

Withstand Harsh Environments with
Rugged, Capable Connectors for Signal, Power, Control, and Optical Needs

MIL-DTL-38999 CONNECTORS

Series I 18
Series III 30
Series IV 44
MIL-DTL-38999 SERIES III STYLE CONNECTORS
Panel Seals 56
Hermetic Connectors 62
PCB Connectors
Board-Mount 38999 Connectors 65
Marine Connectors
DEUTSCH DTS-B Connectors 102
Band It Platform Connectors
Aluminum and Stainless Steel Connectors with Integral Backshells 110
Power Connectors
DEUTSCH DTS-HC Connectors 120
POLAMCO Connectors 125
Lanyard Connectors
1760 Series Connectors (MIL-DTL-38999/31 and ACT98 and commercial /29) 137
Ultra-Dense Connectors
DEUTSCH Wildcat 38999 Connectors 138
38999 Series 1.5 Connectors
DEUTSCH HDJ/JN10O3 Series Connectors 144
High-Speed Connectors
Quadrax Connectors 156
CeeLok FAS-X Connectors 173
High-Speed COTS Interface Connectors
POLAMCO USB Connectors 186
POLAMCO RJ45 Connectors 189
Fiber-Optic Connectors
Introduction193
MC801 Connectors 195
DEUTSCH MC3 MKII Connectors 199
DEUTSCH MC4 Connectors 205
DEUTSCH MC5 Connectors 211
DEUTSCH MC6 Connectors 217
AviMT Connectors 224
38999-Style Connectors 226
PRO BEAM Inserts 233
MIL-T-29504 Style Optical Termini 235
Backshells and Rear Accessories 237
Specialty Connectors
DEUTSCH CBC Bussed Connectors 281
Assembly Instructions 286
TE Components . . . TE Technology . . .TE Know-how
AMP | AGASTAT | CII | HARTMAN | KILOVAC | MICRODOT | NANONICS | POLAMCO | RaychemSEACON | Rochester | DEUTSCHEmpower Engineers to Solve Problems, Moving the World Forward.

MIL-DTL-38999 Connectors

MIL-DTL-38999 Series	Coupling	DEUTSCH Connector Family	Shell Material
Series I	Bayonet	DJT	Aluminum
Series III		DTS	Aluminum
	Threaded	DTS-K, DTS-L, DTS-S	Stainless steel
		ACT	Composite
Series IV	Breech lock	DIV	Aluminum

MIL-DTL-38999 Series III Style Connectors

38999 Overview

MIL-DTL-38999 connectors are some of the most popular and widely used subminiature circular connectors for military and aerospace applications. With three coupling methods, nine shell sizes, and a wide variety of contact arrangements, the connectors help give you the range of choices you need. What's more, the original aluminum connectors have evolved to include stainless steel and composite shells-supported by a range of finishes.

38999-Style Connectors

Because of the widespread popularity of 38999 Series III connectors, the basic design has been adapted to a great many additional configurations. These 38999-style connectors include versions for power, fiber optics, filtering, high-speed networking, commercial interfaces, pc board interfaces, and higher contact densities. As a result, 38999-style connectors offer excellent versatility and flexibility.

Rugged Reliability

When it comes to taming harsh environments, TE Connectivity (TE) offers 38999 connectors to handle a wide range of applications. We offer a broad array of configurations, materials and finishes to help meet the performance requirements of ground, aerospace, and marine applications. These highly durable subminiature circular connectors are time tested for reliability in some of the toughest environments.

TE helps meet the need for reliable performance with rugged MIL-DTL-389999 connectors having 500 mating cycles, operating temperatures to $200^{\circ} \mathrm{C}$, corrosion-resistant and corrosion-proof connector versions, scoop-proof designs, and a variety of options for excellent electromagnetic interference (EMI) control, such as filtering and fiber optics.

Designs that Save Space and Weight

The importance of reducing size and weight of components, including MIL-DTL-38999 subminiature connectors, should never be underestimated. Lighter, smaller connectors can make a big difference in terms of contributing to greater performance: longer flight times, greater payload capability, and increased efficiency. Beyond the standard lightweight aluminum connectors, we offer composite connectors to help support greater weight savings.

Solve Tough Application Issues with TE

We work closely with customers to help meet their most demanding requirements for some of the world's toughest applications. Whether for ground defense, commercial and military aerospace, or marine applications, TE designs and manufactures MIL-DTL-38999 subminiature circular connectors to be ruggedly reliable, fast and easy to install, smaller and lighter, and with more options, materials and configurations to help maximize performance, reliability and efficiency.

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Connector Series Overview

	Series I	Series III	Series IV
Coupling Mechanism	Bayonet, 1/3 turn	Threaded, 360° turn	Breech lock, 1/4 turn
Shell Materials	Aluminum Stainless steel	Aluminum Stainless steel Composite	Aluminum Stainless steel
Finishes	Olive drab cadmium Passivated Electroless nickel Electrodeposited nickel Nickel PTFE Black zinc nickel	Olive drab cadmium Passivated Electroless nickel Electrodeposited nickel Nickel PTFE Black zinc nickel	Olive drab cadmium Passivated Electroless nickel
Shell Sizes	9, 11, 13, 15, 17, 19, 21, 23, 25	9, 11, 13, 15, 17, 19, 21, 23, 25	11, 13, 15, 17, 19, 21, 23, 25
No. of Signal Contacts, Max.	128	187	128
Contact Sizes, Std.	22, 20, 16, 12, 8	23, 22, 20, 16, 12, 10, 8	22, 20, 16, 12, 8
Contact Type		SAE AS39029	
Contact Styles		Crimp PCB tail Solder cup** Eyelet*	
Features		Scoop proof Environmentally sealed Hermetic versions Filter versions Spring fingers for EMI control	
Operating Temperatures		$\begin{aligned} & -65^{\circ} \mathrm{C} \text { to }+200^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+175^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$	
$\begin{gathered} \text { Durability } \\ \text { (Mating Cycles) } \end{gathered}$		ACT composite Series III: 1500*	

