

Spec No. :DS-70-99-0001 Effective Date: 07/01/2020

D -- - - - - - - -

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

LITE-ON Technology Corp. / Optoelectronics

No.90, Chien 1 Road, Chung Ho, New Taipei City 23585, Taiwan, R.O.C. Tel: 886-2-2222-6181 Fax: 886-2-2221-1948 / 886-2-2221-0660 http://www.liteon.com/opto

1. DESCRIPTION

1.1 Features

- Current transfer ratio (CTR : MIN. 40% at I_F = 10mA, V_{CE} = 5V)
- High collector-emitter voltage

 $V_{CEO} = 70V$

High input-output isolation voltage

Viso = 5,000 Vrms

- Response time (tr : TYP. 5μs at VCE = 10V, IC = 2mA, RL = 100Ω)
- Dual-in-line package:

CNY17-1, CNY17-2, CNY17-3, CNY17-4

■ Wide lead spacing package:

CNY17-1M, CNY17-2M, CNY17-3M, CNY17-4M

■ Surface mounting package:

CNY17-1S, CNY17-2S, CNY17-3S, CNY17-4S

■ Tape and reel packaging:

CNY17-1S-TA, CNY17-2S-TA, CNY17-3S-TA, CNY17-4S-TA

CNY17-1S-TA1, CNY17-2S-TA1, CNY17-3S-TA1, CNY17-4S-TA1

- Safety approval
 - * UL approved
 - * cUL approved
 - * CSA approved
 - * DEMKO approved
 - * VDE approved
 - * CQC approved
- Creepage distance > 8.0 mm; Clearance > 8.0 mm
- The relevant models are the models Approved by VDE according to DIN EN 60747-5-5

Approved Model No.: CNY17-1-V, CNY17-2-V, CNY17-3-V, CNY17-4-V

CNY17-1M-V, CNY17-2M-V, CNY17-3M-V, CNY17-4M-V CNY17-1S-V, CNY17-2S-V, CNY17-3S-V, CNY17-4S-V

CNY17-1S-TA-V, CNY17-2S-TA-V, CNY17-3S-TA-V, CNY17-4S-TA-V CNY17-1S-TA1-V, CNY17-2S-TA1-V, CNY17-3S-TA1-V, CNY17-4S-TA1-V

- Operating isolation voltage VIORM : 850V (Peak)
- Transient voltage VTR: 6000V (Peak)
- Pollution: 2 (According to VDE 0110-1: 1997-04)
- Clearances distance (Between input and output): 7.0mm (MIN.)
- Creepage distance (Between input and output) : 7.0mm (MIN.)
- Isolation thickness between input and output : 0.4mm (MIN.)

1/15

■ Safety limit values Current (Isi): 400mA (Diode side)

Power (Psi): 700mW (Phototransistor side)

Temperature(Tsi): 175°C

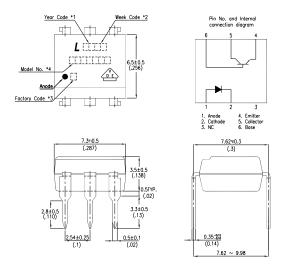
In order to keep safety electric isolation of photocoupler, please set the protective circuit to keep within safety limit values when the actual application equipment troubled.

■ Indication of VDE approval prints " on sleeve package.

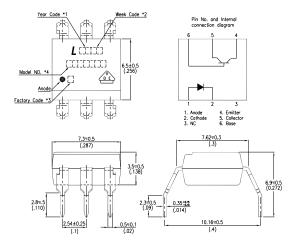
■ RoHS Compliance

All materials be used in device are followed EU RoHS directive (No.2002/95/EC, 2011/65/EU, and 2015/863).

