TXEMPTYIF & - & - & - & - & RXOVFLIF & RXFULLIF & RXHALFIF & \[
\begin{array}{|c|}
\text { RXN } \\
\text { RMPTYIF }
\end{array}
\] & 0000 \\
\hline & & 31:16 & & & & & & & & C1FIFOUA & A<31:0> & & & & & & & & 0000 \\
\hline & & 15:0 & & & & & & & & Critoua & , & & & & & & & & 0000 \\
\hline & & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & & & 1FIFOCI<4:0> & & & 0000 \\
\hline \[
\begin{aligned}
& \text { Legen } \\
& \text { Note }
\end{aligned}
\] & \begin{tabular}{ll}
d: & \\
1: \(=\) unk \\
& All regi \\
informa
\end{tabular} & known isters in ation. & value on Re in this table & et; \(-=\) ve corresp & plement ding CL & read as ' SET and & \[
\begin{aligned}
& \text { Reset va } \\
& \text { register: }
\end{aligned}
\] & ues are shown at their virtual & in hexadec addresses & \begin{tabular}{l}
cimal \\
, plus offsets
\end{tabular} & \[
\text { of } 0 \times 4,0 \times 8
\] & nd \(0 x C\), res & pectively. S & Section & \[
12.2 \text { "CLR, SE }
\] & ET, and INV & Registers" & for more & \\
\hline
\end{tabular}
TABLE 29-2: CAN2 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{1000} & \multirow[t]{2}{*}{C2CON} & 31:16 & - & - & - & - & ABAT & \multicolumn{3}{|l|}{REQOP<2:0>} & \multicolumn{3}{|l|}{OPMOD<2:0>} & CANCAP & - & - & - & - & 0480 \\
\hline & & 15:0 & ON & - & SIDLE & - & CANBUSY & - & - & - & - & - & - & \multicolumn{5}{|l|}{DNCNT<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1010} & \multirow[t]{2}{*}{C2CFG} & 31:16 & - & - & - & - & - & - & - & - & - & WAKFIL & - & - & - & \multicolumn{3}{|l|}{SEG2PH<2:0>} & 0000 \\
\hline & & 15:0 & SEG2PHTS & SAM & \multicolumn{3}{|l|}{SEG1PH<2:0>} & \multicolumn{3}{|l|}{PRSEG<2:0>} & \multicolumn{2}{|l|}{SJW<1:0>} & \multicolumn{6}{|l|}{BRP<5:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1020} & \multirow[t]{2}{*}{C2INT} & 31:16 & IVRIE & WAKIE & CERRIE & SERRIE & RBOVIE & - & - & - & - & - & - & - & MODIE & CTMRIE & RBIE & TBIE & 0000 \\
\hline & & 15:0 & IVRIF & WAKIF & CERRIF & SERRIF & RBOVIF & - & - & - & - & - & - & - & MODIF & CTMRIF & RBIF & TBIF & 0000 \\
\hline \multirow[t]{2}{*}{1030} & \multirow[t]{2}{*}{C2VEC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{5}{|l|}{FILHIT<4:0>} & - & \multicolumn{7}{|l|}{ICODE<6:0>} & 0040 \\
\hline \multirow[t]{2}{*}{1040} & \multirow[t]{2}{*}{C2TREC} & 31:16 & - & - & - & - & - & - & - & - & - & - & TXBO & TXBP & RXBP & TXWARN & RXWARN & EWARN & 0000 \\
\hline & & 15:0 & \multicolumn{8}{|l|}{TERRCNT<7:0>} & \multicolumn{8}{|l|}{RERRCNT<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1050} & \multirow[t]{2}{*}{C2FSTAT} & 31:16 & FIFOIP31 & FIFOIP30 & FIFOIP29 & FIFOIP28 & FIFOIP27 & FIFOIP26 & FIFOIP25 & FIFOIP24 & FIFOIP23 & FIFOIP22 & FIFOIP21 & FIFOIP20 & FIFOIP19 & FIFOIP18 & FIFOIP17 & FIFOIP16 & 0000 \\
\hline & & 15:0 & FIFOIP15 & FIFOIP14 & FIFOIP13 & FIFOIP12 & FIFOIP11 & FIFOIP10 & FIFOIP9 & FIFOIP8 & FIFOIP7 & FIFOIP6 & FIFOIP5 & FIFOIP4 & FIFOIP3 & FIFOIP2 & FIFOIP1 & FIFOIP0 & 0000 \\
\hline \multirow[t]{2}{*}{1060} & \multirow[t]{2}{*}{C2RXOVF} & 31:16 & RXOVF31 & RXOVF30 & RXOVF29 & RXOVF28 & RXOVF27 & RXOVF26 & RXOVF25 & RXOVF24 & RXOVF23 & RXOVF22 & RXOVF21 & RXOVF20 & RXOVF19 & RXOVF18 & RXOVF17 & RXOVF16 & 0000 \\
\hline & & 15:0 & RXOVF15 & RXOVF14 & RXOVF13 & RXOVF12 & RXOVF11 & RXOVF10 & RXOVF9 & RXOVF8 & RXOVF7 & RXOVF6 & RXOVF5 & RXOVF4 & RXOVF3 & RXOVF2 & RXOVF1 & RXOVFO & 0000 \\
\hline \multirow[t]{2}{*}{1070} & \multirow[t]{2}{*}{C2TMR} & 31:16 & \multicolumn{16}{|l|}{CANTS<15:0>} & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{CANTSPRE<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{1080} & \multirow[t]{2}{*}{C2RXM0} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<1 & 7:16> & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxx \\
\hline \multirow[t]{2}{*}{10A0} & \multirow[t]{2}{*}{C2RXM1} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<1 & 7:16> & \(x \times x x\) \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxx \\
\hline \multirow[t]{2}{*}{10B0} & \multirow[t]{2}{*}{C2RXM2} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<1 & 7:16> & \(x \times x x\) \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxx \\
\hline \multirow[t]{2}{*}{10во} & \multirow[t]{2}{*}{C2RXM3} & 31:16 & \multicolumn{11}{|l|}{SID<10:0>} & - & MIDE & - & EID<1 & 7:16> & \(x \times x x\) \\
\hline & & 15:0 & \multicolumn{16}{|l|}{EID<15:0>} & xxxx \\
\hline \multirow[t]{2}{*}{1010} & \multirow[t]{2}{*}{C2FLTCONO} & 31:16 & FLTEN3 & \multicolumn{2}{|l|}{MSEL3<1:0>} & & & \multicolumn{3}{|l|}{FSEL3<4:0>} & FLTEN2 & \multicolumn{2}{|l|}{MSEL2<1:0>} & \multicolumn{5}{|l|}{FSEL2<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN1 & MSEL & 1<1:0> & & & \multicolumn{3}{|l|}{FSEL1<4:0>} & FLTENO & \multicolumn{2}{|l|}{MSEL0<1:0>} & \multicolumn{5}{|l|}{FSEL0<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{10D0} & \multirow[t]{2}{*}{C2FLTCON1} & 31:16 & FLTEN7 & MSEL & 7<1:0> & & & \multicolumn{3}{|l|}{FSEL \(7<4: 0>\)} & FLTEN6 & \multicolumn{2}{|l|}{MSEL6<1:0>} & \multicolumn{5}{|l|}{FSEL6<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN5 & MSEL & 5<1:0> & & & \multicolumn{3}{|l|}{FSEL5<4:0>} & FLTEN4 & \multicolumn{2}{|l|}{MSEL4<1:0>} & \multicolumn{5}{|l|}{FSEL4<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{10E0} & \multirow[t]{2}{*}{C2FLTCON2} & 31:16 & FLTEN11 & MSEL1 & 11<1:0> & & & \multicolumn{3}{|l|}{FSEL11<4:0>} & FLTEN10 & \multicolumn{2}{|l|}{MSEL10<1:0>} & \multicolumn{5}{|l|}{FSEL10<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN9 & MSEL & 9<1:0> & & & \multicolumn{3}{|l|}{FSEL9<4:0>} & FLTEN8 & \multicolumn{2}{|l|}{MSEL8<1:0>} & \multicolumn{5}{|l|}{FSEL8<4:0>} & 0000 \\
\hline \multirow[t]{2}{*}{10F0} & \multirow[t]{2}{*}{C2FLTCON3} & 31:16 & FLTEN15 & MSEL1 & 5<1:0> & & & \multicolumn{3}{|l|}{FSEL15<4:0>} & FLTEN14 & \multicolumn{2}{|l|}{MSEL 14<1:0>} & \multicolumn{5}{|l|}{FSEL14<4:0>} & 0000 \\
\hline & & 15:0 & FLTEN13 & MSEL1 & 3<1:0> & & & \multicolumn{3}{|l|}{FSEL13<4:0>} & FLTEN12 & \multicolumn{2}{|l|}{MSEL 12<1:0>} & \multicolumn{5}{|l|}{FSEL12<4:0>} & 0000 \\
\hline \multicolumn{19}{|l|}{\begin{tabular}{ll}
Legend: & \begin{tabular}{l}
\(x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. \\
Note
\end{tabular} 1: \(^{\text {All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of } 0 \times 4,0 \times 8 \text { and } 0 \times C \text {, respectively. See Section } 12.2 \text { "CLR, SET, and INV Registers" for }}\)\begin{tabular}{l}
information.
\end{tabular}
\end{tabular}} & \\
\hline
\end{tabular}
CAN2 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES (CONTINUED)

\footnotetext{
 Note 1. information.
}

REGISTER 29-1: CiCON: CAN MODULE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & S/HC-0 & R/W-1 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & ABAT & \multicolumn{3}{|c|}{REQOP<2:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R-1 & R-0 & R-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & \multicolumn{3}{|c|}{OPMOD<2:0>} & CANCAP & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & U-0 & R-0 & U-0 & U-0 & U-0 \\
\hline & \(\mathrm{ON}{ }^{(1)}\) & - & SIDLE & - & CANBUSY & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & & & NCNT<4:0> & & \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline Legend: & \(H C=\) Hardware Clear & \(S=\) Settable bit & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(P=\) Programmable bit & \(r=\) Reserved bit \\
\(U=\) Unimplemented bit & \(-n=\) Bit Value at POR: ('0', '1', x= Unknown) & \\
\hline
\end{tabular}
bit 31-28 Unimplemented: Read as ' 0 '
bit 27 ABAT: Abort All Pending Transmissions bit
1 = Signal all transmit buffers to abort transmission
\(0=\) Module will clear this bit when all transmissions aborted
bit 26-24 REQOP<2:0>: Request Operation Mode bits
111 = Set Listen All Messages mode
\(110=\) Reserved - Do not use
101 = Reserved - Do not use
\(100=\) Set Configuration mode
011 = Set Listen Only mode
010 = Set Loopback mode
001 = Set Disable mode
\(000=\) Set Normal Operation mode
bit 23-21 OPMOD<2:0>: Operation Mode Status bits
111 = Module is in Listen All Messages mode
\(110=\) Reserved
101 = Reserved
\(100=\) Module is in Configuration mode
\(011=\) Module is in Listen Only mode
\(010=\) Module is in Loopback mode
\(001=\) Module is in Disable mode
\(000=\) Module is in Normal Operation mode
bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit
1 = CANTMR value is stored on valid message reception and is stored with the message
\(0=\) Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power
bit 19-16 Unimplemented: Read as ' 0 '
bit 15 ON: CAN On bit \({ }^{(1)}\)
\(1=\) CAN module is enabled
\(0=\) CAN module is disabled
bit 14 Unimplemented: Read as ' 0 '

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

\section*{REGISTER 29-1: CiCON: CAN MODULE CONTROL REGISTER (CONTINUED)}
```

bit 13 SIDLE: CAN Stop in Idle bit
1 = CAN Stops operation when system enters Idle mode
0 = CAN continues operation when system enters Idle mode
bit 12 Unimplemented: Read as '0'
bit 11 CANBUSY: CAN Module is Busy bit
1 = The CAN module is active
0= The CAN module is completely disabled
bit 10-5 Unimplemented: Read as '0'
bit 4-0 DNCNT<4:0>: Device Net Filter Bit Number bits
10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)
10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>)
-
-
•
00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>)
00000 = Do not compare data bytes

```

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 29-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER

\begin{tabular}{|llll|}
\hline Legend: & HC = Hardware Clear & \(S=\) Settable bit & \\
\(R=\) Readable bit & W = Writable bit & \(P=\) Programmable bit & \(r=\) Reserved bit \\
\(U=\) Unimplemented bit & \(-n=\) Bit Value at POR: (0 ',' ' 1 ', \(x=\) Unknown \()\) & \\
\hline
\end{tabular}
bit 31-23 Unimplemented: Read as ' 0 '
bit 22 WAKFIL: CAN Bus Line Filter Enable bit
1 = Use CAN bus line filter for wake-up
\(0=\) CAN bus line filter is not used for wake-up
bit 21-19 Unimplemented: Read as ' 0 '
bit 18-16 SEG2PH<2:0>: Phase Buffer Segment 2 bits \({ }^{(1,4)}\)
\(111=\) Length is \(8 \times\) TQ
-
-
-
\(000=\) Length is \(1 \times\) TQ
bit 15 SEG2PHTS: Phase Segment 2 Time Select bit \({ }^{(1)}\)
1 = Freely programmable
\(0=\) Maximum of SEG1PH or Information Processing Time, whichever is greater
bit 14 SAM: Sample of the CAN Bus Line bit \({ }^{(2)}\)
1 = Bus line is sampled three times at the sample point
\(0=\) Bus line is sampled once at the sample point
bit 13-11 SEG1PH<2:0>: Phase Buffer Segment 1 bits \({ }^{(4)}\)
\(111=\) Length is \(8 \times\) TQ
-
-
-
\(000=\) Length is \(1 \times\) TQ

Note 1: SEG2PH \(\leq\) SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2: 3 Time bit sampling is not allowed for \(\mathrm{BRP}<2\).
3: \(\quad\) SJW \(\leq\) SEG2PH.
4: \(\quad\) The Time Quanta per bit must be greater than 7 (that is, TQBIT \(>7\)).

\footnotetext{
Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).
}

\section*{REGISTER 29-2: CiCFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)}
bit 10-8 PRSEG<2:0>: Propagation Time Segment bits \({ }^{(4)}\)
\(111=\) Length is \(8 \times\) TQ
-
-
-
\(000=\) Length is \(1 \times\) TQ
bit 7-6 SJW<1:0>: Synchronization Jump Width bits \({ }^{(3)}\)
\(11=\) Length is \(4 \times\) TQ
\(10=\) Length is \(3 \times\) TQ
\(01=\) Length is \(2 \times\) TQ
\(00=\) Length is \(1 \times\) TQ
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
\(111111=\) TQ \(=(2 \times 64) /\) TPBCLK5
\(111110=\) TQ \(=(2 \times 63) /\) TPBCLK5
-
-
-
\(000001=\) TQ \(=(2 \times 2) /\) TPBCLK5
\(000000=\) TQ \(=(2 \times 1) /\) TPBCLK5

Note 1: SEG2PH \(\leq\) SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
2: 3 Time bit sampling is not allowed for \(\mathrm{BRP}<2\).
3: SJW \(\leq\) SEG2PH.
4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).
Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 29-3: CiINT: CAN INTERRUPT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit
31/23/15/7 & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline & IVRIE & WAKIE & CERRIE & SERRIE & RBOVIE & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & MODIE & CTMRIE & RBIE & TBIE \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 \\
\hline & IVRIF & WAKIF & CERRIF & SERRIF \({ }^{(1)}\) & RBOVIF & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & MODIF & CTMRIF & RBIF & TBIF \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31 IVRIE: Invalid Message Received Interrupt Enable bit
1 = Interrupt request enabled
\(0=\) Interrupt request not enabled
bit 30 WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 29 CERRIE: CAN Bus Error Interrupt Enable bit
1 = Interrupt request enabled
\(0=\) Interrupt request not enabled
bit 28 SERRIE: System Error Interrupt Enable bit
1 = Interrupt request enabled
\(0=\) Interrupt request not enabled
bit 27 RBOVIE: Receive Buffer Overflow Interrupt Enable bit
1 = Interrupt request enabled
\(0=\) Interrupt request not enabled
bit 26-20 Unimplemented: Read as ' 0 '
bit 19 MODIE: Mode Change Interrupt Enable bit
1 = Interrupt request enabled
0 = Interrupt request not enabled
bit 18 CTMRIE: CAN Timestamp Timer Interrupt Enable bit
1 = Interrupt request enabled
\(0=\) Interrupt request not enabled
bit 17 RBIE: Receive Buffer Interrupt Enable bit
1 = Interrupt request enabled
\(0=\) Interrupt request not enabled
bit 16 TBIE: Transmit Buffer Interrupt Enable bit
1 = Interrupt request enabled
\(0=\) Interrupt request not enabled
bit 15 IVRIF: Invalid Message Received Interrupt Flag bit
1 = An invalid messages interrupt has occurred
\(0=\) An invalid message interrupt has not occurred

Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

\section*{REGISTER 29-3: CiINT: CAN INTERRUPT REGISTER (CONTINUED)}
bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit
1 = A bus wake-up activity interrupt has occurred
\(0=\) A bus wake-up activity interrupt has not occurred
bit 13 CERRIF: CAN Bus Error Interrupt Flag bit
\(1=\) A CAN bus error has occurred
0 = A CAN bus error has not occurred
bit 12 SERRIF: System Error Interrupt Flag bit \({ }^{(1)}\)
1 = A system error occurred (typically an illegal address was presented to the System Bus)
\(0=\) A system error has not occurred
bit 11 RBOVIF: Receive Buffer Overflow Interrupt Flag bit
1 = A receive buffer overflow has occurred
\(0=\) A receive buffer overflow has not occurred
bit 10-4 Unimplemented: Read as ' 0 '
bit 3 MODIF: CAN Mode Change Interrupt Flag bit
\(1=A\) CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP)
\(0=A\) CAN module mode change has not occurred
bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit
1 = A CAN timer (CANTMR) overflow has occurred
\(0=\) A CAN timer (CANTMR) overflow has not occurred
bit 1 RBIF: Receive Buffer Interrupt Flag bit
1 = A receive buffer interrupt is pending
\(0=\) A receive buffer interrupt is not pending
bit \(0 \quad\) TBIF: Transmit Buffer Interrupt Flag bit
1 = A transmit buffer interrupt is pending
\(0=A\) transmit buffer interrupt is not pending

Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

REGISTER 29-4: CiVEC: CAN INTERRUPT CODE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{FILHIT<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R-1 & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & \multicolumn{7}{|c|}{ICODE<6:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-13 Unimplemented: Read as ' 0 '
bit 12-8 FILHIT<4:0>: Filter Hit Number bit
```

11111 = Filter 31
11110 = Filter 30
•
•
•
00001 = Filter 1
00000= Filter 0

```
bit 7 Unimplemented: Read as ' 0 '
bit 6-0 ICODE<6:0>: Interrupt Flag Code bits \({ }^{(1)}\)
```

1001000-1111111 = Reserved
1001000 = Invalid message received (IVRIF)
1 0 0 0 1 1 1 ~ = ~ C A N ~ m o d u l e ~ m o d e ~ c h a n g e ~ ( M O D I F )
1000110 = CAN timestamp timer (CTMRIF)
1000101 = Bus bandwidth error (SERRIF)
1000100 = Address error interrupt (SERRIF)
1000011 = Receive FIFO overflow interrupt (RBOVIF)
1000010 = Wake-up interrupt (WAKIF)
1000001 = Error Interrupt (CERRIF)
1000000 = No interrupt
0100000-0111111 = Reserved
0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
•
•
•
0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
0000000 = FIFO0 Interrupt (CiFSTAT<0> set)

```

Note 1: These bits are only updated for enabled interrupts.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 29-5: CiTREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & \multicolumn{2}{|l|}{U-0 U-0} & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & - & TXBO & TXBP & RXBP & TXWARN & RXWARN & EWARN \\
\hline \multirow[b]{2}{*}{15:8} & \multicolumn{2}{|l|}{R-0 R-0} & R-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & \multicolumn{8}{|c|}{TERRCNT<7:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R-0 & \multirow[t]{2}{*}{R-0} & \multirow[t]{2}{*}{R-0} & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & & & & \multicolumn{2}{|l|}{RERRCNT<7:0>} & & & \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared
\end{tabular}
bit 31-22 Unimplemented: Read as ' 0 '
bit 21 TXBO: Transmitter in Error State Bus OFF (TERRCNT \(\geq 256\))
bit 20 TXBP: Transmitter in Error State Bus Passive (TERRCNT \(\geq\) 128)
bit 19 RXBP: Receiver in Error State Bus Passive (RERRCNT \(\geq 128\))
bit 18 TXWARN: Transmitter in Error State Warning (128> TERRCNT \(\geq 96\))
bit 17 RXWARN: Receiver in Error State Warning (\(128>\) RERRCNT \(\geq 96\))
bit 16 EWARN: Transmitter or Receiver is in Error State Warning
bit 15-8 TERRCNT<7:0>: Transmit Error Counter
bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 29-6: CiFSTAT: CAN FIFO STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & FIFOIP31 & FIFOIP30 & FIFOIP29 & FIFOIP28 & FIFOIP27 & FIFOIP26 & FIFOIP25 & FIFOIP24 \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & FIFOIP23 & FIFOIP22 & FIFOIP21 & FIFOIP20 & FIFOIP19 & FIFOIP18 & FIFOIP17 & FIFOIP16 \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & FIFOIP15 & FIFOIP14 & FIFOIP13 & FIFOIP12 & FIFOIP11 & FIFOIP10 & FIFOIP9 & FIFOIP8 \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & FIFOIP7 & FIFOIP6 & FIFOIP5 & FIFOIP4 & FIFOIP3 & FIFOIP2 & FIFOIP1 & FIFOIP0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & ' 0 ' \(=\) Bit is cleared
\end{tabular} \(\mathrm{x=} \mathrm{Bit} \mathrm{is} \mathrm{unknown}\)
bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits
1 = One or more enabled FIFO interrupts are pending
\(0=\) No FIFO interrupts are pending

REGISTER 29-7: CiRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-0 \\
\hline & RXOVF31 & RXOVF30 & RXOVF29 & RXOVF28 & RXOVF27 & RXOVF26 & RXOVF25 & RXOVF24 \\
\hline \multirow[b]{2}{*}{23:16} & R-0 \\
\hline & RXOVF23 & RXOVF22 & RXOVF21 & RXOVF20 & RXOVF19 & RXOVF18 & RXOVF17 & RXOVF16 \\
\hline \multirow[b]{2}{*}{15:8} & R-0 \\
\hline & RXOVF15 & RXOVF14 & RXOVF13 & RXOVF12 & RXOVF11 & RXOVF10 & RXOVF9 & RXOVF8 \\
\hline \multirow[b]{2}{*}{7:0} & R-0 \\
\hline & RXOVF7 & RXOVF6 & RXOVF5 & RXOVF4 & RXOVF3 & RXOVF2 & RXOVF1 & RXOVF0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 RXOVF<31:0>: FIFOn Receive Overflow Interrupt Pending bit
1 = FIFO has overflowed
\(0=\) FIFO has not overflowed
REGISTER 29-8: CiTMR: CAN TIMER REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{27 / 19 / 11 / 3}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CANTS<15:8>} \\
\hline \multirow{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CANTS<7:0>} \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CANTSPRE<15:8>} \\
\hline \multirow{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CANTSPRE<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits
This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (\(\mathrm{CiCON}<20>\)) is set.
bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits
1111111111111111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks
-
-
-
\(0000000000000000=\) CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be frozen when CANCAP \(=0\).
2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

REGISTER 29-9: CiRXMN: CAN ACCEPTANCE FILTER MASK N REGISTER (N = 0, 1, 2 OR 3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{SID<10:3>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & U-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{3}{|c|}{SID<2:0>} & - & MIDE & - & \multicolumn{2}{|r|}{EID<17:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{EID<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{EID<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-21 SID<10:0>: Standard Identifier bits
1 = Include bit, SIDx, in filter comparison
\(0=\) Bit SIDx is 'don't care' in filter operation
bit 20 Unimplemented: Read as ' 0 '
bit 19 MIDE: Identifier Receive Mode bit
1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter
\(0=\) Match either standard or extended address message if filters match (that is, if (Filter SID) \(=(\) Message SID) or if (FILTER SID/EID) \(=(\) Message SID/EID \())\)
bit 18 Unimplemented: Read as ' 0 '
bit 17-0 EID<17:0>: Extended Identifier bits
1 = Include bit, EIDx, in filter comparison
\(0=\) Bit EIDx is 'don't care' in filter operation

\footnotetext{
Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).
}

REGISTER 29-10: CiFLTCON0: CAN FILTER CONTROL REGISTER 0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN3 & \multicolumn{2}{|l|}{MSEL3<1:0>} & \multicolumn{5}{|c|}{FSEL3<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN2 & \multicolumn{2}{|l|}{MSEL2<1:0>} & \multicolumn{5}{|c|}{FSEL2<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN1 & \multicolumn{2}{|l|}{MSEL1<1:0>} & \multicolumn{5}{|c|}{FSEL1<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & FLTEN0 & \multicolumn{2}{|l|}{MSEL0<1:0>} & \multicolumn{5}{|c|}{FSEL0<4:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}

FSEL3<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN2: Filter 2 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL2<1:0>: Filter 2 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 20-16 FSEL2<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-10: CiFLTCONO: CAN FILTER CONTROL REGISTER 0 (CONTINUED)
bit 15 FLTEN1: Filter 1 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL1<1:0>: Filter 1 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
$00=$ Acceptance Mask 0 selected
bit 12-8 FSEL1<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
$11110=$ Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
$00000=$ Message matching filter is stored in FIFO buffer 0
bit $7 \quad$ FLTENO: Filter 0 Enable bit
1 = Filter is enabled
$0=$ Filter is disabled
bit 6-5 MSEL0<1:0>: Filter 0 Mask Select bits
11 = Acceptance Mask 3 selected
$10=$ Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
$00=$ Acceptance Mask 0 selected
bit 4-0 FSEL0<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
$11110=$ Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
$00000=$ Message matching filter is stored in FIFO buffer 0

```

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

REGISTER 29-11: CiFLTCON1: CAN FILTER CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN7 & \multicolumn{2}{|l|}{MSEL7<1:0>} & \multicolumn{5}{|c|}{FSEL7<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN6 & \multicolumn{2}{|l|}{MSEL6<1:0>} & \multicolumn{5}{|c|}{FSEL6<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN5 & \multicolumn{2}{|l|}{MSEL5<1:0>} & \multicolumn{5}{|c|}{FSEL5<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & FLTEN4 & \multicolumn{2}{|l|}{MSEL4<1:0>} & \multicolumn{5}{|c|}{FSEL4<4:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 FLTEN7: Filter 7 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 30-29 MSEL7<1:0>: Filter 7 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 28-24 FSEL7<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN6: Filter 6 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL6<1:0>: Filter 6 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 20-16 FSEL6<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-11: CiFLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED)
bit 15 FLTEN5: Filter 17 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
$00=$ Acceptance Mask 0 selected
bit 12-8 FSEL5<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
$11110=$ Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
$00000=$ Message matching filter is stored in FIFO buffer 0
bit $7 \quad$ FLTEN4: Filter 4 Enable bit
1 = Filter is enabled
$0=$ Filter is disabled
bit 6-5 MSEL4<1:0>: Filter 4 Mask Select bits
11 = Acceptance Mask 3 selected
$10=$ Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
$00=$ Acceptance Mask 0 selected
bit 4-0 FSEL4<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
$11110=$ Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
$00000=$ Message matching filter is stored in FIFO buffer 0

```

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

REGISTER 29-12: CiFLTCON2: CAN FILTER CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\underset{\text { Bit }}{25 / 17 / 9 / 1}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN11 & \multicolumn{2}{|l|}{MSEL11<1:0>} & \multicolumn{5}{|c|}{FSEL11<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN10 & \multicolumn{2}{|l|}{MSEL10<1:0>} & \multicolumn{5}{|c|}{FSEL10<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN9 & \multicolumn{2}{|l|}{MSEL9<1:0>} & \multicolumn{5}{|c|}{FSEL9<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & FLTEN8 & \multicolumn{2}{|l|}{MSEL8<1:0>} & \multicolumn{5}{|c|}{FSEL8<4:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 FLTEN11: Filter 11 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 30-29 MSEL11<1:0>: Filter 11 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 28-24 FSEL11<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN10: Filter 10 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL10<1:0>: Filter 10 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 20-16 FSEL10<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-12: CiFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED)
bit 15 FLTEN9: Filter 9 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 12-8 FSEL9<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0
bit 7 FLTEN8: Filter 8 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 4-0 FSEL8<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0

```

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

REGISTER 29-13: CiFLTCON3: CAN FILTER CONTROL REGISTER 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\underset{\text { Bit }}{27 / 19 / 11 / 3}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN15 & \multicolumn{2}{|l|}{MSEL15<1:0>} & \multicolumn{5}{|c|}{FSEL15<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN14 & \multicolumn{2}{|l|}{MSEL14<1:0>} & \multicolumn{5}{|c|}{FSEL14<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN13 & \multicolumn{2}{|l|}{MSEL13<1:0>} & \multicolumn{5}{|c|}{FSEL13<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & FLTEN12 & \multicolumn{2}{|l|}{MSEL12<1:0>} & \multicolumn{5}{|c|}{FSEL12<4:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 FLTEN15: Filter 15 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 30-29 MSEL15<1:0>: Filter 15 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 28-24 FSEL15<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN14: Filter 14 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL14<1:0>: Filter 14 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 20-16 FSEL14<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-13: CiFLTCON3: CAN FILTER CONTROL REGISTER 3 (CONTINUED)
bit 15 FLTEN13: Filter 13 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL13<1:0>: Filter 13 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 12-8 FSEL13<4:0>: FIFO Selection bits
1 1 1 1 1 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
\bullet
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0
bit 7 FLTEN12: Filter 12 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 6-5 MSEL12<1:0>: Filter 12 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 4-0 FSEL12<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0

```

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

REGISTER 29-14: CiFLTCON4: CAN FILTER CONTROL REGISTER 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 27/19/11/3 }}
\] & \[
\begin{array}{|c|}
\text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN19 & \multicolumn{2}{|l|}{MSEL19<1:0>} & \multicolumn{5}{|c|}{FSEL19<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN18 & \multicolumn{2}{|l|}{MSEL18<1:0>} & \multicolumn{5}{|c|}{FSEL18<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN17 & \multicolumn{2}{|l|}{MSEL17<1:0>} & \multicolumn{5}{|c|}{FSEL17<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & FLTEN16 & \multicolumn{2}{|l|}{MSEL16<1:0>} & \multicolumn{5}{|c|}{FSEL16<4:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 FLTEN19: Filter 19 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 30-29 MSEL19<1:0>: Filter 19 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 28-24 FSEL19<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN18: Filter 18 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL18<1:0>: Filter 18 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 20-16 FSEL18<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-14: CiFLTCON4: CAN FILTER CONTROL REGISTER 4 (CONTINUED)
bit 15 FLTEN17: Filter 13 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL17<1:0>: Filter 17 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 12-8 FSEL17<4:0>: FIFO Selection bits
1 1 1 1 1 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
\bullet
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0
bit 7 FLTEN16: Filter 16 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 6-5 MSEL16<1:0>: Filter 16 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 4-0 FSEL16<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0

```

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

REGISTER 29-15: CiFLTCON5: CAN FILTER CONTROL REGISTER 5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN23 & \multicolumn{2}{|l|}{MSEL23<1:0>} & \multicolumn{5}{|c|}{FSEL23<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN22 & \multicolumn{2}{|l|}{MSEL22<1:0>} & \multicolumn{5}{|c|}{FSEL22<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN21 & \multicolumn{2}{|l|}{MSEL21<1:0>} & \multicolumn{5}{|c|}{FSEL21<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & FLTEN20 & \multicolumn{2}{|l|}{MSEL20<1:0>} & \multicolumn{5}{|c|}{FSEL20<4:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 FLTEN23: Filter 23 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 30-29 MSEL23<1:0>: Filter 23 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 28-24 FSEL23<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
\(\cdot\)
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN22: Filter 22 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL22<1:0>: Filter 22 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 20-16 FSEL22<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-15: CiFLTCON5: CAN FILTER CONTROL REGISTER 5 (CONTINUED)
bit 15 FLTEN21: Filter 21 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL21<1:0>: Filter 21 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 12-8 FSEL21<4:0>: FIFO Selection bits
1 1 1 1 1 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
\bullet
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0
bit 7 FLTEN20: Filter 20 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 6-5 MSEL20<1:0>: Filter 20 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 4-0 FSEL20<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0

```

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

REGISTER 29-16: CiFLTCON6: CAN FILTER CONTROL REGISTER 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN27 & \multicolumn{2}{|l|}{MSEL27<1:0>} & \multicolumn{5}{|c|}{FSEL27<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN26 & \multicolumn{2}{|l|}{MSEL26<1:0>} & \multicolumn{5}{|c|}{FSEL26<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN25 & \multicolumn{2}{|l|}{MSEL25<1:0>} & \multicolumn{5}{|c|}{FSEL25<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & \multicolumn{2}{|l|}{R/W-0 R/W-0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & FLTEN24 & \multicolumn{2}{|l|}{MSEL24<1:0>} & \multicolumn{5}{|c|}{FSEL24<4:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 FLTEN27: Filter 27 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 30-29 MSEL27<1:0>: Filter 27 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 28-24 FSEL27<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN26: Filter 26 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL26<1:0>: Filter 26 Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 20-16 FSEL26<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
00001 = Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-16: CiFLTCON6: CAN FILTER CONTROL REGISTER 6 (CONTINUED)
bit 15 FLTEN25: Filter 25 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL25<1:0>: Filter 25 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 12-8 FSEL25<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
\bullet
•
-
00001 = Message matching filter is stored in FIFO buffer 1
00000=Message matching filter is stored in FIFO buffer 0
bit 7 FLTEN24: Filter 24 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 6-5 MSEL24<1:0>: Filter 24 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 4-0 FSEL24<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0

```

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

REGISTER 29-17: CiFLTCON7: CAN FILTER CONTROL REGISTER 7
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & FLTEN31 & \multicolumn{2}{|l|}{MSEL31<1:0>} & \multicolumn{5}{|c|}{FSEL31<4:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & FLTEN30 & \multicolumn{2}{|l|}{MSEL30<1:0>} & \multicolumn{5}{|c|}{FSEL30<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & FLTEN29 & \multicolumn{2}{|l|}{MSEL29<1:0>} & \multicolumn{5}{|c|}{FSEL29<4:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & \multirow[t]{2}{*}{R/W-0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & FLTEN28 & \multicolumn{2}{|l|}{MSEL28<1:0>} & & \multicolumn{2}{|r|}{FSEL28<4:0>} & & \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}

FLTEN31: Filter 31 Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 30-29 MSEL31<1:0>: Filter 31 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 28-24 FSEL31<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0
bit 23 FLTEN30: Filter 30Enable bit
1 = Filter is enabled
\(0=\) Filter is disabled
bit 22-21 MSEL30<1:0>: Filter 30Mask Select bits
11 = Acceptance Mask 3 selected
\(10=\) Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
\(00=\) Acceptance Mask 0 selected
bit 20-16 FSEL30<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
\(11110=\) Message matching filter is stored in FIFO buffer 30
-
-
\(00001=\) Message matching filter is stored in FIFO buffer 1
\(00000=\) Message matching filter is stored in FIFO buffer 0

Note: \(\quad\) The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.
```

REGISTER 29-17: CiFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED)
bit 15 FLTEN29: Filter 29 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 14-13 MSEL29<1:0>: Filter 29 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 12-8 FSEL29<4:0>: FIFO Selection bits
1 1 1 1 1 = ~ M e s s a g e ~ m a t c h i n g ~ f i l t e r ~ i s ~ s t o r e d ~ i n ~ F I F O ~ b u f f e r ~ 3 1 ~
11110 = Message matching filter is stored in FIFO buffer 30
•
•
•
00001 = Message matching filter is stored in FIFO buffer 1
00000=Message matching filter is stored in FIFO buffer 0
bit 7 FLTEN28: Filter 28 Enable bit
1 = Filter is enabled
0 = Filter is disabled
bit 6-5 MSEL28<1:0>: Filter 28 Mask Select bits
11 = Acceptance Mask 3 selected
10 = Acceptance Mask 2 selected
01 = Acceptance Mask 1 selected
00 = Acceptance Mask 0 selected
bit 4-0 FSEL28<4:0>: FIFO Selection bits
11111 = Message matching filter is stored in FIFO buffer 31
11110 = Message matching filter is stored in FIFO buffer 30
•
•
-
00001 = Message matching filter is stored in FIFO buffer 1
00000 = Message matching filter is stored in FIFO buffer 0

```

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is ' 0 '.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 29-18: CiRXFn: CAN ACCEPTANCE FILTER N REGISTER 7 (\(\mathrm{n}=0\) THROUGH 31)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-x \\
\hline & \multicolumn{8}{|c|}{SID<10:3>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-x & R/W-x & R/W-x & U-0 & R/W-0 & U-0 & R/W-x & R/W-x \\
\hline & \multicolumn{3}{|c|}{SID<2:0>} & - & EXID & - & \multicolumn{2}{|c|}{EID<17:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-x \\
\hline & \multicolumn{8}{|c|}{EID<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-x \\
\hline & \multicolumn{8}{|c|}{EID<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-21 SID<10:0>: Standard Identifier bits
1 = Message address bit SIDx must be ' 1 ' to match filter
\(0=\) Message address bit SIDx must be ' 0 ' to match filter
bit 20 Unimplemented: Read as ' 0 '
bit 19 EXID: Extended Identifier Enable bits
1 = Match only messages with extended identifier addresses
\(0=\) Match only messages with standard identifier addresses
bit 18 Unimplemented: Read as ' 0 '
bit 17-0 EID<17:0>: Extended Identifier bits
1 = Message address bit EIDx must be ' 1 ' to match filter
\(0=\) Message address bit EIDx must be ' 0 ' to match filter

Note: \(\quad\) This register can only be modified when the filter is disabled (FLTENn = 0).

REGISTER 29-19: CiFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{27 / 19 / 11 / 3}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{25 / 17 / 9 / 1}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CiFIFOBA<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CiFIFOBA<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{CiFIFOBA<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & \(\mathrm{R}-0^{(1)}\) & \(\mathrm{R}-0^{(1)}\) \\
\hline & \multicolumn{8}{|c|}{CiFIFOBA<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits
These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Note that bits <1:0> are read-only and read ' 0 ', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read ' 0 ', which forces word-alignment of messages.

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (\(\mathrm{CiCON}<23: 21>\)) \(=100\)).

REGISTER 29-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER (\(\mathrm{n}=0\) THROUGH 31)

\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-21 Unimplemented: Read as ' 0 '
bit 20-16 FSIZE<4:0>: FIFO Size bits \({ }^{(1)}\)
11111 = FIFO is 32 messages deep
-
-
-
\(00010=\) FIFO is 3 messages deep
\(00001=\) FIFO is 2 messages deep
\(00000=\) FIFO is 1 message deep
bit 15 Unimplemented: Read as ' 0 '
bit 14 FRESET: FIFO Reset bits
1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll if this bit is clear before taking any action
\(0=\) No effect
bit 13 UINC: Increment Head/Tail bit
TXEN = 1: (FIFO configured as a Transmit FIFO)
When this bit is set the FIFO head will increment by a single message
TXEN = 0: (FIFO configured as a Receive FIFO)
When this bit is set the FIFO tail will increment by a single message
bit 12 DONLY: Store Message Data Only bit \({ }^{(1)}\)
TXEN = 1: (FIFO configured as a Transmit FIFO)
This bit is not used and has no effect.
TXEN = 0: (FIFO configured as a Receive FIFO)
1 = Only data bytes will be stored in the FIFO
\(0=\) Full message is stored, including identifier
bit 11-8 Unimplemented: Read as ' 0 '
bit 7 TXEN: TX/RX Buffer Selection bit
1 = FIFO is a Transmit FIFO
\(0=\) FIFO is a Receive FIFO

Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 29-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER (\(\mathrm{n}=0\) THROUGH 31)
bit 6 TXABAT: Message Aborted bit \({ }^{(2)}\)
1 = Message was aborted
\(0=\) Message completed successfully
bit \(5 \quad\) TXLARB: Message Lost Arbitration bit \({ }^{(3)}\)
1 = Message lost arbitration while being sent
\(0=\) Message did not loose arbitration while being sent
bit 4 TXERR: Error Detected During Transmission bit \({ }^{(3)}\)
1 = A bus error occured while the message was being sent
\(0=\) A bus error did not occur while the message was being sent
bit 3 TXREQ: Message Send Request
TXEN = 1: (FIFO configured as a Transmit FIFO)
Setting this bit to ' 1 ' requests sending a message.
The bit will automatically clear when all the messages queued in the FIFO are successfully sent Clearing the bit to ' 0 ' while set (1 ') will request a message abort.
TXEN = 0: (FIFO configured as a Receive FIFO)
This bit has no effect.
bit 2 RTREN: Auto RTR Enable bit
\(1=\) When a remote transmit is received, TXREQ will be set
\(0=\) When a remote transmit is received, TXREQ will be unaffected
bit 1-0 TXPR<1:0>: Message Transmit Priority bits
\(11=\) Highest Message Priority
\(10=\) High Intermediate Message Priority
01 = Low Intermediate Message Priority
\(00=\) Lowest Message Priority

Note 1: These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits \((\mathrm{CiCON}<23: 21>)=100\)).
2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER (\(\mathrm{n}=0\) THROUGH 31)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{array}{|c}
\mathrm{Bit} \\
30 / 22 / 14 / 6
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
28 / 20 / 12 / 4
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & TXNFULLIE & TXHALFIE & TXEMPTYIE \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & RXOVFLIE & RXFULLIE & RXHALFIE & RXNEMPTYIE \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & - & - & TXNFULLIF \({ }^{(1)}\) & TXHALFIF & TXEMPTYIF \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & - & RXOVFLIF & RXFULLIF \({ }^{(1)}\) & RXHALFIF \({ }^{(1)}\) & RXNEMPTYIF \({ }^{(1)}\) \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' = Bit is set & \(' 0\) = Bit is cleared \\
\(x=\) Bit is unknown
\end{tabular}
bit 31-27 Unimplemented: Read as ' 0 '
bit 26 TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit
1 = Interrupt enabled for FIFO not full
0 = Interrupt disabled for FIFO not full
bit 25 TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit
1 = Interrupt enabled for FIFO half full
\(0=\) Interrupt disabled for FIFO half full
bit 24 TXEMPTYIE: Transmit FIFO Empty Interrupt Enable bit
1 = Interrupt enabled for FIFO empty
0 = Interrupt disabled for FIFO empty
bit 23-20 Unimplemented: Read as ' 0 '
bit 19 RXOVFLIE: Overflow Interrupt Enable bit
1 = Interrupt enabled for overflow event
\(0=\) Interrupt disabled for overflow event
bit 18 RXFULLIE: Full Interrupt Enable bit
1 = Interrupt enabled for FIFO full
\(0=\) Interrupt disabled for FIFO full
bit 17 RXHALFIE: FIFO Half Full Interrupt Enable bit
1 = Interrupt enabled for FIFO half full
\(0=\) Interrupt disabled for FIFO half full
bit 16 RXNEMPTYIE: Empty Interrupt Enable bit
1 = Interrupt enabled for FIFO not empty
\(0=\) Interrupt disabled for FIFO not empty
bit 15-11 Unimplemented: Read as ' 0 '
bit 10 TXNFULLIF: Transmit FIFO Not Full Interrupt Flag bit \({ }^{(1)}\)
TXEN = 1: (FIFO configured as a Transmit Buffer)
\(1=\) FIFO is not full
\(0=\) FIFO is full
TXEN = 0: (FIFO configured as a Receive Buffer)
Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.
```