*Achievable only with high durability contacts or by replacing them each 500 cycles
** Hermetic versions only

Shell Materials and Finishes

$\left.\begin{array}{lclllll}\text { Class } & \text { Plating/Finish } & \text { Finish Spec } & \begin{array}{c}\text { Temperature } \\ \text { (Max.) }\end{array} & \begin{array}{c}\text { Salt Spray } \\ \text { (Hours) }\end{array} & \text { Series } & \begin{array}{c}\text { Shell-to-Shell } \\ \text { Conductivity } \\ \text { (mV }\end{array} \\ \text { Aluminum Shells } \\ \text { Compliant }\end{array}\right)$

Service Rating

Service Rating	Suggested Operating Voltage			Test Voltage at Altitude ($\mathrm{VACrms}_{\text {) }}$		
	VAC ${ }_{\text {ms }}$	VDC	Sea Level	50,000 Ft	70,000 Ft.	100,000 Ft
M	400	550	1300	550	350	200
N	300	450	1000	400	260	200
I	600	850	1800	600	400	200
11	750	1050	2300	800	500	200

Shell Materials

TE 38999 connectors are available with aluminum, stainless steel, and composite shells. In addition, we offer 38999-style connectors in marine bronze.

Aluminum	Aluminum offers a favorable balance of performance, weight, and cost Most widely used material Light weight Excellent corrosion resistance Available in all finishes Rugged
Stainless Steel	Stainless steel is used for hermetic connectors or for connectors used in high-temperature environments, including engines and firewalls Passivated or nickel finish
Composite	Composite shells offer the lightest weight and highest corrosion resistance Weight savings of up to 40\% over aluminum and 70\% over stainless steel Corrosion proof: passes 2000-hour salt spray test 1500-mating-cycle durability
Marine Bronze	With excellent corrosion resistance, aluminum nickel bronze is popular for marine applications
Unplated marine bronze helps eliminate the danger of wear to plating that could expose	
the underlying material to corrosion.	
See the section on DEUTSCH DTS-B series connectors.	

Space-Grade Connectors

Outgassing-the release of gases trapped in a solid-of polymer materials such as connector inserts, seals, adhesives, or potting materials, is an issue since the gases can degrade performance of charge-coupled-device (CCD) sensors in satellites, thermal radiators, or solar cells. Outgassing is a challenge to creating and maintaining clean high-vacuum environments. The closed environment of spacecraft can make outgassing a greater concern. Our space-grade connectors use low-outgassing materials to help meet requirements for a Total Mass Loss of 1.00% or less and a Collected Volatile Condensable Material (CVCM) of 0.10\% or less.

Materials can be processed to help meet NASA requirements for low outgassing by oven backout in a thermal vacuum environment.

Aluminum, with an electroless nickel finish, is usually the preferred shell material. Its low magnetic permeability helps prevent it from becoming magnetized.

Connector Styles

Plug

Plugs are free-hanging cable-mount halves of a connection. They contain the coupling ring used to secure the plug to the receptacle.

Jam Nut Receptacle

Jam nuts are the preferred style for creating an environmentally sealed mounting. Single-hole mounting and an integral o-ring allows a sealed mounting with a single hex nut threaded onto the front of the connector to secure it in place. Jam nut receptacles are rear-mount connectors.

Square Flange Receptacle

These standard receptacles have a relatively large four-hole flange for front or rear mounting to a bulkhead or panel.

Typical Constructions

Insert Pin Front (Interfacial seal)

Series I Receptacle

MIL-DTL-38999 Circular Connectors

Insert Arrangements

The drawings in this section use numeric shell sizes. MIL-DTL-38999 uses letter in place of shell size in the part number system. Thus, 9-35 and A35 describe the same insert arrangement.

Shell Size	9	11	13	15	17	19	21	23	25
Military Designation	A	B	C	D	E	F	G	H	J

Shell Size 9

	$\left(\begin{array}{cc} 3_{0} & 0 \\ 0 & 0^{6} \\ 0 & 0^{2} \end{array} 0^{2}\right.$	$\left(\begin{array}{ccc} 0^{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	$\left(\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0^{5} & 0^{4} \end{array}\right)$	$\left(\begin{array}{ll} 50 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0^{2} \end{array}\right)$
Insert	09-06	09-07	09-23	09-35
Configuration	7 Size 22M Contacts	7 Size 22D Contacts	9 Size 23 Contacts	6 Size 22D Contacts
Series	I, III	I, III	III	I, III, EN
Service Class	M	M	N	M
QPL	Yes	-	-	Yes
Class K QPL/S	-	-	-	Yes
Hermetic	Yes	-	-	Yes

	$\left(\begin{array}{cc} 0 & 0^{1} \\ 0 & 0^{8} \end{array}\right.$
Insert	09-98
Configuration	3 Size 20 Contacts
Series	I, III, EN
Service Class	1
QPL	Yes
Class K QPL/S	Yes
Hermetic	Yes