■ MSL class1


1.2 Applications

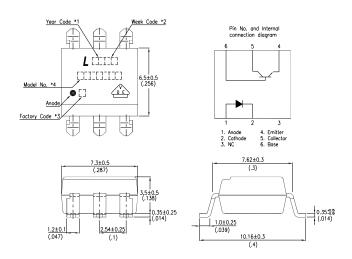
- Power Supply regulators
- Digital logic inputs
- Microprocessor inputs
- Appliance Sensor Systems
- Industrial Controls



2. PACKAGE DIMENSIONS

2.1 CNY17-1, CNY17-2, CNY17-3, CNY17-4:

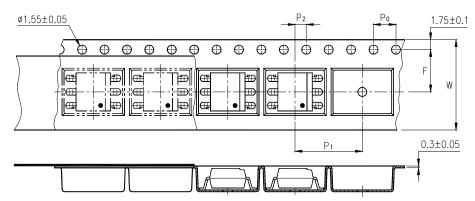
2.2 CNY17-1M, CNY17-2M, CNY17-3M, CNY17-4M:


Notes:

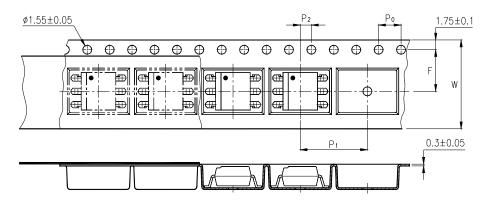
- 1. 2-digit year code, example: 2016 = 16
- 2. 2-digit work week ranging from '01' to '53'
- 3. Factory identification mark shall be marked (Y: Thailand, W: China-CZ, X: China-TJ).
- 4. Model No.: CNY17-1, CNY17-2, CNY17-3, CNY17-4

3/15

2.3 CNY17-1S, CNY17-2S, CNY17-3S, CNY17-4S:


Notes:

- 1. 2-digit year code, example : 2016 = 16
- 2. 2-digit work week ranging from '01' to '53'
- 3. Factory identification mark shall be marked (Y: Thailand, W: China-CZ, X: China-TJ).
- 4. Model No.: CNY17-1, CNY17-2, CNY17-3, CNY17-4



2. TAPING DIMENSIONS

CNY17-1S-TA, CNY17-2S-TA, CNY17-3S-TA, CNY17-4S-TA:

CNY17-1S-TA1, CNY17-2S-TA1, CNY17-3S-TA1, CNY17-4S-TA1:

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.472)

Package Type	TA/TA1
Quantities (pcs)	1000

5/15

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25℃

	Parameter	Symbol	Rating	Unit
	Forward Current	I _F	60	mA
lanut	Reverse Voltage	V_R	6	V
Input	Power Dissipation	Р	100	mW
	Junction Temperature	TJ	125	°C
	Collector - Emitter Voltage	V _{CEO}	70	V
Output	Emitter - Collector Voltage	V _{ECO}	7	V
	Collector - Base Voltage	V_{CBO}	70	V
	Collector Current	Ic	150	mA
	Collector Power Dissipation	Pc	150	mW
Total Power Di	Total Power Dissipation		250	mW
*1 Isolation Vo	*1 Isolation Voltage		5000	V _{rms}
Operating Temperature		T _{opr}	-55 ~ +100	°C
Storage Tempe	Storage Temperature		-55 ~ +150	°C
*2 Soldering Temperature		T _{sol}	260	°C

*1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- *2. For 10 Seconds

6/15

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25℃

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
INPUT	Forward Voltage		VF	_	1.45	1.65	V	IF=60mA
	Reverse Current		IR	_	_	10	μΑ	VR=6V
	Terminal Capacitance		Ct	_	_	100	pF	V=0, f=1KHz
	Collector Dark Current		ICEO	_	_	50	nA	VCE=10V, IF=0
OUTPUT	Collector-Emitter Breakdown Voltage		BVCEO	70	_	_	٧	IC=0.1mA IF=0
	Emitter-Collector Breakdown Voltage		BVECO	7	_	_	V	IE=10μA IF=0
	Collector-Base Breakdown Voltage		BVCBO	70	_	_	V	IC=0.1mA IF=0
TRANSFER CHARACTERISTICS	CNY17-1			40	_	80		
	Current *Transfer Ratio	CNY17-2	CTR	63		125	- %	IF=10mA
		CNY17-3		100		200		VCE=5V
		CNY17-4		160	_	320		
	Collector-Emitter Saturation Voltage		VCE(sat)	_	_	0.3	V	IF=10mA IC=2.5mA
	Isolation Resistance		Riso	100	_	_	GΩ	DC500V 40 ~ 60% R.H.
	Floating Capacitance		Cf	_	_	2	pF	V=0, f=1MHz
	Response Time (Rise)		tr	_	5	10	μs	VCE=10V, IC=2mA
	Response Time (Fall)		tf	_	5	10	μs	RL=100Ω