REGISTER 29-21: CiFIFOINTn: CAN FIFO INTERRUPT REGISTER (n = 0 THROUGH 31)
bit 9 TXHALFIF: FIFO Transmit FIFO Half Empty Interrupt Flag bit (}\mp@subsup{}{}{(1)
TXEN = 1: (FIFO configured as a Transmit Buffer)
1= FIFO is \leq half full
0 = FIFO is > half full
TXEN = 0: (FIFO configured as a Receive Buffer)
Unused, reads '0'
bit 8 TXEMPTYIF: Transmit FIFO Empty Interrupt Flag bit }\mp@subsup{}{}{(1)
TXEN = 1: (FIFO configured as a Transmit Buffer)
1 = FIFO is empty
0 = FIFO is not empty, at least 1 message queued to be transmitted
TXEN = 0: (FIFO configured as a Receive Buffer)
Unused, reads '0'
bit 7-4 Unimplemented: Read as ' }0\mathrm{ '
bit 3 RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit
TXEN = 1: (FIFO configured as a Transmit Buffer)
Unused, reads '0'
TXEN = 0: (FIFO configured as a Receive Buffer)
1 = Overflow event has occurred
0 = No overflow event occured
bit 2 RXFULLIF: Receive FIFO Full Interrupt Flag bit(1)
TXEN = 1: (FIFO configured as a Transmit Buffer)
Unused, reads '0'
TXEN = 0: (FIFO configured as a Receive Buffer)
1 = FIFO is full
0 = FIFO is not full
bit 1 RXHALFIF: Receive FIFO Half Full Interrupt Flag bit }\mp@subsup{}{}{(1)
TXEN = 1: (FIFO configured as a Transmit Buffer)
Unused, reads '0'
TXEN = 0: (FIFO configured as a Receive Buffer)
1 = FIFO is }\geq\mathrm{ half full
0 = FIFO is < half full
bit 0 RXNEMPTYIF: Receive Buffer Not Empty Interrupt Flag bit(1)
TXEN = 1: (FIFO configured as a Transmit Buffer)
Unused, reads '0'
TXEN = 0: (FIFO configured as a Receive Buffer)
1 = FIFO is not empty, has at least 1 message
0 = FIFO is empty

```

Note 1: This bit is read-only and reflects the status of the FIFO.

REGISTER 29-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER (\(\mathrm{n}=0\) THROUGH 31)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R-x \\
\hline & \multicolumn{8}{|c|}{CiFIFOUAn<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R-x \\
\hline & \multicolumn{8}{|c|}{CiFIFOUAn<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R-x \\
\hline & \multicolumn{8}{|c|}{CiFIFOUAn<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R-x & R-x & R-x & R-x & R-x & R-x & \(\mathrm{R}-0^{(1)}\) & \(\mathrm{R}-0^{(1)}\) \\
\hline & \multicolumn{8}{|c|}{CiFIFOUAn<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & ' 1 ' \(=\) Bit is set & ' 0 ' = Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits
TXEN = 1: (FIFO configured as a Transmit Buffer)
A read of this register will return the address where the next message is to be written (FIFO head).
TXEN = 0: (FIFO configured as a Receive Buffer)
A read of this register will return the address where the next message is to be read (FIFO tail).
Note 1: This bit will always read ' 0 ', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

REGISTER 29-23: CiFIFOCIn: CAN MODULE MESSAGE INDEX REGISTER (\(\mathrm{n}=0\) THROUGH 31)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & R-0 & R-0 & R-0 & R-0 & R-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{CiFIFOCIn<4:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\end{tabular}
bit 31-5 Unimplemented: Read as ' 0 '
bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits
TXEN = 1: (FIFO configured as a Transmit Buffer)
A read of this register will return an index to the message that the FIFO will next attempt to transmit.
TXEN = 0: (FIFO configured as a Receive Buffer)
A read of this register will return an index to the message that the FIFO will use to save the next message.

\subsection*{30.0 ETHERNET CONTROLLER}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Ethernet Controller" (DS60001155) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system.
Key features of the Ethernet Controller include:
- Supports 10/100 Mbps data transfer rates
- Supports full-duplex and half-duplex operation
- Supports RMII and MII PHY interface
- Supports MIIM PHY management interface
- Supports both manual and automatic Flow Control
- RAM descriptor-based DMA operation for both receive and transmit path
- Fully configurable interrupts
- Configurable receive packet filtering
- CRC check
- 64-byte pattern match
- Broadcast, multicast and unicast packets
- Magic Packet \({ }^{T M}\)
- 64-bit hash table
- Runt packet
- Supports packet payload checksum calculation
- Supports various hardware statistics counters

Figure 30-1 illustrates a block diagram of the Ethernet controller.

FIGURE 30-1: ETHERNET CONTROLLER BLOCK DIAGRAM

\section*{PIC32MZ Embedded Connectivity (EC) Family}

Table 30-1, Table 30-2, Table 30-3 and Table 30-4 show four interfaces and the associated pins that can be used with the Ethernet Controller.

\section*{TABLE 30-1: MII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 1)}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pin Name } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EMDC & Management Clock \\
\hline EMDIO & Management I/O \\
\hline ETXCLK & Transmit Clock \\
\hline ETXEN & Transmit Enable \\
\hline ETXD0 & Transmit Data \\
\hline ETXD1 & Transmit Data \\
\hline ETXD2 & Transmit Data \\
\hline ETXD3 & Transmit Data \\
\hline ETXERR & Transmit Error \\
\hline ERXCLK & Receive Clock \\
\hline ERXDV & Receive Data Valid \\
\hline ERXD0 & Receive Data \\
\hline ERXD1 & Receive Data \\
\hline ERXD2 & Receive Data \\
\hline ERXD3 & Receive Data \\
\hline ERXERR & Receive Error \\
\hline ECRS & Carrier Sense \\
\hline ECOL & Collision Indication \\
\hline
\end{tabular}

TABLE 30-2: RMII MODE DEFAULT INTERFACE SIGNALS (FMIIEN \(=0\), FETHIO = 1)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pin Name } & \multicolumn{1}{c|}{ Description } \\
\hline \hline EMDC & Management Clock \\
\hline EMDIO & Management I/O \\
\hline ETXEN & Transmit Enable \\
\hline ETXD0 & Transmit Data \\
\hline ETXD1 & Transmit Data \\
\hline EREFCLK & Reference Clock \\
\hline ECRSDV & Carrier Sense - Receive Data Valid \\
\hline ERXD0 & Receive Data \\
\hline ERXD1 & Receive Data \\
\hline ERXERR & Receive Error \\
\hline
\end{tabular}

Note: Ethernet controller pins that are not used by selected interface can be used by other peripherals.

TABLE 30-3: MII MODE ALTERNATE INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 0)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pin Name } & \multicolumn{1}{c|}{ Description } \\
\hline \hline AEMDC & Management Clock \\
\hline AEMDIO & Management I/O \\
\hline AETXCLK & Transmit Clock \\
\hline AETXEN & Transmit Enable \\
\hline AETXD0 & Transmit Data \\
\hline AETXD1 & Transmit Data \\
\hline AETXD2 & Transmit Data \\
\hline AETXD3 & Transmit Data \\
\hline AETXERR & Transmit Error \\
\hline AERXCLK & Receive Clock \\
\hline AERXDV & Receive Data Valid \\
\hline AERXD0 & Receive Data \\
\hline AERXD1 & Receive Data \\
\hline AERXD2 & Receive Data \\
\hline AERXD3 & Receive Data \\
\hline AERXERR & Receive Error \\
\hline AECRS & Carrier Sense \\
\hline AECOL & Collision Indication \\
\hline
\end{tabular}

Note: The MII mode Alternate Interface is not available on 64-pin devices.

TABLE 30-4: RMII MODE ALTERNATE INTERFACE SIGNALS (FMIIEN = 0, FETHIO = 0)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Pin Name } & \multicolumn{1}{c|}{ Description } \\
\hline \hline AEMDC & Management Clock \\
\hline AEMDIO & Management I/O \\
\hline AETXEN & Transmit Enable \\
\hline AETXD0 & Transmit Data \\
\hline AETXD1 & Transmit Data \\
\hline AEREFCLK & Reference Clock \\
\hline AECRSDV & Carrier Sense - Receive Data Valid \\
\hline AERXD0 & Receive Data \\
\hline AERXD1 & Receive Data \\
\hline AERXERR & Receive Error \\
\hline
\end{tabular}
30.1 Ethernet Control Registers
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{2000} & \multirow[t]{2}{*}{ETHCON1} & 31:16 & \multicolumn{16}{|l|}{PTV<15:0>} & 0000 \\
\hline & & 15:0 & ON & - & SIDL & - & - & - & TXRTS & RXEN & AUTOFC & - & - & MANFC & - & - & - & BUFCDEC & 0000 \\
\hline \multirow[t]{2}{*}{2010} & \multirow[t]{2}{*}{ETHCON2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & \multicolumn{7}{|l|}{RXBUFSZ<6:0>} & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{2020} & \multirow[t]{2}{*}{ETHTXST} & 31:16 & \multicolumn{16}{|l|}{TXSTADDR<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{14}{|l|}{TXSTADDR<15:2>} & - & - & 0000 \\
\hline \multirow[t]{2}{*}{2030} & \multirow[t]{2}{*}{ETHRXST} & 31:16 & \multicolumn{16}{|l|}{RXSTADDR<31:16>} & 0000 \\
\hline & & 15:0 & \multicolumn{14}{|l|}{RXSTADDR<15:2>} & - & - & 0000 \\
\hline \multirow[t]{2}{*}{2040} & \multirow[t]{2}{*}{ETHHTO} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{HT<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{2050} & \multirow[t]{2}{*}{ETHHT1} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{HT<63:32>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{2060} & \multirow[t]{2}{*}{ETHPMMO} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{PMM<31:0>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{2070} & \multirow[t]{2}{*}{ETHPMM1} & 31:16 & \multicolumn{16}{|l|}{\multirow[t]{2}{*}{PMM<63:32>}} & 0000 \\
\hline & & 15:0 & & & & & & & & & & & & & & & & & 0000 \\
\hline \multirow[t]{2}{*}{2080} & \multirow[t]{2}{*}{ETHPMCS} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PMCS<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2090} & \multirow[t]{2}{*}{ETHPMO} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{PMO<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{20A0} & \multirow[t]{2}{*}{ETHRXFC} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & HTEN & MPEN & - & NOTPM & \multicolumn{4}{|l|}{PMMODE<3:0>} & CRC
ERREN & \[
\begin{aligned}
& \text { CRC } \\
& \text { OKEN }
\end{aligned}
\] & RUNT ERREN & RUNTEN & UCEN & NOT
MEEN & MCEN & BCEN & 0000 \\
\hline \multirow[t]{2}{*}{20B0} & \multirow[t]{2}{*}{ETHRXWM} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{RXFWM<7:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{RXEWM<7:0>} & 0000 \\
\hline \multirow[t]{2}{*}{20C0} & \multirow[t]{2}{*}{ETHIEN} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & \[
\begin{gathered}
\hline \text { TX } \\
\text { BUSEIE }
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{RX} \\
\text { BUSEIE }
\end{gathered}
\] & - & - & - & \[
\begin{gathered}
\mathrm{EW} \\
\text { MARKIE }
\end{gathered}
\] & \[
\begin{gathered}
\text { FW } \\
\text { MARKIE }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RX} \\
\text { DONEIE }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { PK } \\
\text { TPENDIE }
\end{gathered}
\] & RX ACTIE & - & \[
\begin{gathered}
\text { TX } \\
\text { DONEIE }
\end{gathered}
\] & TX ABORTIE & RX
BUFNAIE & \[
\begin{gathered}
\text { RX } \\
\text { OVFLWIE }
\end{gathered}
\] & 0000 \\
\hline \multirow[t]{2}{*}{20D0} & \multirow[t]{2}{*}{ETHIRQ} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & TXBUSE & RXBUSE & - & - & - & EWMARK & FWMARK & RXDONE & PKTPEND & RXACT & - & TXDONE & TXABORT & RXBUFNA & RXOVFLW & 0000 \\
\hline \multirow[t]{2}{*}{20E0} & \multirow[t]{2}{*}{ETHSTAT} & 31:16 & - & - & - & - & - & - & - & - & \multicolumn{8}{|l|}{BUFCNT<7:0>} & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & BUSY & TXBUSY & RXBUSY & - & - & - & - & - & 0000 \\
\hline \multirow[t]{2}{*}{2100} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ETH } \\
\text { RXOVFLOW }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{RXOVFLWCNT<15:0>} & 0000 \\
\hline
\end{tabular}

\footnotetext{

} 2: \(\quad\) INV Registers" for more information.
TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY (CONTINUED)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & \(25 / 9\) & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{2110} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ETH } \\
\text { FRMTXOK }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{FRMTXOKCNT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2120} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ETH } \\
& \text { ScolfRM }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{SCOLFRMCNT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2130} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { ETH } \\
\text { MCOLFRM }
\end{array}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{MCOLFRMCNT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2140} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ETH } \\
\text { FRMRXXOK }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{FRMRXOKCNT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2150} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { ETH } \\
& \text { FCSERR }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{FCSERRCNT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2160} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { ETH } \\
\text { ALGNERR }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ALGNERRCNT<15:0>} & 0000 \\
\hline \multirow[t]{2}{*}{2200} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { EMAC1 } \\ \text { CFG1 }}}{1}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \[
\begin{aligned}
& \hline \text { SOFT } \\
& \text { RESET }
\end{aligned}
\] & \[
\begin{gathered}
\text { SIM } \\
\text { RESET }
\end{gathered}
\] & - & - & \[
\begin{aligned}
& \hline \text { RESET } \\
& \text { RMCS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RESET } \\
& \text { RFUNN }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RESET } \\
& \text { TMCS }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RESET } \\
& \text { TFUN }
\end{aligned}
\] & - & - & - & LOOPBACK & TXPAUSE & RXPAUSE & PASSALL & RXENABLE & 800D \\
\hline \multirow[t]{2}{*}{2210} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { EMAC1 } \\
\text { CFG2 }
\end{gathered}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & \[
\begin{gathered}
\text { EXCESS } \\
\text { DFR } \\
\hline
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { BP } \\
\text { NOBKOFF } \\
\hline
\end{array}
\] & NOBKOFF & - & - & LONGPRE & PUREPRE & AUTOPAD & VLANPAD & \[
\begin{gathered}
\text { PAD } \\
\text { ENABLE }
\end{gathered}
\] & \[
\begin{gathered}
\text { CRC } \\
\text { ENABLE } \\
\hline
\end{gathered}
\] & DELAYCRC & HUGEFRM & LENGTHCK & FULLDPLX & 4082 \\
\hline \multirow[t]{2}{*}{2220} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EMAC1 } \\
& \text { IPGT }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & \multicolumn{7}{|l|}{B2BIPKTGP<6:0>} & 0012 \\
\hline \multirow[t]{2}{*}{2230} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EMAC1 } \\
& \text { IPGR }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & \multicolumn{7}{|l|}{NB2BIPKTGP1<6:0>} & - & \multicolumn{7}{|l|}{NB2BIPKTGP2<6:0>} & OC12 \\
\hline \multirow[t]{2}{*}{2240} & \multirow[t]{2}{*}{EMAC1 CLRT} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & \multicolumn{6}{|l|}{CWINDOW<5:0>} & - & - & - & - & \multicolumn{4}{|l|}{RETX<3:0>} & 370 F \\
\hline \multirow[t]{2}{*}{2250} & \multirow[t]{2}{*}{EMAC1 MAXF} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - - & - & 0000 \\
\hline & & 15:0 & \multicolumn{16}{|l|}{MACMAXF <15:0>} & 05EE \\
\hline \multirow[t]{2}{*}{2260} & \multirow[t]{2}{*}{EMAC1
SUPP} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & \[
\begin{aligned}
& \text { RESET } \\
& \text { RMII }
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \text { SPEED } \\
& \text { RMII }
\end{aligned}
\] & - & - & - & - & - & - & - & - & 1000 \\
\hline \multirow[t]{2}{*}{2270} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { EMAC1 } \\
& \text { TEST }
\end{aligned}
\]} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & TESTBP & TESTPAUSE & SHRTQNTA & 0000 \\
\hline \multirow[t]{2}{*}{2280} & \multirow[t]{2}{*}{EMAC1 MCFG} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & \[
\begin{aligned}
& \hline \text { RESET } \\
& \text { MGMT }
\end{aligned}
\] & - & - & - & - & - & - & - & - & - & & CLKSEL & EL<3:0> & & NOPRE & SCANINC & 0020 \\
\hline \multirow[t]{2}{*}{2290} & \multirow[t]{2}{*}{EMAC1 MCMD} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & SCAN & READ & 000 \\
\hline \multirow[t]{2}{*}{22A0} & \multirow[t]{2}{*}{EMAC1} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & \multicolumn{5}{|l|}{PHYADDR<4:0>} & - & - & - & \multicolumn{5}{|l|}{REGADDR<4:0>} & 0100 \\
\hline \multicolumn{20}{|l|}{} \\
\hline
\end{tabular}
TABLE 30-5: ETHERNET CONTROLLER REGISTER SUMMARY (CONTINUED)

REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PTV<15:8>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PTV<7:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & ON & - & SIDL & - & - & - & TXRTS & RXEN \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & U-0 & U-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 \\
\hline & AUTOFC & - & - & MANFC & - & - & - & BUFCDEC \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{llll|}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared & \(x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 PTV<15:0>: PAUSE Timer Value bits
PAUSE Timer Value used for Flow Control.
This register should only be written when RXEN (ETHCON1<8>) is not set.
These bits are only used for Flow Control operations.
bit 15 ON: Ethernet ON bit
1 = Ethernet module is enabled
\(0=\) Ethernet module is disabled
bit 14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Ethernet Stop in Idle Mode bit
1 = Ethernet module transfers are paused during Idle mode
\(0=\) Ethernet module transfers continue during Idle mode
bit 12-10 Unimplemented: Read as ' 0 '
bit 9 TXRTS: Transmit Request to Send bit
1 = Activate the TX logic and send the packet(s) defined in the TX EDT
\(0=\) Stop transmit (when cleared by software) or transmit done (when cleared by hardware)
After the bit is written with a ' 1 ', it will clear to a ' 0 ' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a ' 0 ' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.
This bit only affects TX operations.
bit 8 RXEN: Receive Enable bit \({ }^{(1)}\)
1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
\(0=\) Disable RX logic, no packets are received in the RX buffer
This bit only affects \(R X\) operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to ' 0 '), and then the RX changes applied.
REGISTER 30-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 (CONTINUED)
bit 7 AUTOFC: Automatic Flow Control bit
1 = Automatic Flow Control enabled
\(0=\) Automatic Flow Control disabled
Setting this bit will enable automatic Flow Control. If set, the full and empty watermarks are used to automatically enable and disable the Flow Control, respectively. When the number of received buffers BUFCNT (ETHSTAT<16:23>) rises to the full watermark, Flow Control is automatically enabled. When the BUFCNT falls to the empty watermark, Flow Control is automatically disabled.
This bit is only used for Flow Control operations and affects both TX and RX operations.
bit 6-5 Unimplemented: Read as '0'
bit 4 MANFC: Manual Flow Control bit
1 = Manual Flow Control is enabled
\(0=\) Manual Flow Control is disabled
Setting this bit will enable manual Flow Control. If set, the Flow Control logic will send a PAUSE frame using the PAUSE timer value in the PTV register. It will then resend a PAUSE frame every 128 * PTV<15:0>/2 TX clock cycles until the bit is cleared.
Note: For 10 Mbps operation, TX clock runs at 2.5 MHz . For 100 Mbps operation, TX clock runs at 25 MHz .
When this bit is cleared, the Flow Control logic will automatically send a PAUSE frame with a \(0 \times 0000\) PAUSE timer value to disable Flow Control.
This bit is only used for Flow Control operations and affects both TX and RX operations.
bit 3-1 Unimplemented: Read as ' 0 '
bit \(0 \quad\) BUFCDEC: Descriptor Buffer Count Decrement bit
The BUFCDEC bit is a write-1 bit that reads as ' 0 '. When written with a ' 1 ', the Descriptor Buffer Counter, BUFCNT, will decrement by one. If BUFCNT is incremented by the RX logic at the same time that this bit is written, the BUFCNT value will remain unchanged. Writing a ' 0 ' will have no effect.
This bit is only used for RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to ' 0 '), and then the RX changes applied.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 30-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{RXBUFSZ<6:4>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & \multicolumn{4}{|c|}{RXBUFSZ<3:0>} & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-11 Unimplemented: Read as ' 0 '
bit 10-4 RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits
1111111 = RX data Buffer size for descriptors is 2032 bytes
-
-
-
\(1100000=\) RX data Buffer size for descriptors is 1536 bytes
-
-
-
\(0000011=R X\) data Buffer size for descriptors is 48 bytes
\(0000010=\) RX data Buffer size for descriptors is 32 bytes
\(0000001=\) RX data Buffer size for descriptors is 16 bytes 0000000 = Reserved
bit 3-0 Unimplemented: Read as ' 0 '

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit \((\) ETHCON1<8>) \(=0\).

REGISTER 30-3: ETHTXST: ETHERNET CONTROLLER TX PACKET DESCRIPTOR START ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXSTADDR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXSTADDR<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{TXSTADDR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline & \multicolumn{6}{|c|}{TXSTADDR<7:2>} & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-2 TXSTADDR<31:2>: Starting Address of First Transmit Descriptor bits
This register should not be written while any transmit, receive or DMA operations are in progress.
This address must be 4-byte aligned (bits 1-0 must be ' 00 ').
bit 1-0 Unimplemented: Read as ' 0 '
Note 1: This register is only used for TX operations.
2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet.

REGISTER 30-4: ETHRXST: ETHERNET CONTROLLER RX PACKET DESCRIPTOR START ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXSTADDR<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXSTADDR<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXSTADDR<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 \\
\hline & \multicolumn{6}{|c|}{RXSTADDR<7:2>} & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-2 RXSTADDR<31:2>: Starting Address of First Receive Descriptor bits
This register should not be written while any transmit, receive or DMA operations are in progress.
This address must be 4-byte aligned (bits \(1-0\) must be ' 00 ').
bit 1-0 Unimplemented: Read as ' 0 '
Note 1: This register is only used for RX operations.
2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet.

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 30-5: ETHHTO: ETHERNET CONTROLLER HASH TABLE 0 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & Bit
28/20/12/4 & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & Bit 25/17/9/1 & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT <15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for \(R X\) operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) \(=0\) or the HTEN bit \((\) ETHRXFC<15>) \(=0\).

REGISTER 30-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT<63:56>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT<55:48>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT<47:40>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{HT<39:32>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-0
HT<63:32>: Hash Table Bytes 4-7 bits

> \begin{tabular}{|ll} \hline Note 1: & This register is only used for RX operations. \\ 2: & The bits in this register may only be changed while the RXEN bit \((E T H C O N 1<8>)=0\) or the HTEN bit \\ & \((E T H R X F C<15>)=0\). \end{tabular}

REGISTER 30-7: ETHPMMO: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<31:24>} \\
\hline \multirow[t]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<23:16>} \\
\hline \multirow[t]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-24 PMM<31:24>: Pattern Match Mask 3 bits
bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits
bit 15-8 PMM<15:8>: Pattern Match Mask 1 bits
bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) \(=0\) or the PMMODE bit (ETHRXFC<11:8>) \(=0\).

REGISTER 30-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<63:56>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<55:48>} \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<47:40>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMM<39:32>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-24 PMM<63:56>: Pattern Match Mask 7 bits
bit 23-16 PMM<55:48>: Pattern Match Mask 6 bits
bit 15-8 PMM<47:40>: Pattern Match Mask 5 bits
bit 7-0 PMM<39:32>: Pattern Match Mask 4 bits

\footnotetext{
Note 1: This register is only used for \(R X\) operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) \(=0\) or the PMMODE bit \((\) ETHRXFC \(<11: 8>)=0\).
}

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 30-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMCS<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMCS<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-8 PMCS<15:8>: Pattern Match Checksum 1 bits
bit 7-0 PMCS<7:0>: Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) \(=0\).

REGISTER 30-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMO<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{PMO<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
W = Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
-n = Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 PMO<15:0>: Pattern Match Offset 1 bits
\begin{tabular}{|rl|}
\hline Note 1: & This register is only used for RX operations. \\
2: & \begin{tabular}{l}
The bits in this register may only be changed while the RXEN bit \((E T H C O N 1<8>)=0\) or the PMMODE bit \\
\\
\\
\((E T H R X F C<11: 8>)=0\).
\end{tabular} \\
\hline
\end{tabular} \((\) ETHRXFC<11:8>) \(=0\).

REGISTER 30-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
28 / 20 / 12 / 4
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{array}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{15:8} & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & HTEN & MPEN & - & NOTPM & \multicolumn{4}{|c|}{PMMODE<3:0>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & CRCERREN & CRCOKEN & RUNTERREN & RUNTEN & UCEN & NOTMEEN & MCEN & BCEN \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 HTEN: Enable Hash Table Filtering bit
1 = Enable Hash Table Filtering
\(0=\) Disable Hash Table Filtering
bit 14 MPEN: Magic Packet \({ }^{\text {TM }}\) Enable bit
1 = Enable Magic Packet Filtering
\(0=\) Disable Magic Packet Filtering
bit 13 Unimplemented: Read as ' 0 '
bit 12 NOTPM: Pattern Match Inversion bit
1 = The Pattern Match Checksum must not match for a successful Pattern Match to occur
\(0=\) The Pattern Match Checksum must match for a successful Pattern Match to occur
This bit determines whether Pattern Match Checksum must match in order for a successful Pattern Match to occur.
bit 11-8 PMMODE<3:0>: Pattern Match Mode bits
1001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND \((\text { Packet }=\text { Magic Packet })^{(1,3)}\)
1000 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Hash Table Filter match) \({ }^{(1,2)}\)
0111 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND \(\left(\right.\) Destination Address \(=\) Broadcast Address) \({ }^{(1)}\)
0110 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND \(\left(\right.\) Destination Address \(=\) Broadcast Address) \({ }^{(1)}\)
0101 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND \(\left(\right.\) Destination Address \(=\) Unicast Address) \({ }^{(1)}\)
0100 = Pattern match is successful if (NOTPM =1 XOR Pattern Match Checksum matches) AND \(\left(\right.\) Destination Address \(=\) Unicast Address) \({ }^{(1)}\)
0011 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND
\((\text { Destination Address }=\text { Station Address) })^{(1)}\)
\(0010=\) Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND \((\text { Destination Address }=\text { Station Address) })^{(1)}\)
0001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) \({ }^{(1)}\)
\(0000=\) Pattern Match is disabled; pattern match is always unsuccessful
Note 1: \(\mathrm{XOR}=\) True when either one or the other conditions are true, but not both.
2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.
Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit \((\) ETHCON \(1<8>)=0\).
```

REGISTER 30-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION
REGISTER (CONTINUED)
bit 7 CRCERREN: CRC Error Collection Enable bit
1 = The received packet CRC must be invalid for the packet to be accepted
$0=$ Disable CRC Error Collection filtering
This bit allows the user to collect all packets that have an invalid CRC.
bit 6 CRCOKEN: CRC OK Enable bit
1 = The received packet CRC must be valid for the packet to be accepted
0 = Disable CRC filtering
This bit allows the user to reject all packets that have an invalid CRC.
bit 5 RUNTERREN: Runt Error Collection Enable bit
$1=$ The received packet must be a runt packet for the packet to be accepted
$0=$ Disable Runt Error Collection filtering
This bit allows the user to collect all packets that are runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes (when CRCOKEN $=0$ ) or any packet with a size of less than 64 bytes that has a valid CRC (when CRCOKEN = 1).
bit 4 RUNTEN: Runt Enable bit
1 = The received packet must not be a runt packet for the packet to be accepted
0 = Disable Runt filtering
This bit allows the user to reject all runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes.
bit 3 UCEN: Unicast Enable bit
1 = Enable Unicast Filtering
$0=$ Disable Unicast Filtering
This bit allows the user to accept all unicast packets whose Destination Address matches the Station Address.
bit 2 NOTMEEN: Not Me Unicast Enable bit
1 = Enable Not Me Unicast Filtering
$0=$ Disable Not Me Unicast Filtering
This bit allows the user to accept all unicast packets whose Destination Address does not match the Station Address.
bit 1 MCEN: Multicast Enable bit
1 = Enable Multicast Filtering
$0=$ Disable Multicast Filtering
This bit allows the user to accept all Multicast Address packets.
bit $0 \quad$ BCEN: Broadcast Enable bit
1 = Enable Broadcast Filtering
0 = Disable Broadcast Filtering
This bit allows the user to accept all Broadcast Address packets.

```

Note 1: \(\mathrm{XOR}=\) True when either one or the other conditions are true, but not both.
2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.
Note 1: This register is only used for RX operations.
2: The bits in this register may only be changed while the RXEN bit \((E T H C O N 1<8>)=0\).

REGISTER 30-12: ETHRXWM: ETHERNET CONTROLLER RECEIVE WATERMARKS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXFWM<7:0>} \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXEWM<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-16 RXFWM<7:0>: Receive Full Watermark bits
The software controlled RX Buffer Full Watermark Pointer is compared against the RX BUFCNT to determine the full watermark condition for the FWMARK interrupt and for enabling Flow Control when automatic Flow Control is enabled. The Full Watermark Pointer should always be greater than the Empty Watermark Pointer.
bit 15-8 Unimplemented: Read as ' 0 '
bit 7-0 RXEWM<7:0>: Receive Empty Watermark bits
The software controlled RX Buffer Empty Watermark Pointer is compared against the RX BUFCNT to determine the empty watermark condition for the EWMARK interrupt and for disabling Flow Control when automatic Flow Control is enabled. The Empty Watermark Pointer should always be less than the Full Watermark Pointer.

\footnotetext{
Note: This register is only used for RX operations.
}

REGISTER 30-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \begin{tabular}{|c|}
\hline Bit \\
28/20/12/4
\end{tabular} & Bit 27/19/11/3 & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & RW-0 & RW-0 & U-0 & U-0 & U-0 & RW-0 & RW-0 \\
\hline & - & TXBUSEIE \({ }^{(1)}\) & RXBUSEIE \({ }^{(2)}\) & - & - & - & EWMARKIE \({ }^{(2)}\) & FWMARKIE \({ }^{(2)}\) \\
\hline \multirow[b]{2}{*}{7:0} & RW-0 & RW-0 & RW-0 & U-0 & RW-0 & RW-0 & RW-0 & RW-0 \\
\hline & RXDONEIE \({ }^{(2)}\) & PKTPENDIE \({ }^{(2)}\) & RXACTIE \({ }^{(2)}\) & - & TXDONEIE \({ }^{(1)}\) & TXABORTIE \({ }^{(1)}\) & RXBUFNAIE \({ }^{(2)}\) & RXOVFLWIE \({ }^{(2)}\) \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-15 Unimplemented: Read as ' 0 '
bit 14 TXBUSEIE: Transmit BVCI Bus Error Interrupt Enable bit \({ }^{(1)}\)
1 = Enable TXBUS Error Interrupt
0 = Disable TXBUS Error Interrupt
bit 13 RXBUSEIE: Receive BVCI Bus Error Interrupt Enable bit \({ }^{(2)}\)
1 = Enable RXBUS Error Interrupt
\(0=\) Disable RXBUS Error Interrupt
bit 12-10 Unimplemented: Read as ' 0 '
bit 9 EWMARKIE: Empty Watermark Interrupt Enable bit \({ }^{(2)}\)
1 = Enable EWMARK Interrupt
0 = Disable EWMARK Interrupt
bit 8 FWMARKIE: Full Watermark Interrupt Enable bit \({ }^{(2)}\)
1 = Enable FWMARK Interrupt
0 = Disable FWMARK Interrupt
bit 7 RXDONEIE: Receiver Done Interrupt Enable bit \({ }^{(2)}\)
1 = Enable RXDONE Interrupt
0 = Disable RXDONE Interrupt
bit 6 PKTPENDIE: Packet Pending Interrupt Enable bit \({ }^{(2)}\)
1 = Enable PKTPEND Interrupt
\(0=\) Disable PKTPEND Interrupt
bit 5 RXACTIE: RX Activity Interrupt Enable bit
1 = Enable RXACT Interrupt
0 = Disable RXACT Interrupt
bit 4 Unimplemented: Read as ' 0 '
bit 3 TXDONEIE: Transmitter Done Interrupt Enable bit \({ }^{(1)}\)
1 = Enable TXDONE Interrupt
0 = Disable TXDONE Interrupt
bit 2 TXABORTIE: Transmitter Abort Interrupt Enable bit \({ }^{(1)}\)
1 = Enable TXABORT Interrupt
\(0=\) Disable TXABORT Interrupt
bit 1 RXBUFNAIE: Receive Buffer Not Available Interrupt Enable bit \({ }^{(2)}\)
1 = Enable RXBUFNA Interrupt
0 = Disable RXBUFNA Interrupt
bit \(0 \quad\) RXOVFLWIE: Receive FIFO Overflow Interrupt Enable bit \({ }^{(2)}\)
1 = Enable RXOVFLW Interrupt
\(0=\) Disable RXOVFLW Interrupt
Note 1: This bit is only used for TX operations.
2: This bit is only used for RX operations.

REGISTER 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & TXBUSE \({ }^{(1)}\) & RXBUSE \({ }^{(2)}\) & - & - & - & EWMARK \({ }^{(2)}\) & FWMARK \({ }^{(2)}\) \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & RXDONE \({ }^{(2)}\) & PKTPEND \({ }^{(2)}\) & RXACT \({ }^{(2)}\) & - & TXDONE \({ }^{(1)}\) & TXABORT \({ }^{(1)}\) & RXBUFNA \({ }^{(2)}\) & RXOVFLW \({ }^{(2)}\) \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-15 Unimplemented: Read as ' 0 '
bit 14 TXBUSE: Transmit BVCI Bus Error Interrupt bit \({ }^{(1)}\)
1 = BVCI Bus Error has occurred
\(0=\mathrm{BVCl}\) Bus Error has not occurred
This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a ' 1 ' to the CLR register.
bit 13 RXBUSE: Receive BVCI Bus Error Interrupt bit \({ }^{(2)}\)
1 = BVCI Bus Error has occurred
\(0=\) BVCI Bus Error has not occurred
This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a ' 1 ' to the CLR register.
bit 12-10 Unimplemented: Read as ' 0 '
bit 9 EWMARK: Empty Watermark Interrupt bit \({ }^{(2)}\)
1 = Empty Watermark pointer reached
\(0=\) No interrupt pending
This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a ' 0 ' or a ' 1 ' has no effect.
bit 8 FWMARK: Full Watermark Interrupt bit \({ }^{(2)}\)
1 = Full Watermark pointer reached
\(0=\) No interrupt pending
This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a ' 0 ' or a ' 1 ' has no effect.

Note 1: This bit is only used for TX operations.
2: This bit is only used for \(R X\) operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.
```

REGISTER 30-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER
bit 7 RXDONE: Receive Done Interrupt bit (')
1 = RX packet was successfully received
0=No interrupt pending

```
 This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write
 of a ' 1 ' to the CLR register.
bit 6 PKTPEND: Packet Pending Interrupt bit \({ }^{(2)}\)
 1 = RX packet pending in memory
 \(0=R X\) packet is not pending in memory
 This bit is set when the BUFCNT counter has a value other than ' 0 '. It is cleared by either a Reset or by
 writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a ' 0 ' or a ' 1 ' has no effect.
bit 5 RXACT: Receive Activity Interrupt bit \({ }^{(2)}\)
 \(1=R X\) packet data was successfully received
 \(0=\) No interrupt pending

This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a ' 1 ' to the CLR register.
bit 4 Unimplemented: Read as ' 0 '
bit 3 TXDONE: Transmit Done Interrupt bit \({ }^{(1)}\)
1 = TX packet was successfully sent
\(0=\) No interrupt pending
This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a ' 1 ' to the CLR register.
bit 2 TXABORT: Transmit Abort Condition Interrupt bit \({ }^{(1)}\)
1 = TX abort condition occurred on the last TX packet
\(0=\) No interrupt pending
This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons:
- Jumbo TX packet abort
- Underrun abort
- Excessive defer abort
- Late collision abort
- Excessive collisions abort

This bit is cleared by either a Reset or CPU write of a ' 1 ' to the CLR register.
bit 1 RXBUFNA: Receive Buffer Not Available Interrupt bit \({ }^{(2)}\)
\(1=\) RX Buffer Descriptor Not Available condition has occurred
\(0=\) No interrupt pending
This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a ' 1 ' to the CLR register.
bit \(0 \quad\) RXOVFLW: Receive FIFO Over Flow Error bit \({ }^{(\mathbf{2})}\)
1 = RX FIFO Overflow Error condition has occurred
\(0=\) No interrupt pending
RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a ' 1 ' to the CLR register.

Note 1: This bit is only used for TX operations.
2: This bit is only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

\section*{REGISTER 30-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline & R/W-0 \\
\hline 23:16 & \multicolumn{8}{|c|}{BUFCNT<7:0> \({ }^{(1)}\)} \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & U-0 & U-0 & U-0 \\
\hline & ETHBUSY \({ }^{(4,5)}\) & TXBUSY \({ }^{(2,6)}\) & RXBUSY \({ }^{(3,6)}\) & - & - & - & - & - \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-24 Unimplemented: Read as ' 0 '
bit 23-16 BUFCNT<7:0>: Packet Buffer Count bits \({ }^{(1)}\)
Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (\(0 x F F\) to \(0 x 00\)) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (\(0 x 00\) to \(0 x F F\)) when software tries to decrement the register and the register is already at 0x0000. When software attempts to decrement the counter at the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.
When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of \(0 x F F\).

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.
When the ETHRXST register is written, the BUFCNT counter is automatically cleared to \(0 \times 00\).
Note: BUFCNT will not be cleared when ON is set to ' 0 '. This enables software to continue to utilize and decrement this count.
bit 15-8 Unimplemented: Read as ' 0 '
bit 7 ETHBUSY: Ethernet Module busy bit \({ }^{(4,5)}\)
\(1=\) Ethernet logic has been turned on \((\mathrm{ON}(\mathrm{ETHCON} 1<15>)=1)\) or is completing a transaction
\(0=\) Ethernet logic is idle
This bit indicates that the module has been turned on or is completing a transaction after being turned off.

Note 1: This bit is only used for \(R X\) operations.
2: This bit is only affected by TX operations.
3: This bit is only affected by RX operations.
4: This bit is affected by TX and RX operations.
5: This bit will be set when the ON bit (ETHCON1<15>) \(=1\).
6: This bit will be cleared when the ON bit \((E T H C O N 1<15>)=0\).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 30-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED)
bit 6 TXBUSY: Transmit Busy bit \({ }^{(2,6)}\)
\(1=\) TX logic is receiving data
\(0=\) TX logic is idle
This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.
bit 5 RXBUSY: Receive Busy bit \({ }^{(3,6)}\)
\(1=R X\) logic is receiving data
\(0=R X\) logic is idle
This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter.
bit 4-0 Unimplemented: Read as ' 0 '

Note 1: This bit is only used for RX operations.
2: This bit is only affected by TX operations.
3: This bit is only affected by RX operations.
4: This bit is affected by TX and RX operations.
5: \(\quad\) This bit will be set when the ON bit \((E T H C O N 1<15>)=1\).
6: This bit will be cleared when the ON bit (ETHCON1<15>) \(=0\).

REGISTER 30-16: ETHRXOVFLOW: ETHERNET CONTROLLER RECEIVE OVERFLOW STATISTICS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXOVFLWCNT<15:8>} \\
\hline \multirow{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{RXOVFLWCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 RXOVFLWCNT<15:0>: Dropped Receive Frames Count bits
Increment counter for frames accepted by the RX filter and subsequently dropped due to internal receive error (RXFIFO overrun). This event also sets the RXOVFLW bit (ETHIRQ<0>) interrupt flag.

Note 1: This register is only used for RX operations.
2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes \(0 / 1\) are ' 0 '.
3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 30-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{FRMTXOKCNT<15:8>} \\
\hline \multirow{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{FRMTXOKCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 FRMTXOKCNT<15:0>: Frame Transmitted OK Count bits
Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.
2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes \(0 / 1\) are ' 0 '.
3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 30-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-0 & & & R/W-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{SCOLFRMCNT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{SCOLFRMCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
\begin{tabular}{ll}
bit 31-16 & Unimplemented: Read as ' 0 ' \\
bit 15-0 & SCOLFRMCNT<15:0>: Single Collision Frame Count bits \\
Increment count for frames that were successfully transmitted on the second try.
\end{tabular}

Note 1: This register is only used for TX operations.
2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes \(0 / 1\) are ' 0 '.
3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 30-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MCOLFRMCNT<15:8>} \\
\hline \multirow[t]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MCOLFRMCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
W = Writable bit
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
\(-n=\) Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 MCOLFRMCNT<15:0>: Multiple Collision Frame Count bits
Increment count for frames that were successfully transmitted after there was more than one collision.

Note 1: This register is only used for TX operations.
2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes \(0 / 1\) are ' 0 '.
3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

\section*{REGISTER 30-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \begin{tabular}{l}
Bit \\
28/20/12/4
\end{tabular} & \[
\underset{\text { Bit }}{\text { 27/19/11/3 }}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{FRMRXOKCNT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{FRMRXOKCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits
Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

Note 1: This register is only used for RX operations.
2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes \(0 / 1\) are ' 0 '.
3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 30-21: ETHFCSERR: ETHERNET CONTROLLER FRAME CHECK SEQUENCE ERROR STATISTICS REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{FCSERRCNT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{FCSERRCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 FCSERRCNT<15:0>: FCS Error Count bits
Increment count for frames received with FCS error and the frame length in bits is an integral multiple of 8 bits.

Note 1: This register is only used for \(R X\) operations.
2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes \(0 / 1\) are ' 0 '.
3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

REGISTER 30-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Bit \\
Range
\end{tabular} & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ALGNERRCNT<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{ALGNERRCNT<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits
Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble)

Note 1: This register is only used for \(R X\) operations.
2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes \(0 / 1\) are ' 0 '.
3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

REGISTER 30-23: EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { Bit } \\
\text { 29/21/13/5 }
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & RW-1 & RW-0 & U-0 & U-0 & RW-0 & RW-0 & RW-0 & RW-0 \\
\hline & \[
\begin{gathered}
\hline \text { SOFT } \\
\text { RESET }
\end{gathered}
\] & \[
\begin{gathered}
\text { SIM } \\
\text { RESET }
\end{gathered}
\] & - & - & RESET RMCS & \[
\begin{aligned}
& \text { RESET } \\
& \text { RFUN }
\end{aligned}
\] & \begin{tabular}{l}
RESET \\
TMCS
\end{tabular} & RESET
TFUN \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & RW-0 & RW-1 & RW-1 & RW-0 & RW-1 \\
\hline & - & - & - & LOOPBACK & TX PAUSE & RX PAUSE & PASSALL & \[
\begin{gathered}
\text { RX } \\
\text { ENABLE }
\end{gathered}
\] \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared
\end{tabular}\(\quad x=\) Bit is unknown
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 SOFTRESET: Soft Reset bit
Setting this bit will put the MACMII in reset. Its default value is ' 1 '.
bit 14 SIMRESET: Simulation Reset bit
Setting this bit will cause a reset to the random number generator within the Transmit Function.
bit 13-12 Unimplemented: Read as ' 0 '
bit 11 RESETRMCS: Reset MCS/RX bit
Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.
bit 10 RESETRFUN: Reset RX Function bit
Setting this bit will put the MAC Receive function logic in reset.
bit 9 RESETTMCS: Reset MCS/TX bit
Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.
bit 8 RESETTFUN: Reset TX Function bit
Setting this bit will put the MAC Transmit function logic in reset.
bit 7-5 Unimplemented: Read as '0'
bit 4 LOOPBACK: MAC Loopback mode bit
1 = MAC Transmit interface is loop backed to the MAC Receive interface
\(0=\) MAC normal operation
bit 3 TXPAUSE: MAC TX Flow Control bit
1 = PAUSE Flow Control frames are allowed to be transmitted
0 = PAUSE Flow Control frames are blocked
bit 2 RXPAUSE: MAC RX Flow Control bit
1 = The MAC acts upon received PAUSE Flow Control frames
\(0=\) Received PAUSE Flow Control frames are ignored
bit 1 PASSALL: MAC Pass all Receive Frames bit
1 = The MAC will accept all frames regardless of type (Normal vs. Control)
\(0=\) The received Control frames are ignored
bit 0 RXENABLE: MAC Receive Enable bit
1 = Enable the MAC receiving of frames
0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & RW-1 & RW-0 & RW-0 & U-0 & U-0 & RW-0 & RW-0 \\
\hline & - & \[
\begin{gathered}
\text { EXCESS } \\
\text { DFR }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { BPNOBK } \\
\text { OFF }
\end{gathered}
\] & NOBK OFF & - & - & LONGPRE & PUREPRE \\
\hline \multirow[b]{2}{*}{7:0} & RW-1 & RW-0 & RW-1 & RW-1 & RW-0 & RW-0 & RW-1 & RW-0 \\
\hline & \[
\begin{gathered}
\text { AUTO } \\
\text { PAD }{ }^{(1,2)}
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { VLAN } \\
\operatorname{PAD}^{(1,2)}
\end{gathered}
\] & \[
\begin{gathered}
\text { PAD } \\
\text { ENABLE } \\
(1,3)
\end{gathered}
\] & CRC ENABLE & DELAYCRC & HUGEFRM & LENGTHCK & FULLDPLX \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-15 Unimplemented: Read as ' 0 '
bit 14 EXCESSDER: Excess Defer bit
1 = The MAC will defer to carrier indefinitely as per the Standard
\(0=\) The MAC will abort when the excessive deferral limit is reached
bit 13 BPNOBKOFF: Backpressure/No Backoff bit
1 = The MAC after incidentally causing a collision during backpressure will immediately retransmit without backoff reducing the chance of further collisions and ensuring transmit packets get sent
\(0=\) The MAC will not remove the backoff
bit 12 NOBKOFF: No Backoff bit
1 = Following a collision, the MAC will immediately retransmit rather than using the Binary Exponential Backoff algorithm as specified in the Standard
\(0=\) Following a collision, the MAC will use the Binary Exponential Backoff algorithm
bit 11-10 Unimplemented: Read as ' 0 '
bit 9 LONGPRE: Long Preamble Enforcement bit
1 = The MAC only allows receive packets which contain preamble fields less than 12 bytes in length
\(0=\) The MAC allows any length preamble as per the Standard
bit 8 PUREPRE: Pure Preamble Enforcement bit
\(1=\) The MAC will verify the content of the preamble to ensure it contains \(0 \times 55\) and is error-free. A packet with errors in its preamble is discarded
\(0=\) The MAC does not perform any preamble checking
bit 7 AUTOPAD: Automatic Detect Pad Enable bit \({ }^{(1,2)}\)
1 = The MAC will automatically detect the type of frame, either tagged or untagged, by comparing the two octets following the source address with 0x8100 (VLAN Protocol ID) and pad accordingly
\(0=\) The MAC does not perform automatic detection

Note 1: Table 30-6 provides a description of the pad function based on the configuration of this register.
2: This bit is ignored if the PADENABLE bit is cleared.
3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware

REGISTER 30-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER
bit \(6 \quad\) VLANPAD: VLAN Pad Enable bit \({ }^{(1,2)}\)
1 = The MAC will pad all short frames to 64 bytes and append a valid CRC
\(0=\) The MAC does not perform padding of short frames
bit 5 PADENABLE: Pad/CRC Enable bit \({ }^{(1,3)}\)
1 = The MAC will pad all short frames
\(0=\) The frames presented to the MAC have a valid length
bit 4 CRCENABLE: CRC Enable1 bit
1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set.
\(0=\) The frames presented to the MAC have a valid CRC
bit 3 DELAYCRC: Delayed CRC bit
This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames.
1 = Four bytes of header (ignored by the CRC function)
\(0=\) No proprietary header
bit 2 HUGEFRM: Huge Frame enable bit
1 = Frames of any length are transmitted and received
\(0=\) Huge frames are not allowed for receive or transmit
bit 1 LENGTHCK: Frame Length checking bit
1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector.
\(0=\) Length/Type field check is not performed
bit \(0 \quad\) FULLDPLX: Full-Duplex Operation bit
1 = The MAC operates in Full-Duplex mode
\(0=\) The MAC operates in Half-Duplex mode

Note 1: Table 30-6 provides a description of the pad function based on the configuration of this register.
2: This bit is ignored if the PADENABLE bit is cleared.
3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 30-6: PAD OPERATION
\begin{tabular}{|c|c|c|c|l|}
\hline Type & AUTOPAD & VLANPAD & PADENABLE & \multicolumn{1}{|c|}{ Action } \\
\hline \hline Any & x & x & 0 & No pad, check CRC \\
\hline Any & 0 & 0 & 1 & Pad to 60 Bytes, append CRC \\
\hline Any & x & 1 & 1 & Pad to 64 Bytes, append CRC \\
\hline Any & 1 & 0 & 1 & \begin{tabular}{l}
If untagged: Pad to 60 Bytes, append CRC \\
If VLAN tagged: Pad to 64 Bytes, append CRC
\end{tabular} \\
\hline
\end{tabular}

REGISTER 30-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit
\[
31 / 23 / 15 / 7
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & Bit
29/21/13/5 & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & Bit 26/18/10/2 & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{15:8} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 & R/W-1 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{B2BIPKTGP<6:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{|lll|}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-7 Unimplemented: Read as ' 0 '
bit 6-0 B2BIPKTGP<6:0>: Back-to-Back Interpacket Gap bits
This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet, to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is \(0 \times 15\) (21d), which represents the minimum IPG of \(0.96 \mu \mathrm{~s}\) (in 100 Mbps) or \(9.6 \mu \mathrm{~s}\) (in 10 Mbps). In Half-Duplex mode, the recommended setting is \(0 \times 12\) (18d), which also represents the minimum IPG of \(0.96 \mu\) (in 100 Mbps) or \(9.6 \mu \mathrm{~s}\) (in 10 Mbps).

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-26: EMAC1IPGR: ETHERNET CONTROLLER MAC NON-BACK-TO-BACK INTERPACKET GAP REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 & R/W-1 & R/W-0 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{NB2BIPKTGP1<6:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-0 & R/W-1 & R/W-0 \\
\hline & - & \multicolumn{7}{|c|}{NB2BIPKTGP2<6:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-15 Unimplemented: Read as ' 0 '
bit 14-8 NB2BIPKTGP1<6:0>: Non-Back-to-Back Interpacket Gap Part 1 bits
This is a programmable field representing the optional carrierSense window referenced in section 4.2.3.2.1 "Deference" of the IEEE 80.23 Specification. If carrier is detected during the timing of IPGR1, the MAC defers to carrier. If, however, carrier becomes after IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus ensuring fair access to medium. Its range of values is \(0 \times 0\) to IPGR2. Its recommend value is \(0 \times C\) (12d).
bit 7 Unimplemented: Read as ' 0 '
bit 6-0 NB2BIPKTGP2<6:0>: Non-Back-to-Back Interpacket Gap Part 2 bits
This is a programmable field representing the non-back-to-back Inter-Packet-Gap. Its recommended value is \(0 \times 12\) (18d), which represents the minimum IPG of \(0.96 \mu \mathrm{~s}\) (in 100 Mbps) or \(9.6 \mu \mathrm{~s}\) (in 10 Mbps).

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & R/W-1 & R/W-1 & R/W-0 & R/W-1 & R/W-1 & R/W-1 \\
\hline & - & - & \multicolumn{6}{|c|}{CWINDOW<5:0>} \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & U-0 & U-0 & R/W-1 & R/W-1 & R/W-1 & R/W-1 \\
\hline & - & - & - & - & \multicolumn{4}{|c|}{RETX<3:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-14 Unimplemented: Read as ' 0 '
bit 13-8 CWINDOW<5:0>: Collision Window bits
This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of \(0 \times 37\) (55d) corresponds to the count of frame bytes at the end of the window.
bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 RETX<3:0>: Retransmission Maximum bits
This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is ' \(0 x \mathrm{~F}\) '.

Note: \(\quad\) Both 16 -bit and 32 -bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 & R/W-0 & R/W-1 \\
\hline & \multicolumn{8}{|c|}{MACMAXF<15:8> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-1 & R/W-1 & R/W-1 & R/W-0 & R/W-1 & R/W-1 & R/W-1 & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MACMAXF<7:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits \({ }^{(1)}\)
These bits reset to \(0 \times 05 E E\), which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field.

Note 1: If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-29: EMAC1SUPP: ETHERNET CONTROLLER MAC PHY SUPPORT REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & Bit
31/23/15/7 & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & Bit
28/20/12/4 & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & U-0 & R/W-0 & U-0 & U-0 & R/W-0 \\
\hline & - & - & - & - & RESETRMII \({ }^{(1)}\) & - & - & SPEEDRMII \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{7:0} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
bit 31-12 \\
bit 11
\end{tabular} & \begin{tabular}{l}
Unimplemented: Read as ' 0 ' \\
RESETRMII: Reset RMII Logic bit \({ }^{(1)}\)
\end{tabular} \\
\hline & \[
\begin{aligned}
& 1=\text { Reset the MAC RMII module } \\
& 0=\text { Normal operation. }
\end{aligned}
\] \\
\hline bit 10-9 & Unimplemented: Read as ' 0 ' \\
\hline bit 8 & SPEEDRMII: RMII Speed bit \({ }^{(1)}\) \\
\hline & This bit configures the Reduced MII logic for the current operating speed. \\
\hline & \begin{tabular}{l}
\(1=\) RMII is running at 100 Mbps \\
\(0=\) RMII is running at 10 Mbps
\end{tabular} \\
\hline bit 7-0 & Unimplemented: Read as ' 0 ' \\
\hline Note 1: & This bit is only used for the RMII module. \\
\hline Note: & Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware. \\
\hline
\end{tabular}

REGISTER 30-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & \multirow{2}{*}{\(7: 0\)} & - & - & - & - & - & - & - \\
\cline { 2 - 9 } & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-3 Unimplemented: Read as ' 0 '
bit 2 TESTBP: Test Backpressure bit
1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure.
\(0=\) Normal operation
bit 1 TESTPAUSE: Test PAUSE bit \({ }^{(1)}\)
1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received
\(0=\) Normal operation
bit \(0 \quad\) SHRTQNTA: Shortcut PAUSE Quanta bit \({ }^{(1)}\)
1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time
\(0=\) Normal operation

Note 1: This bit is only used for testing purposes.

> \begin{tabular}{ll} \hline Note: & Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). \\ 8-bit accesses are not allowed and are ignored by the hardware. \end{tabular}

REGISTER 30-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT CONFIGURATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 \\
\hline & RESETMGMT & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & R/W-1 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & \multicolumn{4}{|c|}{CLKSEL<3:0> \({ }^{(1)}\)} & NOPRE & SCANINC \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & ' 0 ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 RESETMGMT: Test Reset MII Management bit
1 = Reset the MII Management module
\(0=\) Normal Operation
bit 14-6 Unimplemented: Read as '0'
bit 5-2 CLKSEL<3:0>: MII Management Clock Select 1 bits \({ }^{(1)}\)
These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz . Some PHYs support clock rates up to 12.5 MHz .
bit 1 NOPRE: Suppress Preamble bit
1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble
\(0=\) Normal read/write cycles are performed
bit \(0 \quad\) SCANINC: Scan Increment bit
1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>
\(0=\) Continuous reads of the same PHY
Note 1: Table 30-7 provides a description of the clock divider encoding.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

TABLE 30-7: MIIM CLOCK SELECTION
\begin{tabular}{|c|c|}
\hline MIIM Clock Select & EMAC1MCFG<5:2> \\
\hline \hline TPBCLK5 divided by 4 & 000 x \\
\hline TPBCLK5 divided by 6 & 0010 \\
\hline TPBCLK5 divided by 8 & 0011 \\
\hline TPBCLK5 divided by 10 & 0100 \\
\hline TPBCLK5 divided by 14 & 0101 \\
\hline TPBCLK5 divided by 20 & 0110 \\
\hline TPBCLK5 divided by 28 & 0111 \\
\hline TPBCLK5 divided by 40 & 1000 \\
\hline TPBCLK5 divided by 48 & 1001 \\
\hline TPBCLK5 divided by 50 & 1010 \\
\hline Undefined & Any other combination \\
\hline
\end{tabular}

REGISTER 30-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Bit \\
Range
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & - & \(\mathrm{U}-0\) & \(U-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\cline { 2 - 9 } & & - & - & - & - & - & SCAN & READ \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
W = Writable bit
\(U=\) Unimplemented bit, read as ' 0 '
-n = Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown
bit 31-2 Unimplemented: Read as ' 0 '
bit 1 SCAN: MII Management Scan Mode bit
1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)
\(0=\) Normal Operation
bit 0 READ: MII Management Read Command bit
1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
\(0=\) The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & Bit
28/20/12/4 & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & Bit 26/18/10/2 & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-1 \\
\hline & - & - & - & \multicolumn{5}{|c|}{PHYADDR<4:0>} \\
\hline \multirow{2}{*}{7:0} & U-0 & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & \multicolumn{5}{|c|}{REGADDR<4:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
```