Shell Size 11

			$\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right)$	$\left(\begin{array}{ll} 1 & 0^{\circ} \\ 0 & 0^{\circ} \\ 0 & 0^{c} \end{array} 0^{\circ}\right.$
Insert	11-01	11-02	11-04	11-05
Configuration	1 Size 8 Contact	2 Size 16 Contacts	4 Size 20 Contacts	5 Size 20 Contacts
Series	III, EN	I, III, IV	I, III, IV, EN	I, III, IV, EN
Service Class	N	,	I	, 1
QPL	-	Yes (Series I, III)	Yes	Yes
Class K QPL/S	-	-	-	-
Hermetic	-	Yes	Yes	Yes
				$\left(\begin{array}{ccc} 5 & 0_{1}^{\prime} & 0^{\prime} \\ 0 & 10 & 0 \\ 0 & 0 & 0^{12} \\ 0 & 0 & 0 \\ 0 & 0, & 0 \end{array}\right)$
Insert	11-12	11-13	11-23	11-35
Configuration	1 Size 12 Contact	13 Size 22M Contacts	19 Size 23 Contacts	13 Size 22D Contacts
Series	III, EN	I, III, IV	III	I, III, IV, EN
Service Class	II	M	N	M
QPL	-	Yes	-	Yes
Class K QPL/S	-	-	-	Yes
Hermetic	-	Yes	-	Yes
	$\left(\begin{array}{cc} 10 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$	$\left(\begin{array}{cc} 10 & 0^{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$		
Insert	11-98	11-99		
Configuration	6 Size 20 Contacts	7 Size 20 Contacts		
Series	I, III, IV, EN	I, III, IV, EN		
Service Class	1	।		
QPL	Yes	Yes		
Class K QPL/S	Yes	Yes		
Hermetic	Yes	Yes		

MIL-DTL-38999 Circular Connectors

Shell Size 13

*Inactive for new designs

Shell Size 15

	$\left(\begin{array}{cc} 5 & 0^{1} \\ 0 & 0^{8} \\ 0 & 0_{c} \end{array}\right)$		$\left(\begin{array}{ccc} 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	$\left(\begin{array}{cccc} 00 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$
Insert	15-05	15-15	15-18	15-19
Configuration	5 Size 16 Contacts	14 Size 20 Contacts	18 Size 20 Contacts	19 Size 20 Contacts
Series	I, III, IV, EN			
Service Class	11	I	1	I
QPL	Yes	Yes	Yes	Yes
Class K QPL/S	Yes	-	Yes	Yes
Hermetic	Yes	Yes	Yes	Yes
	$\left(\begin{array}{cccc} 0^{4} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$			
Insert	15-21	15 A23	15-23	15-26
Configuration	1 Size 12 Coax Contact 3 Size 20 Contacts 17 Size 22D Contacts	4 Size 16 Coax Contacts 3 Size 20 Contacts 19 Size 22D Contacts	55 Size 23 Contacts	2 Size 16 Contacts 24 Size 22D Contacts
Series	I, III, IV	III	III	I, III, IV
Service Class	1	N	N	M
QPL		-	-	-
Class K QPL/S	-	-	-	-
Hermetic	-	-	-	-

			$\left(\begin{array}{ccc} 0^{10} & 0^{1} & 0 \\ 0 & 0 & \\ 0 & 0 & 0^{c} \\ 0 & 0 & 0_{6} \end{array}\right)$
Insert	15-35	15-37	15-97
Configuration	37 Size 22D Contacts	37 Size 22M Contacts	4 Size 12 Contacts
			8 Size 20 Contacts
Series		I, III, IV	I, III, IV, EN
Service Class	I, II, M, EN	M	I
QPL	$\begin{gathered} \text { M } \\ \text { Yes } \end{gathered}$	Yes	Yes
Class K QPL/S	Yes Yes	-	Yes
Hermetic	Yes	Yes	Yes

MIL-DTL-38999 Circular Connectors

Shell Size 17

			$\left(\begin{array}{ccc} 5 & 0 \\ 0 & 0 & 0^{B} \\ 0 & 0^{\circ} \end{array}\right)$	$\left(\begin{array}{ccc} 0 & 0 & \\ 0 & 0 & \\ 0 & 0^{8} \\ 0 & 0^{\prime \prime} & 0^{c} \\ 0 & 0^{\circ} \end{array}\right)$
Insert	17-02*	17-03	17-06	17-08
Configuration	1 Size 8 Twinax Contact 38 Size 22D Contacts	1 Size 8 Twinax 38 Size 22D Contacts	6 Size 12 Contacts	8 Size 16 Contacts
Series	I, III, IV, EN	I, III, IV	I, III, IV, EN	I, III, IV, EN
Service Class	M	M	1, 11	II
QPL		-	Yes	Yes
Class K QPL/S	-	-	Yes	Yes
Hermetic	-	-	Yes	Yes
Insert	17-11	17-19	17-20	17-22
Configuration	2 Size 12 Twinax	4 Size 16 Contacts	4 Size 12 Contacts	2 Size 8 Twinax
	1 Size 12 Coax	11 Size 20 Contacts	16 Size 22D Contacts	2 Size 10 Contacts
	8 Size 20 Contacts	4 Size 22D Contacts		
Series	I, III, IV	I, III, IV	I, III, IV, EN	I, III, IV, EN
Service Class	N	N	N	N
QPL	-	-	-	
Class K QPL/S	-	-	-	
Hermetic	-	-	-	-
Insert	17-23	17-24	17-26	17-28
Configuration	73 Size 23 Contacts	2 Size 8 Power 2 Size 12 Contacts	26 Size 20 Contacts	2 Size 8 Twinax
Series	III	I, III, IV	I, III, IV, EN	I, III, IV, EN
Service Class	N	N	I	Twinax
QPL	-	-	Yes	Yes
Class K QPL/S	-	-	Yes	-
Hermetic	-	-	Yes	-
Insert	17-35	17-55	17-99	
Configuration	55 Size 22D Contacts	55 Size 22M Contacts	2 Size 16 Contacts 21 Size 20 Contacts	
Series	I, III, IV, EN	I, III, IV	I, III, IV, EN	
Service Class	M	M	1	
QPL	Yes	Yes	Yes	
Class K QPL/S	Yes	-	No	
Hermetic	Yes	Yes	Yes	