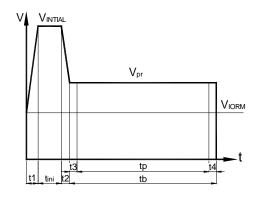
$*$
CTR = $\frac{I_C}{I_F} \times 100\%$

7/15

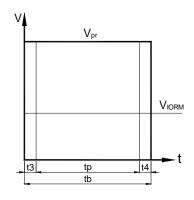
4.3 ISOLATION SPECIFICATION ACCORDING TO VDE

Parameter		Symbol	Conditions	Rating	Unit	Remark	
Class of environmental test		-	DIN IEC68	55/100/21	-		
Pollution		-	DIN VDE0110	2	-		
Maximum Operating Isolation Voltage		V_{IORM}	-	850	V_{PEAK}		
Partial Discharge Test	Diagram 1	.,	tp=60s, qc<5pC	1275	V_{PEAK}	Refer to the Diagram	
Voltage (Between Input and Output)	Diagram 2	Vpr	tp=1s, qc<5pC	1594	V_{PEAK}	1, 2	
Maximum Over-voltage		V _{INITIAL}	t _{INI} = 10s	6000	V_{PEAK}		
Safety Maximum Ratings							
1) Case Temperature		Tsi	I _F = 0, Pc = 0	175	°C	Refer to the Figure 1, 3	
2) Input Current		Isi	Pc=0	400	mA		
S) Electric Power (Output or Total Power Dissipation)		Psi	-	700	mW		
Isolation Resistance (Test Voltage Between Input and Output : DC500V)		R _{iso}	Ta=Tsi	MIN.10 ⁹			
			Ta=Topr(MAX.)	MIN.10 ¹¹	Ω		
			Ta=25°C	MIN.10 ¹²			

Precautions in performing isolation test


- * Partial discharge test methods shall be the ones according to the specifications of DIN EN 60747-5-5
- * Please don't carry out isolation test (Viso) over V_{INITIAL}, This product deteriorates isolation characteristics by partial discharge due to applying high voltage (ex. V_{INITIAL}). And there is possibility that this product occurs partial discharge in operating isolation voltage (V_{IORM})

8/15


4.4 PARTIAL DISCHARGE TEST METHOD

Method (A) for type testing and random testing.

$$\begin{array}{lll} \text{t1, t2} & = 1 \text{ to 10s} \\ \text{t3, t4} & = 1 \text{s} \\ \text{tp (Partial Discharge Measuring Time)= 60s} \\ \text{tb} & = 62 \text{s} \\ \text{tini} & = 10 \text{s} \\ \end{array}$$

Method (B) for routine testing.

The partial discharge level shall not exceed 5 pc during the partial discharge measuring time interval t_p under the test conditions shown above.

5. CHARACTERISTICS CURVES

Fig.1 Forward Current vs.

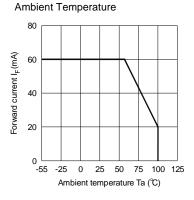


Fig.3 Collector-emitter Saturation Voltage vs. Forward Current

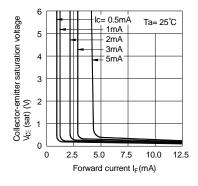


Fig.5 Current Transfer Ratio vs.
Forward Current

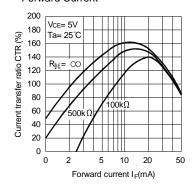


Fig.2 Collector Power Dissipation vs.
Ambient Temperature

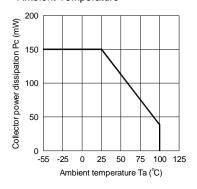


Fig.4 Forward Current vs.

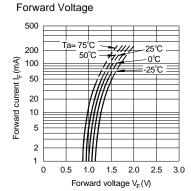
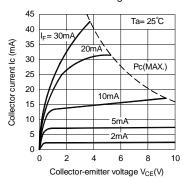



Fig.6 Collector Current vs.