bit 31-13 Unimplemented: Read as '0'
bit 12-8 PHYADDR<4:0>: MII Management PHY Address bits
This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed
(0 is reserved).
bit 7-5 Unimplemented: Read as '0'
bit 4-0 REGADDR<4:0>: MII Management Register Address bits
This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be
accessed.
Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers).
8-bit accesses are not allowed and are ignored by the hardware.

```

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 30-34: EMAC1MWTD: ETHERNET CONTROLLER MAC MII MANAGEMENT WRITE DATA REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{array}{|c|}
\text { Bit } \\
27 / 19 / 11 / 3
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MWTD<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MWTD<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\(R=\) Readable bit
\(-n=\) Value at \(P O R\)
W \(=\) Writable bit
'1
\(\mathrm{U}=\) Unimplemented bit, read as ' 0 '
-n = Value at POR
' 1 ' = Bit is set
' 0 ' = Bit is cleared
\(x=\) Bit is unknown
bit 31-16 Unimplemented: Read as '0'
bit 15-0 MWTD<15:0>: MII Management Write Data bits
When written, a MII Management write cycle is performed using the 16-bit data and the preconfigured PHY and Register addresses from the EMAC1MADR register.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

\section*{REGISTER 30-35: EMAC1MRDD: ETHERNET CONTROLLER MAC MII MANAGEMENT READ DATA REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & Bit
29/21/13/5 & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MRDD<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & \multicolumn{8}{|c|}{MRDD<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-0 MRDD<15:0>: MII Management Read Data bits
Following a MII Management Read Cycle, the 16-bit data can be read from this location.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.

REGISTER 30-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Bit \\
Range
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & R/W-0 & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) \\
\cline { 2 - 9 } & - & - & - & - & LINKFAIL & NOTVALID & SCAN & MIIMBUSY \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-4 Unimplemented: Read as ' 0 '
bit 3 LINKFAIL: Link Fail bit
When ' 1 ' is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register.
bit 2 NOTVALID: MII Management Read Data Not Valid bit
When ' 1 ' is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid.
bit 1 SCAN: MII Management Scanning bit
When ' 1 ' is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress.
bit \(0 \quad\) MIIMBUSY: MII Management Busy bit
When ' 1 ' is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers).
8 -bit accesses are not allowed and are ignored by the hardware.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 30-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
26 / 18 / 10 / 2
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-P \\
\hline & \multicolumn{8}{|c|}{STNADDR6<7:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-P \\
\hline & \multicolumn{8}{|c|}{STNADDR5<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(P=\) Programmable bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15-8 STNADDR6<7:0>: Station Address Octet 6 bits
These bits hold the sixth transmitted octet of the station address.
bit 7-0 STNADDR5<7:0>: Station Address Octet 5 bits
These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.
2: This register is loaded at reset from the factory preprogrammed station address.

REGISTER 30-38: EMAC1SA1: ETHERNET CONTROLLER MAC STATION ADDRESS 1 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & Bit
28/20/12/4 & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-P \\
\hline & \multicolumn{8}{|c|}{STNADDR4<7:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-P \\
\hline & \multicolumn{8}{|c|}{STNADDR3<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{P}=\) Programmable bit \\
\(R=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { bit 31-16 Unimplemented: Read as ' } 0 \text { ' } \\
\text { bit 15-8 } & \text { STNADDR4<7:0>: Station Address Octet } 4 \text { bits } \\
& \text { These bits hold the fourth transmitted octet of the station address. } \\
\text { bit 7-0 } & \text { STNADDR3<7:0>: Station Address Octet } 3 \text { bits } \\
& \text { These bits hold the third transmitted octet of the station address. }
\end{array}
\]

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8 -bit accesses are not allowed and are ignored by the hardware.
2: This register is loaded at reset from the factory preprogrammed station address.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 30-39: EMAC1SA2: ETHERNET CONTROLLER MAC STATION ADDRESS 2 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & Bit
28/20/12/4 & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-P \\
\hline & \multicolumn{8}{|c|}{STNADDR2<7:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/W-P \\
\hline & \multicolumn{8}{|c|}{STNADDR1<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(\mathrm{P}=\) Programmable bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
\begin{tabular}{ll}
bit 31-16 & Reserved: Maintain as ' 0 '; ignore read \\
bit 15-8 & \begin{tabular}{l}
STNADDR2<7:0>: Station Address Octet 2 bits \\
These bits hold the second transmitted octet of the station address.
\end{tabular} \\
bit 7-0 & \begin{tabular}{l}
STNADDR1<7:0>: Station Address Octet 1 bits
\end{tabular} \\
& These bits hold the most significant (first transmitted) octet of the station address.
\end{tabular}

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.
2: This register is loaded at reset from the factory preprogrammed station address.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{31.0 COMPARATOR}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Comparator" (DS60001110) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The Analog Comparator module consists of two comparators that can be configured in a variety of ways.

Key features of the Analog Comparator module are:
- Differential inputs
- Rail-to-rail operation
- Selectable output polarity
- Selectable inputs:
- Analog inputs multiplexed with I/O pins
- On-chip internal absolute voltage reference
- Comparator voltage reference (CVREF)
- Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 31-1.

FIGURE 31-1: COMPARATOR BLOCK DIAGRAM

Note 1: Internally connected. See Section 32.0 "Comparator Voltage Reference (CVREF)" for more information.

\section*{REGISTER 31-1: CMxCON: COMPARATOR CONTROL REGISTER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Bit \\
Range
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R}-0\) \\
\cline { 2 - 9 } & ON & COE & \(\mathrm{CPOL}^{(\mathbf{1})}\) & - & - & - & - & COUT \\
\cline { 2 - 9 } & \(\mathrm{R} / \mathrm{W}-1\) & \(\mathrm{R} / \mathrm{W}-1\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-1\) & \(\mathrm{R} / \mathrm{W}-1\) \\
\cline { 2 - 9 } & \multicolumn{2}{|c|}{\(\mathrm{EVPOL<1:0>}\)} & - & CREF & - & - & \(\mathrm{CCH}<1: 0>\) \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Comparator ON bit
\(1=\) Module is enabled. Setting this bit does not affect the other bits in this register
\(0=\) Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register
bit 14 COE: Comparator Output Enable bit
1 = Comparator output is driven on the output CxOUT pin
\(0=\) Comparator output is not driven on the output CxOUT pin
bit \(13 \quad\) CPOL: Comparator Output Inversion bit \({ }^{(1)}\)
1 = Output is inverted
\(0=\) Output is not inverted
bit 12-9 Unimplemented: Read as ' 0 '
bit 8 COUT: Comparator Output bit
\(1=\) Output of the Comparator is a ' 1 '
\(0=\) Output of the Comparator is a ' 0 '
bit 7-6 EVPOL<1:0>: Interrupt Event Polarity Select bits
11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output
\(10=\) Comparator interrupt is generated on a high-to-low transition of the comparator output
\(01=\) Comparator interrupt is generated on a low-to-high transition of the comparator output
\(00=\) Comparator interrupt generation is disabled
bit 5 Unimplemented: Read as ' 0 '
bit 4 CREF: Comparator Positive Input Configure bit
1 = Comparator non-inverting input is connected to the internal CVREF
\(0=\) Comparator non-inverting input is connected to the CXINA pin
bit 3-2 Unimplemented: Read as ' 0 '
bit 1-0 \(\mathbf{C C H}<1: 0>\) : Comparator Negative Input Select bits for Comparator
11 = Comparator inverting input is connected to the IVREF
\(10=\) Comparator inverting input is connected to the CxIND pin
01 = Comparator inverting input is connected to the CxINC pin
\(00=\) Comparator inverting input is connected to the CxINB pin
Note 1: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

REGISTER 31-2: CMSTAT: COMPARATOR STATUS REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Bit \\
Range
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R} / \mathrm{W}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) \\
\cline { 2 - 9 } & - & - & SIDL & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{U}-0\) & \(\mathrm{R}-0\) & \(\mathrm{R}-0\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & C 2 OUT & C 1 OUT \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-14 Unimplemented: Read as ' 0 '
bit 13 SIDL: Stop in IDLE Control bit
1 = All Comparator modules are disabled in IDLE mode
\(0=\) All Comparator modules continue to operate in the IDLE mode
bit 12-2 Unimplemented: Read as ' 0 '
bit 1 C2OUT: Comparator Output bit
1 = Output of Comparator 2 is a ' 1 '
\(0=\) Output of Comparator 2 is a ' 0 '
bit \(0 \quad\) C10UT: Comparator Output bit
1 = Output of Comparator 1 is a ' 1 '
\(0=\) Output of Comparator 1 is a ' 0 '

\subsection*{32.0 COMPARATOR VOLTAGE REFERENCE (CVREF)}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them.

The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDD/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.
The comparator voltage reference has the following features:
- High and low range selection
- Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- Output can be connected to a pin

A block diagram of the CVREF module is illustrated in Figure 32-1.

FIGURE 32-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM
VREF+

REGISTER 32-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & U-0 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & U-0 \\
\hline & ON & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & R/W-0 \\
\hline & - & CVROE & CVRR & CVRSS & \multicolumn{4}{|c|}{CVR<3:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-16 Unimplemented: Read as ' 0 '
bit 15 ON: Comparator Voltage Reference On bit
1 = Module is enabled
Setting this bit does not affect other bits in the register.
\(0=\) Module is disabled and does not consume current.
Clearing this bit does not affect the other bits in the register.
bit 14-7 Unimplemented: Read as ' 0 '
bit 6 CVROE: CVREFOUT Enable bit
1 = Voltage level is output on CVREFOUT pin
\(0=\) Voltage level is disconnected from CVREFOUT pin
bit 5 CVRR: CVREF Range Selection bit
\(1=0\) to 0.67 CVRSRC, with CVRSRC/24 step size
\(0=0.25\) CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size
bit 4 CVRSS: CVREF Source Selection bit
1 = Comparator voltage reference source, CVRSRC = (VREF+) - (VREF-)
\(0=\) Comparator voltage reference source, CVRSRC \(=\) AVDD - AVSS
bit 3-0 CVR<3:0>: CVREF Value Selection \(0 \leq C V R<3: 0>\leq 15\) bits
When CVRR = 1:
CVREF = (CVR<3: \(0>/ 24) \cdot(\) CVRSRC \()\)
When CVRR = 0:
CVREF \(=1 / 4 \bullet(C V R S R C)+(C V R<3: 0>/ 32) \bullet(C V R S R C)\)

NOTES:

\subsection*{33.0 POWER-SAVING FEATURES}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "PowerSaving Features" (DS60001130) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

This section describes power-saving features for the PIC32MZ EC devices. These devices offer various methods and modes that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

\subsection*{33.1 Power Saving with CPU Running}

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).
In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

\subsection*{33.2 Power-Saving with CPU Halted}

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

\subsection*{33.2.1 SLEEP MODE}

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
The processor will exit, or 'wake-up', from Sleep on one of the following events:
- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

\subsection*{33.2.2 IDLE MODE}

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (\(\mathrm{OSCCON}<4>\)) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:
- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{33.3 Peripheral Module Disable}

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

To disable a peripheral, the associated PMDx bit must be set to ' 1 '. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 33-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 33-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS \({ }^{(1)}\)
\begin{tabular}{|c|c|c|}
\hline Peripheral & PMDx bit Name & Register Name and Bit Location \\
\hline ADC1 & AD1MD & PMD1<0> \\
\hline Comparator Voltage Reference & CVRMD & PMD1<12> \\
\hline Comparator 1 & CMP1MD & PMD2<0> \\
\hline Comparator 2 & CMP2MD & PMD2<1> \\
\hline Input Capture 1 & IC1MD & PMD3<0> \\
\hline Input Capture 2 & IC2MD & PMD3<1> \\
\hline Input Capture 3 & IC3MD & PMD3<2> \\
\hline Input Capture 4 & IC4MD & PMD3<3> \\
\hline Input Capture 5 & IC5MD & PMD3<4> \\
\hline Input Capture 6 & IC6MD & PMD3<5> \\
\hline Input Capture 7 & IC7MD & PMD3<6> \\
\hline Input Capture 8 & IC8MD & PMD3<7> \\
\hline Input Capture 9 & IC9MD & PMD3<8> \\
\hline Output Compare 1 & OC1MD & PMD3<16> \\
\hline Output Compare 2 & OC2MD & PMD3<17> \\
\hline Output Compare 3 & OC3MD & PMD3<18> \\
\hline Output Compare 4 & OC4MD & PMD3<19> \\
\hline Output Compare 5 & OC5MD & PMD3<20> \\
\hline Output Compare 6 & OC6MD & PMD3<21> \\
\hline Output Compare 7 & OC7MD & PMD3<22> \\
\hline Output Compare 8 & OC8MD & PMD3<23> \\
\hline Output Compare 9 & OC9MD & PMD3<24> \\
\hline Timer1 & T1MD & PMD4<0> \\
\hline Timer2 & T2MD & PMD4<1> \\
\hline Timer3 & T3MD & PMD4<2> \\
\hline Timer4 & T4MD & PMD4<3> \\
\hline Timer5 & T5MD & PMD4<4> \\
\hline Timer6 & T6MD & PMD4<5> \\
\hline Timer7 & T7MD & PMD4<6> \\
\hline Timer8 & T8MD & PMD4<7> \\
\hline Timer9 & T9MD & PMD4<8> \\
\hline UART1 & U1MD & PMD5<0> \\
\hline UART2 & U2MD & PMD5<1> \\
\hline
\end{tabular}

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the lists of available peripherals.
2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 33-1: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS \({ }^{(1)}\) (CONTINUED)
\begin{tabular}{|c|c|c|}
\hline Peripheral & PMDx bit Name & Register Name and Bit Location \\
\hline UART3 & U3MD & PMD5<2> \\
\hline UART4 & U4MD & PMD5<3> \\
\hline UART5 & U5MD & PMD5<4> \\
\hline UART6 & U6MD & PMD5<5> \\
\hline SPI1 & SPI1MD & PMD5<8> \\
\hline SPI2 & SPI2MD & PMD5<9> \\
\hline SPI3 & SPI3MD & PMD5<10> \\
\hline SPI4 & SPI4MD & PMD5<11> \\
\hline SPI5 & SPI5MD & PMD5<12> \\
\hline SPI6 & SPI6MD & PMD5<13> \\
\hline I2C1 & I2C1MD & PMD5<16> \\
\hline I2C2 & I2C2MD & PMD5<17> \\
\hline I2C3 & I2C3MD & PMD5<18> \\
\hline I2C4 & I2C4MD & PMD5<19> \\
\hline I2C5 & I2C5MD & PMD5<20> \\
\hline USB \({ }^{(2)}\) & USBMD & PMD5<24> \\
\hline CAN1 & CAN1MD & PMD5<28> \\
\hline CAN2 & CAN2MD & PMD5<29> \\
\hline RTCC & RTCCMD & PMD6<0> \\
\hline Reference Clock Output 1 & REFO1MD & PMD6<8> \\
\hline Reference Clock Output 2 & REFO2MD & PMD6<9> \\
\hline Reference Clock Output 3 & REFO3MD & PMD6<10> \\
\hline Reference Clock Output 4 & REFO4MD & PMD6<11> \\
\hline PMP & PMPMD & PMD6<16> \\
\hline EBI & EBIMD & PMD6<17> \\
\hline SQ11 & SQI1MD & PMD6<23> \\
\hline Ethernet & ETHMD & PMD6<28> \\
\hline DMA & DMAMD & PMD7<4> \\
\hline Random Number Generator & RNGMD & PMD7<20> \\
\hline Crypto & CRYPTMD & PMD7<22> \\
\hline
\end{tabular}

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MZ EC Family Features" for the lists of available peripherals.
2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

\subsection*{33.3.1 CONTROLLING CONFIGURATION CHANGES}

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ EC devices include two features to prevent alterations to enabled or disabled peripherals:
- Control register lock sequence
- Configuration bit select lock

\subsection*{33.3.1.1 Control Register Lock}

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

\subsection*{33.3.1.2 Configuration Bit Select Lock}

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.
TABLE 33-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{0040} & \multirow[t]{2}{*}{PMD1} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & CVRMD & - & - & - & - & - & - & - & - & - & - & - & AD1MD & 0000 \\
\hline \multirow[t]{2}{*}{0050} & \multirow[t]{2}{*}{PMD2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & CMP2MD & CMP1MD & 0000 \\
\hline \multirow[t]{2}{*}{0060} & \multirow[t]{2}{*}{PMD3} & 31:16 & - & - & - & - & - & - & - & OC9MD & OC8MD & OC7MD & OC6MD & OC5MD & OC4MD & OC3MD & OC2MD & OC1MD & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & IC9MD & IC8MD & IC7MD & IC6MD & IC5MD & IC4MD & IC3MD & IC2MD & IC1MD & 0000 \\
\hline \multirow[t]{2}{*}{0070} & \multirow[t]{2}{*}{PMD4} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & T9MD & T8MD & T7MD & T6MD & T5MD & T4MD & T3MD & T2MD & T1MD & 0000 \\
\hline \multirow[t]{2}{*}{0080} & \multirow[t]{2}{*}{PMD5} & 31:16 & - & - & CAN2MD & CAN1MD & - & - & - & USBMD & - & - & - & 12 C 5 MD & I2C4MD & I2C3MD & 12C2MD & I2C1MD & 0000 \\
\hline & & 15:0 & - & - & SPI6MD & SPI5MD & SPI4MD & SPI3MD & SPI2MD & SPI1MD & - & - & U6MD & U5MD & U4MD & U3MD & U2MD & U1MD & 0000 \\
\hline \multirow[t]{2}{*}{0090} & \multirow[t]{2}{*}{PMD6} & 31:16 & - & - & - & ETHMD & - & - & - & - & SQI1MD & - & - & - & - & - & EBIMD & PMPMD & 0000 \\
\hline & & 15:0 & - & - & - & - & REFO4MD & REFO3MD & REFO2MD & REFO1MD & - & - & - & - & - & - & - & RTCCMD & 0000 \\
\hline \multirow[t]{2}{*}{00AO} & \multirow[t]{2}{*}{PMD7} & 31:16 & - & - & - & - & - & - & - & - & - & CRYPTMD & - & RNGMD & - & - & - & - & 0000 \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & DMAMD & - & - & - & - & 0000 \\
\hline
\end{tabular}
Legend: \(\quad x=\) unknown value on Reset; \(-=\) unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: Reset values are dependent on the device variant.

NOTES:

\subsection*{34.0 SPECIAL FEATURES}

Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 32. "Configuration" (DS60001124) and Section 33. "Programming and Diagnostics" (DS60001129) in the "PIC32 Family Reference Manual" (DS60001132), which are available from the Microchip web site (www.microchip.com/PIC32).

PIC32MZ EC devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:
- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming \({ }^{\text {TM }}\) (ICSP \({ }^{\text {TM }}\))
- Internal temperature sensor

\subsection*{34.1 Configuration Bits}

PIC32MZ EC devices contain two Boot Flash memories (Boot Flash 1 and Boot Flash 2), each with an associated configuration space. These configuration spaces can be programmed to contain various device configurations. Configuration space that is aliased by the Lower Boot Alias memory region is used to provide values for Configuration registers listed below. See 4.1.1 "Boot Flash Sequence and Configuration Spaces" for more information.
- DEVSIGNO/ADEVSIGNO: Device Signature Word 0 Register
- DEVCPO/ADEVCPO: Device Code-Protect 0 Register
- DEVCFGO/ADEVCFGO: Device Configuration Word 0
- DEVCFG1/ADEVCFG1: Device Configuration Word 1
- DEVCFG2/ADEVCFG2: Device Configuration Word 2
- DEVCFG3/ADEVCFG3: Device Configuration Word 3
The following run-time programmable Configuration registers provide additional configuration control:
- CFGCON: Configuration Control Register
- CFGEBIA: External Bus Interface Address Pin Configuration Register
- CFGEBIC: External Bus Interface Control Pin Configuration Register
- CFGPG: Permission Group Configuration Register
In addition, the DEVID register (see Register 34-11) provides device and revision information, the DEVADC1 through DEVADC5 registers (see Register 34-12) provide ADC module calibration data, and the DEVSN0 and DEVSN1 registers contain a unique serial number of the device (see Register 34-13).

Note: Do not use word program operation (NVMOP<3:0> = 0001) when programming the device words that are described in this section.
34.2 Registers

Legend: \(\quad x=\) unknown value on Reset; \(-=\) Reserved, read as ' 1 '. Reset values are shown in hexadecimal.
ADEVCFG: ALTERNATE DEVICE CONFIGURATION WORD SUMMARY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & \(18 / 2\) & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{FF40} & \multirow[t]{2}{*}{ADEVCFG3} & 31:16 & - & FUSBIDIO & IOL1WAY & PMDL1WAY & PGL1WAY & - & FETHIO & FMIIEN & - & - & - & - & - & - & - & - & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{USERID<15:0>} & \multirow[t]{2}{*}{| xxxx} \\
\hline \multirow[t]{2}{*}{FF44} & \multirow[t]{2}{*}{ADEVCFG2} & 31:16 & - & UPLLFSEL & - & - & - & - & - & - & \multirow[t]{2}{*}{FPLLICLK} & - & - & & \[
-
\] & \multicolumn{3}{|l|}{FPLLODIV<2:0>} & \\
\hline & & 15:0 & - & \multicolumn{7}{|l|}{FPLLMULT<6:0>} & & \multicolumn{3}{|l|}{FPLLRNG<2:0>} & - & \multicolumn{3}{|l|}{FPLLIDIV<2:0>} & xxxx \\
\hline \multirow[t]{2}{*}{FF48} & \multirow[t]{2}{*}{ADEVCFG1} & 31:16 & FDMTEN & \multicolumn{5}{|l|}{DMTCNT<4:0>} & \multicolumn{2}{|l|}{FWDTWINSZ<1:0>} & FWDTEN & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { WINDIS } \\
\hline \text { FSOSCEN }
\end{array}
\]} & WDTSPGM & \multicolumn{5}{|l|}{WDTPS<4:0>} & xxxx \\
\hline & & 15:0 & \multicolumn{2}{|l|}{FCKSM<1:0>} & - & & - & OSCIOFNC & \multicolumn{2}{|l|}{POSCMOD<1:0>} & IESO & & \multicolumn{3}{|l|}{DMTINTV<2:0>} & \multicolumn{3}{|l|}{FNOSC<2:0>} & xxxx \\
\hline \multirow[t]{2}{*}{FF4C} & \multirow[t]{2}{*}{ADEVCFG0} & 31:16 & - & EJTAGBEN & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline & & 15:0 & - & \multicolumn{3}{|l|}{DBGPER<2:0>} & - & FSLEEP & \multicolumn{2}{|l|}{FECCCON<1:0>} & - & BOOTISA & TRCEN & \multicolumn{2}{|l|}{ICESEL<1:0>} & JTAGEN & \multicolumn{2}{|l|}{DEBUG<1:0>} & xxxx \\
\hline \multirow[t]{2}{*}{FF50} & \multirow[t]{2}{*}{ADEVCP3} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{FF54} & \multirow[t]{2}{*}{ADEVCP2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{FF58} & \multirow[t]{2}{*}{ADEVCP1} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & \(x \times x\) \\
\hline \multirow[t]{2}{*}{FF5C} & \multirow[t]{2}{*}{ADEVCPO} & 31:16 & - & - & - & CP & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline \multirow[t]{2}{*}{FF60} & \multirow[t]{2}{*}{ADEVSIGN3} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & \(x \times x\) \\
\hline \multirow[t]{2}{*}{FF64} & \multirow[t]{2}{*}{ADEVSIGN2} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & \(x \mathrm{xx}\) \\
\hline \multirow[t]{2}{*}{FF68} & \multirow[t]{2}{*}{ADEVSIGN1} & 31:16 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & \(x \mathrm{xxx}\) \\
\hline \multirow[t]{2}{*}{FF6C} & \multirow[t]{2}{*}{ADEVSIGNO} & 31:16 & 0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxx \\
\hline & & 15:0 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & xxx \\
\hline
\end{tabular}
TABLE 34-3: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

\footnotetext{
TABLE 34-4: DEVICE ADC CALIBRATION SUMMARY
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{16}{|l|}{Bits} & \multirow[t]{2}{*}{} \\
\hline & & & 31/15 & 30/14 & 29/13 & 28/12 & 27/11 & 26/10 & 25/9 & 24/8 & 23/7 & 22/6 & 21/5 & 20/4 & 19/3 & 18/2 & 17/1 & 16/0 & \\
\hline \multirow[t]{2}{*}{4000} & \multirow[t]{2}{*}{DEVADC1} & 31:16 & \multicolumn{16}{|l|}{ADC Calibration Data <31:16>} & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Calibration Data < 15:0>} & xxxx \\
\hline \multirow[t]{2}{*}{4004} & \multirow[t]{2}{*}{DEVADC2} & 31:16 & \multicolumn{16}{|l|}{ADC Calibration Data <31:16>} & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Calibration Data < 15:0>} & xxxx \\
\hline \multirow[t]{2}{*}{4008} & \multirow[t]{2}{*}{DEVADC3} & 31:16 & \multicolumn{16}{|l|}{ADC Calibration Data <31:16>} & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Calibration Data < 15:0>} & xxxx \\
\hline \multirow[t]{2}{*}{400C} & \multirow[t]{2}{*}{DEVADC4} & 31:16 & \multicolumn{16}{|l|}{ADC Calibration Data <31:16>} & xxxx \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Calibration Data < 15:0>} & xxxx \\
\hline \multirow[t]{2}{*}{4010} & \multirow[t]{2}{*}{DEVADC5} & 31:16 & \multicolumn{16}{|l|}{ADC Calibration Data <31:16>} & \(x \mathrm{xxx}\) \\
\hline & & 15:0 & \multicolumn{16}{|l|}{ADC Calibration Data < 15:0>} & xxxx \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Legend: } & \quad x=\text { unknown value on Reset. } \\ \text { Note 1: } & \text { Reset values are dependent on the device variant }\end{array}\)
}

\title{
PIC32MZ Embedded Connectivity (EC) Family
}

REGISTER 34-1: DEVSIGN0/ADEVSIGNO: DEVICE SIGNATURE WORD 0 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Bit \\
Range
\end{tabular}} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 4 / 1 6 / 8 / 0}\)
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{r}-0\) & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(r=\) Reserved bit & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(\prime 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { bit } 31 & \text { Reserved: Write as ' } 0 \text { ' } \\ \text { bit } 30-0 & \text { Reserved: Write as ' } 1 \text { ' }\end{array}\)

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGNO/ADESIGN0 registers, and do not contain any valid information.

REGISTER 34-2: DEVCPO/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Bit \\
Range
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 1 / 2 3 / 1 5 / 7}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{3 0 / 2 2 / 1 4 / 6}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 9 / 2 1 / 1 3 / 5}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 8 / 2 0 / 1 2 / 4}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 7 / 1 9 / 1 1 / 3}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 6 / 1 8 / 1 0 / 2}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
\(\mathbf{2 5 / 1 7 / 9 / 1}\)
\end{tabular} & \begin{tabular}{c}
Bit \\
24/16/8/0
\end{tabular} \\
\hline \hline \multirow{2}{*}{\(31: 24\)} & \(\mathrm{r}-1\) & \(\mathrm{r}-1\) & \(\mathrm{r}-1\) & \(\mathrm{R} / \mathrm{P}\) & \(\mathrm{r}-1\) & \(\mathrm{r}-1\) & \(\mathrm{r}-1\) & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & CP & - & - & - & - \\
\hline \multirow{2}{*}{\(23: 16\)} & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(15: 8\)} & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & - & - & - & - \\
\hline \multirow{2}{*}{\(7: 0\)} & \(\mathrm{r}-1\) \\
\cline { 2 - 9 } & - & - & - & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(r=\) Reserved bit & \(P=\) Programmable bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-29 Reserved: Write as ' 1 '
bit 28 CP: Code-Protect bit
Prevents boot and program Flash memory from being read or modified by an external programming device.
1 = Protection is disabled
\(0=\) Protection is enabled
bit 27-0 Reserved: Write as ' 1 '

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCPO/ADEVCP0 registers, and do not contain any valid information.

REGISTER 34-3: DEVCFGO/ADEVCFGO: DEVICE CONFIGURATION WORD 0
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & r-0 & R/P & r-1 & r-1 & r-1 & r-1 & r-1 & r-1 \\
\hline & - & EJTAGBEN & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{23:16} & r-1 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[t]{2}{*}{15:8} & r-1 & R/P & R/P & R/P & r-1 & R/P & R/P & R/P \\
\hline & - & \multicolumn{3}{|c|}{DBGPER<2:0>} & - & FSLEEP & \multicolumn{2}{|l|}{FECCCON<1:0>} \\
\hline \multirow[t]{2}{*}{7:0} & r-1 & R/P \\
\hline & - & BOOTISA & TRCEN & \multicolumn{2}{|l|}{ICESEL<1:0>} & JTAGEN \({ }^{(1)}\) & \multicolumn{2}{|l|}{DEBUG<1:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(r=\) Reserved bit & \(P=\) Programmable bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(\quad\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 Reserved: Write as ' 0 '
bit 30 EJTAGBEN: EJTAG Boot Enable bit
1 = Normal EJTAG functionality
\(0=\) Reduced EJTAG functionality
bit 29-15 Reserved: Write as ' 1 '
bit 14-12 DBGPER<2:0>: Debug Mode CPU Access Permission bits
1xx = Allow CPU access to Permission Group 2 permission regions
x1x = Allow CPU access to Permission Group 1 permission regions
xx1 = Allow CPU access to Permission Group 0 permission regions
\(0 x x=\) Deny CPU access to Permission Group 2 permission regions
\(\mathrm{x} 0 \mathrm{x}=\) Deny CPU access to Permission Group 1 permission regions
\(\mathrm{xx} 0=\) Deny CPU access to Permission Group 0 permission regions
When the CPU is in Debug mode and the CPU1PG<1:0> bits (CFGPG<1:0>) are set to a denied permission group as defined by DBGPER<2:0>, the transaction request is assigned Group 3 permissions.
bit 11 Reserved: Write as ' 1 '
bit 10 FSLEEP: Flash Sleep Mode bit
1 = Flash is powered down when the device is in Sleep mode
\(0=\) Flash power down is controlled by the VREGS bit (PWRCON<1>)
bit 9-8 FECCCON<1:0>: Dynamic Flash ECC Configuration bits
Upon a device Reset, the value of these bits is copied to the ECCCON \(<1: 0>\) bits (CFGCON \(<5: 4>\)).
\(11=\) ECC and dynamic ECC are disabled (ECCCON \(<1: 0>\) bits are writable)
\(10=\) ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
\(00=\) Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
bit 7 Reserved: Write as ' 1 '
bit 6 BOOTISA: Boot ISA Selection bit
1 = Boot code and Exception code is MIPS32 \({ }^{\circledR}\)
(ISAONEXC bit is set to ' 0 ' and the ISA<1:0> bits are set to ' 10 ' in the CP0 Config3 register)
\(0=\) Boot code and Exception code is microMIPS \({ }^{\text {TM }}\)
(ISAONEXC bit is set to ' 1 ' and the ISA<1:0> bits are set to ' 11 ' in the CP0 Config3 register)
bit 5 TRCEN: Trace Enable bit
\(1=\) Trace features in the CPU are enabled
\(0=\) Trace features in the CPU are disabled

Note 1: This bit sets the value of the JTAGEN bit in the CFGCON register.

REGISTER 34-3: DEVCFGO/ADEVCFGO: DEVICE CONFIGURATION WORD 0 (CONTINUED)
bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
\(11=\) PGEC1/PGED1 pair is used
\(10=\) PGEC2/PGED2 pair is used
01 = Reserved
00 = Reserved
bit 2 JTAGEN: JTAG Enable bit \({ }^{(1)}\)
\(1=\) JTAG is enabled
\(0=\) JTAG is disabled
bit 1-0 DEBUG<1:0>: Background Debugger Enable bits (forced to ' 11 ' if code-protect is enabled)
\(1 \mathrm{x}=\) Debugger is disabled
\(0 x=\) Debugger is enabled
Note 1: This bit sets the value of the JTAGEN bit in the CFGCON register.

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/P \\
\hline & FDMTEN & \multicolumn{5}{|c|}{DMTCNT<4:0>} & \multicolumn{2}{|l|}{FWDTWINSZ<1:0>} \\
\hline \multirow{2}{*}{23:16} & R/P \\
\hline & FWDTEN & WINDIS & WDTSPGM & \multicolumn{5}{|c|}{WDTPS<4:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/P & R/P & r-1 & r-1 & r-1 & R/P & R/P & R/P \\
\hline & \multicolumn{2}{|l|}{FCKSM<1:0>} & - & - & - & OSCIOFNC & \multicolumn{2}{|l|}{POSCMOD<1:0>} \\
\hline \multirow{2}{*}{7:0} & R/P \\
\hline & IESO & FSOSCEN & \multicolumn{3}{|c|}{DMTINV<2:0>} & \multicolumn{3}{|c|}{FNOSC<2:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(r=\) Reserved bit & \(P=\) Programmable bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 FDMTEN: Deadman Timer enable bit
1 = Deadman Timer is enabled and cannot be disabled by software
\(0=\) Deadman Timer is disabled and can be enabled by software
bit 30-26 DMTCNT<4:0>: Deadman Timer Count Select bits
11111 = Reserved
.
\(\cdot\)
\(11000=\) Reserved
\(10111=2^{31}(2147483648)\)
\(10110=2^{30}(1073741824)\)
\(10101=2^{29}(536870912)\)
\(10100=2^{28}(268435456)\)
-
-
\(00001=2^{9}(512)\)
\(00000=2^{8}\) (256)
bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits
\(11=\) Window size is \(25 \%\)
\(10=\) Window size is \(37.5 \%\)
\(01=\) Window size is \(50 \%\)
\(00=\) Window size is \(75 \%\)
bit 23 FWDTEN: Watchdog Timer Enable bit
1 = Watchdog Timer is enabled and cannot be disabled by software
\(0=\) Watchdog Timer is not enabled; it can be enabled in software
bit 22 WINDIS: Watchdog Timer Window Enable bit
\(1=\) Watchdog Timer is in non-Window mode
\(0=\) Watchdog Timer is in Window mode
bit 21 WDTSPGM: Watchdog Timer Stop During Flash Programming bit
1 = Watchdog Timer stops during Flash programming
\(0=\) Watchdog Timer runs during Flash programming (for read/execute while programming Flash applications)

\section*{REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)}
bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits
\(10100=1: 1048576\)
\(10011=1: 524288\)
\(10010=1: 262144\)
\(10001=1: 131072\)
\(10000=1: 65536\)
\(01111=1: 32768\)
\(01110=1: 16384\)
\(01101=1: 8192\)
\(01100=1: 4096\)
\(01011=1: 2048\)
\(01010=1: 1024\)
\(01001=1: 512\)
\(01000=1: 256\)
\(00111=1: 128\)
\(00110=1: 64\)
\(00101=1: 32\)
\(00100=1: 16\)
\(00011=1: 8\)
\(00010=1: 4\)
\(00001=1: 2\)
\(00000=1: 1\)
All other combinations not shown result in operation \(=10100\)
bit 15-14 FCKSM<1:0>: Clock Switching and Monitoring Selection Configuration bits
11 = Clock switching is enabled and clock monitoring is enabled
\(10=\) Clock switching is disabled and clock monitoring is enabled
01 = Clock switching is enabled and clock monitoring is disabled
\(00=\) Clock switching is disabled and clock monitoring is disabled
bit 13-11 Reserved: Write as ' 1 '
bit 10 OSCIOFNC: CLKO Enable Configuration bit
1 = CLKO output disabled
\(0=\) CLKO output signal active on the OSC2 pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
bit 9-8 POSCMOD<1:0>: Primary Oscillator Configuration bits
11 = Posc disabled
\(10=\) HS Oscillator mode selected
01 = Reserved
\(00=\) EC mode selected
bit 7 IESO: Internal External Switchover bit
1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
\(0=\) Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
bit 6 FSOSCEN: Secondary Oscillator Enable bit
1 = Enable Sosc
\(0=\) Disable Sosc
bit 5-3 DMTINV<2:0>: Deadman Timer Count Window Interval bits
\(111=\) Window/Interval value is \(127 / 128\) counter value
\(110=\) Window/Interval value is \(63 / 64\) counter value
\(101=\) Window/Interval value is \(31 / 32\) counter value
\(100=\) Window/Interval value is \(15 / 16\) counter value
011 = Window/Interval value is \(7 / 8\) counter value
\(010=\) Window/Interval value is \(3 / 4\) counter value
\(001=\) Window/Interval value is \(1 / 2\) counter value
\(000=\) Window/Interval value is zero

REGISTER 34-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED) bit 2-0 FNOSC<2:0>: Oscillator Selection bits

111 = FRC divided by FRCDIV<2:0> bits (FRCDIV)
\(110=\) Reserved
101 = LPRC
100 = Sosc
011 = Reserved
\(010=\) Posc (HS, EC)
001 = SPLL
\(000=\) FRC divided by FRCDIV<2:0> bits (FRCDIV)

REGISTER 34-5: DEVCFG2/ADEVCFG2: DEVICE CONFIGURATION WORD 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & r-1 & R/P & r-1 & r-1 & r-1 & r-1 & r-1 & r-1 \\
\hline & - & UPLLFSEL & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & r-1 & r-1 & r-1 & r-1 & r-1 & R/P & R/P & R/P \\
\hline & - & - & - & - & - & \multicolumn{3}{|c|}{FPLLODIV<2:0>} \\
\hline \multirow[b]{2}{*}{15:8} & r-1 & R/P \\
\hline & & \multicolumn{7}{|c|}{FPLLMULT<6:0>} \\
\hline \multirow[b]{2}{*}{7:0} & R/P & R/P & R/P & R/P & r-1 & R/P & R/P & R/P \\
\hline & FPLLICLK & \multicolumn{3}{|c|}{FPLLRNG<2:0>} & - & \multicolumn{3}{|c|}{FPLLIDIV<2:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(r=\) Reserved bit & \(P=\) Programmable bit \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(\prime 0\) ' \(\quad\) Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 Reserved: Write as ' 1 '
bit 30 UPLLFSEL: USB PLL Input Frequency Select bit 1 = UPLL input clock is 24 MHz
\(0=\) UPLL input clock is 12 MHz
bit 29-19 Reserved: Write as ' 1 '
bit 18-16 FPLLODIV<2:0>: Default System PLL Output Divisor bits
111 = PLL output divided by 32
\(110=\) PLL output divided by 32
101 = PLL output divided by 32
\(100=\) PLL output divided by 16
\(011=\) PLL output divided by 8
\(010=\) PLL output divided by 4
\(001=\) PLL output divided by 2
\(000=\) PLL output divided by 2
bit 15 Reserved: Write as ' 1 '
bit 14-8 FPLLMULT<6:0>: System PLL Feedback Divider bits
1111111 = Multiply by 128
\(1111110=\) Multiply by 127
\(1111101=\) Multiply by 126
\(1111100=\) Multiply by 125
\(\bullet\)
-
-
\(0000000=\) Multiply by 1
bit \(7 \quad\) FPLLICLK: System PLL Input Clock Select bit
\(1=\) FRC is selected as input to the System PLL
\(0=\) POSC is selected as input to the System PLL
bit 6-4 FPLLRNG<2:0>: System PLL Divided Input Clock Frequency Range bits
111 = Reserved
\(110=\) Reserved
\(101=34-64 \mathrm{MHz}\)
\(100=21-42 \mathrm{MHz}\)
\(011=13-26 \mathrm{MHz}\)
\(010=8-16 \mathrm{MHz}\)
\(001=5-10 \mathrm{MHz}\)
\(000=\) Bypass

111 = Divide by 8
\(110=\) Divide by 7
\(101=\) Divide by 6
\(100=\) Divide by 5
011 = Divide by 4
\(010=\) Divide by 3
\(001=\) Divide by 2
\(000=\) Divide by 1

REGISTER 34-6: DEVCFG3/ADEVCFG3: DEVICE CONFIGURATION WORD 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & \(\mathrm{r}-1\) & R/P & R/P & R/P & R/P & r-1 & R/P & R/P \\
\hline & - & FUSBIDIO & IOL1WAY & PMDL1WAY & PGL1WAY & - & FETHIO & FMIIEN \\
\hline \multirow[b]{2}{*}{23:16} & r-1 \\
\hline & - & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{15:8} & R/P \\
\hline & \multicolumn{8}{|c|}{USERID<15:8>} \\
\hline \multirow{2}{*}{7:0} & R/P \\
\hline & \multicolumn{8}{|c|}{USERID<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline Legend: & \(r=\) Reserved bit & \(\mathrm{P}=\) Programmable bit \\
\(\mathrm{R}=\) Readable bit & \(\mathrm{W}=\) Writable bit & \(\mathrm{U}=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad \mathrm{x}=\) Bit is unknown \\
\hline
\end{tabular}
bit 31 Reserved: Write as ' 1 '
bit 30 FUSBIDIO: USB USBID Selection bit
1 = USBID pin is controlled by the USB module
\(0=\) USBID pin is controlled by the port function
If USBMD is ' 1 ', USBID reverts to port control.
bit 29 IOL1WAY: Peripheral Pin Select Configuration bit
1 = Allow only one reconfiguration
\(0=\) Allow multiple reconfigurations
bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit
1 = Allow only one reconfiguration
\(0=\) Allow multiple reconfigurations
bit 27 PGL1WAY: Permission Group Lock One Way Configuration bit
1 = Allow only one reconfiguration
0 = Allow multiple reconfigurations
bit 26 Reserved: Write as ' 1 '
bit 25 FETHIO: Ethernet I/O Pin Selection Configuration bit
1 = Default Ethernet I/O pins
\(0=\) Alternate Ethernet I/O pins
This bit is ignored for devices that do not have an alternate Ethernet pin selection.
bit 24 FMIIEN: Ethernet MII Enable Configuration bit
\(1=\) MII is enabled
\(0=\) RMII is enabled
bit 23-16 Reserved: Write as ' 1 '
bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP \({ }^{\text {TM }}\) and JTAG

REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{array}{|c}
\text { Bit } \\
31 / 23 / 15 / 7
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 24/16/8/0 }
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & DMAPRI \({ }^{(1)}\) & CPUPRI \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & ICACLK \({ }^{(1)}\) & OCACLK \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 \\
\hline & - & - & \(\mathrm{IOLOCK}^{(1)}\) & PMDLOCK \({ }^{(1)}\) & PGLOCK \({ }^{(1)}\) & - & - & USBSSEN \({ }^{(1)}\) \\
\hline \multirow[b]{2}{*}{7:0} & U-0 & U-0 & R/W-1 & R/W-1 & R/W-1 & R/W-0 & U-0 & R/W-1 \\
\hline & - & - & \multicolumn{2}{|l|}{ECCCON<1:0>} & JTAGEN & TROEN & - & TDOEN \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-26 Unimplemented: Read as ' 0 '
bit 25 DMAPRI: DMA Read and DMA Write Arbitration Priority to SRAM bit \({ }^{(1)}\)
1 = DMA gets High Priority access to SRAM
\(0=\) DMA uses Least Recently Serviced Arbitration (same as other initiators)
bit 24 CPUPRI: CPU Arbitration Priority to SRAM When Servicing an Interrupt bit \({ }^{(1)}\)
1 = CPU gets High Priority access to SRAM
\(0=\) CPU uses Least Recently Serviced Arbitration (same as other initiators)
bit 23-18 Unimplemented: Read as ' 0 '
bit 17 ICACLK: Input Capture Alternate Clock Selection bit \({ }^{(1)}\)
1 = Input Capture modules use an alternative Timer pair as their timebase clock
\(0=\) All Input Capture modules use Timer2/3 as their timebase clock
bit 16 OCACLK: Output Compare Alternate Clock Selection bit \({ }^{(1)}\)
1 = Output Compare modules use an alternative Timer pair as their timebase clock
\(0=\) All Output Compare modules use Timer2/3 as their timebase clock
bit 15-14 Unimplemented: Read as ' 0 '
bit 13 IOLOCK: Peripheral Pin Select Lock bit \({ }^{(1)}\)
1 = Peripheral Pin Select is locked. Writes to PPS registers are not allowed
\(0=\) Peripheral Pin Select is not locked. Writes to PPS registers are allowed
bit 12 PMDLOCK: Peripheral Module Disable bit \({ }^{(1)}\)
1 = Peripheral module is locked. Writes to PMD registers are not allowed
\(0=\) Peripheral module is not locked. Writes to PMD registers are allowed
bit 11 PGLOCK: Permission Group Lock bit \({ }^{(1)}\)
\(1=\) Permission Group registers are locked. Writes to PG registers are not allowed
\(0=\) Permission Group registers are not locked. Writes to PG registers are allowed
bit 10-9 Unimplemented: Read as ' 0 '
bit 8 USBSSEN: USB Suspend Sleep Enable bit \({ }^{(1)}\)
Enables features for USB PHY clock shutdown in Sleep mode.
\(1=\) USB PHY clock is shut down when Sleep mode is active
\(0=\) USB PHY clock continues to run when Sleep is active
bit 7-6 Unimplemented: Read as ' 0 '

Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{REGISTER 34-7: CFGCON: CONFIGURATION CONTROL REGISTER (CONTINUED)}
bit 5-4 ECCCON<1:0>: Flash ECC Configuration bits
11 = ECC and dynamic ECC are disabled (ECCCON \(<1: 0>\) bits are writable)
\(10=\) ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
01 = Dynamic Flash ECC is enabled (ECCCON \(<1: 0>\) bits are locked)
\(00=\) Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
bit 3 JTAGEN: JTAG Port Enable bit
1 = Enable the JTAG port
0 = Disable the JTAG port
bit 2 TROEN: Trace Output Enable bit
1 = Enable trace outputs and start trace clock (trace probe must be present)
0 = Disable trace outputs and stop trace clock
bit 1 Unimplemented: Read as ' 0 '
bit 0 TDOEN: TDO Enable for 2-Wire JTAG
1 = 2-wire JTAG protocol uses TDO
\(0=2\)-wire JTAG protocol does not use TDO

Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" in the "PIC32 Family Reference Manual" for details.

REGISTER 34-8: CFGEBIA: EXTERNAL BUS INTERFACE ADDRESS PIN CONFIGURATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 28/20/12/4 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R/W-0 & U-0 \\
\hline & EBIPINEN & - & - & - & - & - & - & - \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 \\
\hline & EBIA23EN & EBIA22EN & EBIA21EN & EBIA20EN & EBIA19EN & EBIA18EN & EBIA17EN & EBIA16EN \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 \\
\hline & EBIA15EN & EBIA14EN & EBIA13EN & EBIA12EN & EBIA11EN & EBIA10EN & EBIA9EN & EBIA8EN \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 \\
\hline & EBIA7EN & EBIA6EN & EBIA5EN & EBIA4EN & EBIA3EN & EBIA2EN & EBIA1EN & EBIAOEN \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0 '=\) Bit is cleared \\
\hline
\end{tabular}
bit 31 EBIPINEN: EBI Pin Enable bit
1 = EBI controls access of pins shared with PMP
\(0=\) Pins shared with EBI are available for general use
bit 30-24 Unimplemented: Read as ' 0 '
bit 23-0 EBIA23EN:EBIA0EN: EBI Address Pin Enable bits
1 = EBIAx pin is enabled for use by EBI
\(0=\) EBIAx pin has is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

REGISTER 34-9: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 29/21/13/5 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{array}{|c}
\text { Bit } \\
27 / 19 / 11 / 3
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 26/18/10/2 }
\end{gathered}
\] & \[
\underset{\text { Bit }}{\text { 25/17/9/1 }}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & R/W-0 & R/W-0 & R/W-0 \\
\hline & - & EBI RDYINV3 & EBI RDYINV2 & EBI RDYINV1 & - & EBI RDYEN3 & EBI RDYEN2 & EBI RDYEN1 \\
\hline \multirow[b]{2}{*}{23:16} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & EBIRDYLVL & EBIRPEN \\
\hline \multirow[b]{2}{*}{15:8} & U-0 & U-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & EBIWEEN & EBIOEEN & - & - & EBIBSEN1 & EBIBSEN0 \\
\hline \multirow[b]{2}{*}{7:0} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & EBICSEN3 & EBICSEN2 & EBICSEN1 & EBICSEN0 & - & - & EBIDEN1 & EBIDEN0 \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31 Unimplemented: Read as ' 0 '
bit 30 EBIRDYINV3: EBIRDY3 Inversion Control bit
1 = Invert EBIRDY3 pin before use
\(0=\) Do not invert EBIRDY3 pin before use
bit 29 EBIRDYINV2: EBIRDY2 Inversion Control bit
1 = Invert EBIRDY2 pin before use
\(0=\) Do not invert EBIRDY2 pin before use
bit 28 EBIRDYINV1: EBIRDY1 Inversion Control bit
1 = Invert EBIRDY1 pin before use
\(0=\) Do not invert EBIRDY1 pin before use
bit 27 Unimplemented: Read as ' 0 '
bit 26 EBIRDYEN3: EBIRDY3 Pin Enable bit
1 = EBIRDY3 pin is enabled for use by the EBI module
\(0=\) EBIRDY3 pin is available for general use
bit 25 EBIRDYEN2: EBIRDY2 Pin Enable bit
1 = EBIRDY2 pin is enabled for use by the EBI module
\(0=\) EBIRDY2 pin is available for general use
bit 24 EBIRDYEN1: EBIRDY1 Pin Enable bit
1 = EBIRDY1 pin is enabled for use by the EBI module
\(0=\) EBIRDY1 pin is available for general use
bit 23-18 Unimplemented: Read as ' 0 '
bit 17 EBIRDYLVL: EBIRDYx Pin Sensitivity Control bit
1 = Use level detect for EBIRDYx pins
\(0=\) Use edge detect for EBIRDYx pins
bit 16 EBIRPEN: \(\overline{\text { EBIRP }}\) Pin Sensitivity Control bit
\(1=\overline{\text { EBIRP }}\) pin is enabled for use by the EBI module
\(0=\overline{\text { EBIRP }}\) pin is available for general use
bit 15-14 Unimplemented: Read as ' 0 '

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.
REGISTER 34-9: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER (CONTINUED)
bit 13 EBIWEEN: EBIWE Pin Enable bit\(1=\overline{\text { EBIWE }}\) pin is enabled for use by the EBI module
 \(0=\overline{\text { EBIWE }}\) pin is available for general use
bit 12 EBIOEEN: \(\overline{\text { EBIOE Pin Enable bit }}\)
 \(1=\overline{\mathrm{EBIOE}}\) pin is enabled for use by the EBI module
 \(0=\overline{\text { EBIOE }}\) pin is available for general use
bit 11-10 Unimplemented: Read as ' 0 '
bit 9 EBIBSEN1: EBIBS1 Pin Enable bit
 \(1=\overline{\text { EBIBS1 }}\) pin is enabled for use by the EBI module
 \(0=\overline{\text { EBIBS1 }}\) pin is available for general use
bit 8 EBIBSEN1: EBIBS0 Pin Enable bit
 \(1=\overline{\text { EBIBS0 }}\) pin is enabled for use by the EBI module
 \(0=\) EBIBS0 pin is available for general use
bit 7 EBICSEN3: EBICS3 Pin Enable bit
 \(1=\overline{\text { EBICS3 }}\) pin is enabled for use by the EBI module
 \(0=\) EBICS3 pin is available for general use
bit 6 EBICSEN2: \(\overline{\text { EBICS2 }}\) Pin Enable bit
 \(1=\overline{\text { EBICS2 }}\) pin is enabled for use by the EBI module
 \(0=\overline{\text { EBICS2 }}\) pin is available for general use
bit 5 EBICSEN1: \(\overline{\text { EBICS1 }}\) Pin Enable bit
 \(1=\overline{\text { EBICS1 }}\) pin is enabled for use by the EBI module
 \(0=\overline{\text { EBICS1 }}\) pin is available for general use
bit 4 EBICSENO: \(\overline{\text { EBICSO }}\) Pin Enable bit
 \(1=\overline{\text { EBICSO }}\) pin is enabled for use by the EBI module
 \(0=\overline{\text { EBICS0 }}\) pin is available for general use
bit 3-2 Unimplemented: Read as ' 0 '
bit 1 EBIDEN1: EBI Data Upper Byte Pin Enable bit
 1 = EBID<15:8> pins are enabled for use by the EBI module
 \(0=\mathrm{EBID}<15: 8>\) pins have reverted to general use
bit 0 EBIDENO: EBI Data Lower Byte Pin Enable bit
 1 = EBID<7:0> pins are enabled for use by the EBI module
 \(0=\mathrm{EBID}<7: 0>\) pins have reverted to general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

REGISTER 34-10: CFGPG: PERMISSION GROUP CONFIGURATION REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & U-0 & U-0 & U-0 & U-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & - & - & - & - & \multicolumn{2}{|l|}{CRYPTPG<1:0>} \\
\hline \multirow[b]{2}{*}{23:16} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{2}{|r|}{FCPG<1:0>} & \multicolumn{2}{|l|}{SQI1PG<1:0>} & - & - & \multicolumn{2}{|l|}{ETHPG<1:0>} \\
\hline \multirow[b]{2}{*}{15:8} & R/W-0 & R/W-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & \multicolumn{2}{|l|}{CAN2PG<1:0>} & \multicolumn{2}{|l|}{CAN1PG<1:0>} & - & - & \multicolumn{2}{|l|}{USBPG<1:0>} \\
\hline \multirow{2}{*}{7:0} & U-0 & U-0 & R/W-0 & R/W-0 & U-0 & U-0 & R/W-0 & R/W-0 \\
\hline & - & - & \multicolumn{2}{|l|}{DMAPG<1:0>} & - & - & \multicolumn{2}{|l|}{CPUPG<1:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll}
\(R=\) Readable bit & W = Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' \(=\) Bit is set & \(' 0\) ' = Bit is cleared \\
\hline
\end{tabular}
bit 31-26 Unimplemented: Read as ' 0 '
bit 25-24 CRYPTPG<1:0>: Crypto Engine Permission Group bits
11 = Initiator is assigned to Permission Group 3
\(10=\) Initiator is assigned to Permission Group 2
01 = Initiator is assigned to Permission Group 1
\(00=\) Initiator is assigned to Permission Group 0
bit 23-22 FCPG<1:0>: Flash Control Permission Group bits Same definition as bits 25-24.
bit 21-20 SQI1PG<1:0>: SQI Module Permission Group bits
Same definition as bits 25-24.
bit 19-18 Unimplemented: Read as ' 0 '
bit 17-16 ETHPG<1:0>: Ethernet Module Permission Group bits Same definition as bits 25-24.
bit 15-14 CAN2PG<1:0>: CAN2 Module Permission Group bits Same definition as bits 25-24.
bit 13-12 CAN1PG<1:0>: CAN1 Module Permission Group bits Same definition as bits 25-24.
bit 11-10 Unimplemented: Read as ' 0 '
bit 9-8 USBPG<1:0>: USB Module Permission Group bits Same definition as bits 25-24.
bit 7-6 Unimplemented: Read as ' 0 '
bit 5-4 DMAPG<1:0>: DMA Module Permission Group bits Same definition as bits 25-24.
bit 3-2 Unimplemented: Read as ' 0 '
bit 1-0 CPUPG<1:0>: CPU Permission Group bits Same definition as bits 25-24.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 34-11: DEVID: DEVICE AND REVISION ID REGISTER
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Bit } \\
\text { Range }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { Bit } \\
\text { 27/19/11/3 }
\end{array}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{4}{|c|}{\(\mathrm{VER}<3: 0>{ }^{(1)}\)} & \multicolumn{4}{|c|}{DEVID<27:24> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{23:16} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{DEVID<23:16> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{15:8} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{DEVID<15:8> \({ }^{(1)}\)} \\
\hline \multirow[b]{2}{*}{7:0} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{DEVID<7:0> \({ }^{(1)}\)} \\
\hline
\end{tabular}

Legend:
\begin{tabular}{lll}
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1 '=\) Bit is set & \(' 0\) ' \(=\) Bit is cleared \(\quad x=\) Bit is unknown
\end{tabular}
bit 31-28 VER<3:0>: Revision Identifier bits \({ }^{(1)}\)
bit 27-0 DEVID<27:0>: Device ID \({ }^{(1)}\)

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

REGISTER 34-12: DEVADCx: DEVICE ADC CALIBRATION REGISTER ' \(x\) ' (' \(x\) ' = 1-5)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{gathered}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
\text { 27/19/11/3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
\text { 25/17/9/1 }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{ADCAL<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{ADCAL<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{ADCAL<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{ADCAL<7:0>} \\
\hline
\end{tabular}

\section*{Legend:}
\begin{tabular}{lll|}
\(\mathrm{R}=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-\mathrm{n}=\) Value at POR & \(' 1\) ' = Bit is set & ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}
bit 31-0 ADCAL<31:0>: Calibration Data for the ADC Module bits
This data must be copied to the corresponding AD1CALx register. Refer to Section 28.0 "Pipelined Analog-to-Digital Converter (ADC)" for more information.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

REGISTER 34-13: DEVSNx: DEVICE SERIAL NUMBER REGISTER ' \(x\) ' (' \(x\) ' = 0, 1)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Bit Range & \[
\begin{array}{|c|}
\hline \text { Bit } \\
31 / 23 / 15 / 7
\end{array}
\] & \[
\begin{gathered}
\text { Bit } \\
30 / 22 / 14 / 6
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
29 / 21 / 13 / 5
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
28 / 20 / 12 / 4
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
27 / 19 / 11 / 3
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Bit } \\
26 / 18 / 10 / 2
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
25 / 17 / 9 / 1
\end{gathered}
\] & \[
\begin{gathered}
\text { Bit } \\
24 / 16 / 8 / 0
\end{gathered}
\] \\
\hline \multirow[b]{2}{*}{31:24} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{SN<31:24>} \\
\hline \multirow[b]{2}{*}{23:16} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{SN<23:16>} \\
\hline \multirow[b]{2}{*}{15:8} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{SN<15:8>} \\
\hline \multirow[b]{2}{*}{7:0} & R & R & R & R & R & R & R & R \\
\hline & \multicolumn{8}{|c|}{SN<7:0>} \\
\hline
\end{tabular}
\begin{tabular}{|llll}
\hline Legend: & & \\
\(R=\) Readable bit & \(W=\) Writable bit & \(U=\) Unimplemented bit, read as ' 0 ' \\
\(-n=\) Value at POR & \(' 1\) ' = Bit is set & \(' 0\) ' = Bit is cleared \(\quad x=\) Bit is unknown \\
\hline
\end{tabular}

Legend:
\(-n=\) Value at POR \(\quad\) ' 1 ' = Bit is set \(\quad\) ' 0 ' = Bit is cleared \(\quad x=\) Bit is unknown
bit 31-0
SN<31:0>: Device Unique Serial Number bits

\subsection*{34.3 On-Chip Voltage Regulator}

The core and digital logic for all PIC32MZ EC devices is designed to operate at a nominal 1.8 V . To simplify system designs, devices in the PIC32MZ EC family incorporate an on-chip regulator providing the required core logic voltage from VDD.

\subsection*{34.3.1 ON-CHIP REGULATOR AND POR}

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. Tpu is applied every time the device resumes operation after any power-down, including Sleep mode.

\subsection*{34.3.2 ON-CHIP REGULATOR AND BOR}

PIC32MZ EC devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (\(\mathrm{RCON}<1>\)). The brown-out voltage levels are specific in Section 37.1 "DC Characteristics".

\subsection*{34.4 On-chip Temperature Sensor}

PIC32MZ EC devices include a temperature sensor that provides accurate measurement of a device's junction temperature (see Section 37.2 "AC Characteristics and Timing Parameters" for more information).
The temperature sensor is connected to the ADC module and can be measured using the shared S\&H circuit (see Section 28.0 "Pipelined Analog-toDigital Converter (ADC)" for more information).

\subsection*{34.5 Programming and Diagnostics}

PIC32MZ EC devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:
- Simplified field programmability using two-wire In-Circuit Serial Programming \({ }^{\text {TM }}\) (ICSP \({ }^{\text {TM }}\)) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics
PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 34-1: BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

NOTES:

\subsection*{35.0 INSTRUCTION SET}

The PIC32MZ Embedded Connectivity (EC) Family family instruction set complies with the MIPS32 \({ }^{\circledR}\) Release 2 instruction set architecture. The PIC32MZ EC device family does not support the following features:
- Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note: Refer to "MIPS32 \({ }^{\circledR}\) Architecture for Programmers Volume II: The MIPS32 \({ }^{\circledR}\) Instruction Set" at www.imgtec.com for more information.

NOTES:

\subsection*{36.0 DEVELOPMENT SUPPORT}

The \(\mathrm{PIC}^{\circledR}\) microcontrollers (MCU) and dsPIC \({ }^{\circledR}\) digital signal controllers (DSC) are supported with a full range of software and hardware development tools:
- Integrated Development Environment
- MPLAB \({ }^{\circledR}\) X IDE Software
- Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASM \({ }^{\text {TM }}\) Assembler
- MPLINK \({ }^{\text {TM }}\) Object Linker/ MPLIB \({ }^{\text {™ }}\) Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
- MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE \({ }^{\text {TM }}\) In-Circuit Emulator
- In-Circuit Debuggers/Programmers
- MPLAB ICD 3
- PICkit \({ }^{\text {TM }} 3\)
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

\subsection*{36.1 MPLAB X Integrated Development Environment Software}

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows \({ }^{\circledR}\), Linux and Mac OS \({ }^{\circledR}\) X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.
Feature-Rich Editor:
- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:
- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window

Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions

File History and Bug Tracking:
- Local file history feature
- Built-in support for Bugzilla issue tracker

\subsection*{36.2 MPLAB XC Compilers}

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.
For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.
The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.
MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:
- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

\subsection*{36.3 MPASM Assembler}

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel \({ }^{\circledR}\) standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.
The MPASM Assembler features include:
- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

\subsection*{36.4 MPLINK Object Linker/ MPLIB Object Librarian}

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.
The object linker/library features include:
- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

\subsection*{36.5 MPLAB Assembler, Linker and Librarian for Various Device Families}

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:
- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{36.6 MPLAB X SIM Software Simulator}

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.
The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

\subsection*{36.7 MPLAB REAL ICE In-Circuit Emulator System}

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

\subsection*{36.8 MPLAB ICD 3 In-Circuit Debugger System}

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

\subsection*{36.9 PICkit 3 In-Circuit Debugger/ Programmer}

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming \({ }^{\text {TM }}\) (ICSP \({ }^{\text {TM }}\)).

\subsection*{36.10 MPLAB PM3 Device Programmer}

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (\(128 \times 64\)) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

\subsection*{36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits}

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM \(^{\text {TM }}\) and dsPICDEM \({ }^{\text {™ }}\) demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ \({ }^{\circledR}\) security ICs, CAN, IrDA \({ }^{\circledR}\), PowerSmart battery management, SEEVAL \({ }^{\circledR}\) evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

\subsection*{36.12 Third-Party Development Tools}

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.
- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent \({ }^{\circledR}\) and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika \({ }^{\circledR}\)

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{37.0 ELECTRICAL CHARACTERISTICS}

This section provides an overview of the PIC32MZ EC electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.
Absolute maximum ratings for the PIC32MZ EC devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.
Absolute Maximum Ratings(See Note 1)
Ambient temperature under biasStorage temperature\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Voltage on VdD with respect to Vss -0.3 V to +4.0 V
Voltage on any pin that is not 5 V tolerant, with respect to Vss (Note 3) -0.3 V to (Vdd + 0.3V)
Voltage on any 5 V tolerant pin with respect to Vss when VDD \(\geq 2.3 \mathrm{~V}\) (Note 3) -0.3 V to +5.5 V
Voltage on any 5 V tolerant pin with respect to Vss when \(\mathrm{VDD}<2.3 \mathrm{~V}\) (Note 3) -0.3 V to +3.6 V
Voltage on D+ or D- pin with respect to VuSB3V3 0.3 V to (VUSB3V3 + 0.3V)
Voltage on Vbus with respect to Vss -0.3 V to +5.5 V
Maximum current out of Vss pin(s) 200 mA
Maximum current into Vdd pin(s) (Note 2) 200 mA
Maximum current sunk/sourced by any \(4 x\) I/O pin (Note 4) 15 mA
Maximum current sunk/sourced by any \(8 x\) I/O pin (Note 4) 25 mA
Maximum current sunk/sourced by any 12x I/O pin (Note 4) 33 mA
Maximum current sunk by all ports 150 mA
Maximum current sourced by all ports (Note 2) 150 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
2: Maximum allowable current is a function of device maximum power dissipation (see Table 37-2).
: See the pin name tables (Table 3 through Table 5) for the 5V tolerant pins.
4: Characterized, but not tested. Refer to parameters DO10, DO20, and DO20a for the \(4 x, 8 x\), and 12x I/O pin lists.

\subsection*{37.1 DC Characteristics}

TABLE 37-1: OPERATING MIPS VS. VOLTAGE
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Characteristic} & \multirow[t]{2}{*}{Vdd Range (in Volts) (Note 1)} & \multirow[t]{2}{*}{Temp. Range (in \({ }^{\circ} \mathrm{C}\))} & Max. Frequency & \multirow{2}{*}{Comment} \\
\hline & & & PIC32MZ EC Devices & \\
\hline DC5 & \(2.3 \mathrm{~V}-3.6 \mathrm{~V}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & 200 MHz & - \\
\hline DC5c & \(2.3 \mathrm{~V}-3.6 \mathrm{~V}\) & \(-40^{\circ} \mathrm{C}\) to \(+105^{\circ} \mathrm{C}\) & 180 MHz & - \\
\hline DC5b & 2.3V-3.6V & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) & 180 MHz & Planned \\
\hline
\end{tabular}

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.

TABLE 37-2: THERMAL OPERATING CONDITIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Rating & Symbol & Min. & Typical & Max. & Unit \\
\hline \begin{tabular}{l}
Industrial Temperature Devices \\
Operating Junction Temperature Range Operating Ambient Temperature Range
\end{tabular} & \[
\begin{aligned}
& \mathrm{TJ} \\
& \mathrm{TA}
\end{aligned}
\] & \[
\begin{aligned}
& -40 \\
& -40
\end{aligned}
\] & - & \[
\begin{gathered}
+125 \\
+85
\end{gathered}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
V-Temp Temperature Devices \\
Operating Junction Temperature Range Operating Ambient Temperature Range
\end{tabular} & \[
\begin{aligned}
& \mathrm{TJ} \\
& \mathrm{TA}
\end{aligned}
\] & \[
\begin{aligned}
& -40 \\
& -40
\end{aligned}
\] & - & \[
\begin{aligned}
& +140 \\
& +105
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Extended Temperature Devices \\
Operating Junction Temperature Range Operating Ambient Temperature Range
\end{tabular} & \[
\begin{aligned}
& \mathrm{TJ} \\
& \mathrm{TA}
\end{aligned}
\] & \[
\begin{aligned}
& -40 \\
& -40
\end{aligned}
\] & - & \[
\begin{aligned}
& +140 \\
& +125
\end{aligned}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Power Dissipation: \\
Internal Chip Power Dissipation:
\[
\text { PINT = VDD x (IDD - S IOH })
\] \\
I/O Pin Power Dissipation:
\[
\text { PI/O = S ((\{VDD - VOH }\} \text { x IOH })+\mathrm{S}(\mathrm{VOL} \times \mathrm{IOL}))
\]
\end{tabular} & PD & \multicolumn{3}{|c|}{PINT + Pl/o} & W \\
\hline Maximum Allowed Power Dissipation & Pdmax & \multicolumn{3}{|c|}{\((\mathrm{TJ}-\mathrm{TA}) / \theta \mathrm{JA}\)} & W \\
\hline
\end{tabular}

TABLE 37-3: THERMAL PACKAGING CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Characteristics } & Symbol & Typical & Max. & Unit & Notes \\
\hline \hline Package Thermal Resistance, 64-pin QFN \((9 \times 9 \times 0.9 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 28 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance, 64-pin TQFP \((10 \times 10 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 49 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance, \(100-\) pin TQFP \((12 \times 12 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 43 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance, 100-pin TQFP \((14 \times 14 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 40 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance, 124-pin VTLA \((9 \times 9 \times 0.9 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 30 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance, \(144-\) pin TQFP \((16 \times 16 \times 1 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 42 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline Package Thermal Resistance, \(144-\) pin LQFP \((20 \times 20 \times 1.4 \mathrm{~mm})\) & \(\theta \mathrm{JA}\) & 39 & - & \({ }^{\circ} \mathrm{C} / \mathrm{W}\) & \(\mathbf{1}\) \\
\hline
\end{tabular}

Note 1: Junction to ambient thermal resistance, Theta-JA (\(\theta \mathrm{JA}\)) numbers are achieved by package simulations.

TABLE 37-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DC CHA & RACTER & ISTICS & \begin{tabular}{l}
Standard \\
(unless \\
Operating
\end{tabular} & Operatin therwise temperat & \begin{tabular}{l}
g Condi stated) \\
ure -40 \\
-40 \\
-40
\end{tabular} & \[
\text { ons: } 2 .
\]
\[
\begin{aligned}
& C \leq T_{A} \\
& C \leq T A S_{x} \\
& C \leq T_{A} \leq
\end{aligned}
\] & \begin{tabular}{l}
6V \\
for Industrial C for V-Temp C for Extended
\end{tabular} \\
\hline Param. No. & Symbol & Characteristics & Min. & Typical & Max. & Units & Conditions \\
\hline \multicolumn{8}{|l|}{Operating Voltage} \\
\hline DC10 & VDD & Supply Voltage (Note 1) & 2.3 & - & 3.6 & V & - \\
\hline DC12 & VDR & RAM Data Retention Voltage (Note 2) & 1.75 & - & - & V & - \\
\hline DC16 & VPOR & Vdd Start Voltage to Ensure Internal Power-on Reset Signal (Note 3) & 1.75 & - & - & V & - \\
\hline DC17 & SVDD & Vdd Rise Rate to Ensure Internal Power-on Reset Signal & 0.00004 & - & 0.0004 & \(\mathrm{V} / \mathrm{\mu s}\) & - \\
\hline
\end{tabular}

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is guaranteed, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 37-5 for BOR values.
2: This is the limit to which VDD can be lowered without losing RAM data.
3: This is the limit to which VDD must be lowered to ensure Power-on Reset.

TABLE 37-5: ELECTRICAL CHARACTERISTICS: BOR
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics & Min. \({ }^{(1)}\) & Typical & Max. & Units & Conditions \\
\hline BO10 & VBor & BOR Event on VDD transition high-to-low (Note 2) & 1.9 & - & 2.3 & V & - \\
\hline
\end{tabular}

Note 1: Parameters are for design guidance only and are not tested in manufacturing.
2: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN.

\section*{TABLE 37-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Parameter No. & Typical \({ }^{(3)}\) & Maximum & Units & Conditions \\
\hline \multicolumn{5}{|l|}{Operating Current (IDD) \({ }^{(1)}\)} \\
\hline DC20 & 5.5 & - & mA & 4 MHz (Note 4,5) \\
\hline DC21 & 6.5 & - & mA & 10 MHz (Note 5) \\
\hline DC22 & 25 & - & mA & 60 MHz (Note 2,4) \\
\hline DC23 & 30 & - & mA & 80 MHz (Note 2,4) \\
\hline DC25 & 50 & - & mA & 130 MHz (Note 2,4) \\
\hline DC26 & 65 & - & mA & 160 MHz (Note 2,4) \\
\hline DC28 & 80 & - & mA & 180 MHz (Note 2,4) \\
\hline DC27a & 90 & - & mA & 200 MHz (Note 2) \\
\hline DC27b & 60 & - & mA & 200 MHz (Note 4,5) \\
\hline
\end{tabular}

Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as PBCLK (Peripheral Bus Clock) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.
2: The test conditions for IDD measurements are as follows:
- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), Vusb3v3 is connected to Vss
- CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to two
- L1 Cache and Prefetch modules are enabled
- No peripheral modules are operating, (ON bit \(=0\)), and the associated PMD bit is set. All clocks are disabled ON bit \((\) PBxDIV<15>) \(=0(x \neq 1,7)\)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{M C L R}=\mathrm{VDD}\)
- CPU executing while (1) statement from Flash
- RTCC and JTAG are disabled

3: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
4: This parameter is characterized, but not tested in manufacturing.
5: Note 2 applies with the following exceptions: L1 Cache and Prefetch modules are disabled, Program Flash memory Wait states are equal to seven.

TABLE 37-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)
\begin{tabular}{|c|c|c|c|c|}
\hline DC CHARAC & RISTICS & & Standard (unless Operatin & \begin{tabular}{l}
nditions: 2.3 V to 3.6 V \\
d) \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular} \\
\hline Parameter No. & Typical \({ }^{(2)}\) & Maximum & Units & Conditions \\
\hline \multicolumn{5}{|l|}{Idle Current (IIDLE): Core Off, Clock on Base Current (Note 1)} \\
\hline DC30a & 4 & - & mA & 4 MHz (Note 3) \\
\hline DC31a & 5 & - & mA & 10 MHz \\
\hline DC32a & 12 & - & mA & 60 MHz (Note 3) \\
\hline DC33a & 21 & - & mA & 130 MHz (Note 3) \\
\hline DC34 & 27 & - & mA & 180 MHz (Note 3) \\
\hline DC35 & 29 & - & mA & 200 MHz \\
\hline
\end{tabular}

Note 1: The test conditions for IIDLE current measurements are as follows:
- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot \(<100 \mathrm{mV}\) required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), Vusb3V3 is connected to Vss, PBCLKx divisor = 1:128 (' \(x\) ' \(\neq 7\))
- CPU is in Idle mode (CPU core Halted)
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{\mathrm{MCLR}}=\mathrm{VDD}\)
- RTCC and JTAG are disabled

2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: This parameter is characterized, but not tested in manufacturing.

TABLE 37-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)
\begin{tabular}{|c|c|c|c|c|c|}
\hline DC CHAR & CTERISTICS & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param. \\
No.
\end{tabular} & Typical \({ }^{(2)}\) & Maximum & Units & & Conditions \\
\hline \multicolumn{6}{|l|}{Power-Down Current (IPD) (Note 1)} \\
\hline DC40k & 3 & - & mA & \(-40^{\circ} \mathrm{C}\) & \multirow{5}{*}{Base Power-Down Current} \\
\hline DC40I & 4 & - & mA & \(+25^{\circ} \mathrm{C}\) & \\
\hline DC40n & 10 & - & mA & \(+85^{\circ} \mathrm{C}\) & \\
\hline DC40o & 18 & - & mA & \(+105^{\circ} \mathrm{C}\) & \\
\hline DC40m & - & - & mA & \(+125^{\circ} \mathrm{C}\) & \\
\hline \multicolumn{6}{|l|}{Module Differential Current} \\
\hline DC41e & 5 & - & \(\mu \mathrm{A}\) & 3.6 V & Watchdog Timer Current: IIWDT (Note 3) \\
\hline DC42e & 25 & - & \(\mu \mathrm{A}\) & 3.6 V & RTCC + Timer1 w/32 kHz Crystal: \(\Delta\) IRTCC (Note 3) \\
\hline DC43d & 3 & - & mA & 3.6 V & ADC: \(\triangle\) IADC (Notes 3, 4) \\
\hline DC44 & 5 & - & \(\mu \mathrm{A}\) & 3.6 V & Deadman Timer Current: \(\mathrm{\Delta IDMT}^{\text {(Note 3) }}\) \\
\hline
\end{tabular}

Note 1: The test conditions for IPD current measurements are as follows:
- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot \(<100 \mathrm{mV}\) required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), Vusb3V3 is connected to Vss
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit \((\mathrm{PBxDIV}<15>)=0(x \neq 1,7)\)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- \(\overline{\mathrm{MCLR}}=\mathrm{VDD}\)
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS \(=0\))

2: Data in the "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The \(\Delta\) current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
4: Voltage regulator is operational (VREGS = 1)

TABLE 37-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
2: The leakage current on the \(\overline{M C L R}\) pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
4: This parameter is characterized, but not tested in manufacturing.
5: See the pin name tables (Table 3 through Table 5) for the 5V-tolerant pins.
6: The \(\mathrm{V}_{\mathrm{IH}}\) specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

TABLE 37-10: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DC CHA & RACTER & ISTICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics & Min. & Typical \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline DI60a & IICL & Input Low Injection Current & 0 & - & \(-5^{(2,5)}\) & mA & This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA . \\
\hline DI60b & IICH & Input High Injection Current & 0 & - & \(+5^{(3,4,5)}\) & mA & This parameter applies to all pins, with the exception of all 5 V tolerant pins, SOSCI, and RB10. Maximum IICH current for these exceptions is 0 mA . \\
\hline DI60c & \(\sum \mathrm{IICT}\) & Total Input Injection Current (sum of all I/O and control pins) & \(-20^{(6)}\) & - & +20 \({ }^{(6)}\) & mA & Absolute instantaneous sum of all \(\pm\) input injection currents from all I/O pins (| IICL + | IICH |) \(\leq\) IICT \\
\hline
\end{tabular}

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
2: VIL source < (Vss - 0.3). Characterized but not tested.
3: \(\quad\) VIH source \(>(\mathrm{VDD}+0.3)\) for non- 5 V tolerant pins only.
4: Digital 5 V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
5: Injection currents \(>|0|\) can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VdD +0.3) or VIL source < (Vss - 0.3)).
6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 2, IICL \(=(((\mathrm{Vss}-0.3)-\mathrm{VIL}\) source \() / \mathrm{Rs})\). If Note 3, IICH \(=((\mathrm{IICH}\) source \(-(\mathrm{VDD}+0.3))\) \(/ R S\)). RS = Resistance between input source voltage and device pin. If (Vss -0.3) \(\leq\) Vsource \(\leq\) (VDD + 0.3), injection current \(=0\).

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Sym. & Characteristic & Min. & Typ. & Max. & Units & Conditions \({ }^{(1)}\) \\
\hline \multirow{3}{*}{DO10} & \multirow{3}{*}{Vol} & \begin{tabular}{l}
Output Low Voltage I/O Pins 4x Sink Driver Pins RA3, RA9, RA10, RA14, RA15 RB0-7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 \\
RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11
\end{tabular} & - & - & 0.4 & V & \(\mathrm{IOL} \leq 10 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & \begin{tabular}{l}
Output Low Voltage \\
I/O Pins: \\
8x Sink Driver Pins - \\
RAO-RA2, RA4, RA5 \\
RB8-RB10, RB12, RB14, RB15 \\
RC1-RC4 \\
RD1-RD5, RD9, RD10, RD12, RD13, RD15 \\
RE4-RE7 \\
RF0, RF4, RF5, RF12, RF13 \\
RG0, RG1, RG6-RG9 \\
RH2, RH3, RH7, RH14, RH15 \\
RJ3-RJ7, RJ10, RJ12-RJ15 \\
RK0-RK7
\end{tabular} & - & - & 0.4 & V & \(\mathrm{IOL} \leq 15 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & \begin{tabular}{l}
Output Low Voltage I/O Pins: \\
12x Sink Driver Pins - \\
RA6, RA7 \\
REO-RE3 \\
RF1 \\
RG12-RG14
\end{tabular} & - & - & 0.4 & V & \(\mathrm{IOL} \leq 20 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: Parameters are characterized, but not tested.

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Sym. & Characteristic & Min. & Typ. & Max. & Units & Conditions \({ }^{(1)}\) \\
\hline & & \begin{tabular}{l}
Output High Voltage \\
I/O Pins: \\
4x Source Driver Pins - \\
RA3, RA9, RA10, RA14, RA15 \\
RB0-7, RB11, RB13 \\
RC12-RC15 \\
RD0, RD6-RD7, RD11, RD14 \\
RE8, RE9 \\
RF2, RF3, RF8 \\
RG15 \\
RH0, RH1, RH4-RH6, RH8-RH13 \\
RJ0-RJ2, RJ8, RJ9, RJ11
\end{tabular} & 2.4 & - & - & V & \(\mathrm{IOH} \geq-10 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline DO20 & VOH & \begin{tabular}{l}
Output High Voltage \\
I/O Pins: \\
8x Source Driver Pins - \\
RA0-RA2, RA4, RA5 \\
RB8-RB10, RB12, RB14, RB15 \\
RC1-RC4 \\
RD1-RD5, RD9, RD10, RD12, RD13, RD15 \\
RE4-RE7 \\
RF0, RF4, RF5, RF12, RF13 \\
RG0, RG1, RG6-RG9 \\
RH2, RH3, RH7, RH14, RH15 \\
RJ3-RJ7, RJ10, RJ12-RJ15 \\
RK0-RK7
\end{tabular} & 2.4 & - & - & V & \(\mathrm{IOH} \geq-15 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & \begin{tabular}{l}
Output High Voltage I/O Pins: \\
12x Source Driver Pins - \\
RA6, RA7 \\
REO-RE3 \\
RF1 \\
RG12-RG14
\end{tabular} & 2.4 & - & - & V & \(\mathrm{IOH} \geq-20 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: Parameters are characterized, but not tested.

TABLE 37-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Sym. & Characteristic & Min. & Typ. & Max. & Units & Conditions \({ }^{(1)}\) \\
\hline \multirow{9}{*}{DO20a} & \multirow{9}{*}{VoH 1} & \multirow[t]{3}{*}{\begin{tabular}{l}
Output High Voltage I/O Pins: \\
4x Source Driver Pins RA3, RA9, RA10, RA14, RA15 RB0-7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJO-RJ2, RJ8, RJ9, RJ11
\end{tabular}} & 1.5 & - & - & V & \(\mathrm{IOH} \geq-14 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & & 2.0 & - & - & V & \(\mathrm{IOH} \geq-12 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & & 3.0 & - & - & V & \(\mathrm{IOH} \geq-7 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{|l|}
\hline Output High Voltage \\
I/O Pins: \\
8x Source Driver Pins - \\
RA0-RA2, RA4, RA5 \\
RB8-RB10, RB12, RB14, RB15 \\
RC1-RC4 \\
RD1-RD5, RD9, RD10, RD12, RD13, RD15 \\
RE4-RE7 \\
RF0, RF4, RF5, RF12, RF13 \\
RG0, RG1, RG6-RG9 \\
RH2, RH3, RH7, RH14, RH15 \\
RJ3-RJ7, RJ10, RJ12-RJ15 \\
RK0-RK7
\end{tabular}} & 1.5 & - & - & V & \(\mathrm{IOH} \geq-22 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & & 2.0 & - & - & V & \(\mathrm{IOH} \geq-18 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & & 3.0 & - & - & V & \(\mathrm{IOH} \geq-10 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & \multirow[t]{3}{*}{```
Output High Voltage
I/O Pins:
12x Source Driver Pins -
RA6, RA7
RE0-RE3
RF1
RG12-RG14
```} & 1.5 & - & - & V & \(\mathrm{IOH} \geq-32 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & & 2.0 & - & - & V & \(\mathrm{IOH} \geq-25 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline & & & 3.0 & - & - & V & \(\mathrm{IOH} \geq-14 \mathrm{~mA}, \mathrm{VDD}=3.3 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: Parameters are characterized, but not tested.