*Inactive for new designs

MIL-DTL-38999 Circular Connectors

Shell Size 19

*Inactive for new designs

Shell Size 21

		$\left(\begin{array}{ccc} 10 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$		
Insert	21-01*	21-11	21-16	21-20
Configuration	79 Size 22M Contacts	11 Size 12 Contacts	16 Size 16 Contacts	2 Size 8 Twinax
Series	I, III, IV	I, III, IV, EN	I, III, IV, EN	I, III, IV, EN
Service Class	,	1	11	M
QPL	Yes	Yes	Yes	-
Class K QPL/S	-	-	Yes	-
Hermetic	Yes	Yes	Yes	-
Insert	21-23	21-35	21-39	21-41
Configuration	121 Size 23 Contacts	79 Size 22D Contacts	2 Size 16 Contacts	41 Size 20 Contacts
Series	I, III	I, III, IV, EN	37 Size 20 Contacts	I, III, IV, EN
Service Class	N	, M ${ }^{\text {l }}$, ।.	,
QPL	-	Yes	Yes	Yes
Class K QPL/S	-	Yes	Yes	Yes
Hermetic	-	Yes	Yes	Yes
			$\left(\begin{array}{l} O_{0}^{n} \bigcirc \\ O_{c} O \end{array}\right.$	
Insert	21-48	21-75*	21-76	
Configuration	4 Size 8 Power	4 Size 8 Twinax	4 Size 8 Twinax	
Series	I, III, IV	I, III, IV, EN	I, III, IV	
Service Class	-	Twinax	Twinax	
QPL	-	Yes	-	
Class K QPL/S Hermetic	-	-	-	
Hermetic			-	

*Inactive for new designs

MIL-DTL-38999 Circular Connectors

Shell Size 23				
Insert	23-01*	23-06	23-21	23-23
Configuration	100 Size 22M Contacts	6 Size 8 Twinax	21 Size 16 Contacts	151 Size 23 Contacts
Series	I, III, IV	I, III, IV, EN	I, III, IV, EN	III
Service Class	M	M	11	N
QPL	Yes	-	Yes	-
Class K QPL/S	-	-	-	-
Hermetic	Yes	Yes	Yes	-
Insert	$23-35$	23-41	$23-53$	23-54
Configuration	100 Size 22D Contacts	3 Size 8 Contacts 3 Size 12 Contacts 11 Size 16 Contacts 3 Size 20 Contacts 22 Size 22D Contacts	53 Size 20 Contacts	4 Size 12 Contacts 9 Size 16 Contacts 40 Size 22D Contacts
Series	I, III, IV, EN	III, EN	I, III, IV, EN	I, III, IV, EN
Service Class	M	N	I	M
QPL	Yes	-	Yes	-
Class K QPL/S	-	-	Yes	-
Hermetic	Yes	-	Yes	-

Insert	23-55	23-63
Configuration	55 Size 20 Contacts	4 Size 12 Contacts 4 Size 16 Contacts 49 Size 22D Contacts
Series	I, III, IV, EN	I, III, IV
Service Class	1	M
QPL	Yes	-
Class K QPL/S	-	-
Hermetic	Yes	-

[^0]
MIL-DTL-38999 Circular Connectors

Shell Size 25

Insert	25-01*	25-04	25-07*	25-08*
Configuration	128 Size 22D Contacts	8 Size 16 Contacts	2 Size 8 Twinax	8 Size 8 Twinax
		48 Size 20 Contacts	97 Size 22D Contacts	
Series	I, III, IV	I, III, IV, EN	I, III, IV, EN	I, III, IV, EN
Service Class	M	I	M	Twinax
QPL	Yes	Yes	-	-
Class K QPL/S	-	Yes	-	-
Hermetic	Yes	Yes	-	-
			$\left(\begin{array}{ccc} { }^{H} & 0^{A} & 0^{8} \\ 0 & 0^{j} & \\ 0 & 0^{k} & 0^{c} \\ 0 & 0^{E} & 0^{0} \end{array}\right)$	
Insert	25-09	25-10	25-11	25-17
Configuration	2 Size 8 Twinax	8 Size 8 Twinax	9 Size 10 Contacts	6 Size 8 Twinax
	97 Size 22D Contacts		2 Size 20 Contacts	36 Size 22D Contacts
Series	I, III, IV	I, III, IV	I, III, IV, EN	I, III, IV, EN
Service Class	M	Twinax	N	N
QPL	-	-	-	-
Class K QPL/S	-	-	-	-
Hermetic	-	-	-	-
Insert	25-19	25-20	25-21	25-23
Configuration	19 Size 12 Contacts	3 Size 8 Twinax	3 Size 8 Twinax	187 Size 22D Contacts
		4 Size 12 Coax	4 Size 12 Coax	
		13 Size 16 Contacts	13 Size 16 Contacts	
		10 Size 20 Contacts	10 Size 20 Contacts	
Series	I, III, IV, EN	I, III, IV, EN	I, III, IV	I, III, IV
Service Class	1	N	N	N
QPL	Yes	Yes	Yes	-
Class K QPL/S	-	-	-	-
Hermetic	Yes	-	-	-

*Inactive for new designs

MIL-DTL-38999 Circular Connectors

Shell Size 25

Insert	25-24	25-29	25-35	25-36
Configuration	12 Size 12 Contacts 12 Size 16 Contacts	29 Size 16 Contacts	128 Size 22D Contacts	3 Size 8 Contacts 1 Size 12 Coax 1 Size 12 Contact 10 Size 16 Contacts 24 Size 20 Contacts
Series	I, III, IV, EN	I, III, IV, EN	I, III, IV, EN	III, EN
Service Class	I	I	M	N
QPL	Yes	Yes	Yes	-
Class K QPL/S	-	-	Yes	-
Hermetic	Yes	Yes	Yes	-
Insert	25-37	25-43	25-46*	25-47
Configuration	37 Size 16 Contacts	20 Size 16 Contacts	2 Size 8 Coax	2 Size 8 Coax
		23 Size 20 Contacts	4 Size 12 Contacts 40 Size 20 Contacts	4 Size 12 Contacts 40 Size 20 Contacts
Series	I, III, IV, EN	I, III, IV, EN	I, III, IV, EN	I, III, IV
Service Class	II	I	I	- li
QPL	Yes	Yes	Yes	-
Class K QPL/S	-	-	-	-
Hermetic	-	Yes	-	-
Insert	25-61	25-90*	25-91	
Configuration	61 Size 20 Contacts	2 Size 8 Twinax 4 Size 16 Contacts 40 Size 20 Contacts	2 Size 8 Twinax 4 Size 16 Contacts 40 Size 20 Contacts	
Series Service Class	I, III, IV, EN	I, III, IV	I, III, IV	
QPL	Yes	-	-	
Class K QPL/S	Yes	-	-	
Hermetic	Yes	-	-	