Collector-emitter Voltage

10/15

Fig.7 Relative Current Transfer Ratio vs.
Ambient Temperature

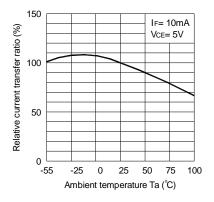


Fig.9 Collector Dark Current vs.

Ambient Temperature

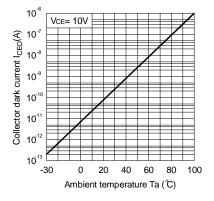


Fig.11 Frequency Response

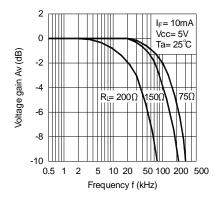


Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature

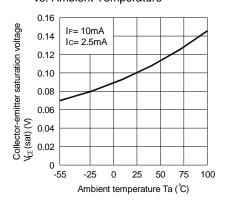
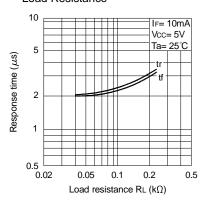
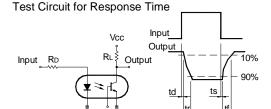
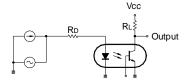
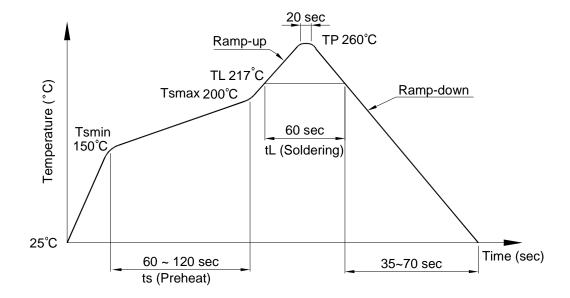





Fig.10 Response Time vs. Load Resistance

Test Circuit for Frequency Response

11/15



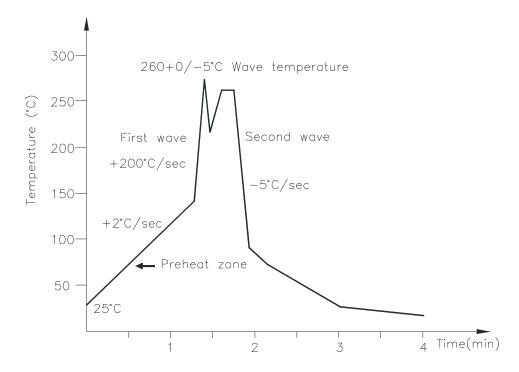
6. TEMPERATURE PROFILE OF SOLDERING

6.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions		
Preheat			
- Temperature Min (T _{Smin})	150°C		
- Temperature Max (T _{Smax})	200°C		
- Time (min to max) (ts)	90±30 sec		
Soldering zone			
- Temperature (T _L)	217°C		
- Time (t _L)	60 sec		
Peak Temperature (T _P)	260°C		
Ramp-up rate	3°C / sec max.		
Ramp-down rate	3~6°C / sec		

6.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

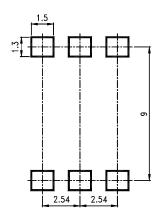
6.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

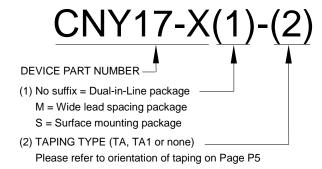
Temperature: 380+0/-5°C

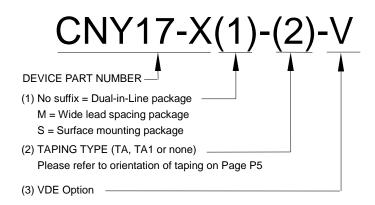
Time: 3 sec max.

13/15



Photocoupler


CNY17-1 THRU CNY17-4 SERIES


7. RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Unit: mm

8. NAMING RULE

9. NOTES

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.

15/15

Part No: CNY17-1 THRU CNY17-4 SERIES BNC-OD-FC002/A4

Rev -