TABLE 37-12: DC CHARACTERISTICS: PROGRAM MEMORY \({ }^{(3)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{DC CHARACTERISTICS} & \multicolumn{5}{|l|}{\[
\begin{array}{|ll}
\hline \text { Standard Operating Conditions: } \mathbf{2 . 3 V} \text { to } \mathbf{3 . 6 V} \\
\text { (unless otherwise stated) } \\
\hline \text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for V-Temp } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\]} \\
\hline Param. No. & Sym. & Characteristics & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline D130a & Ep & Cell Endurance & 10,000 & - & - & E/W & Without ECC \\
\hline D130b & & & 20,000 & - & - & E/W & With ECC \\
\hline D131 & VPR & VdD for Read & Vddmin & - & VdDMAX & V & - \\
\hline D132 & Vpew & VDD for Erase or Write & Vddmin & - & Vddmax & V & - \\
\hline D134a & Tretd & Characteristic Retention & 10 & - & - & Year & Without ECC \\
\hline D134b & & & 20 & - & - & Year & With ECC \\
\hline D135 & IDDP & Supply Current during Programming & - & - & 30 & mA & - \\
\hline D136 & TRW & Row Write Cycle Time (Notes 2, 4) & - & 66813 & - & FRC Cycles & - \\
\hline D137 & TQWW & Quad Word Write Cycle Time (Note 4) & - & 773 & - & FRC Cycles & - \\
\hline D138 & Tww & Word Write Cycle Time (Note 4) & - & 383 & - & FRC Cycles & - \\
\hline D139 & TCE & Chip Erase Cycle Time (Note 4) & - & 515373 & - & FRC Cycles & - \\
\hline D140 & TPFE & All Program Flash (Upper and Lower regions) Erase Cycle Time (Note 4) & - & 256909 & - & FRC Cycles & - \\
\hline D141 & TPbe & Program Flash (Upper or Lower regions) Erase Cycle Time (Note 4) & - & 128453 & - & FRC Cycles & - \\
\hline D142 & TPGE & Page Erase Cycle Time (Note 4) & - & 128453 & - & FRC Cycles & - \\
\hline
\end{tabular}

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: The minimum PBCLK5 for row programming is 4 MHz .
3: Refer to the "PIC32 Flash Programming Specification" (DS60001145) for operating conditions during programming and erase cycles.
4: This parameter depends on FRC accuracy (see Table 37-19) and FRC tuning values (see the OSCTUN register: Register 8-2).

TABLE 37-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATES
\begin{tabular}{|c|c|c|c|}
\hline DC CHARACTERISTICS & \multicolumn{3}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Required Flash Wait States \({ }^{(1)}\) & SYSCLK & Units & Conditions \\
\hline With ECC: & & & \\
\hline 0 Wait states 1 Wait state 2 Wait states & \[
\begin{aligned}
& 0<\text { SYSCLK } \leq 66 \\
& 66<\text { SYSCLK } \leq 133 \\
& 133<\text { SYSCLK } \leq 200
\end{aligned}
\] & MHz & - \\
\hline Without ECC: & & & \\
\hline 0 Wait states 1 Wait state 2 Wait states & \[
\begin{aligned}
& 0<\text { SYSCLK } \leq 83 \\
& 83<\text { SYSCLK } \leq 166 \\
& 166<\text { SYSCLK } \leq 200
\end{aligned}
\] & MHz & - \\
\hline
\end{tabular}

Note 1: To use Wait states, the Prefetch module must be enabled (PREFEN<1:0> \(\neq 00\) ) and the PFMWS<2:0> bits must be written with the desired Wait state value.

TABLE 37-14: COMPARATOR SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline DC CHA & RACTERI & TICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions (see Note 4): 2.3V to 3.6V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param. \\
No.
\end{tabular} & Symbol & Characteristics & Min. & Typical & Max. & Units & Comments \\
\hline D300 & VIOFF & Input Offset Voltage & - & \(\pm 10\) & - & mV & \[
\begin{aligned}
& \text { AVDD = VDD, } \\
& \text { AVSS = VSS }
\end{aligned}
\] \\
\hline D301 & VICM & Input Common Mode Voltage & 0 & - & VDD & V & \[
\begin{aligned}
& \text { AVDD = VDD, } \\
& \text { AVSS = VSS } \\
& \text { (Note 2) } \\
& \hline
\end{aligned}
\] \\
\hline D302 & CMRR & Common Mode Rejection Ratio & 55 & - & - & dB & \[
\begin{aligned}
& \text { Max VICM = }(\mathrm{VDD}-1) \mathrm{V} \\
& \text { (Note 2) }
\end{aligned}
\] \\
\hline D303 & TRESP & Response Time & - & 150 & - & ns & \[
\begin{aligned}
& \text { AVDD = VDD, } \\
& \text { AVss = VSS } \\
& \text { (Notes 1,2) } \\
& \hline
\end{aligned}
\] \\
\hline D304 & ON2ov & Comparator Enabled to Output Valid & - & - & 10 & \(\mu \mathrm{s}\) & Comparator module is configured before setting the comparator ON bit (Note 2) \\
\hline D305 & IVREF & Internal Voltage Reference & 1.194 & 1.2 & 1.206 & V & - \\
\hline D312 & TSET & Internal Voltage Reference Setting time (Note 3) & - & - & 10 & \(\mu \mathrm{s}\) & - \\
\hline
\end{tabular}

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDd.
2: These parameters are characterized but not tested.
3: Settling time measured while CVRR = 1 and \(C V R<3: 0>\) transitions from ' 0000 ' to ' 1111 '. This parameter is characterized, but not tested in manufacturing.
4: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{37.2 AC Characteristics and Timing Parameters}

The information contained in this section defines PIC32MZ EC device AC characteristics and timing parameters.