*Inactive for new designs

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

The DEUTSCH DJT Series connectors from TE Connectivity (TE) are high-performance MIL-DTL-38999 Series I subminiature circular connectors offering a scoop-proof design for easy, reliable mating.
Available in 9 shell sizes and environmentally sealed and hermetic versions, DEUTSCH DJT Series connectors feature a self-locking bayonet coupling system. They are completely intermateable and interchangeable with MIL-DTL-38999 Series I connectors, and are available in a variety of shell materials and finishes.

Designed for rugged reliability, DEUTSCH DJT Series connectors are highly durable, capable of 500 mating cycles. They provide excellent vibration, corrosion and shock resistance, and offer excellent EMI protection and shielding effectiveness from 100 MHz to 10 GHz .

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Specifications

MATERIALS

- Shell Material and Plating:

Aluminum, olive drab cadmium
Aluminum, electroless nickel
Carbon steel, electrodeposited nickel (hermetic only)
Stainless steel, passivated (hermetic only but can be available commercially for standard environment configurations)

- Insert: Thermoplastic and fluorinated silicone elastomer
- EMI Spring Fingers: Nickel or cadmium-plated beryllium copper
- O-Ring: Fluorinated silicone elastomer

ENVIRONMENTAL

- Temperature Range:
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Electrodeposited tin-plated carbon steel (Class D)
$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ - Cadmium finish (Class B)
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ - Nickel finish (Class F) and stainless steel (Class E)
- Fluid Resistance: Fluid immersion per EIA 364.10, including resistance to MIL-PRF-5606: Hydraulic fluid
MIL-DTL-83133: JP-8 aviation fuel
MIL-PRF-7808: Lubricating oil
MIL-PRF-23699: Lubricating oil
MIL-A-8243: Deicing/defrosting fluid
MIL-C-25769: Aircraft cleaning compound
MIL-PRF-87937: Aircraft cleaning compound MIL-G-3056: Gasoline
- Salt Spray: 48 hours (Nickel finishes)

500 hours (Cadmium, black zinc nickel, nickel PTFE, and passivated finishes)

- Thermal Cycling: -65° to $150 / 175 / 200^{\circ} \mathrm{C}$ (max. temperature is class dependent)

MECHANICAL

- Sine Vibration: Up to 60 g for 36 hr .
- Random Vibration: Up to 41.7 g for 16 hr . at $175^{\circ} \mathrm{C}$ Up to 50 g for 16 hr . at ambient temperature
- Shock: $300 \mathrm{~g}, 3 \mathrm{~ms}$ in the 3 axes
- Durability: 500 mating cycles
- Contact Retention:

Size 22D: 44 N (10 lb.)
Size 20: 67 N (15 lb.)
Size 16: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 12: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 10: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 8: $111 \mathrm{~N}(25 \mathrm{lb}$.

ELECTRICAL

- Shell-to-Shell Conductivity: 1.0 mV (nickel finish)
2.5 mV (cadmium finish)
10.0 mV (passivated finish)
- Shielding Effectiveness: >90 dB at $100 \mathrm{MHz},>65 \mathrm{~dB}$ through 10 GHz

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Voltage Rating

Service Rating	Suggested Operating Voltage			Test Voltage at Altitude (VAC $\mathrm{rms}^{\text {) }}$		
	VAC $_{\text {rms }}$	VDC	Sea Level	50,000 Ft.	70,000 Ft.	100,000 Ft.
M	400	550	1300	550	350	200
N	300	450	1000	400	260	200
I	600	850	1800	600	400	200
11	750	1050	2300	800	500	200

Hermetic Connectors

- Hermetic Seal: Sintered glass
- Leakage: $\leq 16 \mathrm{~cm}^{3} / \mathrm{hr}$. ($0.97 \mathrm{in}^{3} / \mathrm{hr}$.) on mated pairs connected under 2.1 bar (4.38 psi)
- Thermal Shock: 10 cycles, $4^{\circ} \mathrm{C}$ max. to $90^{\circ} \mathrm{C}$ min.

Current Rating

Contact Size	Test Current (A)	Voltage Drop (mV)
22 D	5	73
20	7.5	55
16	13	50
12	23	42
10	33	34
8^{*}	46	26

*When commercial power contact replaces twin-ax contact

Thread Sizes

Shell Size	Accessory Thread (Class 2A)	Jam Nut Thread (Class 2A)
9	$.4375-28$ UNEF	$.6875-24$ UNEF
11	$.5625-24$ UNEF	$.8125-20$ UNEF
13	$.6875-24$ UNEF	$1.0000-20$ UNEF
15	$.8125-20$ UNEF	$1.1250-18$ UNEF
17	$.9375-20$ UNEF	$1.2500-18$ UNEF
19	$1.0625-18$ UNEF	$1.3750-18$ UNEF
21	$1.1875-18$ UNEF	$1.5000-18$ UNEF
23	$1.3125-18$ UNEF	$1.6250-18$ UNEF
25	$1.4375-18$ UNEF	$1.7500-18$ UNS

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Insert Contact Size/Quantity														
		$\begin{aligned} & \infty \\ & \AA_{0}^{2} \\ & \underset{\sim}{x} \end{aligned}$	∞ 0 0 O ©	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{-1}{k} \\ & \underset{\sim}{x} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \hat{O} \\ & \underset{\sim}{x} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	ぁ	N	N	O			Inactive: Superseded by
09-07										7				
09-35										6	\checkmark	\checkmark		
09-98									3		\checkmark	\checkmark		
11-02								2			\checkmark	\checkmark		
11-04									4			\checkmark		
11-05									5		\checkmark			
11-35										13	\checkmark	\checkmark		
11-98									6		\checkmark	\checkmark		
11-99									7		\checkmark	\checkmark		
13-04								4			\checkmark	\checkmark		
13-08									8		\checkmark	\checkmark		
13-35										22	\checkmark	\checkmark		
13-98									10		\checkmark	\checkmark		
15-05								5			\checkmark	\checkmark		
15-15								1	14			\checkmark		
15-18									18			\checkmark		
15-19									19		\checkmark	\checkmark		
15-26								2		24				
15-35										37	\checkmark	\checkmark		
15-97								4	8		\checkmark	\checkmark		
17-02	1									38				17-03
17-03	1									38			\checkmark	
17-06							6				\checkmark			
17-08								8			\checkmark			
17-11				2	1				8					
17-19								4	11	4				
17-20							4			16				
17-22	2						2							
17-24			2							22				
17-26									26		\checkmark			
17-35										55	\checkmark			
17-99								2	21		\checkmark			
19-11								11			\checkmark			
19-18	4									14				19-19
19-19	4									14			\checkmark	
19-28								2	26					
19-32									32		\checkmark			

Blue shaded entries are not Mil Spec.

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Insert Contact Size/Quantity														
		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\sim}{x} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{1}{\hat{N}} \\ & \underset{\sim}{1} \\ & \underset{x}{x} \end{aligned}$	$\begin{aligned} & \vec{N} \\ & \hat{O} \\ & 0 \\ & \underset{x}{n} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{\text { N }}$	あ	N	N	$\stackrel{0}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{0} \\ & \mathbf{T} \\ & 0 \\ & \overline{3} \\ & 0 \\ & 0 \end{aligned}$		
19-35										66	\checkmark			
21-11							11				\checkmark			
21-16								16			\checkmark			
21-20	2								18					
21-35										79	\checkmark			
21-39								2	37		\checkmark			
21-41									41		\checkmark			
21-48			4											
21-75	4													21-76
21-76	4												\checkmark	
23-06	6													
23-21								21			\checkmark			
23-35										100	\checkmark			
23-53									53		\checkmark			
23-54							4	9		40				
23-55									55		\checkmark			
23-63							4	4		49				
25-04								8	48		\checkmark	\checkmark		
25-07	2									97				25-09
25-08	8													25-10
25-09	2									97			\checkmark	
25-10	8												\checkmark	
25-17	6									36				
25-19							19				\checkmark	\checkmark		
25-20	3				4			13	10					25-21
25-21	3				4			13	10				\checkmark	
25-24							12	12			\checkmark	\checkmark		
25-29								29			\checkmark	\checkmark		
25-35										128	\checkmark	\checkmark		
25-37								37			\checkmark	\checkmark		
25-43								20	23		\checkmark	\checkmark		
25-46		2						4	40					25-47
25-47		2						4	40				\checkmark	
25-61									61		\checkmark	\checkmark		
25-90	2							4	40					25-91
25-91	2							4	40				\checkmark	

Blue shaded entries are not Mil Spec.

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Front Panel Mount Square Flange Receptacle

Shell Size	$\begin{aligned} & A \pm 0.51 \\ & (0.020) \end{aligned}$	$\begin{aligned} & \mathbf{B} \pm 0.13 \\ & (0.005) \end{aligned}$	$\begin{aligned} & \mathbf{C} \pm 0.08 \\ & (0.003) \end{aligned}$	$\begin{gathered} \mathbf{E}+0.25 \pm \\ 0.25 /-0.13 \\ (+0.010 /-0.005) \end{gathered}$	F	$\begin{aligned} & \mathbf{G} \pm 0.13 \\ & (0.005) \end{aligned}$	H	$\begin{gathered} \mathbf{J}+0.00 / \\ -0.13 \\ (0.005) \\ \hline \end{gathered}$
09	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 14.48 \\ & 0.570 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 13.11 \\ & 0.516 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 0.623 \end{aligned}$
11	$\begin{aligned} & \mathbf{2 6 . 1 9} \\ & 1.031 \end{aligned}$	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 17.73 \\ & 0.698 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 16.87 \\ & 0.664 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 0.623 \end{aligned}$
13	$\begin{gathered} \mathbf{2 8 . 5 8} \\ 1.125 \end{gathered}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 21.54 \\ & 0.848 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 0.623 \end{aligned}$
15	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 24.71 \\ & 0.973 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 0.623 \end{aligned}$
17	$\begin{aligned} & 33.32 \\ & 1.312 \end{aligned}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 27.89 \\ & 1.098 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 25.81 \\ & 1.016 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 0.623 \end{aligned}$
19	$\begin{aligned} & 36.53 \\ & 1.438 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 30.61 \\ & 1.205 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 28.98 \\ 1.141 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 0.100 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 0.623 \end{aligned}$
21	$\begin{aligned} & 39.67 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 33.78 \\ & 1.330 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 32.16 \\ & 1.266 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 15.29 \\ & 0.602 \end{aligned}$
23	$\begin{aligned} & 42.88 \\ & 1.688 \end{aligned}$	$\begin{gathered} \mathbf{3 4 . 9 3} \\ 1.375 \end{gathered}$	$\begin{aligned} & 36.96 \\ & 1.455 \end{aligned}$	$\begin{aligned} & 3.73 \\ & 0.147 \end{aligned}$	$\begin{aligned} & 34.98 \\ & 1.377 \end{aligned}$	$\begin{aligned} & 3.91 \\ & 0.154 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 15.29 \\ & 0.602 \end{aligned}$
25	$\begin{aligned} & 46.02 \\ & 1.812 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 40.13 \\ & 1.580 \end{aligned}$	$\begin{aligned} & 3.73 \\ & 0.147 \end{aligned}$	$\begin{aligned} & 37.69 \\ & 1.484 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{aligned} & 3.30 \\ & 0.130 \end{aligned}$	$\begin{aligned} & 15.29 \\ & 0.602 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Jam Nut Receptacle