\section*{FIGURE 37-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS}


TABLE 37-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERI & STICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{l}
Param. \\
No.
\end{tabular} & Symbol & Characteristics & Min. & Typical \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline DO50 & Cosco & OSC2 Pin & - & - & 15 & pF & In HS mode when the external clock is used to drive OSC1 \\
\hline DO56 & CL & All I/O pins & - & - & 50 & pF & EC mode for OSC2 \\
\hline DO58 & Св & SCLx, SDAx & - & - & 400 & pF & \(\ln \mathrm{I}^{2} \mathrm{C}^{\text {TM }}\) mode \\
\hline
\end{tabular}

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-2: EXTERNAL CLOCK TIMING


TABLE 37-16: EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics & Minimum & Typical \({ }^{(1)}\) & Maximum & Units & Conditions \\
\hline OS10 & Fosc & External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) & DC & - & 64 & MHz & EC (Note 2,3) \\
\hline OS13 & & Oscillator Crystal Frequency & 4 & - & 32 & MHz & HS (Note 2,3) \\
\hline OS15 & & & 32 & 32.768 & 100 & kHz & Sosc (Note 2) \\
\hline OS20 & Tosc & Tosc \(=1 / \mathrm{Fosc}\) & - & - & - & - & See parameter OS10 for Fosc value \\
\hline OS30 & TosL, TosH & External Clock In (OSC1) High or Low Time & \(0.375 \times\) Tosc & - & - & ns & EC (Note 2) \\
\hline OS31 & TosR, TosF & External Clock In (OSC1) Rise or Fall Time & - & - & 7.5 & ns & EC (Note 2) \\
\hline OS40 & Tost & Oscillator Start-up Timer Period (Only applies to HS, HSPLL, and Sosc Clock Oscillator modes) & - & 1024 & - & Tosc & (Note 2) \\
\hline OS41 & TFsCm & Primary Clock Fail Safe Time-out Period & - & 2 & - & ms & (Note 2) \\
\hline OS42 & Gm & External Oscillator Transconductance & - & 16 & - & mA/V & \[
\begin{aligned}
& \text { VDD }=3.3 \mathrm{~V}, \\
& \mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{HS} \\
& \text { (Note 2) }
\end{aligned}
\] \\
\hline
\end{tabular}

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are characterized but are not tested.
2: This parameter is characterized, but not tested in manufacturing.
3: See parameter OS50 for PLL input frequency limitations.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-17: SYSTEM TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{```
Standard Operating Conditions: 2.3V to 3.6V
(unless otherwise stated)
Operating temperature - -40 C C TA }\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
    -40}\mp@subsup{0}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+10\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for V-Temp
    -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline \begin{tabular}{l}
Param. \\
No.
\end{tabular} & Symbol & Characteristics & Minimum & Typical & Maximum & Units & Conditions \\
\hline \multirow[t]{2}{*}{OS51} & \multirow[t]{2}{*}{FSYS} & \multirow[t]{2}{*}{System Frequency} & DC & - & 200 & MHz & USB module disabled \\
\hline & & & 30 & - & 200 & MHz & USB module enabled \\
\hline OS55a & \multirow[t]{2}{*}{FPB} & \multirow[t]{2}{*}{Peripheral Bus Frequency} & DC & - & 100 & MHz & For PBCLKx, 'x' \(=7\) \\
\hline OS55b & & & DC & - & 200 & MHz & For PBCLK7 \\
\hline OS56 & FREF & Reference Clock Frequency & - & - & 50 & MHz & - \\
\hline
\end{tabular}

TABLE 37-18: PLL CLOCK TIMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{|ll}
Standard Operating Conditions: 2.3V to \(\mathbf{3 . 6 V}\) \\
(unless otherwise stated) \\
Operating temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
& \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
& \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typical & Max. & Units & Conditions \\
\hline OS50 & FIN & PLL Input Frequency Range & 5 & - & 64 & MHz & ECPLL, HSPLL, FRCPLL modes \\
\hline OS52 & TLOCK & PLL Start-up Time (Lock Time) & - & - & 100 & \(\mu \mathrm{s}\) & - \\
\hline OS53 & DcLK & \[
\begin{aligned}
& \text { CLKO Stability }{ }^{(\mathbf{2})} \\
& \text { (Period Jitter or Cumulative) }
\end{aligned}
\] & -0.25 & - & +0.25 & \% & Measured over 100 ms period \\
\hline OS54 & FVco & PLL Vco Frequency Range & 350 & - & 700 & MHz & - \\
\hline OS54a & FPLL & PLL Output Frequency Range & 10 & - & 200 & MHz & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:
\[
\text { EffectiveJitter }=\frac{D_{\text {CLK }}}{\sqrt{\frac{\text { PBCLK2 }}{\text { CommunicationClock }}}}
\]

For example, if PBCLK2 \(=100 \mathrm{MHz}\) and SPI bit rate \(=50 \mathrm{MHz}\), the effective jitter is as follows:
\[
\text { EffectiveJitter }=\frac{D_{C L K}}{\sqrt{\frac{100}{50}}}=\frac{D_{C L K}}{1.41}
\]

TABLE 37-19: INTERNAL FRC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERISTICS & Standa (unless Operat & & g Co state ture & itions:
\[
\begin{array}{r}
-40^{\circ} \\
-40^{\circ} \\
-40^{\circ}
\end{array}
\] & 2.3 V to 3.6 V
\[
\begin{aligned}
& \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for } \mathrm{V} \text {-Temp } \\
& \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\] \\
\hline Param. No. & Characteristics & Min. & Typical & Max. & Units & Conditions \\
\hline \multicolumn{7}{|l|}{Internal FRC Accuracy @ 8.00 MHz \({ }^{(1)}\)} \\
\hline \multirow[t]{2}{*}{F20} & \multirow[t]{2}{*}{FRC} & -0.9 & - & +0.9 & \% & \(0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}\) \\
\hline & & -5 & - & +5 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Frequency calibrated at \(25^{\circ} \mathrm{C}\) and 3.3 V . The TUN bits can be used to compensate for temperature drift.

TABLE 37-20: INTERNAL LPRC ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERISTICS & Stand (unles Opera & & \begin{tabular}{l}
sta \\
ture
\end{tabular} & \[
\begin{aligned}
& \text { litions: } \\
& 0^{\circ} \mathrm{C} \leq \\
& 0^{\circ} \mathrm{C} \leq \\
& 0^{\circ} \mathrm{C} \leq
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2.3V to } 3.6 \mathrm{~V} \\
& \mathrm{~A} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \mathrm{A} \leq+105^{\circ} \mathrm{C} \text { for } \mathrm{V} \text {-Temp } \\
& \mathrm{A} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\] \\
\hline Param. No. & Characteristics & Min. & Typical & Max. & Units & Conditions \\
\hline \multicolumn{7}{|l|}{Internal LPRC @ \(32.768 \mathrm{kHz}^{(1)}\)} \\
\hline \multirow[t]{2}{*}{F21} & \multirow[t]{2}{*}{LPRC} & -5 & - & +5 & \% & \(0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) \\
\hline & & -20 & - & +20 & \% & \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Note 1: Change of LPRC frequency as VDD changes.

TABLE 37-21: INTERNAL BACKUP FRC (BFRC) ACCURACY
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{AC CHARACTERISTICS}} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}}} \\
\hline & & & & & & \\
\hline Param. No. & Characteristics & Min. & Typical & Max. & Units & Conditions \\
\hline \multicolumn{7}{|l|}{Internal BFRC Accuracy @ 8 MHz \({ }^{\text {I }}\)} \\
\hline F22 & BFRC & -30 & - & +30 & \% & - \\
\hline
\end{tabular}

FIGURE 37-3: I/O TIMING CHARACTERISTICS

TABLE 37-22: I/O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(2)}\) & Min. & Typical \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multirow[t]{6}{*}{DO31} & \multirow[t]{6}{*}{TıoR} & \multirow[t]{2}{*}{\begin{tabular}{l}
Port Output Rise Time I/O Pins: \\
4x Source Driver Pins - \\
RA3, RA9, RA10, RA14, RA15 \\
RB0-7, RB11, RB13 \\
RC12-RC15 \\
RD0, RD6-RD7, RD11, RD14 \\
RE8, RE9 \\
RF2, RF3, RF8 \\
RG15 \\
RH0, RH1, RH4-RH6, RH8-RH13 \\
RJ0-RJ2, RJ8, RJ9, RJ11
\end{tabular}} & - & - & 9.5 & ns & CLOAd \(=50 \mathrm{pF}\) \\
\hline & & & - & - & 6 & ns & CLOAD \(=20 \mathrm{pF}\) \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Port Output Rise Time I/O Pins: \\
8x Source Driver Pins -RA0-RA2, RA4, RA5 RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RKO-RK7
\end{tabular}} & - & - & 8 & ns & CLOAd \(=50 \mathrm{pF}\) \\
\hline & & & - & - & 6 & ns & CLOAD \(=20 \mathrm{pF}\) \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Port Output Rise Time I/O Pins: \\
12x Source Driver Pins - \\
RA6, RA7 \\
RE0-RE3 \\
RF1 \\
RG12-RG14
\end{tabular}} & - & - & 3.5 & ns & CLOAD \(=50 \mathrm{pF}\) \\
\hline & & & - & - & 2 & ns & Cload \(=20 \mathrm{pF}\) \\
\hline
\end{tabular}

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: This parameter is characterized, but not tested in manufacturing.

TABLE 37-22: I/O TIMING REQUIREMENTS (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(2)}\) & Min. & Typical \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multirow[t]{6}{*}{DO32} & \multirow[t]{6}{*}{TıOF} & \multirow[t]{2}{*}{\begin{tabular}{l}
Port Output Fall Time \\
I/O Pins: \\
4x Source Driver Pins - \\
RA3, RA9, RA10, RA14, RA15 \\
RB0-7, RB11, RB13 \\
RC12-RC15 \\
RD0, RD6-RD7, RD11, RD14 \\
RE8, RE9 \\
RF2, RF3, RF8 \\
RG15 \\
RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11
\end{tabular}} & - & - & 9.5 & ns & Cload \(=50 \mathrm{pF}\) \\
\hline & & & - & - & 6 & ns & Cload \(=20 \mathrm{pF}\) \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
Port Output Fall Time \\
I/O Pins: \\
8x Source Driver Pins - \\
RA0-RA2, RA4, RA5 \\
RB8-RB10, RB12, RB14, RB15 \\
RC1-RC4 \\
RD1-RD5, RD9, RD10, RD12, \\
RD13, RD15 \\
RE4-RE7 \\
RF0, RF4, RF5, RF12, RF13 \\
RG0, RG1, RG6-RG9 \\
RH2, RH3, RH7, RH14, RH15 \\
RJ3-RJ7, RJ10, RJ12-RJ15 \\
RKO-RK7
\end{tabular}} & - & - & 8 & ns & Cload \(=50 \mathrm{pF}\) \\
\hline & & & - & - & 6 & ns & Cload \(=20 \mathrm{pF}\) \\
\hline & & \multirow[t]{2}{*}{```
Port Output Fall Time
I/O Pins:
12x Source Driver Pins -
RA6, RA7
RE0-RE3
RF1
RG12-RG14
```} & - & - & 3.5 & ns & Cload \(=50 \mathrm{pF}\) \\
\hline & & & - & - & 2 & ns & Cload \(=20 \mathrm{pF}\) \\
\hline DI35 & Tinp & INTx Pin High or Low Time & 5 & - & - & ns & - \\
\hline DI40 & TRBP & CNx High or Low Time (input) & 5 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated.
2: This parameter is characterized, but not tested in manufacturing.

FIGURE 37-4: POWER-ON RESET TIMING CHARACTERISTICS
Internal Voltage Regulator Enabled
Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC)


Internal Voltage Regulator Enabled
Clock Sources = (HS, HSPLL, and Sosc)


Note 1: The power-up period will be extended if the power-up sequence completes before the device exits from BOR (VDD < VDDMIN).
2: Includes interval voltage regulator stabilization delay.

FIGURE 37-5: EXTERNAL RESET TIMING CHARACTERISTICS


TABLE 37-23: RESETS TIMING
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERI & STICS & \begin{tabular}{l}
Stand \\
(unles \\
Opera
\end{tabular} & Operating otherwise ing temperatu & \multicolumn{3}{|l|}{\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for V-Temp } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
Param. \\
No.
\end{tabular} & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typical \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SY00 & TPU & Power-up Period Internal Voltage Regulator Enabled & - & 400 & 600 & \(\mu \mathrm{S}\) & - \\
\hline SY02 & TSYSDLY & \begin{tabular}{l}
System Delay Period: \\
Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.
\end{tabular} & - & \(1 \mu \mathrm{~s}+\)
8 SYSCLK
cycles & - & - & - \\
\hline SY20 & TMCLR & \(\overline{\text { MCLR }}\) Pulse Width (low) & 2 & - & - & \(\mu \mathrm{S}\) & - \\
\hline SY30 & Tbor & BOR Pulse Width (low) & - & 1 & - & \(\mu \mathrm{s}\) & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Characterized by design but not tested.

FIGURE 37-6: TIMER1-TIMER9 EXTERNAL CLOCK TIMING CHARACTERISTICS


Note: Refer to Figure 37-1 for load conditions.

TABLE 37-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS \({ }^{(1)}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & \multicolumn{2}{|l|}{Characteristics \({ }^{(2)}\)} & Min. & Typ. & Max. & Units & Conditions \\
\hline \multirow[t]{2}{*}{TA10} & \multirow[t]{2}{*}{Ttx} & \multirow[t]{2}{*}{\begin{tabular}{l}
TxCK \\
High Time
\end{tabular}} & Synchronous, with prescaler & \[
\begin{gathered}
{[(12.5 \mathrm{~ns} \text { or } 1 \text { TPBCLK } 3)} \\
/ \mathrm{N}]+20 \mathrm{~ns}
\end{gathered}
\] & - & - & ns & Must also meet parameter TA15 (Note 3) \\
\hline & & & Asynchronous, with prescaler & 10 & - & - & ns & - \\
\hline \multirow[t]{2}{*}{TA11} & \multirow[t]{2}{*}{TtxL} & \multirow[t]{2}{*}{TxCK Low Time} & Synchronous, with prescaler & \[
\begin{gathered}
{[(12.5 \mathrm{~ns} \text { or } 1 \text { TPBCLK } 3)} \\
/ \mathrm{N}]+20 \mathrm{~ns}
\end{gathered}
\] & - & - & ns & Must also meet parameter TA15 (Note 3) \\
\hline & & & Asynchronous, with prescaler & 10 & - & - & ns & - \\
\hline \multirow[t]{4}{*}{TA15} & \multirow[t]{4}{*}{TtxP} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { TxCK } \\
& \text { Input Period }
\end{aligned}
\]} & \multirow[t]{2}{*}{Synchronous, with prescaler} & [(Greater of 20 ns or 2 TpbcLK3)/N] + 30 ns & - & - & ns & \begin{tabular}{l}
VDD > 2.7V \\
(Note 3)
\end{tabular} \\
\hline & & & & [(Greater of 20 ns or 2 TpвсLкз)/N] + 50 ns & - & - & ns & \begin{tabular}{l}
\[
\text { VDD }<2.7 \mathrm{~V}
\] \\
(Note 3)
\end{tabular} \\
\hline & & & \multirow[t]{2}{*}{Asynchronous, with prescaler} & 20 & - & - & ns & VDD > 2.7V \\
\hline & & & & 50 & - & - & ns & VDD \(<2.7 \mathrm{~V}\) \\
\hline OS60 & Ft1 & \multicolumn{2}{|l|}{SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setting TCS bit ( \(\mathrm{T} 1 \mathrm{CON}<1>\) ))} & 32 & - & 50 & kHz & - \\
\hline TA20 & TCKEXTMRL & \multicolumn{2}{|l|}{Delay from External TxCK Clock Edge to Timer Increment} & - & & 1 & TPBCLK3 & - \\
\hline
\end{tabular}

Note 1: Timer1 is a Type A.
2: This parameter is characterized, but not tested in manufacturing.
3: \(\quad N=\) Prescale Value (1, 8, 64, 256).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-25: TIMER2-TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated) \\
Operating temperature
\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for V-Temp } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]
\end{tabular}} \\
\hline Param. No. & Symbol & \multicolumn{2}{|r|}{Characteristics \({ }^{(1)}\)} & Min. & Max. & Units & \multicolumn{2}{|r|}{Conditions} \\
\hline TB10 & TTXH & TxCK High Time & Synchronous, with prescaler & \[
\begin{gathered}
\hline \hline[(12.5 \mathrm{~ns} \text { or } 1 \text { TPBCLK3) } \\
/ \mathrm{N}]+25 \mathrm{~ns}
\end{gathered}
\] & - & ns & Must also meet parameter TB15 & \multirow[t]{4}{*}{\[
\begin{aligned}
& \hline \mathrm{N}=\text { prescale } \\
& \text { value } \\
& (1,2,4,8, \\
& 16,32,64, \\
& 256)
\end{aligned}
\]} \\
\hline TB11 & TtXL & TxCK Low Time & Synchronous, with prescaler & \[
\begin{gathered}
{[(12.5 \mathrm{~ns} \text { or } 1 \text { TPBCLK3) }} \\
/ \mathrm{N}]+25 \mathrm{~ns}
\end{gathered}
\] & - & ns & Must also meet parameter TB15 & \\
\hline \multirow[t]{2}{*}{TB15} & \multirow[t]{2}{*}{TTXP} & \multirow[t]{2}{*}{TxCK Input Period} & \multirow[t]{2}{*}{Synchronous, with prescaler} & [(Greater of [(25 ns or 2 TPBCLK3)/N] + 30 ns & - & ns & VDD > 2.7V & \\
\hline & & & & [(Greater of [(25 ns or 2 TPBCLK3/N] +50 ns & - & ns & \(\mathrm{VDD}<2.7 \mathrm{~V}\) & \\
\hline TB20 & TCKEXTMRL & \multicolumn{2}{|l|}{Delay from External TxCK Clock Edge to Timer Increment} & - & 1 & TPBCLK3 & \multicolumn{2}{|r|}{-} \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 37-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS


TABLE 37-26: INPUT CAPTURE MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Max. & Units & \multicolumn{2}{|r|}{Conditions} \\
\hline IC10 & TccL & ICx Input Low Time & \[
\begin{gathered}
{[(12.5 \mathrm{~ns} \text { or } 1 \text { TPBCLK3 })} \\
/ \mathrm{N}]+25 \mathrm{~ns}
\end{gathered}
\] & - & ns & Must also meet parameter IC15. & \[
\begin{aligned}
& \hline \mathrm{N}=\text { prescale } \\
& \text { value }(1,4,16)
\end{aligned}
\] \\
\hline IC11 & Tcch & ICx Input High Time & \[
\begin{gathered}
{[(12.5 \mathrm{~ns} \text { or } 1 \text { TPBCLK } 3)} \\
/ \mathrm{N}]+25 \mathrm{~ns}
\end{gathered}
\] & - & ns & Must also meet parameter IC15. & \\
\hline IC15 & TccP & ICx Input Period & \[
\begin{gathered}
{[(25 \mathrm{~ns} \text { or } 2 \text { TPBCLK3 })} \\
/ \mathrm{N}]+50 \mathrm{~ns}
\end{gathered}
\] & - & ns & - & \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

FIGURE 37-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


Note: Refer to Figure 37-1 for load conditions.

TABLE 37-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERI & STICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typical \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline OC10 & TccF & OCx Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline OC11 & TccR & OCx Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-9: OCx/PWM MODULE TIMING CHARACTERISTICS
\(\square\)
Note: Refer to Figure 37-1 for load conditions.

TABLE 37-28: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & ACTERIS & ICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param No. & Symbol & Characteristics \({ }^{(1)}\) & Min & Typical \({ }^{(2)}\) & Max & Units & Conditions \\
\hline OC15 & TFD & Fault Input to PWM I/O Change & - & - & 50 & ns & - \\
\hline OC20 & Tflt & Fault Input Pulse Width & 50 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 37-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS


Note: Refer to Figure 37-1 for load conditions.

TABLE 37-29: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERIST & ICS & & \multicolumn{4}{|l|}{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscL & SCKx Output Low Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP11 & Tsch & SCKx Output High Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP20 & TscF & SCKx Output Fall Time (Note 4) & - & - & - & ns & See parameter DO32 \\
\hline SP21 & TscR & SCKx Output Rise Time (Note 4) & - & - & - & ns & See parameter DO31 \\
\hline SP30 & TDoF & SDOx Data Output Fall Time (Note 4) & - & - & - & ns & See parameter DO32 \\
\hline SP31 & TDoR & SDOx Data Output Rise Time (Note 4) & - & - & - & ns & See parameter DO31 \\
\hline SP35 & TscH2doV, & SDOx Data Output Valid after & - & - & 7 & ns & VDD \(>2.7 \mathrm{~V}\) \\
\hline & TscL2doV & SCKx Edge & - & - & 10 & ns & \(\mathrm{VDD}<2.7 \mathrm{~V}\) \\
\hline SP40 & ToIV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 5 & - & - & ns & - \\
\hline SP41 & TscH2DIL, TscL2diL & Hold Time of SDIx Data Input to SCKx Edge & 5 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 10 pF load on all SPIx pins.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

FIGURE 37-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS


Note: Refer to Figure 37-1 for load conditions.

TABLE 37-30: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP10 & TscL & SCKx Output Low Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP11 & TscH & SCKx Output High Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP20 & TscF & SCKx Output Fall Time (Note 4) & - & - & - & ns & See parameter DO32 \\
\hline SP21 & TscR & SCKx Output Rise Time (Note 4) & - & - & - & ns & See parameter DO31 \\
\hline SP30 & TdoF & SDOx Data Output Fall Time (Note 4) & - & - & - & ns & See parameter DO32 \\
\hline SP31 & TDoR & SDOx Data Output Rise Time (Note 4) & - & - & - & ns & See parameter DO31 \\
\hline \multirow[t]{2}{*}{SP35} & \multirow[t]{2}{*}{TscH2doV, TscL2doV} & \multirow[t]{2}{*}{SDOx Data Output Valid after SCKx Edge} & - & - & 7 & ns & VDD \(>2.7 \mathrm{~V}\) \\
\hline & & & - & & 10 & & VDD < 2.7V \\
\hline SP36 & TdoV2sc, TDoV2scL & SDOx Data Output Setup to First SCKx Edge & 7 & - & - & ns & - \\
\hline \multirow[t]{2}{*}{SP40} & \multirow[t]{2}{*}{ToIV2scH, TdiV2scL} & \multirow[t]{2}{*}{Setup Time of SDIx Data Input to SCKx Edge} & 7 & - & - & ns & VDD > 2.7V \\
\hline & & & 10 & & & & VDD < 2.7V \\
\hline \multirow[t]{2}{*}{SP41} & \multirow[t]{2}{*}{TscH2DIL, TscL2diL} & \multirow[t]{2}{*}{Hold Time of SDIx Data Input to SCKx Edge} & 7 & - & - & ns & VDD > 2.7V \\
\hline & & & 10 & - & - & ns & VDD < 2.7V \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.
4: Assumes 10 pF load on all SPIx pins.

FIGURE 37-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


Note: Refer to Figure 37-1 for load conditions.

TABLE 37-31: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscL & SCKx Input Low Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP71 & TscH & SCKx Input High Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & - & ns & See parameter DO32 \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & - & ns & See parameter DO31 \\
\hline SP30 & TDOF & SDOx Data Output Fall Time (Note 4) & - & - & - & ns & See parameter DO32 \\
\hline SP31 & TDOR & SDOx Data Output Rise Time (Note 4) & - & - & - & ns & See parameter DO31 \\
\hline SP35 & TscH2doV, & SDOx Data Output Valid after & - & - & 7 & ns & VDD > 2.7V \\
\hline & TscL2doV & SCKx Edge & - & - & 10 & ns & VDD < 2.7V \\
\hline SP40 & TDIV2scH, TdIV2scL & Setup Time of SDIx Data Input to SCKx Edge & 5 & - & - & ns & - \\
\hline SP41 & TscH2DIL, TscL2DIL & Hold Time of SDIx Data Input to SCKx Edge & 5 & - & - & ns & - \\
\hline SP50 & TssL2scH, TssL2scL & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\uparrow\) or SCKx Input & 88 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance (Note 3) & 2.5 & - & 12 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }}\) after SCKx Edge & 10 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 20 ns .
4: Assumes 10 pF load on all SPIx pins.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

FIGURE 37-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS


Note: Refer to Figure 37-1 for load conditions.

TABLE 37-32: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{\circ} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{5} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typical \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP70 & TscL & SCKx Input Low Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP71 & TscH & SCKx Input High Time (Note 3) & Tsck/2 & - & - & ns & - \\
\hline SP72 & TscF & SCKx Input Fall Time & - & - & 10 & ns & - \\
\hline SP73 & TscR & SCKx Input Rise Time & - & - & 10 & ns & - \\
\hline SP30 & TdoF & SDOx Data Output Fall Time (Note 4) & - & - & - & ns & See parameter DO32 \\
\hline SP31 & TDoR & SDOx Data Output Rise Time (Note 4) & - & - & - & ns & See parameter DO31 \\
\hline \multirow[t]{2}{*}{SP35} & \multirow[t]{2}{*}{TscH2doV, TscL2doV} & \multirow[t]{2}{*}{SDOx Data Output Valid after SCKx Edge} & - & - & 10 & ns & VDD > 2.7V \\
\hline & & & - & - & 15 & ns & VDD < 2.7V \\
\hline SP40 & ToIV2scH, TdiV2scL & Setup Time of SDIx Data Input to SCKx Edge & 0 & - & - & ns & - \\
\hline SP41 & TscH2DIL, TscL2dIL & Hold Time of SDIx Data Input to SCKx Edge & 7 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 20 ns .
4: Assumes 10 pF load on all SPIx pins.

TABLE 37-32: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERIS & IICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typical \({ }^{(2)}\) & Max. & Units & Conditions \\
\hline SP50 & \[
\begin{aligned}
& \text { TssL2scH, } \\
& \text { TssL2scL }
\end{aligned}
\] & \(\overline{\text { SSx }} \downarrow\) to SCKx \(\downarrow\) or SCKx \(\uparrow\) Input & 88 & - & - & ns & - \\
\hline SP51 & TssH2doZ & \(\overline{\mathrm{SSx}} \uparrow\) to SDOx Output High-Impedance (Note 4) & 2.5 & - & 12 & ns & - \\
\hline SP52 & TscH2ssH TscL2ssH & \(\overline{\text { SSx }} \uparrow\) after SCKx Edge & 10 & - & - & ns & - \\
\hline SP60 & TssL2doV & SDOx Data Output Valid after SSx Edge & - & - & 12.5 & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.
2: Data in "Typical" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.
3: The minimum clock period for SCKx is 20 ns .
4: Assumes 10 pF load on all SPIx pins.

FIGURE 37-14: SQI SERIAL INPUT TIMING CHARACTERISTICS


FIGURE 37-15: SQI SERIAL OUTPUT TIMING CHARACTERISTICS


TABLE 37-33: SQI TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERISTI & & Stand (unles Opera & Oper therw temp & Con state ure & \begin{tabular}{l}
ditions \\
\(0^{\circ} \mathrm{C} \leq\) \\
\(0^{\circ} \mathrm{C} \leq\) \\
\(0^{\circ} \mathrm{C} \leq\)
\end{tabular} & \begin{tabular}{l}
2.3V to 3.6V \\
TA \(\leq+85^{\circ} \mathrm{C}\) for Industrial TA \(\leq+105^{\circ} \mathrm{C}\) for V-Temp TA \(\leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular} \\
\hline Param. No. & Symbol & Characteristic & Min & Typ & Max & Units & Conditions \\
\hline SQ10 & FCLK & Serial Clock Frequency (1/TsQI) & - & - & 50 & MHz & - \\
\hline SQ11 & TSCKH & Serial Clock High Time & 5.5 & - & - & ns & - \\
\hline SQ12 & TSCKL & Serial Clock Low Time & 5.5 & - & - & ns & - \\
\hline SQ13 & TSCKR & Serial Clock Rise Time & - & - & - & ns & See parameter DO31 \\
\hline SQ14 & TSCKF & Serial Clock Fall Time & - & - & - & ns & See parameter DO32 \\
\hline SQ15 & Tcss (Tces) & \(\overline{\mathrm{CS}}\) Active Setup Time & 5 & - & - & ns & - \\
\hline SQ16 & TCsh (TCeh) & \(\overline{\mathrm{CS}}\) Active Hold Time & 5 & - & - & ns & - \\
\hline SQ17 & TCHS & \(\overline{\mathrm{CS}}\) Not Active Setup Time & 3 & - & - & ns & - \\
\hline SQ18 & ТСнн & \(\overline{\mathrm{CS}}\) Not Active Hold Time & 3 & - & - & ns & - \\
\hline SQ22 & TDIS & Data In Setup Time & 6 & - & - & ns & - \\
\hline SQ23 & TDIH & Data In Hold Time & 3 & - & - & ns & - \\
\hline SQ24 & TDOH & Data Out Hold & 0 & - & - & ns & - \\
\hline SQ25 & Tdov & Data Out Valid & - & - & 6 & ns & - \\
\hline
\end{tabular}

FIGURE 37-16: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)


Note: Refer to Figure 37-1 for load conditions.

FIGURE 37-17: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)


TABLE 37-34: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions: } 2.3 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\
& \text { (unless otherwise stated) } \\
& \text { Operating temperature }-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for } \mathrm{V} \text {-Temp } \\
& \qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param. No. & Symbol & \multicolumn{2}{|r|}{Characteristics} & Min. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multirow[t]{3}{*}{IM10} & \multirow[t]{3}{*}{TLo:SCL} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & - \\
\hline & & & 400 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & - \\
\hline & & & 1 MHz mode (Note 2) & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & - \\
\hline \multirow[t]{3}{*}{IM11} & \multirow[t]{3}{*}{THI:SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 400 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{s}\) & - \\
\hline & & & 1 MHz mode (Note 2) & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & - \\
\hline \multirow[t]{3}{*}{IM20} & \multirow[t]{3}{*}{TF:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Fall Time} & 100 kHz mode & - & 300 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cв & 300 & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 2) }
\end{array}
\] & - & 100 & ns & \\
\hline
\end{tabular}

Note 1: \(\quad \mathrm{BRG}\) is the value of the \(\mathrm{I}^{2} \mathrm{C}^{\mathrm{TM}}\) Baud Rate Generator.
2: \(\quad\) Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins (for 1 MHz mode only).
3: The typical value for this parameter is 104 ns .

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-34: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & \multicolumn{2}{|r|}{Characteristics} & Min. \({ }^{(1)}\) & & Units & Conditions \\
\hline \multirow[t]{3}{*}{IM21} & \multirow[t]{3}{*}{TR:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Rise Time} & 100 kHz mode & - & 1000 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cв & 300 & ns & \\
\hline & & & \[
\begin{aligned}
& 1 \mathrm{MHz} \text { mode } \\
& \text { (Note 2) }
\end{aligned}
\] & - & 300 & ns & \\
\hline \multirow[t]{3}{*}{IM25} & \multirow[t]{3}{*}{Tsu:dAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 100 & - & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 2) }
\end{array}
\] & 100 & - & ns & \\
\hline \multirow[t]{3}{*}{IM26} & \multirow[t]{3}{*}{ThD:DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{S}\) & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 2) }
\end{array}
\] & 0 & 0.3 & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM30} & \multirow[t]{3}{*}{TSU:STA} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline & & & \[
\begin{aligned}
& \hline 1 \mathrm{MHz} \text { mode } \\
& \text { (Note 2) }
\end{aligned}
\] & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IM31} & \multirow[t]{3}{*}{THD:STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{s}\) & \multirow[t]{3}{*}{After this period, the first clock pulse is generated} \\
\hline & & & 400 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline & & & \[
\begin{array}{|l|}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 2) }
\end{array}
\] & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM33} & \multirow[t]{3}{*}{Tsu:sto} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline & & & \[
\begin{aligned}
& 1 \mathrm{MHz} \text { mode } \\
& \text { (Note 2) }
\end{aligned}
\] & TPBCLK2 * (BRG + 2) & - & \(\mu \mathrm{S}\) & \\
\hline \multirow[t]{3}{*}{IM34} & \multirow[t]{3}{*}{THD:STO} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & TPBCLK2 * (BRG + 2) & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & TPBCLK2 * (BRG + 2) & - & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 2) }
\end{array}
\] & TPBCLK2 * (BRG + 2) & - & ns & \\
\hline \multirow[t]{3}{*}{IM40} & \multirow[t]{3}{*}{TAA:SCL} & \multirow[t]{3}{*}{Output Valid from Clock} & 100 kHz mode & - & 3500 & ns & - \\
\hline & & & 400 kHz mode & - & 1000 & ns & - \\
\hline & & & 1 MHz mode
(Note 2) & - & 350 & ns & - \\
\hline \multirow[t]{3}{*}{IM45} & \multirow[t]{3}{*}{TbF:SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{The amount of time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{S}\) & \\
\hline & & & \[
\begin{aligned}
& 1 \mathrm{MHz} \text { mode } \\
& \text { (Note 2) }
\end{aligned}
\] & 0.5 & - & \(\mu \mathrm{S}\) & \\
\hline IM50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & - & - & pF & See parameter DO58 \\
\hline IM51 & TPGD & Pulse Gobbler De & elay & 52 & 312 & ns & See Note 3 \\
\hline
\end{tabular}

Note 1: \(\quad \mathrm{BRG}\) is the value of the \(\mathrm{I}^{2} \mathrm{C}^{\mathrm{TM}}\) Baud Rate Generator.
2: \(\quad\) Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins (for 1 MHz mode only).
3: The typical value for this parameter is 104 ns .

FIGURE 37-18: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)


Note: Refer to Figure 37-1 for load conditions.

FIGURE 37-19: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)


Note: Refer to Figure 37-1 for load conditions.

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) \\
Operating temperature \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq\) TA \(\leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & \multicolumn{2}{|l|}{Characteristics} & Min. & Max. & Units & Conditions \\
\hline \multirow[t]{3}{*}{IS10} & \multirow[t]{3}{*}{TLO:SCL} & \multirow[t]{3}{*}{Clock Low Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{S}\) & PBCLK must operate at a minimum of 800 kHz \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{s}\) & PBCLK must operate at a minimum of 3.2 MHz \\
\hline & & & 1 MHz mode (Note 1) & 0.5 & - & \(\mu \mathrm{s}\) & - \\
\hline \multirow[t]{3}{*}{IS11} & \multirow[t]{3}{*}{THI:SCL} & \multirow[t]{3}{*}{Clock High Time} & 100 kHz mode & 4.0 & - & \(\mu \mathrm{S}\) & PBCLK must operate at a minimum of 800 kHz \\
\hline & & & 400 kHz mode & 0.6 & - & \(\mu \mathrm{s}\) & PBCLK must operate at a minimum of 3.2 MHz \\
\hline & & & 1 MHz mode (Note 1) & 0.5 & - & \(\mu \mathrm{S}\) & - \\
\hline
\end{tabular}

Note 1: Maximum pin capacitance \(=10 \mathrm{pF}\) for all I 2 Cx pins (for 1 MHz mode only).

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-35: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{5} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline \begin{tabular}{|l|}
\hline \begin{tabular}{c} 
Param. \\
No.
\end{tabular} \\
\hline \hline IS20
\end{tabular} & Symbol & \multicolumn{2}{|l|}{Characteristics} & Min. & Max. & Units & Conditions \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{TF:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Fall Time} & 100 kHz mode & - & 300 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cb & 300 & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 1) }
\end{array}
\] & - & 100 & ns & \\
\hline \multirow[t]{3}{*}{IS21} & \multirow[t]{3}{*}{TR:SCL} & \multirow[t]{3}{*}{SDAx and SCLx Rise Time} & 100 kHz mode & - & 1000 & ns & \multirow[t]{3}{*}{CB is specified to be from 10 to 400 pF} \\
\hline & & & 400 kHz mode & \(20+0.1\) Cb & 300 & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 1) }
\end{array}
\] & - & 300 & ns & \\
\hline \multirow[t]{3}{*}{IS25} & \multirow[t]{3}{*}{Tsu:DAT} & \multirow[t]{3}{*}{Data Input Setup Time} & 100 kHz mode & 250 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 100 & - & ns & \\
\hline & & & \[
\begin{aligned}
& \hline 1 \mathrm{MHz} \text { mode } \\
& \text { (Note 1) }
\end{aligned}
\] & 100 & - & ns & \\
\hline \multirow[t]{3}{*}{IS26} & \multirow[t]{3}{*}{THD:DAT} & \multirow[t]{3}{*}{Data Input Hold Time} & 100 kHz mode & 0 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 0.9 & \(\mu \mathrm{S}\) & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 1) }
\end{array}
\] & 0 & 0.3 & \(\mu \mathrm{s}\) & \\
\hline \multirow[t]{3}{*}{IS30} & \multirow[t]{3}{*}{Tsu:STA} & \multirow[t]{3}{*}{Start Condition Setup Time} & 100 kHz mode & 4700 & - & ns & \multirow[t]{3}{*}{Only relevant for Repeated Start condition} \\
\hline & & & 400 kHz mode & 600 & - & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 1) }
\end{array}
\] & 250 & - & ns & \\
\hline \multirow[t]{3}{*}{IS31} & \multirow[t]{3}{*}{THD:STA} & \multirow[t]{3}{*}{Start Condition Hold Time} & 100 kHz mode & 4000 & - & ns & \multirow[t]{3}{*}{After this period, the first clock pulse is generated} \\
\hline & & & 400 kHz mode & 600 & - & ns & \\
\hline & & & \[
\begin{aligned}
& \hline 1 \mathrm{MHz} \text { mode } \\
& \text { (Note 1) }
\end{aligned}
\] & 250 & - & ns & \\
\hline \multirow[t]{3}{*}{IS33} & \multirow[t]{3}{*}{Tsu:sto} & \multirow[t]{3}{*}{Stop Condition Setup Time} & 100 kHz mode & 4000 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 600 & - & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 1) } \\
\hline
\end{array}
\] & 600 & - & ns & \\
\hline \multirow[t]{3}{*}{IS34} & \multirow[t]{3}{*}{THD:Sto} & \multirow[t]{3}{*}{Stop Condition Hold Time} & 100 kHz mode & 4000 & - & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 600 & - & ns & \\
\hline & & & 1 MHz mode
(Note 1) & 250 & & ns & \\
\hline \multirow[t]{3}{*}{IS40} & \multirow[t]{3}{*}{TAA:SCL} & \multirow[t]{3}{*}{Output Valid from Clock} & 100 kHz mode & 0 & 3500 & ns & \multirow[t]{3}{*}{-} \\
\hline & & & 400 kHz mode & 0 & 1000 & ns & \\
\hline & & & \[
\begin{array}{|l}
\hline 1 \mathrm{MHz} \text { mode } \\
\text { (Note 1) }
\end{array}
\] & 0 & 350 & ns & \\
\hline \multirow[t]{3}{*}{IS45} & \multirow[t]{3}{*}{TBF:SDA} & \multirow[t]{3}{*}{Bus Free Time} & 100 kHz mode & 4.7 & - & \(\mu \mathrm{S}\) & \multirow[t]{3}{*}{The amount of time the bus must be free before a new transmission can start} \\
\hline & & & 400 kHz mode & 1.3 & - & \(\mu \mathrm{S}\) & \\
\hline & & & 1 MHz mode
(Note 1) & 0.5 & - & \(\mu \mathrm{S}\) & \\
\hline IS50 & Св & \multicolumn{2}{|l|}{Bus Capacitive Loading} & - & - & pF & See parameter DO58 \\
\hline
\end{tabular}

Note 1: Maximum pin capacitance \(=10 \mathrm{pF}\) for all I2Cx pins (for 1 MHz mode only).

FIGURE 37-20: CANx MODULE I/O TIMING CHARACTERISTICS


TABLE 37-36: CANx MODULE I/O TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHAR & CTERISTI & & \multicolumn{4}{|l|}{Standard Operating Conditions: 2.3 V to 3.6 V (unless otherwise stated)} & \begin{tabular}{l}
.3V to 3.6 V \\
\(\leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(\leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(\leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular} \\
\hline Param No. & Symbol & Characteristic \({ }^{(1)}\) & Min & Typ \({ }^{(2)}\) & Max & Units & Conditions \\
\hline CA10 & TioF & Port Output Fall Time & - & - & - & ns & See parameter DO32 \\
\hline CA11 & TioR & Port Output Rise Time & - & - & - & ns & See parameter DO31 \\
\hline CA20 & Tcwf & Pulse Width to Trigger CAN Wake-up Filter & 700 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized but not tested in manufacturing.
2: Data in "Typ" column is at \(3.3 \mathrm{~V}, 25^{\circ} \mathrm{C}\) unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 37-37: ADC1 MODULE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS \({ }^{(5,6)}\)} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions (see Notes 3,5): 2.3V to 3.6V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA}^{5} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. & Symbol & Characteristics & Min. & Typical & Max. & Units & Conditions \\
\hline \multicolumn{8}{|l|}{Device Supply} \\
\hline AD01 & AVDD & Module VDD Supply & Greater of VDD-0.3 or 2.3 & - & Lesser of VDD +0.3 or 3.6 & V & - \\
\hline AD02 & AVss & Module Vss Supply & Vss & - & Vss + 0.3 & V & - \\
\hline \multicolumn{8}{|l|}{Reference Inputs} \\
\hline AD05 & VREFH & Reference Voltage High & AVss + 1.2 & - & AVDD & V & VREFH = VREF+ (Note 1) \\
\hline AD06 & VREFL & Reference Voltage Low & AVss & - & VREFH-1.2 & V & (Note 1) \\
\hline AD07 & VREF & Absolute Reference Voltage (VREFH - VREFL) & 1.2 & - & AVDD & V & (Note 4) \\
\hline \[
\begin{array}{|l|}
\hline \text { AD08 } \\
\text { AD08a }
\end{array}
\] & IREF & Current Drain & - & \[
\begin{aligned}
& 100 \\
& .002
\end{aligned}
\] & \[
\begin{gathered}
150 \\
1
\end{gathered}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & ADC operating ADC off \\
\hline \multicolumn{8}{|l|}{Analog Input} \\
\hline AD12 & VINH-VINL & Full-Scale Input Range & \[
\begin{gathered}
\hline-\mathrm{VREFH} \\
0
\end{gathered}
\] & - & \begin{tabular}{l}
VREFH \\
+ VREFH
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] & Differential Single-ended \\
\hline AD14 & VINCM & Common Mode Input Voltage & AVss + VREF/2 & - & AVDD VREf/2 & V & - \\
\hline AD17 & RIN & Recommended Impedance of Analog Voltage Source & - & - & 200 & \(\Omega\) & \begin{tabular}{l}
(Note 1) \\
For minimum sampling time
\end{tabular} \\
\hline \multicolumn{8}{|l|}{ADC Accuracy - Measurements with External Vref+/Vref-} \\
\hline AD20c & Nr & Resolution & & 0 data bits & & bits & - \\
\hline AD21c & INL & Integral Nonlinearity & - & \(\pm 2\) & - & LSb & \[
\begin{aligned}
& \text { VINL }=\text { VREF- }=\text { VREFL }=0 \mathrm{~V}, \\
& \text { VREF+ }=\text { VREFH }=2.5 \mathrm{~V}
\end{aligned}
\] \\
\hline AD22c & DNL & Differential Nonlinearity & - & \(\pm 2\) & - & LSb & \[
\begin{aligned}
& \text { VINL = VREF- = VREFL = OV }, \\
& \text { VREF+ = VREFH }=2.5 \mathrm{~V}
\end{aligned}
\] \\
\hline AD23c & GERR & Gain Error & - & \(\pm 8\) & - & LSb & \[
\begin{aligned}
& \hline \text { VINL }=\text { VREF- }=\text { VREFL }=0 \mathrm{~V}, \\
& \text { VREF+ }=\text { VREFH }=2.5 \mathrm{~V}
\end{aligned}
\] \\
\hline AD24c & Eoff & Offset Error & - & \(\pm 10\) & - & LSb & \[
\begin{aligned}
& \text { VINL }=\text { VREF- }=0 \mathrm{~V}, \\
& \text { AVDD }=2.5 \mathrm{~V}
\end{aligned}
\] \\
\hline AD25e & - & Monotonicity & - & - & - & - & Guaranteed \\
\hline \multicolumn{8}{|l|}{Dynamic Performance} \\
\hline AD31b & SINAD & Signal to Noise and Distortion & 48 & - & > 54 & dB & (Note 2) \\
\hline AD34b & ENOB & Effective Number of bits & 8 & - & 9 & bits & (Note 2) \\
\hline
\end{tabular}

Note 1: These parameters are not characterized or tested in manufacturing.
2: Characterized with a 1 kHz sine wave.
3: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.
4: The BOOST (AD1CON2<6>) bit must be set to ' 1 ' when VREF \(\leq 1.8 \mathrm{~V}\).
5: Specifications are based on adherence to the requirements listed in 28.1 "ADC Configuration Requirements".
6: External precision VREF+ and VREF- must be used at all times.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-38: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS \({ }^{(2,5,6)}\)} & \multicolumn{5}{|l|}{```
Standard Operating Conditions (see Notes 3,5): 2.3V to 3.6V
(unless otherwise stated)
    Operating temperature - }4\mp@subsup{0}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Industrial
        -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+10\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for V-Temp
        -40}\mp@subsup{}{}{\circ}\textrm{C}\leq\textrm{TA}\leq+12\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ for Extended
```} \\
\hline Param. No. & Symbol & Characteristics & Min. & Typ. \({ }^{(1)}\) & Max. & Units & Conditions \\
\hline \multicolumn{8}{|l|}{Clock Parameters} \\
\hline AD50 & TAD & ADC Clock Period & 62.5 & - & 1000 & ns & - \\
\hline \multicolumn{8}{|l|}{Throughput Rate} \\
\hline \multirow[t]{3}{*}{AD51} & \multirow[t]{3}{*}{FTP} & \[
\begin{aligned}
& \mathrm{SH} 0-\mathrm{SH} 4 \\
& \text { (Class } 1 \text { Inputs) }
\end{aligned}
\] & - & - & - & - & SH0-SH4 functionality is not supported. Sampling must be performed on SH5 only. See Notes 3 and 4. \\
\hline & & SH5 (Class 2 and 3 Inputs) & - & - & 500 & ksps & Single Class 2 or 3 input, 16 MHz ADC Clock, Source impedance \(\leq 200 \Omega\), SAMC \(=3\), Assumes there are no pending sample conversion operations at time of trigger. (See Notes 3 and 4.) \\
\hline & & Conversion Pipeline & - & - & 16 & Msps & Not applicable \\
\hline \multicolumn{8}{|l|}{Timing Parameters} \\
\hline \multirow[t]{2}{*}{AD60} & \multirow[t]{2}{*}{TSAMP} & Sample Time for SH0-SH4 (Class 1 Inputs) & - & - & - & TAD & SH0-SH4 functionality is not supported. Sampling must be performed on SH5 only. \\
\hline & & Sample Time for SH5 (Class 2 and 3 Inputs) & \[
\begin{gathered}
\hline 3 \\
6 \\
9 \\
35 \\
68 \\
133 \\
256 \\
\hline
\end{gathered}
\] & - & - & TAD & Source Impedance \(\leq 200 \Omega\), 16 MHz ADC clock Source Impedance \(\leq 500 \Omega\), 16 MHz ADC clock Source Impedance \(\leq 1 \mathrm{~K} \Omega, 16 \mathrm{MHz}\) ADC clock Source Impedance \(\leq 5 \mathrm{~K} \Omega, 16 \mathrm{MHz}\) ADC clock Source Impedance \(\leq 10 \mathrm{~K} \Omega, 16 \mathrm{MHz}\) ADC clock Source Impedance \(\leq 20 \mathrm{~K} \Omega, 16 \mathrm{MHz}\) ADC clock Source Impedance \(\leq 35 \mathrm{~K} \Omega, 16 \mathrm{MHz}\) ADC clock \\
\hline AD62 & TConv & Conversion Time (after sample time is complete) & - & - & 10 & TAD & \(\mathrm{SH} 0-\mathrm{SH} 4\) functionality is not supported. Sampling must be performed on SH5 only. For SH5, Tsamp + Tconv provides Trigger to data ready timing; \\
\hline AD64 & TCAL & Calibration Time & - & 160 & - & TAD & - \\
\hline AD65 & TWAKE & Wake-up time from LowPower Mode & - & 2 & - & TAD & - \\
\hline
\end{tabular}

Note 1: These parameters are not characterized, or tested in manufacturing.
2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.
3: Assuming correct PLL configuration (i.e., 192 MHz system clock).
4: Assuming \(4 x\) Oversampling mode.
5: Specifications are based on adherence to the requirements listed in 28.1 "ADC Configuration Requirements".
6: All data was collected using a dedicated external precision voltage source connected to VREF+ and with VREF- tied to external AVSs.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-39: TEMPERATURE SENSOR SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTER & ISTICS & \multicolumn{5}{|l|}{\[
\begin{aligned}
& \text { Standard Operating Conditions (see Note 1): 2.3V to } 3.6 \mathrm{~V} \\
& \begin{array}{ll}
\text { (unless otherwise stated) } \\
\text { Operating temperature } & -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
\qquad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for } \mathrm{V} \text {-Temp } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{array}
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
Param. \\
No.
\end{tabular} & Symbol & Characteristics & Min. & Typical & Max. & Units & Conditions \\
\hline TS10 & VTS & Rate of Change & - & -5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) & - \\
\hline TS11 & TR & Resolution & -2 & - & +2 & \({ }^{\circ} \mathrm{C}\) & - \\
\hline TS12 & IVTEMP & Voltage Range & 0.2 & - & 1.2 & V & - \\
\hline TS13 & TMIN & Minimum Temperature & - & -40 & - & \({ }^{\circ} \mathrm{C}\) & IV TEMP \(=1.2 \mathrm{~V}\) \\
\hline TS14 & Tmax & Maximum Temperature & - & 160 & - & \({ }^{\circ} \mathrm{C}\) & IV TEMP \(=0.2 \mathrm{~V}\) \\
\hline
\end{tabular}