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { ØА } \\ \pm 0.41(0.016) \end{gathered}$	$\begin{gathered} \text { B Flat } \\ +.000 /-0.25(0.010) \end{gathered}$	$\begin{gathered} \mathbf{F} \\ +.000 /-0.25(0.010) \end{gathered}$	$\begin{gathered} \text { øG } \\ +.000 /-0.25(0.010) \end{gathered}$
09	$\begin{aligned} & 30.18 \\ & 1.188 \end{aligned}$	$\begin{aligned} & 16.64 \\ & 0.655 \end{aligned}$	$\begin{aligned} & 17.02 \\ & 0.670 \end{aligned}$	$\begin{aligned} & 17.78 \\ & 0.700 \end{aligned}$
11	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 19.18 \\ & 0.755 \end{aligned}$	$\begin{aligned} & 19.58 \\ & 0.771 \end{aligned}$	$\begin{aligned} & 20.96 \\ & 0.825 \end{aligned}$
13	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 23.93 \\ & 0.942 \end{aligned}$	$\begin{aligned} & 24.26 \\ & 0.955 \end{aligned}$	$\begin{gathered} 25.65 \\ 1.010 \end{gathered}$
15	$\begin{aligned} & 41.28 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 27.08 \\ & 1.066 \end{aligned}$	$\begin{aligned} & 27.56 \\ & 1.085 \end{aligned}$	$\begin{gathered} 28.83 \\ 1.135 \end{gathered}$
17	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$	$\begin{gathered} 30.25 \\ 1.191 \end{gathered}$	$\begin{gathered} 30.73 \\ 1.210 \end{gathered}$	$\begin{aligned} & 32.00 \\ & 1.260 \end{aligned}$
19	$\begin{aligned} & 49.23 \\ & 1.938 \end{aligned}$	$\begin{gathered} 33.43 \\ 1.316 \end{gathered}$	$\begin{aligned} & 33.91 \\ & 1.335 \end{aligned}$	$\begin{aligned} & 35.18 \\ & 1.385 \end{aligned}$
21	$\begin{aligned} & \mathbf{5 2 . 3 7} \\ & 2.062 \end{aligned}$	$\begin{gathered} 36.60 \\ 1.441 \end{gathered}$	$\begin{aligned} & 37.08 \\ & 1.460 \end{aligned}$	$\begin{aligned} & 38.35 \\ & 1.510 \end{aligned}$
23	$\begin{gathered} \mathbf{5 5 . 5 8} \\ 2.188 \end{gathered}$	$\begin{aligned} & 39.78 \\ & 1.566 \end{aligned}$	$\begin{aligned} & 40.26 \\ & 1.585 \end{aligned}$	$\begin{aligned} & 41.53 \\ & 1.635 \end{aligned}$
25	$\begin{gathered} \mathbf{5 8 . 7 2} \\ 2.312 \end{gathered}$	$\begin{gathered} 42.95 \\ 1.691 \end{gathered}$	$\begin{aligned} & 43.43 \\ & 1.710 \end{aligned}$	$\begin{aligned} & 44.70 \\ & 1.760 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Rear Panel Wall Mount Square Flange Receptacle

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \mathbf{A} \\ \pm 0.51 \\ (0.020) \end{gathered}$	$\begin{gathered} \mathbf{B} \\ \pm 0.13 \\ (0.005) \end{gathered}$	$\begin{gathered} \text { C } \\ \pm 0.08 \\ (0.003) \end{gathered}$	D THREAD UNEF-2A	$\begin{gathered} \boldsymbol{\varnothing E} \\ +0.25-0.13 \\ (+.010-.005) \end{gathered}$	ØF Min.	$\begin{gathered} \boldsymbol{\varnothing \mathbf { G }} \\ \pm 0.13 \\ (0.005) \end{gathered}$	$\begin{gathered} \mathbf{H} \\ +0.38-0.00 \\ ++.015-.000) \end{gathered}$	$\begin{gathered} \mathbf{J} \\ +0.00-0.13 \\ (+.000-.005) \end{gathered}$
09	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{gathered} 18.26 \\ 0.719 \end{gathered}$	$\begin{aligned} & 14.48 \\ & 0.570 \end{aligned}$	$\begin{gathered} 11.11-28 \\ 0.4375-28 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 13.11 \\ & 0.516 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 2.16 \\ 0.085 \end{gathered}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
11	$\begin{aligned} & 26.19 \\ & 1.031 \end{aligned}$	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 17.73 \\ & 0.698 \end{aligned}$	$\begin{gathered} 14.29-24 \\ 0.5625-24 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 16.87 \\ & 0.664 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 2.16 \\ 0.085 \end{gathered}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
13	$\begin{gathered} \mathbf{2 8 . 5 8} \\ 1.125 \end{gathered}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 21.54 \\ & 0.848 \end{aligned}$	$\begin{gathered} 17.46-24 \\ 0.6875-24 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 2.16 \\ 0.085 \end{gathered}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
15	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 24.71 \\ & 0.973 \end{aligned}$	$\begin{aligned} & \mathbf{2 0 . 6 4 - 2 0} \\ & 0.8125-20 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 2.16 \\ 0.085 \end{gathered}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
17	$\begin{aligned} & 33.32 \\ & 1.312 \end{aligned}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 27.89 \\ & 1.098 \end{aligned}$	$\begin{gathered} \mathbf{2 3 . 8 1 - 2 0} \\ 0.9375-20 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 8 1} \\ & 1.016 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 2.16 \\ 0.085 \end{gathered}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
19	$\begin{aligned} & 36.53 \\ & 1.438 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 30.61 \\ & 1.205 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 9 9 - 1 8} \\ & 1.0625-18 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 28.98 \\ 1.141 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 2.16 \\ 0.085 \end{gathered}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
21	$\begin{aligned} & 39.67 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 33.78 \\ & 1.330 \end{aligned}$	$\begin{aligned} & \mathbf{3 0 . 1 6 - 1 8} \\ & 1.1875-18 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 32.16 \\ & 1.266 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 2.92 \\ & 0.115 \end{aligned}$	$\begin{aligned} & 20.07 \\ & 0.790 \end{aligned}$
23	$\begin{aligned} & 42.88 \\ & 1.688 \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 36.96 \\ & 1.455 \end{aligned}$	$\begin{aligned} & \mathbf{3 3 . 3 4 - 1 8} \\ & 1.3125-18 \end{aligned}$	$\begin{aligned} & 3.73 \\ & 0.147 \end{aligned}$	$\begin{aligned} & 34.98 \\ & 1.377 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{aligned} & 2.92 \\ & 0.115 \end{aligned}$	$\begin{aligned} & 20.07 \\ & 0.790 \end{aligned}$
25	$\begin{gathered} 46.02 \\ 1.812 \end{gathered}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 40.13 \\ & 1.580 \end{aligned}$	$\begin{gathered} \mathbf{3 6 . 5 1 - 1 8} \\ 1.4375-18 \end{gathered}$	$\begin{aligned} & 3.73 \\ & 0.147 \end{aligned}$	$\begin{aligned} & 37.69 \\ & 1.484 \end{aligned}$	$\begin{aligned} & 3.81 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 2.92 \\ & 0.115 \end{aligned}$	$\begin{aligned} & 20.07 \\ & 0.790 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Plug
Type MS27467 / DEUTSCH DJT16