Note 1: The temperature sensor is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 37-21: PARALLEL SLAVE PORT TIMING

TABLE 37-40: PARALLEL SLAVE PORT REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERIS & STICS & Standard Op (unless othe Operating tem & rating wise peratu & \[
\begin{aligned}
& \text { Conditi } \\
& \text { ated) } \\
& \begin{array}{c}
-40^{\circ} \\
-40^{\circ} \\
-40^{\circ}
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns: } \mathbf{2 . 3} \\
& \leq T_{A} \leq \\
& \leq T A \leq \\
& \leq T A \leq
\end{aligned}
\] & \begin{tabular}{l}
3.6V \\
\({ }^{\circ} \mathrm{C}\) for Industrial \(5^{\circ} \mathrm{C}\) for V-Temp \(5^{\circ} \mathrm{C}\) for Extended
\end{tabular} \\
\hline \begin{tabular}{l}
Param. \\
No.
\end{tabular} & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline PS1 & TdtV2wrH & Data In Valid before \(\overline{\text { PMWR }}\) or PMCSx Inactive (setup time) & 20 & - & - & ns & - \\
\hline PS2 & TwrH2dtI & \(\overline{\text { PMWR }}\) or \(\overline{\text { PMCSx }}\) Inactive to Data-in Invalid (hold time) & 40 & - & - & ns & - \\
\hline PS3 & TrdL2dtV & \(\overline{\text { PMRD }}\) and \(\overline{\text { PMCS }} x\) Active to Data-out Valid & - & - & 60 & ns & - \\
\hline PS4 & TrdH2dtl & \(\overline{\text { PMRD Active or } \overline{\text { PMCSx }} \text { Inactive to }}\) Data-out Invalid & 0 & - & 10 & ns & - \\
\hline PS5 & Tcs & \(\overline{\text { PMCSx }}\) Active Time & TPBCLK2 + 40 & - & - & ns & - \\
\hline PS6 & TWR & PMWR Active Time & TPBCLK2 + 25 & - & - & ns & - \\
\hline PS7 & TRD & \(\overline{\text { PMRD Active Time }}\) & TPBCLK2 + 25 & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 37-22: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 37-41: PARALLEL MASTER PORT READ TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{AC CHARACTERISTICS}} & \multicolumn{5}{|l|}{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} \\
\hline & & & Operat & temperatur & \multicolumn{3}{|l|}{\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for V-Temp } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline PM1 & TLAT & PMALL/PMALH Pulse Width & - & 1 TPBCLK2 & - & - & - \\
\hline PM2 & TADSU & Address Out Valid to PMALL/ PMALH Invalid (address setup time) & - & 2 TPBCLK2 & - & - & - \\
\hline PM3 & TADHOLD & PMALL/PMALH Invalid to Address Out Invalid (address hold time) & - & 1 TPBCLK2 & - & - & - \\
\hline PM4 & TAHOLD & PMRD Inactive to Address Out Invalid (address hold time) & 5 & - & - & ns & - \\
\hline PM5 & TRD & PMRD Pulse Width & - & 1 TPBCLK2 & - & - & - \\
\hline PM6 & TDSU & PMRD or PMENB Active to Data In Valid (data setup time) & 15 & - & - & ns & - \\
\hline PM7 & Tdhold & PMRD or PMENB Inactive to Data In Invalid (data hold time) & - & 80 & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 37-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 37-42: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERI & STICS & Stand (unles Opera & \begin{tabular}{l}
Operating \\
otherwise \\
g temperatu
\end{tabular} & Condi tated) e
\[
\begin{aligned}
& -40 \\
& -40 \\
& -40
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C} \text { for Industrial } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C} \text { for V-Temp } \\
& -40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C} \text { for Extended }
\end{aligned}
\]} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline PM11 & TWR & PMWR Pulse Width & - & 1 TPBCLK2 & - & - & - \\
\hline PM12 & TDvsu & Data Out Valid before PMWR or PMENB goes Inactive (data setup time) & - & 2 TPBCLK2 & - & - & - \\
\hline PM13 & TDVHoLD & PMWR or PMEMB Invalid to Data Out Invalid (data hold time) & - & 1 TPBCLK2 & - & - & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 37-43: USB OTG ELECTRICAL SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Characteristics \({ }^{(1)}\) & Min. & Typ. & Max. & Units & Conditions \\
\hline USB313 & VUSB3V3 & USB Voltage & 3.0 & - & 3.6 & V & Voltage on VUSB3V3 must be in this range for proper USB operation \\
\hline \multicolumn{8}{|l|}{Low-Speed and Full-Speed Modes} \\
\hline USB315 & VILUSB & Input Low Voltage for USB Buffer & - & - & 0.8 & V & - \\
\hline USB316 & Vihusb & Input High Voltage for USB Buffer & 2.0 & - & - & V & - \\
\hline USB318 & VIIfS & Differential Input Sensitivity & 0.2 & - & - & V & The difference between D+ and D- must exceed this value while VCM is met \\
\hline USB319 & VCM & Differential Common Mode Range & 0.8 & - & 2.5 & V & - \\
\hline USB321 & Vol & Voltage Output Low & 0.0 & - & 0.3 & V & \(1.425 \mathrm{k} \Omega\) load connected to VUSB3V3 \\
\hline USB322 & VOH & Voltage Output High & 2.8 & - & 3.6 & V & \(14.25 \mathrm{k} \Omega\) load connected to ground \\
\hline \multicolumn{8}{|l|}{Hi-Speed Mode} \\
\hline USB323 & VHSDI & Differential input signal level & 150 & - & - & mV & - \\
\hline USB324 & VHSSQ & SQ detection threshold & 100 & - & 150 & mV & - \\
\hline USB325 & VHSCM & Common mode voltage range & -50 & - & 500 & mV & - \\
\hline USB326 & VHSOH & Data signaling high & 360 & - & 440 & mV & - \\
\hline USB327 & VHSOL & Data signaling low & -10 & - & 10 & mV & - \\
\hline USB328 & VchirpJ & Chirp J level & 700 & - & 1100 & mV & - \\
\hline USB329 & Vchirpk & Chirp K level & -900 & - & -500 & mV & - \\
\hline USB330 & ZHSDRV & Driver output resistance & - & 45 & - & \(\Omega\) & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-44: ETHERNET MODULE SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline AC CHA & RACTERISTICS & \multicolumn{5}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3 V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Characteristic & Min. & Typical & Max. & Units & Conditions \\
\hline \multicolumn{7}{|l|}{MIIM Timing Requirements} \\
\hline ET1 & MDC Duty Cycle & 40 & - & 60 & \% & - \\
\hline ET2 & MDC Period & 400 & - & - & ns & - \\
\hline ET3 & MDIO Output Setup and Hold & 10 & - & 10 & ns & See Figure 37-24 \\
\hline ET4 & MDIO Input Setup and Hold & 0 & - & 300 & ns & See Figure 37-25 \\
\hline \multicolumn{7}{|l|}{MII Timing Requirements} \\
\hline ET5 & TX Clock Frequency & - & 25 & - & MHz & - \\
\hline ET6 & TX Clock Duty Cycle & 35 & - & 65 & \% & - \\
\hline ET7 & ETXDx, ETEN, ETXERR Output Delay & 0 & - & 25 & ns & See Figure 37-26 \\
\hline ET8 & RX Clock Frequency & - & 25 & - & MHz & - \\
\hline ET9 & RX Clock Duty Cycle & 35 & - & 65 & \% & - \\
\hline ET10 & ERXDx, ERXDV, ERXERR Setup and Hold & 10 & - & 30 & ns & See Figure 37-27 \\
\hline \multicolumn{7}{|l|}{RMII Timing Requirements} \\
\hline ET11 & Reference Clock Frequency & - & 50 & - & MHz & - \\
\hline ET12 & Reference Clock Duty Cycle & 35 & - & 65 & \% & - \\
\hline ET13 & ETXDx, ETEN, Setup and Hold & 2 & - & 16 & ns & - \\
\hline ET14 & ERXDx, ERXDV, ERXERR Setup and Hold & 2 & - & 16 & ns & - \\
\hline
\end{tabular}

FIGURE 37-24: MDIO SOURCED BY THE PIC32 DEVICE

FIGURE 37-25: MDIO SOURCED BY THE PHY

FIGURE 37-26: TRANSMIT SIGNAL TIMING RELATIONSHIPS AT THE MII

FIGURE 37-27: RECEIVE SIGNAL TIMING RELATIONSHIPS AT THE MII

\section*{PIC32MZ Embedded Connectivity (EC) Family}

FIGURE 37-28: EBI PAGE READ TIMING

FIGURE 37-29: EBI WRITE TIMING

\section*{PIC32MZ Embedded Connectivity (EC) Family}

TABLE 37-45: EBI TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AC CHA & RACTER & ISTICS & Standa (unless Operat & \multicolumn{3}{|l|}{Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)} & \begin{tabular}{l}
3.6V \\
\({ }^{\circ} \mathrm{C}\) for Industrial \(5^{\circ} \mathrm{C}\) for V-Temp \(5^{\circ} \mathrm{C}\) for Extended
\end{tabular} \\
\hline \[
\begin{gathered}
\text { Param. } \\
\text { No. }
\end{gathered}
\] & Symbol & Characteristic & Min. & Typ. & Max. & Units & Conditions \\
\hline EB10 & TEBICLK & Internal EBI Clock Period (PBCLK8) & 10 & - & - & ns & - \\
\hline EB11 & TEbIRC & EBI Read Cycle Time (TRC<5:0>) & 20 & - & - & ns & - \\
\hline EB12 & TEBIPRC & EBI Page Read Cycle Time (TPRC<3:0>) & 20 & - & - & ns & - \\
\hline EB13 & Tebias & EBI Write Address Setup (TAS<1:0>) & 10 & - & - & ns & - \\
\hline EB14 & Tebiwp & EBI Write Pulse Width (TWP<5:0>) & 10 & - & - & ns & - \\
\hline EB15 & TEBIWR & EBI Write Recovery Time (TWR<1:0>) & 10 & - & - & ns & - \\
\hline EB16 & Tebico & EBI Output Control Signal Delay & - & - & 5 & ns & See Note 1 \\
\hline EB17 & Tebido & EBI Output Data Signal Delay & - & - & 5 & ns & See Note 1 \\
\hline EB18 & Tebids & EBI Input Data Setup & 5 & - & - & ns & See Note 1 \\
\hline EB19 & TEbIDH & EBI Input Data Hold & 3 & - & - & ns & See Note 1, 2 \\
\hline
\end{tabular}

Note 1: Maximum pin capacitance \(=10 \mathrm{pF}\).
2: Hold time from EBI Address change is 0 ns .

\section*{PIC32MZ Embedded Connectivity (EC) Family}

FIGURE 37-30: EJTAG TIMING CHARACTERISTICS

TABLE 37-46: EJTAG TIMING REQUIREMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{AC CHARACTERISTICS} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Standard Operating Conditions: 2.3V to 3.6 V \\
(unless otherwise stated) \\
Operating temperature \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}\) for Industrial \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) for V-Temp \\
\(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}\) for Extended
\end{tabular}} \\
\hline Param. No. & Symbol & Description \({ }^{(1)}\) & Min. & Max. & Units & Conditions \\
\hline EJ1 & Tтсксус & TCK Cycle Time & 25 & - & ns & - \\
\hline EJ2 & Ttckhigh & TCK High Time & 10 & - & ns & - \\
\hline EJ3 & TTCKLOW & TCK Low Time & 10 & - & ns & - \\
\hline EJ4 & TTSETUP & TAP Signals Setup Time Before Rising TCK & 5 & - & ns & - \\
\hline EJ5 & Tthold & TAP Signals Hold Time After Rising TCK & 3 & - & ns & - \\
\hline EJ6 & Ttdoout & TDO Output Delay Time from Falling TCK & - & 5 & ns & - \\
\hline EJ7 & Ttdozstate & TDO 3-State Delay Time from Falling TCK & - & 5 & ns & - \\
\hline EJ8 & TTRStLow & TRST Low Time & 25 & - & ns & - \\
\hline EJ9 & TRF & TAP Signals Rise/Fall Time, All Input and Output & - & - & ns & - \\
\hline
\end{tabular}

Note 1: These parameters are characterized, but not tested in manufacturing.

NOTES:
38.0 AC AND DC CHARACTERISTICS GRAPHS

\subsection*{39.0 PACKAGING INFORMATION}

\subsection*{39.1 Package Marking Information}

64-Lead QFN (\(9 \times 9 \times 0.9 \mathrm{~mm}\))

Example

Example

100-Lead TQFP (\(14 \times 14 \times 1 \mathrm{~mm}\))

64-Lead TQFP (\(10 \times 10 \times 1 \mathrm{~mm}\))

\begin{tabular}{|c|c|c|}
\hline Legend: & \[
\begin{aligned}
& \text { XX...X } \\
& \text { Y } \\
& \text { YY } \\
& \text { WW } \\
& \text { NNN }
\end{aligned}
\] & \begin{tabular}{l}
Customer-specific information \\
Year code (last digit of calendar year) \\
Year code (last 2 digits of calendar year) \\
Week code (week of January 1 is week ' 01 ') \\
Alphanumeric traceability code \\
Pb -free JEDEC designator for Matte Tin (Sn) \\
This package is Pb -free. The Pb -free JEDEC designator (e3 \\
can be found on the outer packaging for this package.
\end{tabular} \\
\hline
\end{tabular}

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

\subsection*{39.1 Package Marking Information (Continued)}

100-Lead TQFP (\(12 \times 12 \times 1 \mathrm{~mm}\))

124-Lead VTLA (9x9x0.9 mm)

144-Lead TQFP (16x16x1 mm)

144-Lead LQFP (20x20x1.40 mm)

Example

Example

Example

Example

\section*{Legend: \(X X \ldots\) Customer-specific information}
\(Y \quad\) Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\subsection*{39.2 Package Details}

The following sections give the technical details of the packages.

\section*{64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body with \(5.40 \times 5.40\) Exposed Pad [QFN]}
\begin{tabular}{ll}
Note: & \begin{tabular}{l}
For the most current package drawings, please see the Microchip Packaging Specification located at \\
http://www.microchip.com/packaging
\end{tabular} \\
\hline
\end{tabular}

Microchip Technology Drawing C04-154A Sheet 1 of 2

\section*{64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body with \(5.40 \times 5.40\) Exposed Pad [QFN]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Units
Dimension Limits}} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline & & MIN & NOM & MAX \\
\hline Number of Pins & N & & 64 & \\
\hline Pitch & e & & . 50 BS & \\
\hline Overall Height & A & 0.80 & 0.90 & 1.00 \\
\hline Standoff & A1 & 0.00 & 0.02 & 0.05 \\
\hline Contact Thickness & A3 & & . 20 RE & \\
\hline Overall Width & E & & . 00 BSC & \\
\hline Exposed Pad Width & E2 & 5.30 & 5.40 & 5.50 \\
\hline Overall Length & D & & .00 BSC & \\
\hline Exposed Pad Length & D2 & 5.30 & 5.40 & 5.50 \\
\hline Contact Width & b & 0.20 & 0.25 & 0.30 \\
\hline Contact Length & L & 0.30 & 0.40 & 0.50 \\
\hline Contact-to-Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-154A Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) - 9x9x0.9 mm Body [QFN]
With 0.40 mm Contact Length
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Units } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{3}{|c|}{ MIN } \\
\hline & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline & NOM & MAX \\
\hline Contact Pitch & W2 & & & 7.35 \\
\hline Optional Center Pad Width & T2 & & & 7.35 \\
\hline Optional Center Pad Length & C1 & & 8.90 & \\
\hline Contact Pad Spacing & C2 & & 8.90 & \\
\hline Contact Pad Spacing & X1 & & & 0.30 \\
\hline Contact Pad Width (X64) & Y1 & & & 0.85 \\
\hline Contact Pad Length (X64) & G & 0.20 & & \\
\hline Distance Between Pads & & &
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2149A

\section*{64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & \multicolumn{3}{|c|}{64} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 REF} \\
\hline Foot Angle & ¢ & \(0^{\circ}\) & \(3.5{ }^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Molded Package Length & D1 & \multicolumn{3}{|c|}{10.00 BSC} \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-085B

\section*{64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pad Spacing & C1 & & 11.40 & \\
\hline Contact Pad Spacing & C2 & & 11.40 & \\
\hline Contact Pad Width (X64) & X1 & & & 0.30 \\
\hline Contact Pad Length (X64) & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2085A

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body, 2.00 mm [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Number of Leads & N & \multicolumn{3}{|c|}{100} \\
\hline Lead Pitch & e & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Overall Height & A & - & - & 1.20 \\
\hline Molded Package Thickness & A2 & 0.95 & 1.00 & 1.05 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 REF} \\
\hline Foot Angle & \(\phi\) & \(0^{\circ}\) & \(3.5{ }^{\circ}\) & \(7^{\circ}\) \\
\hline Overall Width & E & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Molded Package Width & E1 & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Molded Package Length & D1 & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Lead Thickness & c & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline Mold Draft Angle Top & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Bottom & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) - 14×14×1 mm Body, 2.00 mm [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC } \\
\hline Contact Pad Spacing & C1 & & 15.40 & \\
\hline Contact Pad Spacing & C2 & & 15.40 & \\
\hline Contact Pad Width (X100) & X1 & & & 0.30 \\
\hline Contact Pad Length (X100) & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2110A

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Units } \\
\multicolumn{2}{|c|}{ Dimension Limits } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline & N & \multicolumn{3}{|c|}{ NOM } \\
\hline & e & \multicolumn{3}{|c|}{0.40 BSC} \\
\hline Number of Leads & A & - & - & 1.20 \\
\hline Lead Pitch & A2 & 0.95 & 1.00 & 1.05 \\
\hline Overall Height & A1 & 0.05 & - & 0.15 \\
\hline Molded Package Thickness & L & 0.45 & \multicolumn{2}{|c|}{0.60} \\
\hline Standoff & L1 & \multicolumn{3}{|c|}{1.00 REF} \\
\hline Foot Length & \(\phi\) & \(0^{\circ}\) & \multicolumn{3}{|c|}{\(3.5^{\circ}\)} & \(7^{\circ}\) \\
\hline Footprint & E & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Foot Angle & D & \multicolumn{3}{|c|}{14.00 BSC} \\
\hline Overall Width & E 1 & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Overall Length & D 1 & \multicolumn{3}{|c|}{12.00 BSC} \\
\hline Molded Package Width & C & 0.09 & - & 0.20 \\
\hline Molded Package Length & b & 0.13 & 0.18 & 0.23 \\
\hline Lead Thickness & \(\alpha\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Lead Width & \(\beta\) & \(11^{\circ}\) & \(12^{\circ}\) & \(13^{\circ}\) \\
\hline Mold Draft Angle Top & & & & \\
\hline Mold Draft Angle Bottom & & & \multicolumn{3}{|c|}{} \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Chamfers at corners are optional; size may vary.
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Units} & \multicolumn{3}{|l|}{MILLIMETERS} \\
\hline \multicolumn{2}{|r|}{Dimension Limits} & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.40 BSC} \\
\hline Contact Pad Spacing & C1 & & 13.40 & \\
\hline Contact Pad Spacing & C2 & & 13.40 & \\
\hline Contact Pad Width (X100) & X1 & & & 0.20 \\
\hline Contact Pad Length (X100) & Y1 & & & 1.50 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2100A

\section*{124-Terminal Very Thin Leadless Array Package (TL) - 9x9x0.9 mm Body [VTLA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

BOTTOM VIEW
Microchip Technology Drawing C04-193A Sheet 1 of 2

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{124-Terminal Very Thin Leadless Array Package (TL) - 9x9x0.9 mm Body [VTLA]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Units
Dimension Limits}} & \multicolumn{3}{|c|}{MILLIMETERS} \\
\hline & & MIN & NOM & MAX \\
\hline Number of Pins & N & & 124 & \\
\hline Pitch & eT & & . 50 BS & \\
\hline Pitch (Inner to outer terminal ring) & eR & & . 50 BS & \\
\hline Overall Height & A & 0.80 & 0.85 & 0.90 \\
\hline Standoff & A1 & 0.00 & - & 0.05 \\
\hline Overall Width & E & & . 00 BS & \\
\hline Exposed Pad Width & E2 & 6.40 & 6.55 & 6.70 \\
\hline Overall Length & D & & . 00 BS & \\
\hline Exposed Pad Length & D2 & 6.40 & 6.55 & 6.70 \\
\hline Contact Width & b & 0.20 & 0.25 & 0.30 \\
\hline Contact Length & L & 0.20 & 0.25 & 0.30 \\
\hline Contact-to-Exposed Pad & K & 0.20 & - & - \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

\section*{144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\section*{144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]}

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A
\begin{tabular}{|l|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{ Units } \\
\hline \multicolumn{1}{|c|}{ Dimension Limits } & \multicolumn{3}{|c|}{ MIN } & \multicolumn{2}{|c|}{ NOM } & MAX \\
\hline & N & \multicolumn{3}{|c|}{144} \\
\hline Number of Pins & e & \multicolumn{3}{|c|}{0.40 BSC} \\
\hline Lead Pitch & A & - & - & 1.20 \\
\hline Overall Height & A2 & 0.95 & 1.00 & 1.05 \\
\hline Molded PackageThickness & A1 & 0.05 & - & 0.15 \\
\hline Standoff & L & 0.45 & 0.60 & 0.75 \\
\hline Foot Length & L1 & \multicolumn{3}{|c|}{1.00 REF } \\
\hline Footprint & D & \multicolumn{3}{|c|}{18.00 BSC} \\
\hline Overall Width & E & \multicolumn{3}{|c|}{18.00 BSC} \\
\hline Overall Length & D1 & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Molded Body Width & E1 & \multicolumn{3}{|c|}{16.00 BSC} \\
\hline Molded Body Length & c & 0.09 & - & 0.20 \\
\hline Lead Thickness & b & 0.13 & - & 0.23 \\
\hline Lead Width & & & \\
\hline
\end{tabular}

\section*{Notes:}
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|r|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.40 BSC } \\
\hline Contact Pad Spacing & C1 & & 17.40 & \\
\hline Contact Pad Spacing & C2 & & 17.40 & \\
\hline Contact Pad Width (X144) & X1 & & & 0.20 \\
\hline Contact Pad Length (X144) & Y1 & & & 1.45 \\
\hline Distance Between Pads & G & 0.20 & & \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2155B

\section*{144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body, with 2.00 mm} Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-044B Sheet 1 of 2

144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Units } & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{6}{|c|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Number of Leads & N & & 144 & \\
\hline Lead Pitch & e & & 0.50 BSC & \\
\hline Overall Height & A & - & - & 1.60 \\
\hline Molded Package Height & A2 & 1.35 & 1.40 & 1.45 \\
\hline Standoff & A1 & 0.05 & - & 0.15 \\
\hline Foot Length & L & 0.45 & 0.60 & 0.75 \\
\hline Footprint & L1 & \multicolumn{3}{|c|}{1.00 (REF) } \\
\hline Overall Width & E & \multicolumn{3}{|c|}{22.00 BSC} \\
\hline Overall Length & D & \multicolumn{3}{|c|}{20.00 BSC} \\
\hline Molded Body Width & E1 & \multicolumn{3}{|c|}{20.00 BSC} \\
\hline Molded Body Length & D1 & \multicolumn{3}{|c|}{-} \\
\hline Lead Thickness & C & 0.09 & - & 0.20 \\
\hline Lead Width & b & 0.17 & 0.22 & 0.27 \\
\hline
\end{tabular}

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-044B Sheet 2 of 2

\section*{144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body [LQFP]} 2.00 mm Footprint

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN
\begin{tabular}{|l|c|c|c|c|}
\hline & Units & \multicolumn{3}{|c|}{ MILLIMETERS } \\
\hline \multicolumn{2}{|r|}{ Dimension Limits } & MIN & NOM & MAX \\
\hline Contact Pitch & E & \multicolumn{3}{|c|}{0.50 BSC} \\
\hline Contact Pad Spacing & C 1 & & 21.40 & \\
\hline Contact Pad Spacing & C2 & & 21.40 & \\
\hline Contact Pad Width (X144) & X1 & & & 0.30 \\
\hline Contact Pad Length (X144) & Y1 & & & 1.55 \\
\hline
\end{tabular}

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2044B

NOTES:

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{APPENDIX A: MIGRATING FROM PIC32MX5XX/6XX/7XX TO PIC32MZ}

This appendix provides an overview of considerations for migrating from PIC32MX5XX/6XX/7XX devices to the PIC32MZ family of devices. The code developed for PIC32MX5XX/6XX/7XX devices can be ported to PIC32MZ devices after making the appropriate changes outlined below.
The PIC32MZ devices are based on a new architecture, and feature many improvements and new capabilities over PIC32MX5XX/6XX/7XX devices.

\section*{A. 1 Oscillator and PLL Configuration}

Because the maximum speed of the PIC32MZ family is 200 MHz , the configuration of the oscillator is different from prior PIC32MX5XX/6XX/7XX devices.
Table A-1 summarizes the differences (indicated by Bold type) between the family devices for the oscillator.

\section*{TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|r|}{Primary Oscillator Configuration} \\
\hline \begin{tabular}{l}
On PIC32MX devices, XT mode had to be selected if the input frequency was in the 3 MHz to 10 MHz range (\(4-10\) for PLL), and HS mode had to be selected if the input frequency was in the 10 MHz to 20 MHz range. \\
POSCMOD<1:0> (DEVCFG1<9:8>) \\
11 = Primary Oscillator disabled \\
10 = HS Oscillator mode selected \\
01 = XT Oscillator mode selected \\
00 = External Clock mode selected
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, HS mode has a wider input frequency range (4 MHz to 32 MHz). The bit setting of ' 01 ' is Reserved. \\
POSCMOD<1:0> (DEVCFG1<9:8>) \\
11 = Primary Oscillator disabled \\
10 = HS Oscillator mode selected \\
01 = Reserved \\
00 = External Clock mode selected
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Oscillator Selection} \\
\hline On PIC32MX devices, clock selection choices are as follows:
```

FNOSC<2:0> (DEVCFG1<2:0>)
NOSC<2:0> (OSCCON<10:8>)
111 = FRCDIV
110 = FRCDIV16
101 = LPRC
100 = SOSC
011 = POSC with PLL module
010 = POSC (XT, HS, EC)
001 = FRCDIV+PLL
000 = FRC
COSC<2:0> (OSCCON<14:12>)
111 = FRC divided by FRCDIV
110= FRC divided by 16
101 = LPRC
100 = SOSC
011 = POSC + PLL module
010 = POSC
001 = FRCPLL
000 = FRC

``` & \begin{tabular}{l}
On PIC32MZ devices, clock selection choices are as follows: \\
FNOSC<2:0> (DEVCFG1<2:0>) \\
NOSC<2:0> (OSCCON<10:8>) \\
111 = FRCDIV \\
\(110=\) Reserved \\
101 = LPRC \\
\(100=\) SOSC \\
\(011=\) Reserved \\
\(010=\) POSC (HS or EC) \\
001 = System PLL (SPLL) \\
000 = FRCDIV \\
COSC<2:0> (OSCCON<14:12>) \\
111 = FRC divided by FRCDIV \\
\(110=\) BFRC \\
\(101=\) LPRC \\
\(100=\) SOSC \\
011 = Reserved \\
\(010=\) POSC \\
001 = System PLL \\
\(000=\) FRC divided by FRCDIV
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Secondary Oscillator Enable} \\
\hline FSOSCEN (DEVCFG1<5>) & \begin{tabular}{l}
The location of the SOSCEN bit in the Flash Configuration Words has moved. \\
FSOSCEN (DEVCFG1<6>)
\end{tabular} \\
\hline
\end{tabular}

\section*{TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{PLL Configuration} \\
\hline \begin{tabular}{l}
The FNOSC<2:0> and NOSC<2:0> bits select between POSC and FRC. \\
FNOSC<2:0> (DEVCFG1<2:0>) \\
NOSC<2:0> (OSCCON<10:8>)
\end{tabular} & \begin{tabular}{l}
Selection of which input clock (POSC or FRC) is now done through the FPLLICLK/PLLICLK bits. \\
FPLLICLK (DEVCFG2<7>) \\
PLLICLK (SPLLCON<7>)
\end{tabular} \\
\hline On PIC32MX devices, the input frequency to the PLL had to be between 4 MHz and 5 MHz . FPLLIDIV selected how to divide the input frequency to give it the appropriate range.
```

FPLLIDIV<2:0> (DEVCFG2<2:0>)
$111=12 x$ divider
$110=10 x$ divider
$101=6 x$ divider
$100=5 x$ divider
$011=4 x$ divider
$010=3 x$ divider
$001=2 x$ divider
$000=1 x$ divider

``` & On PIC32MZ devices, the input range for the PLL is wider ( 5 MHz to 64 MHz ). The input divider values have changed, and new FPLLRNG/PLLRNG bits have been added to indicate under what range the input frequency falls.
```

FPLLIDIV<2:0> (DEVCFG2<2:0>)
PLLIDIV<2:0> (SPLLCON<2:0>)
111 = Divide by 8
$110=$ Divide by 7
101 = Divide by 6
$100=$ Divide by 5
011 = Divide by 4
$010=$ Divide by 3
001 = Divide by 2
$000=$ Divide by 1

```
FPLLRNG<2:0> (DEVCFG2<6:4>)
PLLRNG<2:0> (SPLLCON<2:0>)
111 = Reserved
\(110=\) Reserved
\(101=34-64 \mathrm{MHz}\)
\(100=21-42 \mathrm{MHz}\)
\(011=13-26 \mathrm{MHz}\)
\(010=8\)-16 MHz
\(001=5-10 \mathrm{MHz}\)
\(000=\) Bypass \\
\hline On PIC32MX devices, the output frequency of PLL is between 60 MHz and 120 MHz . The PLL multiplier and divider bits configure the PLL for this range.
```

FPLLMUL<2:0> (DEVCFG2<6:4>)
PLLMULT<2:0> (OSCCON<18:16>)
$111=24 x$ multiplier
$110=21 x$ multiplier
$101=20 x$ multiplier
$100=19 x$ multiplier
$011=18 x$ multiplier
$010=17 x$ multiplier
$001=16 x$ multiplier
$000=15 x$ multiplier

```
FPLLODIV<2:0> (DEVCFG2<18:16>)
PLLODIV<2:0> (OSCCON<29:27>)
\(111=24 x\) multiplier
\(110=21 x\) multiplier
\(101=20 x\) multiplier
\(100=19 x\) multiplier
\(011=18 x\) multiplier
\(010=17 x\) multiplier
\(001=16 x\) multiplier
\(000=15 x\) multiplier & The PLL multiplier and divider on PIC32MZ devices have a wider range to accommodate the wider PLL specification range of 10 MHz to 200 MHz .
\[
\begin{aligned}
& \text { FPLLMULT<6:0> (DEVCFG2<14:8>) } \\
& \text { PLLMULT<6:0> (SPLLCON<22:16>) } \\
& 1111111=\text { Multiply by } 128 \\
& 1111110=\text { Multiply by } 127 \\
& 1111101=\text { Multiply by } 126 \\
& 1111100=\text { Multiply by } 125
\end{aligned}
\]
\[
0000000=\text { Multiply by } 1
\] \\
\hline
\end{tabular}

TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Crystal/Oscillator Selection for USB} \\
\hline Any frequency that can be divided down to 4 MHz using UPLLIDIV, including \(4,8,12,16,20,40\), and 48 MHz . & If the USB module is used, the Primary Oscillator is limited to either 12 MHz or 24 MHz . Which frequency is used is selected using the UPLLFSEL (DEVCFG2<30>) bit. \\
\hline \multicolumn{2}{|c|}{USB PLL Configuration} \\
\hline On PIC32MX devices, the PLL for the USB requires an input frequency of 4 MHz .
```

UPLLIDIV<2:0> (DEVCFG2<10:8>)
$111=12 x$ divider
$110=10 x$ divider
$101=6 x$ divider
$100=5 x$ divider
$011=4 x$ divider
$010=3 x$ divider
$010=3 x$ divider
$001=2 x$ divider
$000=1 x$ divider

``` & \begin{tabular}{l}
On PIC32MZ devices, the HS USB PHY requires an input frequency of 12 MHz or 24 MHz . UPLLIDIV has been replaced with UPLLFSEL. \\
UPLLFSEL (DEVCFG2<30>) \\
\(1=\) UPLL input clock is 24 MHz \\
\(0=\) UPLL input clock is \(12 \mathbf{~ M H z}\)
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Peripheral Bus Clock Configuration} \\
\hline \begin{tabular}{l}
On PIC32MX devices, there is one peripheral bus, and the clock for that bus is divided from the SYSCLK using FPBDIV/PBDIV. In addition, the maximum PBCLK frequency is the same as SYSCLK. \\
FPBDIV<1:0> (DEVCFG1<5:4>) \\
PBDIV<1:0> (OSCCON<20:19>) \\
11 = PBCLK is SYSCLK divided by 8 \\
\(10=\) PBCLK is SYSCLK divided by 4 \\
01 = PBCLK is SYSCLK divided by 2 \\
\(00=\) PBCLK is SYSCLK divided by 1
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, there are eight peripheral buses with their own clocks. FPBDIV is removed, and each PBDIV is in its own register for each PBCLK. The initial PBCLK speed is fixed at reset, and the maximum PBCLK speed is limited to 100 MHz for all buses, with the exception of PBCLK7, which is 200 MHz . \\
PBDIV<6:0> (PBxDIV<6:0>) \\
1111111 = PBCLKx is SYSCLK divided by 128 \\
\(1111110=\) PBCLKx is SYSCLK divided by 127 \\
0000011 = PBCLKx is SYSCLK divided by 4 \\
\(0000010=\) PBCLKx is SYSCLK divided by 3 \\
0000001 = PBCLKx is SYSCLK divided by 2 \\
(default value for \(x \neq 7\)) \\
\(0000000=\) PBCLKx is SYSCLK divided by 1 \\
(default value for \(x=7\))
\end{tabular} \\
\hline \multicolumn{2}{|r|}{CPU Clock Configuration} \\
\hline On PIC32MX devices, the CPU clock is derived from SYSCLK. & On PIC32MZ devices, the CPU clock is derived from PBCLK7. \\
\hline \multicolumn{2}{|r|}{FRCDIV Default} \\
\hline On PIC32MX devices, the default value for FRCDIV was to divide the FRC clock by two. & On PIC32MZ devices, the default has been changed to divide by one. \\
\hline FRCDIV<2:0> (OSCCON<26:24>) & FRCDIV<2:0> (OSCCON<26:24>) \\
\hline 111 = FRC divided by 256 & 111 = FRC divided by 256 \\
\hline \(110=\) FRC divided by 64 & \(110=\) FRC divided by 64 \\
\hline 101 = FRC divided by 32 & 101 = FRC divided by 32 \\
\hline \(100=\) FRC divided by 16 & 100 F FRC divided by 16 \\
\hline 011 = FRC divided by 8 & 011 = FRC divided by 8 \\
\hline \(010=\) FRC divided by 4 & 010 = FRC divided by 4 \\
\hline 001 = FRC divided by 2 (default) & 001 = FRC divided by 2 \\
\hline \(000=\) FRC divided by 1 & 000 = FRC divided by 1 (default) \\
\hline
\end{tabular}

\section*{TABLE A-1: OSCILLATOR CONFIGURATION DIFFERENCES (CONTINUED)}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|r|}{Fail-Safe Clock Monitor (FSCM)} \\
\hline On PIC32MX devices, the internal FRC became the clock source on a failure of the clock source. & On PIC32MZ devices, a separate internal Backup FRC (BFRC) becomes the clock source upon a failure at the clock source. \\
\hline \begin{tabular}{l}
On PIC32MX devices, a clock failure resulted in the triggering of a specific interrupt when the switchover was complete. \\
FSCM generates an interrupt.
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, a NMI is triggered instead, and must be handled by the NMI routine. \\
FSCM generates a NMI.
\end{tabular} \\
\hline \begin{tabular}{l}
FCKSM<1:0> (DEVCFG1<15:14>) \\
\(1 \mathrm{x}=\) Clock switching is disabled, FSCM is disabled \\
01 = Clock switching is enabled, FSCM is disabled \\
\(00=\) Clock switching is enabled, FSCM is enabled
\end{tabular} & \begin{tabular}{l}
The definitions of the \(F C K S M<1: 0>\) bits has changed on PIC32MZ devices. \\
FCKSM<1:0> (DEVCFG1<15:14>) \\
11 = Clock switching is enabled and clock monitoring is enabled \\
\(10=\) Clock switching is disabled and clock monitoring is enabled \\
\(01=\) Clock switching is enabled and clock monitoring is disabled \\
\(00=\) Clock switching is disabled and clock monitoring is disabled
\end{tabular} \\
\hline On PIC32MX devices, the CF (OSCCON<3>) bit indicates a clock failure. Writing to this bit initiates a FSCM event. & On PIC32MZ devices, the CF (OSCCON<3>) bit has the same functionality as that of PIC32MX device; however, an additional CF (RNMICON<1>) bit is available to indicate a NMI event. Writing to this bit causes a NMI event, but not a FSCM event. \\
\hline On PIC32MX devices, the CLKLOCK (OSCCON<7>) bit is controlled by the FSCM. & On PIC32MZ devices, the CLKLOCK (OSCCON<7>) bit is not impacted by the FSCM. \\
\hline CLKLOCK (OSCCON<7>) & CLKLOCK (OSCCON<7>) \\
\hline If clock switching and monitoring is disabled (FCKSM<1:0> =1x): & 1 = Clock and PLL selections are locked \\
\hline \(1=\) Clock and PLL selections are locked
\(0=\) Clock and PLL selections are not locked and may be modified & \(0=\) Clock and PLL selections are not locked and may be modified \\
\hline If clock switching and monitoring is enabled (FCKSM<1:0> \(=0 \mathrm{x}\)): Clock and PLL selections are never locked and may be modified. & \\
\hline
\end{tabular}

Table A-2 illustrates the difference in code setup of the respective parts for maximum speed using an external 24 MHz crystal.

TABLE A-2: CODE DIFFERENCES FOR MAXIMUM SPEED USING AN EXTERNAL 24 MHz CRYSTAL
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX at 80 MHz & PIC32MZ at 200 MHz \\
\hline \#include <xc.h> & \#include <xc.h> \\
\hline \#pragma config POSCMOD \(=\) HS & \#pragma config POSCMOD \(=\) HS \\
\hline \#pragma config FNOSC = PRIPLL & \#pragma config FNOSC \(=\) SPLL \\
\hline & \#pragma config FPLLICLK = PLL_POSC \\
\hline \#pragma config FPLLIDIV \(=\) DIV_6 & \#pragma config FPLLIDIV \(=\) DIV_3 \\
\hline & \#pragma config FPLLRNG = RANGE_5_10_MHZ \\
\hline \#pragma config FPLLMUL = MUL_20 & \#pragma config FPLLMULT = MUL_50 \\
\hline \#pragma config FPLLODIV = DIV_1 & \#pragma config FPLLODIV = DIV_2 \\
\hline \#define SYSFREQ (80000000L) & \#define SYSFREQ (200000000L) \\
\hline
\end{tabular}

\section*{A. 2 Analog-to-Digital Converter (ADC)}

The PIC32MZ family of devices has a new Pipelined ADC module that replaces the 10-bit ADC module in PIC32MX5XX/6XX/7XX devices; therefore, the use of Bold type to show differences is not used in the following table. Note that not all register differences are described in this section; however, the key feature differences are listed in Table A-3.

TABLE A-3: ADC DIFFERENCES
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Clock Selection and Operating Frequency (TAD)} \\
\hline \begin{tabular}{l}
On PIC32MX devices, the ADC clock was derived from either the FRC or from the PBCLK. \\
ADRC (AD1CON3<15>) \\
1 = FRC clock \\
\(0=\) Clock derived from Peripheral Bus Clock (PBCLK)
\end{tabular} & On PIC32MZ devices, the three possible sources of the ADC clock are FRC, REFCLKO3, and SYSCLK.
\[
\begin{aligned}
& \text { ADCSEL<1:0> (AD1CON1<9:8>) } \\
& 11=\text { FRC } \\
& 10=\text { REFCLKO3 } \\
& 01=\text { SYSCLK } \\
& 00=\text { Reserved }
\end{aligned}
\] \\
\hline On PIC32MX devices, if the ADC clock was derived from the PBCLK, that frequency was divided further down, with a maximum divisor of 512 , and a minimum divisor of two.
\[
\begin{aligned}
& \text { ADCS }<7: 0>(\text { AD1CON3 }<7: 0>) \\
& 11111111=512 * T P B=\text { TAD } \\
& : \\
& 0 \\
& 00000001=4 * \operatorname{TPB}=\text { TAD } \\
& 00000000=2 * T P B=\text { TAD }
\end{aligned}
\] & \begin{tabular}{l}
On PIC32MZ devices, any ADC clock source can be divided down, with a maximum divisor of 254 . The input clock can also be fed directly to the ADC. \\
ADCDIV<6:0> (AD1CON1<6:0>)
\[
\begin{aligned}
& 1111111=254 * T Q=\text { TAD } \\
& \cdot \\
& \mathbf{b} \\
& 0000011=6 * T Q=\text { TAD } \\
& 0000010=4 * T Q=\text { TAD } \\
& 0000001=2 * T Q=\text { TAD } \\
& 0000000=T Q=\text { TAD }
\end{aligned}
\]
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Scan Trigger Source} \\
\hline On PIC32MX devices, there are four sources that can trigger a scan conversion in the ADC module: Auto, Timer3, INTO, and clearing the SAMP bit.
```

SSRC<2:0> (AD1CON1<7:5>)
111 = Auto convert
$110=$ Reserved
101 = Reserved
$100=$ Reserved
011 = Reserved
$010=$ Timer3 period match
001 = Active transition on INT0 pin
$000=$ Clearing SAMP bit

``` & \begin{tabular}{l}
On PIC32MZ devices, the list of sources for triggering a scan conversion has been expanded to include the comparators, Output Compare, and two additional Timers. In addition, trigger sources can be simulated by setting the RQCNVRT (AD1CON3<29>) bit. \\
STRGSRC<4:0> (AD1CON1<26:22>) \\
11111 = Reserved \\
. \\
01101 = Reserved \\
01100 = Comparator 2 COUT \\
01011 = Comparator 1 COUT \\
\(01010=\) OCMP5 \\
01001 = OCMP3 \\
\(01000=\) OCMP1 \\
\(00111=\) TMR5 match \\
\(00110=\) TMR3 match \\
\(00101=\) TMR1 match \\
\(00100=\) INTO \\
00011 = Reserved \\
\(00010=\) Reserved \\
00001 = Global software trigger (GSWTRG) \\
\(00000=\) No trigger
\end{tabular} \\
\hline
\end{tabular}

TABLE A-3: ADC DIFFERENCES (CONTINUED)
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Output Format} \\
\hline On PIC32MX devices, the output format was decided for all ADC channels based on the setting of the FORM<2:0> bits.
\[
\begin{aligned}
& \text { FORM<2:0> (AD1CON1<10:8>) } \\
& 011=\text { Signed Fractional 16-bit } \\
& 010=\text { Fractional 16-bit } \\
& 001=\text { Signed Integer 16-bit } \\
& 000=\text { Integer 16-bit } \\
& 111=\text { Signed Fractional } 32 \text {-bit } \\
& 110=\text { Fractional 32-bit } \\
& 101=\text { Signed Integer } 32 \text {-bit } \\
& 100=\text { Integer } 32 \text {-bit }
\end{aligned}
\] & \begin{tabular}{l}
On PIC32MZ devices, the FRACT bit determines whether fractional or integer format is used. Then, each channel can have its own setting for input (differential or single-ended) and sign (signed or unsigned) using the \(\mathrm{SHxMOD}<1: 0>\) bits. \\
FRACT (AD1CON1<11>) \\
1 = Fractional \\
\(0=\) Integer \\
SHxMOD<1:0> (AD1IMOD<x:y>) \\
11 = Differential inputs, two's complement (signed) data output \\
\(10=\) Differential inputs, unipolar encoded (unsigned) data output \\
01 = Single-ended inputs, two's complement (signed) data output \\
\(00=\) Single-ended inputs, unipolar encoded (unsigned) data output
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Interrupts} \\
\hline \begin{tabular}{l}
On PIC32MX devices, an interrupt is triggered from the ADC module when a certain number of conversions have taken place, irrespective of which channel was converted. \\
SMPI<3:0> (AD1CON2<5:2>) \\
1111 = Interrupt for each 16th sample/convert sequence \\
\(1110=\) Interrupt for each 15 th sample/convert sequence \\
0001 = Interrupt for each 2nd sample/convert sequence \\
\(0000=\) Interrupt for each sample/convert sequence
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the ADC module can trigger an interrupt for each channel when it is converted. Use the Interrupt Controller bits, IEC1<31:27>, IEC2<31:0>, and IEC3<7:0>, to enable/ disable them. \\
In addition, the ADC support one global interrupt to indicate conversion on any number of channels. \\
AGIENxx (AD1GIRQENx<y>) \\
1 = Data ready event will generate a Global ADC interrupt \\
\(0=\) No global interrupt
\end{tabular} \\
\hline
\end{tabular}

\section*{ADC Calibration}

On PIC32MX devices, the ADC module can be used immediately, once it is enabled.

PIC32MZ devices require a calibration step prior to operation. This is done by copying the calibration data from DEVADCx to the corresponding AD1CALx register. When the ADC is enabled with ADCEN=1, a calibration step is run and ADCRDY will be set to 1 by the hardware when the calibration sequence is complete.

I/O Pin Analog Function Selection

On PIC32MX devices, the analog function of an I/O pin was determined by the PCFGx bit in the AD1PCFG register.

PCFGx (AD1PCFG<x>)
1 = Analog input pin in Digital mode
\(0=\) Analog input pin in Analog mode

On PIC32MZ devices, the analog selection function has been moved into a separate register on each I/O port. Note that the sense of the bit is different.
ANSxy (ANSELx<y>)
1 = Analog input pin in Analog mode
\(0=\) Analog input pin in Digital mode
\begin{tabular}{|l|r|}
\hline \multicolumn{2}{|c|}{ Debug } \\
\hline On PIC32MX devices, when stopping on a breakpoint during \\
debugging, the ADC module can be configured to stop or \\
continue execution from the Freeze Peripherals dialog in MPLAB \\
X IDE.
\end{tabular}

On PIC32MZ devices, the ADC module continues operating when stopping on a breakpoint during debugging.

\section*{Electrical Specifications and Timing Requirements}

Refer to "Section 31. Electrical Characteristics" in the PIC32MX5XX/6XX/7XX Data Sheet for ADC module specifications and timing requirements.

On PIC32MZ devices, the ADC module sampling and conversion time and other specifications have changed. Refer to 37.0 "Electrical Characteristics" for more information.

\section*{A. 3 CPU}

The CPU in the PIC32MZ family of devices has been changed to the MIPS microAptiv \({ }^{\text {TM }}\) MPU architecture. This CPU includes DSP ASE, internal data and instruction L1 caches, and a TLB-based MMU.
Table A-4 summarizes some of the key differences (indicated by Bold type) in the internal CPU registers.

\section*{TABLE A-4: CPU DIFFERENCES}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{L1 Data and Instruction Cache and Prefetch Wait States} \\
\hline \begin{tabular}{l}
On PIC32MX devices, the cache was included in the prefetch module outside the CPU. \\
PREFEN<1:0> (CHECON<5:4>) \\
11 = Enable predictive prefetch for both cacheable and non-cacheable regions \\
\(10=\) Enable predictive prefetch for non-cacheable regions only \\
\(01=\) Enable predictive prefetch for cacheable regions only \\
\(00=\) Disable predictive prefetch \\
DCSZ<1:0> (CHECON<9:8>) \\
Changing these bits causes all lines to be reinitialized to the "invalid" state. \\
11 = Enable data caching with a size of 4 lines \\
\(10=\) Enable data caching with a size of 2 lines \\
01 = Enable data caching with a size of 1 line \\
\(00=\) Disable data caching \\
CHECOH (\(\mathrm{CHECON}<16>\)) \\
1 = Invalidate all data and instruction lines \\
\(0=\) Invalidate all data and instruction lines that are not locked
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the CPU has a separate L1 instruction and data cache in the core. The PREFEN<1:0> bits still enable the prefetch module; however, the \(\mathrm{K} 0<2: 0>\) bits in the CPO registers controls the internal L1 cache for the designated regions. \\
PREFEN<1:0> (PRECON<5:4>) \\
11 = Enable predictive prefetch for any address \\
\(10=\) Enable predictive prefetch for CPU instructions and CPU \\
data \\
01 = Enable predictive prefetch for CPU instructions only \\
\(00=\) Disable predictive prefetch \\
K0<2:0> (CPO Reg 16, Select 0) \\
011 = Cacheable, non-coherent, write-back, write allocate \\
\(010=\) Uncached \\
001 = Cacheable, non-coherent, write-through, write allocate \\
\(000=\) Cacheable, non-coherent, write-through, no write allocate
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { PFMWS<2:0> }(\text { CHECON<2:0>) } \\
& 111=\text { Seven Wait states } \\
& 110=\text { Six Wait states } \\
& 101=\text { Five Wait states } \\
& 100=\text { Four Wait states } \\
& 011=\text { Three Wait states } \\
& 010=\text { Two Wait states }(\mathbf{6 1 - 8 0} \mathbf{~ M H z}) \\
& 001=\text { One Wait state }(\mathbf{3 1 - 6 0} \mathbf{~ M H z}) \\
& 000=\text { Zero Wait state }(\mathbf{0 - 3 0} \mathbf{~ M H z})
\end{aligned}
\] & \begin{tabular}{l}
The Program Flash Memory read wait state frequency points have changed in PIC32MZ devices. The register for accessing the PFMWS field has changed from CHECON to PRECON. \\
PFMWS<2:0> (PRECON<2:0>) \\
111 = Seven Wait states \\
011 = Three Wait states \\
\(010=\) Two Wait states (\(\mathbf{1 3 3 - 2 0 0} \mathbf{~ M H z}\)) \\
001 = One Wait state (\(\mathbf{6 6 - 1 3 3} \mathbf{~ M H z}\)) \\
\(000=\) Zero Wait states (\(\mathbf{0 - 6 6} \mathbf{~ M H z}\)) \\
Note: \\
Wait states listed are for ECC enabled.
\end{tabular} \\
\hline
\end{tabular}

TABLE A-4: CPU DIFFERENCES (CONTINUED)
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|r|}{Core Instruction Execution} \\
\hline \begin{tabular}{l}
On PIC32MX devices, the CPU can execute MIPS16e instructions and uses a 16 -bit instruction set, which reduces memory size. \\
MIPS16e \({ }^{\circledR}\)
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the CPU can operate a mode called microMIPS. microMIPS mode is an enhanced MIPS32® instruction set that uses both 16 -bit and 32 -bit opcodes. This mode of operation reduces memory size with minimum performance impact. \\
microMIPS \({ }^{\text {™ }}\) \\
The BOOTISA (DEVCFG0<6>) Configuration bit controls the MIPS32 and microMIPS modes for boot and exception code. \\
1 = Boot code and Exception code is MIPS32 \({ }^{\circledR}\) \\
(ISAONEXC bit is set to ' 0 ' and the ISA<1:0> bits are set to \\
' 10 ' in the CP0 Config3 register) \\
\(0=\) Boot code and Exception code is microMIPS \({ }^{\text {TM }}\) (ISAONEXC bit is set to ' 1 ' and the ISA<1:0> bits are set to ' 11 ' in the CP0 Config3 register)
\end{tabular} \\
\hline
\end{tabular}

\section*{A. 4 Resets}

The PIC32MZ family of devices has updated the resets modules to incorporate the new handling of NMI resets from the WDT, DMT, and the FSCM. In addition, some bits have been moved, as summarized in Table A-5.

\section*{TABLE A-5: RESET DIFFERENCES}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|r|}{Power Reset} \\
\hline \begin{tabular}{l}
VREGS (RCON<8>) \\
\(1=\) Regulator is enabled and is on during Sleep mode \\
\(0=\) Regulator is disabled and is off during Sleep mode
\end{tabular} & \begin{tabular}{l}
The VREGS bit, which controls whether the internal regulator is enabled in Sleep mode, has been moved from RCON in PIC32MX5XX/6XX/7XX devices to a new PWRCON register in PIC32MZ devices. \\
VREGS (PWRCON<0>) \\
1 = Voltage regulator will remain active during Sleep \\
\(0=\) Voltage regulator will go to Stand-by mode during Sleep
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Watchdog Timer Reset} \\
\hline \begin{tabular}{l}
On PIC32MX devices, a WDT expiration immediately triggers a device reset. \\
WDT expiration immediately causes a device reset.
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the WDT expiration now causes a NMI. The WDTO bit in RNMICON indicates that the WDT caused the NMI. A new timer, NMICNT, runs when the WDT NMI is triggered, and if it expires, the device is reset. \\
WDT expiration causes a NMI, which can then trigger the device reset. \\
WDTO (RNMICON<24>) \\
1 = WDT time-out has occurred and caused a NMI \\
\(0=\) WDT time-out has not occurred \\
NMICNT<7:0> (RNMICON<7:0>)
\end{tabular} \\
\hline
\end{tabular}

\section*{A. 5 USB}

The PIC32MZ family of devices has a new Hi-Speed USB module, which requires the updated USB stack from Microchip. In addition, the USB PLL was also updated. See Section A. 1 "Oscillator and PLL Configuration" for more information and Table A-6 for a list of additional differences.

\section*{TABLE A-6: USB DIFFERENCES}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ PIC32MX5XX/6XX/7XX Feature } & \multicolumn{1}{c|}{ PIC32MZ Feature } \\
\hline \hline \multicolumn{3}{|c|}{ Debug Mode } \\
\hline \begin{tabular}{l}
On PIC32MX devices, when stopping on a breakpoint during \\
debugging, the USB module can be configured to stop or \\
continue execution from the Freeze Peripherals dialog in MPLAB \\
X IDE.
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the USB module continues operating when \\
stopping on a breakpoint during debugging.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ VBuson Pin } \\
\hline \begin{tabular}{l}
PIC32MX devices feature a VBUSON pin for controlling the \\
external transceiver power supply.
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the VBuson pin is not available. A port pin \\
can be used to achieve the same functionality.
\end{tabular} \\
\hline
\end{tabular}

\section*{A. 6 DMA}

The DMA controller in PIC32MZ devices is similar to the DMA controller in PIC32MX5XX/6XX/7XX devices. New features include the extension of pattern matching to two by bytes and the addition of the optional Pattern Ignore mode. Table A-7 lists differences (indicated by Bold type) that will affect software migration.

\section*{TABLE A-7: DMA DIFFERENCES}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Read/Write Status on Error} \\
\hline \begin{tabular}{l}
RDWR (DMASTAT<3>) \\
1 = Last DMA bus access when an error was detected was a read \\
\(0=\) Last DMA bus access when an error was detected was a write
\end{tabular} & \begin{tabular}{l}
The RDWR bit has moved from DMASTAT<3> in PIC32MX5XX/ 6XX/7XX devices to DMASTAT<31> in PIC32MZ devices. \\
RDWR (DMASTAT<31>) \\
1 = Last DMA bus access when an error was detected was a read \\
\(0=\) Last DMA bus access when an error was detected was a write
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Source-to-Destination Transfer} \\
\hline On PIC32MX devices, a DMA channel performs a read of the source data and completes the transfer of this data into the destination address before it is ready to read the next data from the source. & On PIC32MZ devices, the DMA implements a 4-deep queue for data transfers. A DMA channel reads the source data and places it into the queue, regardless of whether previous data in the queue has been delivered to the destination address. \\
\hline
\end{tabular}

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{A. 7 Interrupts and Exceptions}

The key difference between Interrupt Controllers in PIC32MX5XX/6XX/7XX devices and PIC32MZ devices concerns vector spacing. Previous PIC32MX devices had fixed vector spacing, which is adjustable in set increments, and every interrupt had the same amount of space. PIC32MZ devices replace this with a variable offset spacing, where each interrupt has an offset register to determine where to begin execution.

In addition, the IFSx, IECx, and IPCx registers for old peripherals have shifted to different registers due to new peripherals. Please refer to Section 7.0 "CPU Exceptions and Interrupt Controller" to determine where the interrupts are now located.
Table A-8 lists differences (indicated by Bold type) in the registers that will affect software migration.

\section*{TABLE A-8: INTERRUPT DIFFERENCES}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Vector Spacing} \\
\hline \begin{tabular}{l}
On PIC32MX devices, the vector spacing was determined by the VS field in the CPU core. \\
VS<4:0> (IntCt|<9:5>: CP0 Register 12, Select 1) \\
\(10000=512\)-byte vector spacing \\
\(01000=256\)-byte vector spacing \\
\(00100=128\)-byte vector spacing \\
\(00010=64\)-byte vector spacing \\
\(00001=32\)-byte vector spacing \\
\(00000=0\)-byte vector spacing
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the vector spacing is variable and determined by the Interrupt controller. The VOFFx<17:1> bits in the OFFx register are set to the offset from EBASE where the interrupt service routine is located. \\
VOFFx<17:1> (OFFx<17:1>) \\
Interrupt Vector ' \(x\) ' Address Offset bits
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Shadow Register Sets} \\
\hline \begin{tabular}{l}
On PIC32MX devices, there was one shadow register set which could be used during interrupt processing. Which interrupt priority could use the shadow register set was determined by the FSRSSEL field in DEVCFG3 and SS0 on INTCON. \\
FSRSSEL<2:0> (DEVCFG3<18:16>) \\
111 = Assign Interrupt Priority 7 to a shadow register set \\
110 = Assign Interrupt Priority 6 to a shadow register set \\
001 = Assign Interrupt Priority 1 to a shadow register set \\
\(000=\) All interrupt priorities are assigned to a shadow register set \\
SSO (INTCON<16>) \\
1 = Single vector is presented with a shadow register set \\
\(0=\) Single vector is not presented with a shadow register set
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, there are seven shadow register sets, and each priority level can be assigned a shadow register set to use via the PRIxSS<3:0> bits in the PRISS register. The SSO bit is also moved to PRISS<0>. \\
PRIxSS<3:0> PRISS<y:z> \\
1xxx = Reserved (by default, an interrupt with a priority \\
level of \(x\) uses Shadow Set 0) \\
0111 = Interrupt with a priority level of \(x\) uses Shadow Set 7 \\
0110 = Interrupt with a priority level of \(x\) uses Shadow Set 6 \\
0001 = Interrupt with a priority level of \(x\) uses Shadow Set 1 \\
\(0000=\) Interrupt with a priority level of \(x\) uses Shadow Set 0 \\
SS0 (PRISS<0>) \\
1 = Single vector is presented with a shadow register set \\
\(0=\) Single vector is not presented with a shadow register set
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Status} \\
\hline \begin{tabular}{l}
PIC32MX devices, the VEC<5:0> bits show which interrupt is being serviced. \\
VEC<5:0> (INTSTAT<5:0>) \\
11111-00000 = The interrupt vector that is presented to the CPU
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the SIRQ<7:0> bits show the IRQ number of the interrupt last serviced. \\
SIRQ<7:0> (INTSTAT<7:0>) \\
11111111-00000000 = The last interrupt request number serviced by the CPU
\end{tabular} \\
\hline
\end{tabular}

\section*{A. 8 Flash Programming}

The PIC32MZ family of devices incorporates a new Flash memory technology. Applications ported from PIC32MX5XX/6XX/7XX devices that take advantage of Run-time Self Programming will need to adjust the Flash programming steps to incorporate these changes.

Table A-9 lists the differences (indicated by Bold type) that will affect software migration.

\section*{TABLE A-9: FLASH PROGRAMMING DIFFERENCES}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Program Flash Write Protection} \\
\hline On PIC32MX devices, the Program Flash write-protect bits are part of the Flash Configuration words (DEVCFG0).
\[
\begin{aligned}
& \text { PWP<7:0> (DEVCFG0<19:12>) } \\
& 1111111=\text { Disabled } \\
& 1111110=0 \times B D 000 F F F \\
& 11111101=0 \times B D 001 F F F \\
& 1111100=0 \times B D 002 F F F \\
& 1111011=0 \times B D 003 F F F \\
& 11111010=0 \times B D 004 F F F \\
& 11111001=0 \times B D 005 F F F \\
& 11111000=0 \times B D 006 F F F \\
& 11110111=0 \times B D 007 F F F \\
& 11110110=0 \times B D 008 F F F \\
& 11110101=0 \times B D 009 F F F \\
& 11110100=0 \times B D 00 A F F F \\
& 11110011=0 \times B D 00 B F F F \\
& 11110010=0 \times B D 00 C F F F \\
& 11110001=0 \times B D 00 D F F F \\
& 11110000=0 x B D 00 E F F F \\
& 1110111=0 \times B D 00 F F F F \\
& \mathbf{Q} \\
& \mathbf{0 1 1 1 1 1 1 1}= \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
On PIC32MZ devices, the write-protect register is contained separately as the NVMPWP register. It has been expanded to 24 bits, and now represents the address below, which all Flash memory is protected. Note that the lower 14 bits are forced to zero, so that all memory locations in the page are protected. \\
PWP<23:0> (NVMPWP<23:0>) \\
Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of ' 0 ', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Code Protection} \\
\hline On PIC32MX devices, code protection is enabled by the CP (DEVCFG<28>) bit. & On PIC32MZ devices, code protection is enabled by the CP (DEVCP0<28>) bit. \\
\hline \multicolumn{2}{|c|}{Boot Flash Write Protection} \\
\hline On PIC32MX devices, Boot Flash write protection is enable by the BWP (DEVCFG<24>) bit and protects the entire Boot Flash memory. & On PIC32MZ devices, Boot Flash write protection is divided into pages and is enable by the LBWPx and UBWPx bits in the NVMBWP register. \\
\hline \multicolumn{2}{|c|}{Low-Voltage Detect Status} \\
\hline \[
\begin{aligned}
& \text { LVDSTAT (NVMCON<11>) } \\
& 1=\text { Low-voltage event is active } \\
& 0=\text { Low-voltage event is not active }
\end{aligned}
\] & The LVDSTAT bit is not available in PIC32MZ devices. \\
\hline
\end{tabular}

\section*{TABLE A-9: FLASH PROGRAMMING DIFFERENCES (CONTINUED)}
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Flash Programming} \\
\hline ```
NVMOP<3:0> (NVMCON<3:0>)
1111 = Reserved
0111 = Reserved
0110 = No operation
0101 = Program Flash (PFM) erase operation
0100 = Page erase operation
0011 = Row program operation
0010 = No operation
0001 = Word program operation
0000 = No operation
``` & The op codes for programming the Flash memory have been changed to accommodate the new quad-word programming and dual-panel features. The row size has changed to 2 KB (512 IW) from 128 IW . The page size has changed to 16 KB (4K IW) from \(4 \mathrm{~KB}(1 \mathrm{~K}\) IW). Note that the NVMOP register is now protected, and requires the WREN bit be set to enable modification.
```

NVMOP<3:0> (NVMCON<3:0>)
1111 = Reserved
1000 = Reserved
0111 = Program erase operation
0110 = Upper program Flash memory erase operation
0101 = Lower program Flash memory erase operation
0100 = Page erase operation
0011 = Row program operation
0010 = Quad Word (128-bit) program operation
$0001=$ Word program operation
$0000=$ No operation

``` \\
\hline \begin{tabular}{l}
PIC32MX devices feature a single NVMDATA register for word programming. \\
NVMDATA
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, to support quad word programming, the NVMDATA register has been expanded to four words. \\
NVMDATAx, where ' \(x\) ' \(=0\) through 3
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Flash Endurance and Retention} \\
\hline PIC32MX devices support Flash endurance and retention of up to 20 K E/W cycles and 20 years. & On PIC32MZ devices, ECC must be enabled to support the same endurance and retention as PIC32MX devices. \\
\hline \multicolumn{2}{|c|}{Configuration Words} \\
\hline On PIC32MX devices, Configuration Words can be programmed with Word or Row program operation. & On PIC32MZ devices, all Configuration Words must be programmed with Quad Word operation. \\
\hline \multicolumn{2}{|r|}{Configuration Words Reserved Bit} \\
\hline On PIC32MX devices, the DEVCFG0<15> bit is Reserved and must be programmed to ' 0 '. & On PIC32MZ devices, this bit is DEVSIGN0<31>. \\
\hline
\end{tabular}

\section*{A. 9 Other Peripherals and Features}

Most of the remaining peripherals on PIC32MZ devices act identical to their counterparts on PIC32MX5XX/ \(6 \mathrm{XX} / 7 \mathrm{XX}\) devices. The main differences have to do with handling the increased peripheral bus clock speed and additional clock sources.

Table A-10 lists the differences (indicated by Bold type) that will affect software and hardware migration.

TABLE A-10: PERIPHERAL DIFFERENCES
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{\(1^{2} C^{\text {cm }}\)} \\
\hline On PIC32MX devices, all pins are 5V-tolerant. & On PIC32MZ devices, the I2C4 port uses non-5V tolerant pins, and will have different VoL/VOH specifications. \\
\hline I2CxBRG<11:0> & The Baud Rate Generator register has been expanded from 12 bits to 16 bits.
|2CxBRG<15:0> \\
\hline \multicolumn{2}{|c|}{Watchdog Timer} \\
\hline \begin{tabular}{l}
Clearing the Watchdog Timer on PIC32MX5XX/6XX/7XX devices required writing a ' 1 ' to the WDTCLR bit. \\
WDTCLR (WDTCON<0>)
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the WDTCLR bit has been replaced with the 16-bit WDTCLRKEY, which must be written with a specific value ( \(0 \times 5743\) ) to clear the Watchdog Timer. In addition, the WDTSPGM (DEVCFG1<21>) bit is used to control operation of the Watchdog Timer during Flash programming. \\
WDTCLRKEY<15:0> (WDTCON<31:16>)
\end{tabular} \\
\hline \multicolumn{2}{|c|}{RTCC} \\
\hline \begin{tabular}{l}
On PIC32MX devices, the output of the RTCC pin was selected between the Seconds Clock or the Alarm Pulse. \\
RTCSECSEL (RTCCON<7>) \\
1 = RTCC Seconds Clock is selected for the RTCC pin \\
\(0=\) RTCC Alarm Pulse is selected for the RTCC pin
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the RTCC Clock is added as an option. RTCSECSEL has been renamed RTCOUTSEL and expanded to two bits. \\
RTCOUTSEL<1:0> (RTCCON<8:7>) \\
11 = Reserved \\
\(10=\) RTCC Clock is presented on the RTCC pin \\
01 = Seconds Clock is presented on the RTCC pin \\
\(00=\) Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
\end{tabular} \\
\hline On PIC32MX devices, the Secondary Oscillator (Sosc) serves as the input clock for the RTCC module. & \begin{tabular}{l}
On PIC32MZ devices, an additional clock source, LPRC, is available as a choice for the input clock. \\
RTCCLKSEL<1:0> (RTCCON<10:9>) \\
11 = Reserved \\
\(10=\) Reserved \\
\(01=\) RTCC uses the external \(32.768 \mathbf{k H z}\) Sosc \\
\(00=\) RTCC uses the internal 32 kHz oscillator (LPRC)
\end{tabular} \\
\hline
\end{tabular}

TABLE A-10: PERIPHERAL DIFFERENCES (CONTINUED)
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|r|}{Ethernet} \\
\hline \[
\begin{aligned}
& \text { CLKSEL<3:0> (EMAC1MCFG<5:2>) } \\
& 1000=\text { SYSCLK divided by } 40 \\
& 0111=\text { SYSCLK divided by } 28 \\
& 0110=\text { SYSCLK divided by } 20 \\
& 0101=\text { SYSCLK divided by } 14 \\
& 0100=\text { SYSCLK divided by } 10 \\
& 0011=\text { SYSCLK divided by } 8 \\
& 0010=\text { SYSCLK divided by } 6 \\
& 000 x=\text { SYSCLK divided by } 4
\end{aligned}
\] & On PIC32MZ devices, the input clock divider for the Ethernet module has expanded options to accommodate the faster peripheral bus clock.
\[
\begin{aligned}
& \text { CLKSEL<3:0> (EMAC1MCFG<5:2>) } \\
& 1010=P B C L K 5 \text { divided by } 50 \\
& 1001=P B C L K 5 \text { divided by } 48 \\
& 1000=P B C L K 5 \text { divided by } 40 \\
& 0111=P B C L K 5 \text { divided by } 28 \\
& 0110=P B C L K 5 \text { divided by } 20 \\
& 0101=P B C L K 5 \text { divided by } 14 \\
& 0100=P B C L K 5 \text { divided by } 10 \\
& 0011=P B C L K 5 \text { divided by } 8 \\
& 0010=P B C L K 5 \text { divided by } 6 \\
& 000 x=P B C L K 5 \text { divided by } 4
\end{aligned}
\] \\
\hline \multicolumn{2}{|r|}{Comparator/Comparator Voltage Reference} \\
\hline \begin{tabular}{l}
On PIC32MX devices, it was possible to select the Vref+ pin as the output to the CVREFOUT pin. \\
VREFSEL (CVRCON<10>) \\
1 = CVREF = VREF+ \\
\(0=\) CVREF is generated by the resistor network
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, the CVREFOUT pin must come from the resistor network. \\
This bit is not available.
\end{tabular} \\
\hline On PIC32MX devices, the internal voltage reference (IVREF) could be chosen by the BGSEL<1:0> bits.
\[
\begin{aligned}
& \text { BGSEL<1:0> }(\text { CVRCON }<9: 8>) \\
& 11=\text { IVREF }=\text { VREF }+ \\
& 10=\text { Reserved } \\
& 01=\text { IVREF }=0.6 \mathrm{~V} \text { (nominal, default) } \\
& 00=\text { IVREF }=1.2 \mathrm{~V} \text { (nominal }) \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
On PIC32MZ devices, IVREF is fixed and cannot be changed. \\
These bits are not available.
\end{tabular} \\
\hline \multicolumn{2}{|r|}{Change Notification} \\
\hline On PIC32MX devices, Change Notification is controlled by the CNCON, CNEN, and CNPUE registers. & On PIC32MZ devices, Change Notification functionality has been relocated into each I/O port and is controlled by the CNPUx, CNPDx, CNCONx, CNENx, and CNSTATx registers. \\
\hline \multicolumn{2}{|r|}{System Bus} \\
\hline On PIC32MX devices, the System Bus registers can be used to configure RAM memory for data and program memory partitions, cacheability of Flash memory, and RAM Wait states. These registers are: BMXCON, BMXDKPBA, BMXDUDBA, BMXDUPBA, BMXPUPBA, BMXDRMSZ, BMXPFMSZ, and BMXBOOTSZ. & On PIC32MZ devices, a new System Bus is utilized that supports using RAM memory for program or data without the need for special configuration. Therefore, no special registers are associated with the System Bus to configure these features. \\
\hline On PIC32MX devices, various arbitration modes are used as initiators on the System Bus. These modes can be selected by the BMXARB<2:0> (BMXCON<2:0>) bits. & \begin{tabular}{l}
On PIC32MZ devices, a new arbitration scheme has been implemented on the System Bus. All initiators use the Least Recently Serviced (LRS) scheme, with the exception of the DMA, CPU, and the Flash Controller. \\
The Flash Controller always has High priority over LRS initiators. \\
The DMA and CPU (when servicing an interrupt) can be selected to have LRS or High priority using the DMAPRI (CFGCON<25>) and CPUPRI (CFGCON<24>) bits.
\end{tabular} \\
\hline
\end{tabular}

\section*{A. 10 Package Differences}

In general, PIC32MZ devices are mostly pin compatible with PIC32MX5XX/6XX/7XX devices; however, some pins are not. In particular, the VDD and Vss pins have been added and moved to different pins. In addition, I/O functions that were on fixed pins now will largely be on remappable pins.

TABLE A-11: PACKAGE DIFFERENCES
\begin{tabular}{|c|c|}
\hline PIC32MX5XX/6XX/7XX Feature & PIC32MZ Feature \\
\hline \multicolumn{2}{|c|}{Vcap Pin} \\
\hline \begin{tabular}{l}
On PIC32MX devices, an external capacitor is required between a VCAP pin and GND, which provides a filtering capacitor for the internal voltage regulator. \\
A low-ESR capacitor (typically \(10 \mu \mathrm{~F}\) ) is required on the VcAP pin.
\end{tabular} & \begin{tabular}{l}
On PIC32MZ devices, this requirement has been removed. \\
No Vcap pin.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{Vdd and Vss Pins} \\
\hline \begin{tabular}{l}
VDD on 64-pin packages: \(10,26,38,57\) \\
VDD on 100-pin packages: 2, 16, 37, 46, 62, 86
\end{tabular} & \begin{tabular}{l}
There are more VDD pins on PIC32MZ devices, and many are located on different pins. \\
VDD on 64-pin packages: 8, 26, 39, 54, 60 \\
VDD on 100-pin packages: 14, 37, 46, 62, 74, 83, 93
\end{tabular} \\
\hline \begin{tabular}{l}
Vss on 64-pin packages: 9, 25, 41 \\
Vss on 100-pin packages: \(15,36,45,65,75\)
\end{tabular} & \begin{tabular}{l}
There are more Vss pins on PIC32MZ devices, and many are located on different pins. \\
Vss on 64-pin packages: \(7,25,35,40,55,59\) \\
Vss on 100-pin packages: \(13,36,45,53,63,75,84,92\)
\end{tabular} \\
\hline \multicolumn{2}{|c|}{PPS I/O Pins} \\
\hline All peripheral functions are fixed as to what pin upon which they operate. & \begin{tabular}{l}
Peripheral functions on PIC32MZ devices are now routed through a PPS module, which routes the signals to the desired pins. When migrating software, it is necessary to initialize the PPS I/O functions in order to get the signal to and from the correct pin. \\
PPS functionality for the following peripherals: \\
- CAN \\
- UART \\
- SPI (except SCK) \\
- Input Capture \\
- Output Compare \\
- External Interrupt (except INTO) \\
- Timer Clocks (except Timer1) \\
- Reference Clocks (except REFCLK2)
\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIX B: REVISION HISTORY}

\section*{Revision A (February 2013)}

This is the initial released version of the document.

\section*{Revision B (November 2013)}

Throughout the document, references to Microchip documentation numbers have been updated to reflect a new 8 -digit numbering scheme now in use by Microchip. For example, DS61191 is now DS60001191.

The revision includes the following major changes, which are referenced by their respective chapter in Table B-1.
In addition, minor updates to text and formatting were incorporated throughout the document.

\section*{TABLE B-1: MAJOR SECTION UPDATES}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{\(\quad\) Update Description } \\
\hline \hline \begin{tabular}{l} 
"32-bit MCUs (up to 2 MB Live- \\
Update Flash and 512 KB SRAM) \\
with Audio and Graphics \\
Interfaces, HS USB, Ethernet, and \\
Advanced Analog"
\end{tabular} & \begin{tabular}{l} 
All Family Feature tables were updated (see Table 1 and Table 2). \\
The device part numbers were updated in all pin tables (see Table 3 through \\
Table 6).
\end{tabular} \\
\hline \(\mathbf{1 . 0}\) "Device Overview" & \begin{tabular}{l} 
Updated the Pinout I/O Descriptions for 64-pin QFN/TQFP devices for SPI5 \\
and SPI6 (see Table 1-9).
\end{tabular} \\
\hline \begin{tabular}{l} 
2.0 "Guidelines for Getting Started \\
with 32-bit Microcontrollers"
\end{tabular} & \begin{tabular}{l} 
Updated the MCLR Pin Connections example (see Figure 2-2). \\
Removed the Termination Resistor diagram (formerly Figure 2-4).
\end{tabular} \\
\hline 4.0 "Memory Organization" & \begin{tabular}{l} 
Updated the Boot and Alias Memory Map (see Figure 4-5). \\
Updated the Boot Flash 1 and Boot Flash 2 Sequence and Configuration \\
Words Summaries (see Table 4-2 and Table 4-3, respectively). \\
Added the Watchdog Timer (WDT) to Target 5 in the Initiators to Targets
\end{tabular} \\
Access Association and System Bus Targets and Associated Protection \\
Registers (see Table 4-4 and Table 4-6, respectively). In addition, the reset \\
values in Note 1 of Table 4-6 were updated. \\
The CODE<3:0> bit value definitions and the default POR values for the \\
CMD<2:0> bits were updated (see Register 4-3). \\
The default POR value for the GROUP3 bit was updated (see Register 4-9 \\
and Register 4-10).
\end{tabular}\(|\)\begin{tabular}{ll|} 
The All Resets value for the lower 16 bits of the NVMBWP register was \\
updated (see Table 5-1).
\end{tabular}

\section*{TABLE B-1: MAJOR SECTION UPDATES (CONTINUED)}
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline 28.0 "12-bit Pipelined Analog-toDigital Converter (ADC)" & \begin{tabular}{l}
Figure 28-1, Figure 28-2, and Figure 28-3 were updated. \\
Register names were updated in the ADC Register Map (see Table 28-1). \\
The OVRSAM<2:0> bit values were updated (see Register 28-14).
\end{tabular} \\
\hline 34.0 "Special Features" & The DEVCFG3/ADEVCFG3 register was updated (see Register 34-6). \\
\hline 37.0 "Electrical Characteristics" & \begin{tabular}{l}
Various electrical specifications were updated, including: \\
- The minimum value for parameter DC10 (VDD) in the DC Temperature and Voltage Specifications was updated (see Table 37-4). \\
- The minimum and maximum values for parameter BO10 (VBOR) were updated in the BOR Electrical Characteristics (see Table 37-4). \\
- Updated the third and fourth bullet list items in Note 2 in DC Characteristics: Operating Current (IDD) (see Table 37-6). \\
- Updated the third and fourth bullet list items in Note 1 in DC Characteristics: Idle Current (IIDLE) (see Table 37-7). \\
- Updated the third and fourth bullet list items in Note 1in DC Characteristics: Power-Down Current (IPD) (see Table 37-8). \\
- Added Note 6 and updated parameters DI20, DI28a, DI28b, DI30, and DI31 in DC Characteristics: I/O Pin Input Specifications (see Table 37-9). \\
- Added DC Characteristics: I/O Pin Input Injection Current Specifications (see Table 37-10). \\
- Added parameter DO50 to Capacitive Loading Requirements on Output Pins (see Table 37-15). \\
- Note 3 was added and the Conditions were updated for parameter OS42 in the External Clock Timing Requirements (see Table 37-16). \\
- Updated the Minimum value for parameter OS51 (FSYS) in the System Timing Requirements (see Table 37-17). \\
- Added parameter OS54a and updated the Maximum value for parameter OS50 in the PLL Clock Timing Specifications (see Table 37-18). \\
- The Internal Backup FRC (BFRC) Accuracy specification was added (see Table 37-21). \\
- The SQI Input and Output Timing Characteristics diagram were updated (see Figure 37-14 and Figure 37-15). \\
- The SQI Timing Requirements were updated (see Table 37-33). \\
- Parameter AD13 was removed (see Table 37-37). \\
- The Min. and Max. values for parameter TS12 and the Conditions for parameter TS13 and TS14 in the Temperature Sensor Specifications were updated (see Table 36-39).
\end{tabular} \\
\hline 38.0 "AC and DC Characteristics Graphs" & Updated Typical Temperature Sensor Voltage (see Figure 38-7). \\
\hline Appendix A: "Migrating from PIC32MX5XX/6XX/7XX to PIC32MZ" & New appendix for migrating to PIC32MZ devices was added. \\
\hline
\end{tabular}

\section*{Revision B (November 2013)}

The revision includes the following major changes, which are referenced by their respective chapter in Table B-2.
In addition, minor updates to text and formatting were incorporated throughout the document.
TABLE B-2: MAJOR SECTION UPDATES
\begin{tabular}{|c|c|}
\hline Section Name & Update Description \\
\hline "32-bit MCUs (up to 2 MB LiveUpdate Flash and 512 KB SRAM) with Audio and Graphics Interfaces, HS USB, Ethernet, and Advanced Analog" & V-Temp Operating Conditions \(\left(-40^{\circ} \mathrm{C}\right.\) to \(\left.+105^{\circ} \mathrm{C}\right)\) were added. Extended Operating Conditions \(\left(-40^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\) ) were updated. \\
\hline 2.0 "Guidelines for Getting Started with 32-bit Microcontrollers" & Updated the \(\overline{\mathrm{MCLR}}\) Pin Connections example (see Figure 2-2). Removed the Termination Resistor diagram (formerly Figure 2-4). \\
\hline 28.0 "12-bit Pipelined Analog-toDigital Converter (ADC)" & Added 28.1 "ADC Configuration Requirements". \\
\hline 37.0 "Electrical Characteristics" & \begin{tabular}{l}
Various electrical specifications were updated, including: \\
- The Standard Operating Conditions were updated to 2.3 V and V -Temp specifications were added to the DC and AC Characteristics tables throughout the chapter \\
- Specifications were updated in the following tables: \\
- Table 37-1: "Operating MIPS vs. Voltage" \\
- Table 37-2: "Thermal Operating Conditions" \\
- Table 37-3: "Thermal Packaging Characteristics" \\
- Table 37-4: "DC Temperature and Voltage Specifications" \\
- Table 37-5: "Electrical Characteristics: BOR" \\
- Table 37-6: "DC Characteristics: Operating Current (Idd)" \\
- Table 37-7: "DC Characteristics: Idle Current (lidle)" \\
- Table 37-8: "DC Characteristics: Power-Down Current (Ipd)" \\
- Table 37-17: "System Timing Requirements" \\
- Table 37-19: "Internal FRC Accuracy" \\
- Table 37-20: "Internal LPRC Accuracy" \\
- Table 37-21: "Internal Backup FRC (BFRC) Accuracy" \\
- Table 37-33: "SQI Timing Requirements" \\
- Table 37-37: "ADC1 Module Specifications" \\
- Table 36-38: "Analog-to-Digital Conversion Timing Requirements"
\end{tabular} \\
\hline
\end{tabular}

\section*{Revision C (July 2014)}

The following global updates were incorporated throughout the data sheet:
- All instances of OSCI and OSCO in the pin tables were changed to: OSC1 and OSC2, respectively
- V-Temp Operating Conditions: 180 MHz , \(-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+105^{\circ} \mathrm{C}\) were added
- Operating Conditions voltage range was changed to 2.3 V to 3.6 V

In addition, the following major updates were made, which are referenced by their respective chapter in Table B-3:

\section*{TABLE B-3: MAJOR SECTION UPDATES}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Section Name } & \multicolumn{1}{c|}{ Update Description } \\
\hline \hline \(\mathbf{2 6 . 0}\) "Crypto Engine" & \begin{tabular}{l} 
Updated the Crypto Engine Buffer Descriptors (see Table 26-3). \\
Updated the Security Association Control Word Structure (see Figure 26-10).
\end{tabular} \\
\hline \begin{tabular}{l} 
28.0 "Pipelined Analog-to-Digital \\
Converter (ADC)"
\end{tabular} & Added 28.1 "ADC Configuration Requirements". \\
\hline \(\mathbf{3 7 . 0}\) "Electrical Characteristics" & \begin{tabular}{l} 
Updated the DC Temperature and Voltage Specifications (see Table 37-4). \\
Updated parameter DC20 and DC21 in the Operating Current Specifications \\
(see Table 37-6). \\
Updated parameter DC30a and DC31a in the Idle Current Specifications (see \\
Table 37-7). \\
Updated the Power-Down Current Specifications (see Table 37-8). \\
Updated the I/O Pin Input Specifications (see Table 37-9). \\
Updated the System Timing Requirements (see Table 37-17). \\
Updated the Internal FRC Accuracy Specifications (see Table 37-19). \\
Updated the Internal LPRC Accuracy Specifications (see Table 37-20). \\
Updated the Internal BFRC Accuracy Specifications (see Table 37-21). \\
Updated the SQI Timing Requirements (see Table 37-33). \\
Updated the ADC1 Module Specifications (see Table 37-37). \\
Updated the Analog-to-Digital Conversion Timing Requirements (see \\
Table 37-38). \\
Updated the USB OTG Specification: USB322 (see Table 37-43).
\end{tabular} \\
\hline
\end{tabular}

NOTES:

\section*{PIC32MZ Embedded Connectivity (EC) Family}

\section*{INDEX}
A
AC Characteristics ..... 574
ADC Specifications ..... 596
Analog-to-Digital Conversion Requirements ..... 597
EJTAG Timing Requirements ..... 607
Ethernet ..... 603
Internal FRC Accuracy ..... 577
Internal RC Accuracy ..... 577
OTG Electrical Specifications ..... 602
Parallel Master Port Read Requirements ..... 600
Parallel Master Port Write ..... 601
Parallel Master Port Write Requirements ..... 601
Parallel Slave Port Requirements ..... 599
PLL Clock Timing ..... 576
Assembler
MPASM Assembler ..... 558
B
Block Diagrams
Comparator I/O Operating Modes ..... 517
Comparator Voltage Reference ..... 521
CPU .....  44
Crypto Engine ..... 379
DMA ..... 161
Ethernet Controller ..... 473
2C Circuit ..... 336
Input Capture ..... 291
Interrupt Controller ..... 109
JTAG Programming, Debugging and Trace Ports ..... 553
Output Compare Module. ..... 295
PIC32 CAN Module ..... 435
PMP Pinout and Connections to External Devices. ..... 351
Prefetch Module ..... 157
Prefetch Module Block Diagram ..... 157
Random Number Generator (RNG) ..... 399
Reset System ..... 103
RTCC. ..... 369
Serial Quad Interface (SQI) ..... 311
SPI Module ..... 301
Timer1 ..... 269
Timer2/3/4/5 (16-Bit) ..... 273
Typical Multiplexed Port Structure ..... 233
UART ..... 343
WDT and Power-up Timer ..... 287
Brown-out Reset (BOR)
and On-Chip Voltage Regulator ..... 553
C
C Compilers
MPLAB C18 ..... 558
Comparator
Specifications ..... 573
Comparator Module ..... 517
Comparator Voltage Reference (CVref ..... 521
Configuration Bit ..... 531
Configuring Analog Port Pins ..... 234
Controller Area Network (CAN) ..... 435
CPO Register 16, Select 1) ..... 51
CPO Register 16, Select 2) ..... 53
CP0 Register 16, Select 3) ..... 52

CPU
Architecture Overview ..... 45
Coprocessor 0 Registers ..... 47
Core Exception Types ..... 110
EJTAG Debug Support ..... 49
Power Management ..... 49
CPU Module ..... 37, 43
Crypto Engine ..... 379
Customer Change Notification Service ..... 655
Customer Notification Service ..... 655
Customer Support ..... 655
D
DC Characteristics ..... 562
I/O Pin Input Specifications ..... 567, 568
I/O Pin Output Specifications. ..... 569
Idle Current (IIDLE) ..... 565
Power-Down Current (IPD). ..... 566
Program Memory ..... 572
Temperature and Voltage Specifications ..... 563
Development Support ..... 557
Direct Memory Access (DMA) Controller. ..... 161
E
Electrical Characteristics ..... 561
AC ..... 574
Errata ..... 12
Ethernet Controller ..... 473
ETHPMM0 (Ethernet Controller Pattern Match Mask 0).. ..... 483
ETHPMM1 (Ethernet Controller Pattern Match Mask 1).. ..... 483
External Bus Interface (EBI) ..... 361
External Clock
Timer1 Timing Requirements ..... 582
Timer2, 3, 4, 5 Timing Requirements ..... 583
Timing Requirements ..... 575
F
Flash Program Memory ..... 93, 103
RTSP Operation ..... 93
H
High-Voltage Detect (HVD) ..... 105
I
I/O Ports ..... 233
Parallel I/O (PIO) ..... 234
Write/Read Timing ..... 234
Input Change Notification ..... 234
Instruction Set. ..... 555
Inter-Integrated Circuit (I2C ..... 335
Internet Address ..... 655
Interrupt Controller
IRG, Vector and Bit Location ..... 112
M
Memory Maps
Devices with 1024 KB Program Memory and 512 KBRAM57, 58
Devices with 2048 KB Program Memory ..... 59
Devices with 512 KB Program Memory. ..... 56
Memory Organization ..... 55
Layout. ..... 55
Microchip Internet Web Site ..... 655
MPLAB ASM30 Assembler, Linker, Librarian ..... 558
MPLAB Integrated Development Environment Software. ..... 557
MPLAB PM3 Device Programmer ..... 559
MPLAB REAL ICE In-Circuit Emulator System ..... 559
MPLINK Object Linker/MPLIB Object Librarian ..... 558
0
Oscillator Configuration ..... 145
Output Compare. ..... 295
P
Packaging ..... 611
Details ..... 613
Marking ..... 611
Parallel Master Port (PMP) ..... 351
PIC32 Family USB Interface Diagram ..... 186
Pinout I/O Descriptions (table). 16, 18, 19, 20, 24, 25, 26, 27,28, 29, 31, 32, 33, 34, 35Power-on Reset (POR)
and On-Chip Voltage Regulator ..... 553
Power-Saving Features ..... 525
with CPU Running ..... 525
Prefetch Module ..... 157
R
Random Number Generator (RNG) ..... 399
Real-Time Clock and Calendar (RTCC) ..... 369
Register Map
ADC ..... 408
Comparator ..... 518
Comparator Voltage Reference ..... 522
Device ADC Calibration Summary ..... 534
Device Configuration Word Summary ..... 532, 533
Device Serial Number Summary ..... 535
DMA Channel 0-3 ..... 163
DMA CRC ..... 162
DMA Global ..... 162
EBI ..... 362
Flash Controller ..... 94, 280, 288
I2C1 Through I2C5 ..... 337
nput Capture 1-9 ..... 293
Interrupt ..... 119
Output Compare1-9 ..... 297
Parallel Master Port ..... 352
Peripheral Pin Select Input ..... 259
Peripheral Pin Select Output ..... 263
PORTA ..... 241
PORTB ..... 242
PORTC ..... 243, 244
PORTD ..... 245, 246, 247
PORTE ..... 248, 249
PORTF ..... 250, 251
PORTG ..... 253
PORTH ..... 254, 255
PORTK ..... 256, 257, 258
Prefetch ..... 158
RTCC ..... 370
SPI1 through SPI6 ..... 302
System Bus ..... 69
System Bus Target 0 ..... 69
System Bus Target 1 ..... 70
System Bus Target 10 ..... 80
System Bus Target 11 ..... 81
System Bus Target 12 ..... 82
System Bus Target 13 ..... 83
System Bus Target 2 ..... 72
System Bus Target 3 ..... 73
System Bus Target 4 ..... 74
System Bus Target 5 ..... 75
System Bus Target 6 ..... 76
System Bus Target 7 ..... 77
System Bus Target 8 ..... 78
System Bus Target 9 ..... 79
System Control ..... 104, 148
Timer1-Timer9 ..... 270, 275
UART1-5 ..... 344
USB ..... 187
Registers
[pin name]R (Peripheral Pin Select Input) ..... 266
AD1CAL1 (ADC1 Calibration 1) ..... 433
AD1CALx (ADC1 Calibration Register) ..... 433
AD1CMPn (ADC1 Digital Comparator 1) ..... 427
AD1CON1 (A/D Control 1) ..... 378
AD1CON1 (ADC Control 1) ..... 378
AD1CON1 (ADC1 Control 1) ..... 413
AD1CON2 (ADC1 Control 2) ..... 415
AD1CON3 (ADC1 Control 3) ..... 417
AD1DATAn (ADC1 Data Output) ..... 432
AD1FLTRn (ADC1 Filter Register) ..... 428
AD1IMOD (ADC1 Input Mode Control) ..... 419
AD1IRQEN1 (ADC1 Global Interrupt Enable 1) ..... 421
ALRMDATE (Alarm Date Value). ..... 378
ALRMDATECLR (ALRMDATE Clear) ..... 378
ALRMDATESET (ALRMDATE Set) ..... 378
ALRMTIME (Alarm Time Value) ..... 377
ALRMTIMECLR (ALRMTIME Clear) ..... 378
ALRMTIMEINV (ALRMTIME Invert) ..... 378
ALRMTIMESET (ALRMTIME Set). ..... 378
CHECON (Cache Control) ..... 160
CM1CON (Comparator 1 Control) ..... 519
CMSTAT (Comparator Control Register). ..... 520
CNCONx (Change Notice Control for PORTx) ..... 267
CONFIG
(CP0 Register 16, Select 0) ..... 50
CONFIG1
(CONFIG1 Register ..... 51
CONFIG2
(CONFIG2 Register. ..... 53
CONFIG3
(CONFIG3 Register ..... 52
CVRCON (Comparator Voltage Reference Control) 523 ..... 523
DCHxCON (DMA Channel x Control) ..... 174
DCHxCPTR (DMA Channel \(x\) Cell Pointer) ..... 182
DCHxCSIZ (DMA Channel x Cell-Size) ..... 182
DCHxDAT (DMA Channel x Pattern Data) ..... 183
DCHxDPTR (Channel x Destination Pointer) ..... 181
DCHxDSA (DMA Channel x Destination Start Address). ..... 179
DCHxDSIZ (DMA Channel x Destination Size) ..... 180
DCHxECON (DMA Channel x Event Control) ..... 176
DCHxINT (DMA Channel x Interrupt Control) ..... 177
DCHxSPTR (DMA Channel x Source Pointer) ..... 181
DCHxSSA (DMA Channel x Source Start Address). 179
DCHxSSIZ (DMA Channel x Source Size) ..... 180
DCRCCON (DMA CRC Control) ..... 171
DCRCDATA (DMA CRC Data) ..... 173
DCRCXOR (DMA CRCXOR Enable) ..... 173
DEVCFG0 (Device Configuration Word 0. ..... 537
DEVCFG1 (Device Configuration Word 1 ..... 539
DEVCFG2 (Device Configuration Word 2. ..... 542
DEVCFG3 (Device Configuration Word 3. ..... 544
DEVID (Device and Revision ID) ..... 64, 536, 551
DMAADDR (DMA Address) ..... 170
DMAADDR (DMR Address) ..... 170
DMACON (DMA Controller Control) ..... 169
DMASTAT (DMA Status) ..... 170
DMSTAT (Deadman Timer Status) ..... 283
DMTCLR (Deadman Timer Clear) ..... 282
DMTCNT (Deadman Timer Count) ..... 284
DMTCON (Deadman Timer Control) ..... 281
DMTPRECLR (Deadman Timer Preclear) ..... 281
EBICSx (External Bus Interface Chip Select) .. 363, 366,547, 548
EBIMSKx (External Bus Interface Address Mask).... 364
EBISMCON (External Bus Interface Static Memory Con-trol)367
EBISMTx (External Bus Interface Static Memory Timing)365
EMAC1CFG1 (Ethernet Controller MAC Configuration 1) 500
EMAC1CFG2 (Ethernet Controller MAC Configuration 2) 501
EMAC1CLRT (Ethernet Controller MAC Collision Window/Retry Limit) .505
EMAC1IPGR (Ethernet Controller MAC Non-Back-toBack Interpacket Gap) ..................................... 504
EMAC1IPGT (Ethernet Controller MAC Back-to-Back Interpacket Gap) ................................................ 503
EMAC1MADR (Ethernet Controller MAC MII Management Address) ................................................. 511
EMAC1MAXF (Ethernet Controller MAC Maximum Frame Length) ...................................................... 506
EMAC1MCFG (Ethernet Controller MAC MII Management Configuration) ......................................... 509
EMAC1MCMD (Ethernet Controller MAC MII Management Command).............................................. 510
EMAC1MIND (Ethernet Controller MAC MII Management Indicators) ............................................... 513
EMAC1MRDD (Ethernet Controller MAC MII Management Read Data) ............................................. 512
EMAC1MWTD (Ethernet Controller MAC MII Management Write Data)................................................... 512
EMAC1SA0 (Ethernet Controller MAC Station Address 0).................................................................... 514
EMAC1SA1 (Ethernet Controller MAC Station Address 1).................................................................... 515
EMAC1SA2 (Ethernet Controller MAC Station Address 2).................................................................... 516
EMAC1SUPP (Ethernet Controller MAC PHY Support) . 507
EMAC1TEST (Ethernet Controller MAC Test).......... 508
ETHALGNERR (Ethernet Controller Alignment Errors Statistics) ........................................................ 499
ETHCON1 (Ethernet Controller Control 1)................ 478
ETHCON2 (Ethernet Controller Control 2)................ 480
ETHFCSERR (Ethernet Controller Frame Check Sequence Error Statistics) ........................................ 498
ETHFRMRXOK (Ethernet Controller Frames Received OK Statistics).................................................. 497
ETHFRMTXOK (Ethernet Controller Frames Transmitted OK Statistics)............................................. 494
ETHHTO (Ethernet Controller Hash Table 0)............ 482
ETHHT1 (Ethernet Controller Hash Table 1)............ 482
ETHIEN (Ethernet Controller Interrupt Enable)......... 488
ETHIRQ (Ethernet Controller Interrupt Request)...... 489
ETHMCOLFRM (Ethernet Controller Multiple Collision Frames Statistics) .................................................. 496
ETHPMO (Ethernet Controller Pattern Match Offset) 484
ETHPMCS (Ethernet Controller Pattern Match Checksum)
484
ETHRXFC (Ethernet Controller Receive Filter Configura-tion).485
ETHRXOVFLOW (Ethernet Controller Receive OverflowStatistics)493
ETHRXST (Ethernet Controller RX Packet DescriptorStart Address)....481
ETHRXWM (Ethernet Controller Receive Watermarks).487
ETHSCOLFRM (Ethernet Controller Single CollisionFrames Statistics).495
ETHSTAT (Ethernet Controller Status) ..... 491
ETHTXST (Ethernet Controller TX Packet Descriptor
Start Address).. ..... 481
I2CxCON (I2C Control). ..... 339
I2CxSTAT (I2C Status) ..... 341
ICxCON (Input Capture x Control). ..... 294
IFSx (Interrupt Flag Status) ..... 140
INTCON (Interrupt Control) ..... 136
INTSTAT (Interrupt Status). ..... 139
IPCx (Interrupt Priority Control) ..... 141
IPTMR Interrupt Proximity Timer). ..... 139
NVMADDR (Flash Address) ..... 97
NVMBWP (Flash Boot (Page) Write-protect) ..... 100
NVMCON (Programming Control) ..... 95
NVMDATA (Flash Data) ..... 98
NVMKEY (Programming Unlock) ..... 97
NVMPWP (Program Flash Write-Protect) ..... 99
NVMSRCADDR (Source Data Address) ..... 98
OCxCON (Output Compare x Control) ..... 299
OSCCON (Oscillator Control). ..... 149
OSCTUN (FRC Tuning) ..... 151
PMADDR (Parallel Port Address). ..... 357
PMAEN (Parallel Port Pin Enable) ..... 358
PMCON (Parallel Port Control). ..... 353
PMMODE (Parallel Port Mode) ..... 355
PMSTAT (Parallel Port Status (Slave Modes Only) ..... 359
PRECON (Prefetch Module Control) ..... 159
PRISS (Priority Shadow Select) ..... 137
PSCNT (Post Status Configure DMT Count Status) 284
PSINTV (Post Status Configure DMT Interval Status) ..285
REFOCON (Reference Oscillator Control) ..... 154
REFOTRIM (Reference Oscillator Trim) ..... 155
RPnR (Peripheral Pin Select Output) ..... 266
RSWRST (Software Reset) ..... 106, 107, 108
RTCCON (RTCC Control) ..... 371
RTCDATE (RTC Date Value) ..... 376
RTCTIME (RTC Time Value). ..... 375
SBFLAG (System Bus Status Flag). ..... 84
SBTxECSBTxECLRS (System Bus Target ' \(x\) ' Single Error Single)88
SBTxECON (System Bus Target 'x' Error Control) ... ..... 87
SBTxELOG1 (System Bus Target 'x' Error Log 1) .... ..... 85
SBTxELOG2 (System Bus Target 'x' Error Log 2) ..... 87
SBTxRDy (System Bus Target 'x' Region 'y' Read Per-missions)90
SBTxREGy (System Bus Target 'x' Region 'y')... ..... 89
SBTxWRy (System Bus Target 'x' Region 'y' Write Per-missions)91
SPIxCON (SPI Control) ..... 304
SPIxCON2 (SPI Control 2) ..... 307
SPIxSTAT (SPI Status) ..... 308
SQI1XCON1 (SQI XIP Control 1) ..... 314
SQI1XCON2 (SQI XIP Control Register 2) ..... 316
T1CON (Type A Timer Control) ..... 271
TxCON (Type B Timer Control) ..... 277
USBCSR0 (USB Control Status 0) ..... 194
USBCSR1 (USB Control Status 1) ..... 196
USBCSR2 (USB Control Status 2) ..... 197
USBCSR3 (USB Control Status 3) ..... 199
USBDMAxA (USB DMA Channel 'x' Memory Address).226
USBDMAxC (USB DMA Channel 'x' Control) ..... 225
USBDMAxC (USB DMA Channel 'x' Count) ..... 226
USBDPBDF (USB Double Packet Buffer Disable). ..... 227
USBEOFRST (USB End-of-Frame/Soft Reset Control)..221
USBExRPC (USB Endpoint 'x' Request Packet Count(Host Mode Only))............................................ 227
USBExRXA (USB Endpoint 'x' Receive Address) .... 223
USBExTXA (USB Endpoint 'x' Transmit Address)... ..... 222
USBFIFOA (USB FIFO Address) ..... 218
USBHWVER (USB Hardware Version) ..... 219
USBICSRO (USB Indexed Endpoint Control Status 0(Endpoint 0))201
USBICSRO (USB Indexed Endpoint Control Status 0(Endpoint 1-7) .................................................. 205
USBICSR1 (USB Indexed Endpoint Control Status 1(Endpoint 1-7) .................................................. 208
USBICSR2 (USB Indexed Endpoint Control Status 2
(Endpoint 0) ..... 203
USBICSR2 (USB Indexed Endpoint Control Status 2 (Endpoint 1-7 ..... 211
USBICSR3 (USB Indexed Endpoint Control Status 3(Endpoint 0)204
USBICSR3 (USB Indexed Endpoint Control Status 3(Endpoint 1-7)212
USBINFO (USB Information) ..... 220
USBLPMR1 (USB Link Power Management Control).....229
USBLPM231
USBTMCON1 (USB Timing Control 1) ..... 228
USBTMCON2 (USB Timing Control 2) ..... 228
WDTCON (Watchdog Timer Control) ..... 289
Revision History ..... 646
RTCALRM (RTC ALARM Control) ..... 373
S
Serial Peripheral Interface (SPI) ..... 301
Serial Quad Interface (SQI) ..... 311
Software Simulator (MPLAB SIM) ..... 559
Special Features ..... 531

\section*{T}
Timer1 Module ..... 269
Timer2/3, Timer4/5, Timer6/7, and Timer8/9 Modules ..... 273
Timing Diagrams
CAN I/O ..... 595
EJTAG ..... 607
External Clock ..... 575
I/O Characteristics ..... 578
I2Cx Bus Data (Master Mode) ..... 591
12Cx Bus Data (Slave Mode) ..... 593
I2Cx Bus Start/Stop Bits (Master Mode) ..... 591
12Cx Bus Start/Stop Bits (Slave Mode). ..... 593
Input Capture (CAPx) ..... 583
OCx/PWM. ..... 584
Output Compare (OCx). ..... 584
Parallel Master Port Read ..... 600
Parallel Master Port Write ..... 601
Parallel Slave Port ..... 599
SPIx Master Mode (CKE = 0) ..... 585
SPIx Master Mode (CKE = 1) ..... 586
SPIx Slave Mode (CKE = 0) ..... 587
SPIx Slave Mode (CKE = 1) ..... 588
Timer1, 2, 3, 4, 5 External Clock ..... 582
UART Reception ..... 350
UART Transmission (8-bit or 9-bit Data) ..... 350
Timing Requirements
CLKO and I/O ..... 578
Timing Specifications
CAN I/O Requirements ..... 595
12Cx Bus Data Requirements (Master Mode) ..... 591
I2Cx Bus Data Requirements (Slave Mode) ..... 593
Input Capture Requirements. ..... 583
Output Compare Requirements ..... 584
Simple OCx/PWM Mode Requirements ..... 584
SPIx Master Mode (CKE = 0) Requirements ..... 585
SPIx Master Mode (CKE = 1) Requirements ..... 586
SPIx Slave Mode (CKE = 1) Requirements. ..... 588
SPIx Slave Mode Requirements (CKE = 0). ..... 587
U
UART ..... 343
USB On-The-Go (OTG) ..... 185
V
Voltage Regulator (On-Chip) ..... 553
W
WWW Address ..... 655
WWW, On-Line Support ..... 12

\section*{THE MICROCHIP WEB SITE}

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:
- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

\section*{CUSTOMER CHANGE NOTIFICATION SERVICE}

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

\section*{CUSTOMER SUPPORT}

Users of Microchip products can receive assistance through several channels:
- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

\section*{PRODUCT IDENTIFICATION SYSTEM}

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
\begin{tabular}{|lll}
\hline
\end{tabular}

\section*{Note the following details of the code protection feature on Microchip devices:}
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

\section*{Trademarks}

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC \({ }^{32}\) logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-359-4

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ \({ }^{\circledR}\) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

\section*{QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS \(16949=\)}

Microchip

\section*{Worldwide Sales and Service}
```


[^0]: TABLE 4-8: SYSTEM BUS TARGET 0 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 8020 | SBT0ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 8024 | SBT0ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP | P<1:0> | 0000 |
 | 8028 | SBTOECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 8030 | SBTOECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8038 | SBTOECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8040 | SBTOREG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8050 | SBTORD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \mathrm{xxx}$ |
 | 8058 | SBTOWR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x \mathrm{x}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8060 | SBTOREG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \times x x$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8070 | SBT0RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8078 | SBT0WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | Legend: $x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal
 Note: For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values. | | | | | | | | | | | | | | | | | | | |

 SYSTEM BUS TARGET 1 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | $27 / 11$ | 26/10 | 25/9 | 24/8 | $23 / 7$ | 22/6 | 21/5 | $20 / 4$ | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 8420 | SBT1ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 8424 | SBT1ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP<1:0> | | 0000 |
 | 8428 | SBT1ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 8430 | SBT1ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8438 | SBT1ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8440 | SBT1REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \times x \mathrm{x}$ |
 | 8450 | SBT1RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |
 | 8458 | SBT1WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |
 | 8480 | SBT1REG2 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \times x x$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \times x$ |
 | 8490 | SBT1RD2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |
 | 8498 | SBT1WR2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \times x x$ |
 | 84A0 | SBT1REG3 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \times x$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxx |
 | 84B0 | SBT1RD3 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \times x$ |
 | 84B8 | SBT1WR3 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | $x \times x x$ |
 | 84C0 | SBT1REG4 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \times x$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 84D0 | SBT1RD4 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \times x$ |
 | | SBT1WR4 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x$ |
 | 84D8 | SBTIWR 4 | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |

 SYSTEM BUS TARGET 1 REGISTER MAP (CONTINUED)

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 84E0 | SBT1REG5 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 84F0 | SBT1RD5 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 84F8 | SBT1WR5 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8500 | SBT1REG6 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8510 | SBT1RD6 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8518 | SBT1WR6 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8520 | SBT1REG7 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8530 | SBT1RD7 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8538 | SBT1WR7 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8540 | SBT1REG8 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8550 | SBT1RD8 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8558 | SBT1WR8 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 $\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note: } & \text { For reset values listed as ' } x \text {, }\end{array}$
 TABLE 4-10: SYSTEM BUS TARGET 2 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | $\bar{\ll} \stackrel{n}{\ddot{0}}$ |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | $20 / 4$ | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 8820 | SBT2ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 8824 | SBT2ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP | P<1:0> | 0000 |
 | 8828 | SBT2ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 8830 | SBT2ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8838 | SBT2ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8840 | SBT2REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \mathrm{xxx}$ |
 | 8850 | SBT2RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8858 | SBT2WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8860 | SBT2REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8870 | SBT2RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8878 | SBT2WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8880 | SBT2REG2 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8890 | SBT2RD2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \mathrm{xx}$ |
 | 8898 | SBT2WR2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
 Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 SYSTEM BUS TARGET 3 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | $27 / 11$ | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 8C20 | SBT3ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 8C24 | SBT3ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROU | <1:0> | 0000 |
 | 8C28 | SBT3ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 8C30 | SBT3ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8C38 | SBT3ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 8C40 | SBT3REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8C50 | SBT3RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8C58 | SBT3WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8C60 | SBT3REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \times x x$ |
 | 8C70 | SBT3RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8C78 | SBT3WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8C80 | SBT3REG2 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 8C90 | SBT3RD2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 8C98 | SBT3WR2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 $\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note: } & \text { Fer }\end{array}$
 Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 TABLE 4-12: SYSTEM BUS TARGET 4 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 9020 | SBT4ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 9024 | SBT4ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP | P<1:0> | 0000 |
 | 9028 | SBT4ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 9030 | SBT4ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9038 | SBT4ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9040 | SBT4REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x x x$ |
 | 9050 | SBT4RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | $x \times x$ |
 | 9058 | SBT4WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |
 | 9080 | SBT4REG2 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \times x$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x x x$ |
 | 9090 | SBT4RD2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | $x \times x$ |
 | 9098 | SBT4WR2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxx |

 Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 SYSTEM BUS TARGET 5 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 9420 | SBT5ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 9424 | SBT5ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROU | <1:0> | 0000 |
 | 9428 | SBT5ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 9430 | SBT5ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9438 | SBT5ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9440 | SBT5REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 9450 | SBT5RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9458 | SBT5WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9460 | SBT5REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \times x x$ |
 | 9470 | SBT5RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9478 | SBT5WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x \times$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9480 | SBT5REG2 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 9490 | SBT5RD2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9498 | SBT5WR2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 $\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note: } & \text { For reset values listed as ' } x \text {, }\end{array}$
 Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 TABLE 4-14: SYSTEM BUS TARGET 6 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | $24 / 8$ | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | $18 / 2$ | 17/1 | 16/0 | |
 | 9820 | SBT6ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 9824 | SBT6ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROU | P <1:0> | 0000 |
 | 9828 | SBT6ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 9830 | SBT6ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9838 | SBT6ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9840 | SBT6REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x x x x$ |
 | 9850 | SBT6RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9858 | SBT6WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x x x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |
 | 9860 | SBT6REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | 9870 | SBT6RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |
 | 9878 | SBT6WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x x x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 SYSTEM BUS TARGET 7 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | 9C20 | SBT7ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | 9C24 | SBT7ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP | P<1:0> | 0000 |
 | 9C28 | SBT7ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | 9C30 | SBT7ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9C38 | SBT7ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | 9 C 40 | SBT7REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \mathrm{xxx}$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \mathrm{xxx}$ |
 | 9C50 | SBT7RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9 C 58 | SBT7WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | 9C60 | SBT7REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \mathrm{xxx}$ |
 | 9C70 | SBT7RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \mathrm{xx}$ |
 | $9 \mathrm{C78}$ | SBT7WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 $\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note: } & \text { For reset values listed as ' } x x x x \text { ', please refer to Table 4-6 for the actual reset values. }\end{array}$
 TABLE 4-16: SYSTEM BUS TARGET 8 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | A020 | SBT8ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | A024 | SBT8ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROU | P<1:0> | 0000 |
 | A028 | SBT8ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | A030 | SBT8ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | A038 | SBT8ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | A040 | SBT8REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \times x x$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \times x x$ |
 | A050 | SBT8RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \times x x$ |
 | A058 | SBT8WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x x$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | A060 | SBT8REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | $x \times x x$ |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \times x x$ |
 | 70 | SBTPRD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \times x x$ |
 | А070 | SBT8RD1 | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \times x x$ |
 | 78 | SBT8WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | A078 | SBTOWR1 | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 Legend: $\quad x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 SYSTEM BUS TARGET 9 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | A420 | SBT9ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | A424 | SBT9ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP | P<1:0> | 0000 |
 | A428 | SBT9ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | A430 | SBT9ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | A438 | SBT9ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | A440 | SBT9REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \mathrm{xxx}$ |
 | A450 | SBT9RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | A458 | SBT9WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | A460 | SBT9REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \mathrm{xxx}$ |
 | A470 | SBT9RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \mathrm{xx}$ |
 | A478 | SBT9WR1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 $\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note: } & \text { For reset values listed as ' } x x x x \text { ', please refer to Table 4-6 for the actual reset values. }\end{array}$
 TABLE 4-18: SYSTEM BUS TARGET 10 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | 『 |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | |
 | A820 | SBT10ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | A824 | SBT10ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP | P<1:0> | 0000 |
 | A828 | SBT10ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | A830 | SBT10ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | A838 | SBT10ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | A840 | SBT10REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x x x x$ |
 | | | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | A850 | SBT10RDO | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |
 | | | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | A858 | SBTIOWRO | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUPO | xxxx |

 Legend: $x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 SYSTEM BUS TARGET 11 REGISTER MAP

 | | | | Bits | | | | | | | | | | | | | | | | |
 | :---: |
 | | | | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | $20 / 4$ | 19/3 | 18/2 | 17/1 | 16/0 | |
 | AC20 | SBT11ELOG1 | 31:16 | MULTI | - | - | - | CODE<3:0> | | | | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | INITID<7:0> | | | | | | | | REGION<3:0> | | | | - | CMD<2:0> | | | 0000 |
 | AC24 | SBT11ELOG2 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | GROUP | P<1:0> | 0000 |
 | AC28 | SBT11ECON | 31:16 | - | - | - | - | - | - | - | ERRP | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | AC30 | SBT11ECLRS | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | AC38 | SBT11ECLRM | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 0000 |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | CLEAR | 0000 |
 | AC40 | SBT11REG0 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | $x \mathrm{xxx}$ |
 | AC50 | SBT11RD0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \mathrm{xxx}$ |
 | AC58 | SBT11WR0 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $x \mathrm{xx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \mathrm{xxx}$ |
 | AC60 | SBT11REG1 | 31:16 | BASE<21:6> | | | | | | | | | | | | | | | | xxxx |
 | | | 15:0 | BASE<5:0> | | | | | | PRI | - | SIZE<4:0> | | | | | - | - | - | xxxx |
 | AC70 | SBT11RD1 | 31:16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | xxxx |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | $x \mathrm{xx}$ |
 | AC78 | SBT11WR1 | 31:16 | - | - | - | - | - | - | - | - | 一 | - | - | - | - | - | - | - | $x \mathrm{xxx}$ |
 | | | 15:0 | - | - | - | - | - | - | - | - | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 | xxxx |

 $\begin{array}{ll}\text { Legend: } & x=\text { unknown value on Reset; }-=\text { unimplemented, read as ' } 0 \text { '. Reset values are shown in hexadecimal. } \\ \text { Note: } & \text { For reset values listed as ' } x x x x \text { ', please refer to Table 4-6 for the actual reset values. }\end{array}$
 TABLE 4-20: SYSTEM BUS TARGET 12 REGISTER MAP

 Legend: $x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.
 TABLE 4-21: SYSTEM BUS TARGET 13 REGISTER MAP

 Legend: $x=$ unknown value on Reset; $-=$ unimplemented, read as ' 0 '. Reset values are shown in hexadecimal. Note: \quad For reset values listed as ' $x x x x$ ', please refer to Table 4-6 for the actual reset values.

 ## PIC32MZ Embedded Connectivity (EC) Family

 REGISTER 4-2: SBFLAG: SYSTEM BUS STATUS FLAG REGISTER

 | Bit
 Range | Bit
 $\mathbf{3 1 / 2 3 / 1 5 / 7}$ | Bit
 $\mathbf{3 0 / 2 2 / 1 4 / 6}$ | Bit
 $\mathbf{2 9 / 2 1 / 1 3 / 5}$ | Bit
 $\mathbf{2 8 / 2 0 / 1 2 / 4}$ | Bit
 $\mathbf{2 7 / 1 9 / 1 1 / 3}$ | Bit
 $\mathbf{2 6 / 1 8 / 1 0 / 2}$ | Bit
 $\mathbf{2 5 / 1 7 / 9 / 1}$ | Bit
 $\mathbf{2 4 / 1 6 / 8 / 0}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $31: 24$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $23: 16$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $15: 8$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | R-0 | $\mathrm{R}-0$ | $\mathrm{R}-0$ | $\mathrm{R}-0$ | $\mathrm{R}-0$ | $\mathrm{R}-0$ |
 | | - | - | T13PGV | T12PGV | T11PGV | T10PGV | T9PGV | T8PGV |
 | $7: 0$ | R-0 |
 | | T7PGV | T6PGV | T5PGV | T4PGV | T3PGV | T2PGV | T1PGV | T0PGV |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |

 $$
 \begin{array}{ll}
 \text { bit 31-14 } & \text { Unimplemented: Read as ' } 0 \text { ' } \\
 \text { bit 13-0 } & \text { TxPGV: Target ' } x \text { ' Permission Group Violation Status bits (' } x \text { ' }=0-13 \text {) } \\
 & \text { Refer to Table 4-6 for the list of available targets and their descriptions. } \\
 & 1=\text { Target is reporting a Permission Group (PG) violation } \\
 & 0=\text { Target is not reporting a PG violation }
 \end{array}
 $$

 Note: All errors are cleared at the source (i.e., SBTxELOG1, SBTxELOG2, SBTxECLRS, or SBTxECLRM registers).

 REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET ' x ' ERROR LOG REGISTER 1 (' x ' $=0-13$)

 | (' x ' = 0-13) | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | 31:24 | R/W-0, C | U-0 | U-0 | U-0 | R/W-0, C | R/W-0, C | R/W-0, C | R/W-0, C |
 | | MULTI | - | - | - | CODE<3:0> | | | |
 | 23:16 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 15:8 | R-0 |
 | | INITID<7:0> | | | | | | | |
 | 7:0 | R-0 | R-0 | R-0 | R-0 | U-0 | R-0 | R-0 | R-0 |
 | | REGION<3:0> | | | | - | CMD<2:0> | | |

 | Legend: | $C=$ Clearable bit | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' = Bit is cleared |

 bit 31 MULTI: Multiple Permission Violations Status bit This bit is cleared by writing a ' 1 '.
 $1=$ Multiple errors have been detected
 $0=$ No multiple errors have been detected
 bit 30-28 Unimplemented: Read as ' 0 '
 bit 27-24 CODE<3:0>: Error Code bits
 Indicates the type of error that was detected. These bits are cleared by writing a ' 1 '.
 1111 = Reserved
 1101 = Reserved
 -
 \cdot
 0011 = Permission violation
 0010 = Reserved
 $0001=$ Reserved
 $0000=$ No error
 bit 23-16 Unimplemented: Read as ' 0 '
 bit 15-8 INITID<7:0>: Initiator ID of Requester bits

    ```
    11111111 = Reserved
    -
    •
    00001111 = Reserved
    00001110 = Crypto Engine
    00001101 = Flash Controller
    00001100 = SQI1
    00001011 = CAN2
    00001010 = CAN1
    00001001 = Ethernet Write
    00001000 = Ethernet Read
    00000111 = USB
    00000110 = DMA Write (DMAPRI (CFGCON<25>) = 1)
    00000101 = DMA Write (DMAPRI (CFGCON<25>) = 0)
    00000100 = DMA Read (DMAPRI (CFGCON<25>) = 1)
    00000011 = DMA Read (DMAPRI (CFGCON<25>) = 0)
    00000010 = CPU (CPUPRI (CFGCON<24>) = 1)
    00000001 = CPU (CPUPRI (CFGCON<25>) = 0)
    00000000 = Reserved
    ```

 Note: Refer to Table 4-6 for the list of available targets and their descriptions.

 ## PIC32MZ Embedded Connectivity (EC) Family

    ```
    REGISTER 4-3: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1
    ('x' = 0-13) (CONTINUED)
    bit 7-4 REGION<3:0>: Requested Region Number bits
    1111-0000 = Target's region that reported a permission group violation
    bit 3 Unimplemented: Read as ' 0 '
    bit 2-0 CMD<2:0>: Transaction Command of the Requester bits
    111 = Reserved
    \(110=\) Reserved
    101 = Write (a non-posted write)
    \(100=\) Reserved
    011 = Read (a locked read caused by a Read-Modify-Write transaction)
    \(010=\) Read
    \(001=\) Write
    000 = Idle
    ```

 Note: Refer to Table 4-6 for the list of available targets and their descriptions.

 REGISTER 4-4: SBTxELOG2: SYSTEM BUS TARGET ' x ' ERROR LOG REGISTER 2 (' x ' = 0-13)

 | Bit Range | $\begin{array}{\|c\|} \hline \text { Bit } \\ 31 / 23 / 15 / 7 \end{array}$ | $\underset{30 / 22 / 14 / 6}{\text { Bit }}$ | $\underset{\text { Bit }}{29 / 21 / 13 / 5}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\underset{\text { Bit }}{25 / 17 / 9 / 1}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 23:16 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 15:8 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-O | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 7:0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 |
 | | - | - | - | - | - | - | GROUP<1:0> | |

 ## Legend:

 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |

 $$
 \begin{array}{ll}
 \text { bit 31-3 } & \text { Unimplemented: Read as ' } 0 \text { ' } \\
 \text { bit 1-0 } & \text { GROUP<1:0>: Requested Pe } \\
 & 11=\text { Group 3 } \\
 & 10=\text { Group 2 } \\
 & 01=\text { Group 1 } \\
 & 00=\text { Group 0 }
 \end{array}
 $$

 bit 1-0 GROUP<1:0>: Requested Permissions Group bits

 Note: Refer to Table 4-6 for the list of available targets and their descriptions.

 REGISTER 4-5: SBTxECON: SYSTEM BUS TARGET ' x ' ERROR CONTROL REGISTER (' x ' $=0-13$)

 | Bit
 Range | Bit
 $\mathbf{3 1 / 2 3 / 1 5 / 7}$ | Bit
 $\mathbf{3 0 / 2 2 / 1 4 / 6}$ | Bit
 29/21/13/5 | Bit
 $\mathbf{2 8 / 2 0 / 1 2 / 4}$ | Bit
 $\mathbf{2 7 / 1 9 / 1 1 / 3}$ | Bit
 $\mathbf{2 6 / 1 8 / 1 0 / 2}$ | Bit
 $\mathbf{2 5 / 1 7 / 9 / 1}$ | Bit
 24/16/8/0 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $31: 24$ | $\mathrm{U}-0$ | $\mathrm{R} / \mathrm{W}-0$ |
 | | - | - | - | - | - | - | - | ERRP |
 | $23: 16$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $15: 8$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $7: 0$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |

 bit 31-25 Unimplemented: Read as ' 0 '
 bit 24 ERRP: Error Control bit
 1 = Report protection group violation errors
 $0=$ Do not report protection group violation errors
 bit 23-0 Unimplemented: Read as ' 0 '

 Note: Refer to Table 4-6 for the list of available targets and their descriptions.

 ## PIC32MZ Embedded Connectivity (EC) Family

 REGISTER 4-6: SBTxECLRS: SYSTEM BUS TARGET ' x ' SINGLE ERROR CLEAR REGISTER (' x ' $=0-13$)

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\underset{\text { Bit }}{\text { 25/17/9/1 }}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 23:16 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 15:8 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 7:0 | U-0 | R-0 |
 | | - | - | - | - | - | - | - | CLEAR |

 ## Legend:

 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |

 bit 31-1 Unimplemented: Read as ' 0 '
 bit 0 CLEAR: Clear Single Error on Read bit
 A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

 Note: Refer to Table 4-6 for the list of available targets and their descriptions.

 REGISTER 4-7: SBTxECLRM: SYSTEM BUS TARGET ‘x’ MULTIPLE ERROR CLEAR REGISTER (' x ' $=0-13$)

 | Bit
 Range | Bit
 $\mathbf{3 1 / 2 3 / 1 5 / 7}$ | Bit
 $\mathbf{3 0 / 2 2 / 1 4 / 6}$ | Bit
 $\mathbf{2 9 / 2 1 / 1 3 / 5}$ | Bit
 $\mathbf{2 8 / 2 0 / 1 2 / 4}$ | Bit
 $\mathbf{2 7 / 1 9 / 1 1 / 3}$ | Bit
 $\mathbf{2 6 / 1 8 / 1 0 / 2}$ | Bit
 $\mathbf{2 5 / 1 7 / 9 / 1}$ | Bit
 $\mathbf{2 4 / 1 6 / 8 / 0}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | $\mathrm{U}-0$ | U |
 | | - | - | - | - | - | - | - | - |
 | $23: 16$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $15: 8$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $7: 0$ | $\mathrm{U}-0$ | $\mathrm{R}-0$ |
 | | - | - | - | - | - | - | - | CLEAR |

 ## Legend:

 | $R=$ Readable bit | W = Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0 '=$ Bit is cleared |

 bit 31-1 Unimplemented: Read as ' 0 '
 bit 0 CLEAR: Clear Multiple Errors on Read bit
 Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

 Note: Refer to Table 4-6 for the list of available targets and their descriptions.

 REGISTER 4-8: SBTxREGy: SYSTEM BUS TARGET ' x ' REGION ' y ' REGISTER (' X ' $=0-13$; ' y ' $=0-8$)

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | R/W0 | R/W-0 | R/W0 | R/W-0 | R/W0 | R/W-0 | R/W0 | R/W-0 |
 | | BASE<21:14> | | | | | | | |
 | 23:16 | R/W-0 |
 | | BASE<13:6> | | | | | | | |
 | | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R-0 | U-0 |
 | 15.8 | BASE<5:0> | | | | | | PRI | - |
 | 7:0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 |
 | | SIZE<4:0> | | | | | - | - | - |

 ## Legend:

 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' $=$ Bit is cleared |

 bit 31-10 BASE<21:0>: Region Base Address bits
 bit $9 \quad$ PRI: Region Priority Level bit
 1 = Level 2
 $0=$ Level 1
 bit 8 Unimplemented: Read as ' 0 '
 bit 7-3 SIZE<4:0>: Region Size bits
 Permissions for a region are only active is the SIZE is non-zero.
 $11111=$ Region size $=2^{(\text {SIZE }-1)} \times 1024$ (bytes)
 -
 -
 -
 $00001=$ Region size $=2^{(\text {SIZE - 1) }} \times 1024$ (bytes)
 $00000=$ Region is not present
 bit 2-0 Unimplemented: Read as ' 0 '
 Note 1: Refer to Table 4-6 for the list of available targets and their descriptions.
 2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for more information.

 REGISTER 4-9: SBTxRDy: SYSTEM BUS TARGET ' x ' REGION ' y ' READ PERMISSIONS REGISTER (' x ' $=0-13$; ' y ' $=0-8$)

 | Bit
 Range | Bit
 $\mathbf{3 1 / 2 3 / 1 5 / 7}$ | Bit
 $\mathbf{3 0 / 2 2 / 1 4 / 6}$ | Bit
 $\mathbf{2 9 / 2 1 / 1 3 / 5}$ | Bit
 $\mathbf{2 8 / 2 0 / 1 2 / 4}$ | Bit
 $\mathbf{2 7 / 1 9 / 1 1 / 3}$ | Bit
 $\mathbf{2 6 / 1 8 / 1 0 / 2}$ | Bit
 $\mathbf{2 5 / 1 7 / 9 / 1}$ | Bit
 $\mathbf{2 4 / 1 6 / 8 / 0}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $31: 24$ | $\mathrm{U}-0$ | U |
 | | - | - | - | - | - | - | - | - |
 | $23: 16$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $15: 8$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | |
 | $7: 0$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{R} / \mathrm{W}-0$ | $\mathrm{R} / \mathrm{W}-1$ | $\mathrm{R} / \mathrm{W}-1$ | $\mathrm{R} / \mathrm{W}-1$ |
 | | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | ' 1 ' $=$ Bit is set | ' 0 ' = Bit is cleared |

 bit 31-4 Unimplemented: Read as ' 0 '
 bit 3 Group3: Group3 Read Permissions bits
 1 = Privilege Group 3 has read permission
 0 = Privilege Group 3 does not have read permission
 bit 2 Group2: Group2 Read Permissions bits
 1 = Privilege Group 2 has read permission
 $0=$ Privilege Group 2 does not have read permission
 bit 1 Group1: Group1 Read Permissions bits
 1 = Privilege Group 1 has read permission
 $0=$ Privilege Group 1 does not have read permission
 bit $0 \quad$ Group0: Group0 Read Permissions bits
 1 = Privilege Group 0 has read permission
 $0=$ Privilege Group 0 does not have read permission
 Note 1: Refer to Table 4-6 for the list of available targets and their descriptions.
 2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for more information.

 REGISTER 4-10: SBTxWRy: SYSTEM BUS TARGET ' x ' REGION ' y ' WRITE PERMISSIONS REGISTER (' x ' $=0-13$; ' y ' $=0-8$)

 | Bit
 Range | Bit
 $\mathbf{3 1 / 2 3 / 1 5 / 7}$ | Bit
 $\mathbf{3 0 / 2 2 / 1 4 / 6}$ | Bit
 $\mathbf{2 9 / 2 1 / 1 3 / 5}$ | Bit
 $\mathbf{2 8 / 2 0 / 1 2 / 4}$ | Bit
 $\mathbf{2 7 / 1 9 / 1 1 / 3}$ | Bit
 $\mathbf{2 6 / 1 8 / 1 0 / 2}$ | Bit
 $\mathbf{2 5 / 1 7 / 9 / 1}$ | Bit
 $\mathbf{2 4 / 1 6 / 8 / 0}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | $31: 24$ | $\mathrm{U}-0$ | U |
 | | - | - | - | - | - | - | - | - |
 | $23: 16$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | - |
 | $15: 8$ | $\mathrm{U}-0$ |
 | | - | - | - | - | - | - | - | |
 | $7: 0$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{U}-0$ | $\mathrm{R} / \mathrm{W}-0$ | $\mathrm{R} / \mathrm{W}-1$ | $\mathrm{R} / \mathrm{W}-1$ | $\mathrm{R} / \mathrm{W}-1$ |
 | | - | - | - | - | GROUP3 | GROUP2 | GROUP1 | GROUP0 |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemented bit, read as '0' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |

 bit 31-4 Unimplemented: Read as ' 0 '
 bit $3 \quad$ Group3: Group 3 Write Permissions bits
 1 = Privilege Group 3 has write permission
 0 = Privilege Group 3 does not have write permission
 bit 2 Group2: Group 2 Write Permissions bits
 1 = Privilege Group 2 has write permission
 $0=$ Privilege Group 2 does not have write permission
 bit 1 Group1: Group 1 Write Permissions bits
 1 = Privilege Group 1 has write permission
 $0=$ Privilege Group 1 does not have write permission
 bit $0 \quad$ Group0: Group 0 Write Permissions bits
 1 = Privilege Group 0 has write permission
 $0=$ Privilege Group 0 does not have write permission

 Note 1: Refer to Table 4-6 for the list of available targets and their descriptions.
 2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-6 for more information.

 NOTES:

 ### 5.0 FLASH PROGRAM MEMORY

 Note: This data sheet summarizes the features of the PIC32MZ Embedded Connectivity (EC) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

 PIC32MZ EC devices contain an internal Flash program memory for executing user code, which includes the following features:

 - Two Flash banks for live update support
 - Dual boot support
 - Write protection for program and boot Flash
 - ECC support

 There are three methods by which the user can program this memory:

 - Run-Time Self-Programming (RTSP)
 - EJTAG Programming
 - In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$)

 RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) in the "PIC32 Family Reference Manual".
 EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.
 ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.
 The EJTAG and ICSP methods are described in the "PIC32 Flash Programming Specification" (DS60001145), which is available for download from the Microchip website.
 Note: In PIC32MZ EC devices, the Flash page size is 16 KB (4 K IW) and the row size is 2 KB (512K IW).
 5.1

 REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 23:16 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 15:8 | R/W-0, HC | R/W-0 | R-0, HS, HC | R-0, HS, HC | U-0 | U-0 | U-0 | U-0 |
 | | WR ${ }^{(1)}$ | WREN ${ }^{(1)}$ | WRERR ${ }^{(1)}$ | LVDERR ${ }^{(1)}$ | - | - | - | - |
 | 7:0 | R/W-0 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
 | | SWAP | - | - | - | NVMOP<3:0> | | | |

 | Legend: | HS = Set by Hardware | HC = Cleared by Hardware |
 | :--- | :--- | :--- |
 | $\mathrm{R}=$ Readable bit | $\mathrm{W}=$ Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown |

 bit 31-16 Unimplemented: Read as ' 0 '
 bit 15 WR: Write Control bit ${ }^{(1)}$
 This bit cannot be cleared and can be set only when WREN = 1 and the unlock sequence has been performed.
 1 = Initiate a Flash operation
 $0=$ Flash operation is complete or inactive
 bit 14 WREN: Write Enable bit ${ }^{(1)}$
 1 = Enable writes to the WR bit and disables writes to the NVMOP<3:0> bits
 $0=$ Disable writes to WR bit and enables writes to the NVMOP<3:0> bits
 bit 13 WRERR: Write Error bit ${ }^{(1)}$
 This bit can be cleared only by setting the NVMOP $<3: 0>$ bits $=0000$ and initiating a Flash operation.
 1 = Program or erase sequence did not complete successfully
 $0=$ Program or erase sequence completed normally
 bit 12 LVDERR: Low-Voltage Detect Error bit ${ }^{(1)}$
 This bit can be cleared only by setting the NVMOP<3:0> bits $=0000$ and initiating a Flash operation.
 1 = Low-voltage detected (possible data corruption, if WRERR is set)
 $0=$ Voltage level is acceptable for programming
 bit 11-8 Unimplemented: Read as ' 0 '
 bit $7 \quad$ SWAP: Program Flash Bank Swap Control bit
 1 = Program Flash Bank 2 is mapped to the lower mapped region and program Flash Bank 1 is mapped to the upper mapped region
 $0=$ Program Flash Bank 1 is mapped to the lower mapped region and program Flash Bank 2 is mapped to the upper mapped region
 bit 6-4 Unimplemented: Read as ' 0 '

 Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits $=00$ (FECCCON <1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.

 ## REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER (CONTINUED)

 bit 3-0 NVMOP<3:0>: NVM Operation bits
 These bits are only writable when WREN $=0$.
 1111 = Reserved
 -
 -
 $1000=$ Reserved
 0111 = Program erase operation: erase all of program Flash memory (all pages must be unprotected, PWP<23:0> = 0x000000)
 0110 = Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all pages in that region must be unprotected)
 0101 = Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all pages in that region must be unprotected)
 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
 $0010=$ Quad Word (128-bit) program operation: programs the 128-bit Flash word selected by NVMADDR, if it is not write-protected
 $0001=$ Word program operation: programs word selected by NVMADDR, if it is not write-protected ${ }^{(\mathbf{2})}$
 $0000=$ No operation
 Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits $=00$ (FECCCON $<1: 0>$ (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.

 REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | W-0 |
 | | NVMKEY<31:24> | | | | | | | |
 | 23:16 | W-0 |
 | | NVMKEY<23:16> | | | | | | | |
 | 15:8 | W-0 |
 | | NVMKEY<15:8> | | | | | | | |
 | 7:0 | W-0 |
 | | NVMKEY<7:0> | | | | | | | |

 ## Legend:

 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |

 bit 31-0 NVMKEY<31:0>: Unlock Register bits
 These bits are write-only, and read as ' 0 ' on any read
 Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

 REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Bit } \\ 27 / 19 / 11 / 3 \end{array}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | R/W-0 |
 | | NVMADDR<31:24> ${ }^{(1)}$ | | | | | | | |
 | 23:16 | R/W-0 |
 | | NVMADDR<23:16> ${ }^{(1)}$ | | | | | | | |
 | 15:8 | R/W-0 |
 | | NVMADDR<15:8>(1) | | | | | | | |
 | 7:0 | R/W-0 |
 | | NVMADDR<7:0> ${ }^{(1)}$ | | | | | | | |

 ## Legend:

 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |

 bit 31-0 NVMADDR<31:0>: Flash Address bits ${ }^{(1)}$

 | NVMOP<3:0>
 Selection | \quad Flash Address Bits (NVMADDR<31:0>) |
 | :--- | :--- |
 | Page Erase | Address identifies the page to erase (NVMADDR<13:0> are ignored). |
 | Row Program | Address identifies the row to program (NVMADDR<11:0> are ignored). |
 | Word Program | Address identifies the word to program (NVMADDR<1:0> are ignored). |
 | Quad Word Program | Address identifies the quad word (128-bit) to program (NVMADDR<3:0> bits are
 ignored). |

 Note 1: For all other NVMOP<3:0> bit settings, the Flash address is ignored. See the NVMCON register (Register 5-1) for additional information on these bits.

 ## PIC32MZ Embedded Connectivity (EC) Family

 REGISTER 5-4: NVMDATAx: FLASH DATA REGISTER (x = 0-3)

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 29/21/13/5 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 28/20/12/4 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | R/W-0 |
 | | NVMDATA<31:24> | | | | | | | |
 | 23:16 | R/W-0 |
 | | NVMDATA<23:16> | | | | | | | |
 | 15:8 | R/W-0 |
 | | NVMDATA<15:8> | | | | | | | |
 | 7:0 | R/W-0 |
 | | NVMDATA<7:0> | | | | | | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | W = Writable bit | $\mathrm{U}=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' = Bit is set | $' 0$ ' = Bit is cleared |

 bit 31-0 NVMDATA<31:0>: Flash Data bits
 Word Program: Writes NVMDATA0 to the target Flash address defined in NVMADDR Quad Word Program: Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the Least Significant Instruction Word.

 Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

 REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 30 / 22 / 14 / 6 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 27/19/11/3 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\underset{\text { Bit }}{\text { 25/17/9/1 }}$ | $\begin{gathered} \text { Bit } \\ \text { 24/16/8/0 } \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | R/W-0 |
 | | NVMSRCADDR<31:24> | | | | | | | |
 | 23:16 | R/W-0 |
 | | NVMSRCADDR<23:16> | | | | | | | |
 | 15:8 | R/W-0 |
 | | NVMSRCADDR<15:8> | | | | | | | |
 | 7:0 | R/W-0 |
 | | NVMSRCADDR<7:0> | | | | | | | |

 ## Legend:

 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-n=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' = Bit is cleared |

 bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits
 The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

 Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

 REGISTER 5-6: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\underset{30 / 22 / 14 / 6}{\text { Bit }}$ | $\underset{\text { Bit }}{29 / 21 / 13 / 5}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{array}{\|c} \text { Bit } \\ 27 / 19 / 11 / 3 \end{array}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | R/W-1 | U-0 |
 | | PWPULOCK | - | - | - | - | - | - | - |
 | | R/W-0 |
 | .16 | PWP<23:16> | | | | | | | |
 | 15:8 | R/W-0 | R/W-0 | R-0 | R-0 | R-0 | R-0 | R-0 | R-0 |
 | | PWP<15:8> | | | | | | | |
 | 7:0 | R-0 |
 | | PWP<7:0> | | | | | | | |

 ## Legend:

 | $\mathrm{R}=$ Readable bit | W = Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | :--- | :--- | :--- |
 | $-\mathrm{n}=$ Value at POR | $' 1$ ' $=$ Bit is set | $' 0$ ' $=$ Bit is cleared |

 bit 31 PWPULOCK: Program Flash Memory Page Write-protect Unlock bit
 1 = Register is not locked and can be modified
 $0=$ Register is locked and cannot be modified
 This bit is only clearable and cannot be set except by any reset.
 bit 30-24 Unimplemented: Read as ' 0 '
 bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits
 Physical memory below address $0 x 1 D x x x x x x$ is write protected, where ' $x x x x x x$ ' is specified by $P W P<23: 0>$. When PWP<23:0> has a value of ' 0 ', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

 Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

 REGISTER 5-7: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

 | Bit Range | $\begin{gathered} \text { Bit } \\ 31 / 23 / 15 / 7 \end{gathered}$ | $\begin{array}{\|c} \text { Bit } \\ 30 / 22 / 14 / 6 \end{array}$ | $\begin{gathered} \text { Bit } \\ 29 / 21 / 13 / 5 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 28 / 20 / 12 / 4 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 27 / 19 / 11 / 3 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 26 / 18 / 10 / 2 \end{gathered}$ | $\begin{gathered} \text { Bit } \\ \text { 25/17/9/1 } \end{gathered}$ | $\begin{gathered} \text { Bit } \\ 24 / 16 / 8 / 0 \end{gathered}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 31:24 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 23:16 | U-0 |
 | | - | - | - | - | - | - | - | - |
 | 15:8 | R/W-1 | U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
 | | LBWPULOCK | - | - | LBWP4 ${ }^{(1)}$ | LBWP3 ${ }^{(1)}$ | LBWP2 ${ }^{(1)}$ | LBWP1 ${ }^{(1)}$ | LBWP0 ${ }^{(1)}$ |
 | 7:0 | R/W-1 | r-1 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
 | | UBWPULOCK | - | - | UBWP4 ${ }^{(1)}$ | UBWP3 ${ }^{(1)}$ | UBWP2 ${ }^{(1)}$ | UBWP1 ${ }^{(1)}$ | UBWP0 ${ }^{(1)}$ |

 | Legend: | $r=$ Reserved | |
 | :--- | :--- | :--- |
 | $R=$ Readable bit | $W=$ Writable bit | $U=$ Unimplemented bit, read as ' 0 ' |
 | $-n=$ Value at POR | $' 1 '=$ Bit is set | $' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown |

 bit 31-16 Unimplemented: Read as '0'
 bit 15 LBWPULOCK: Lower Boot Alias Write-protect Unlock bit
 $1=$ LBWPx bits are not locked and can be modified
 $0=$ LBWPx bits are locked and cannot be modified
 This bit is only clearable and cannot be set except by any reset.
 bit 14-13 Unimplemented: Read as ' 0 '
 bit 12 LBWP4: Lower Boot Alias Page 4 Write-protect bit ${ }^{(1)}$
 1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled
 $0=$ Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled
 bit 11 LBWP3: Lower Boot Alias Page 3 Write-protect bit ${ }^{(1)}$
 $1=$ Write protection for physical address 0×01 FC0C000 through 0x1FC0FFFF enabled
 $0=$ Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled
 bit 10 LBWP2: Lower Boot Alias Page 2 Write-protect bit ${ }^{(1)}$
 $1=$ Write protection for physical address 0×01 FC08000 through 0×1 FCOBFFF enabled
 $0=$ Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled
 bit 9 LBWP1: Lower Boot Alias Page 1 Write-protect bit ${ }^{(1)}$
 $1=$ Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled
 $0=$ Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled
 bit 8 LBWPO: Lower Boot Alias Page 0 Write-protect bit ${ }^{(1)}$
 $1=$ Write protection for physical address 0×01 FC00000 through 0×1 FC03FFF enabled
 $0=$ Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled
 bit 7 UBWPULOCK: Upper Boot Alias Write-protect Unlock bit
 1 = UBWPx bits are not locked and can be modified
 $0=$ UBWPx bits are locked and cannot be modified
 This bit is only user-clearable and cannot be set except by any reset.
 bit 6 Reserved: This bit is reserved for use by development tools
 bit 5 Unimplemented: Read as ' 0 '

 Note 1: These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

 Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

    ```
    REGISTER 5-7: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER
    bit 4 UBWP4: Upper Boot Alias Page 4 Write-protect bit (```