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Recommended Panel Cutouts

Square Flange Receptacle

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	$\begin{aligned} & \mathbf{C 1} \pm 0.13 \\ & (0.005) \end{aligned}$	H Min.	$\begin{aligned} & \mathbf{A} \pm 0.13 \\ & (0.005) \end{aligned}$	V Min.
09	$\begin{gathered} 18.26 \\ 0.719 \end{gathered}$	$\begin{gathered} 13.11 \\ 0.516 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 25.58 \\ & 1.007 \end{aligned}$
11	$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 16.87 \\ & 0.664 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$
13	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 30.20 \\ 1.189 \end{gathered}$
15	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 33.30 \\ 1.331 \end{gathered}$
17	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 25.81 \\ & 1.016 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & \mathbf{3 6 . 5 0} \\ & 1.437 \end{aligned}$
19	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{gathered} 28.98 \\ 1.141 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 39.30 \\ & 1.547 \end{aligned}$
21	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 32.16 \\ & 1.266 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 42.50 \\ & 1.673 \end{aligned}$
23	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 34.98 \\ & 1.377 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{aligned} & 45.70 \\ & 1.799 \end{aligned}$
25	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 37.69 \\ & 1.484 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{gathered} 48.80 \\ 1.921 \end{gathered}$

Millimeters Inches

Jam Nut Receptacle

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \mathbf{K} \\ +.000 /-0.25(0.010) \end{gathered}$	$\begin{gathered} \boldsymbol{\varnothing} \mathrm{H} \mathbf{1} \\ +.000 /-0.25(0.010) \end{gathered}$	V1 Min.
09	$\begin{aligned} & 17.02 \\ & 0.670 \end{aligned}$	$\begin{aligned} & 17.78 \\ & 0.700 \end{aligned}$	$\begin{gathered} 20.20 \\ 1.189 \end{gathered}$
11	$\begin{aligned} & 19.58 \\ & 0.771 \end{aligned}$	$\begin{aligned} & 20.96 \\ & 0.825 \end{aligned}$	$\begin{aligned} & 32.60 \\ & 1.283 \end{aligned}$
13	$\begin{aligned} & \mathbf{2 4 . 2 6} \\ & 0.955 \end{aligned}$	$\begin{gathered} 25.65 \\ 1.010 \end{gathered}$	$\begin{gathered} 36.00 \\ 1.417 \end{gathered}$
15	$\begin{aligned} & \mathbf{2 7 . 5 6} \\ & 1.085 \end{aligned}$	$\begin{gathered} \mathbf{2 8 . 8 3} \\ 1.135 \end{gathered}$	$\begin{gathered} 39.60 \\ 1.559 \end{gathered}$
17	$\begin{gathered} 30.73 \\ 1.210 \end{gathered}$	$\begin{aligned} & 32.00 \\ & 1.260 \end{aligned}$	$\begin{aligned} & 43.30 \\ & 1.705 \end{aligned}$
19	$\begin{aligned} & 33.91 \\ & 1.335 \end{aligned}$	$\begin{aligned} & 35.18 \\ & 1.385 \end{aligned}$	$\begin{aligned} & 47.00 \\ & 1.850 \end{aligned}$
21	$\begin{aligned} & 37.08 \\ & 1.460 \end{aligned}$	$\begin{gathered} 38.35 \\ 1.510 \end{gathered}$	$\begin{gathered} \mathbf{5 0 . 6 0} \\ 1.992 \end{gathered}$
23	$\begin{aligned} & \mathbf{4 0 . 2 6} \\ & 1.585 \end{aligned}$	$\begin{aligned} & 41.53 \\ & 1.635 \end{aligned}$	$\begin{gathered} 54.20 \\ 2.134 \end{gathered}$
25	$\begin{aligned} & 43.43 \\ & 1.710 \end{aligned}$	$\begin{aligned} & 44.70 \\ & 1.760 \end{aligned}$	$\begin{aligned} & 59.70 \\ & 2.350 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series I Connectors

DEUTSCH DJT Series Connectors

Keying Options

(Viewed from Mating Face of the Receptacle Connector)

Shell Size	Key Position (Degrees)				
	\mathbf{N}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{0 9}$	95	77	-	123	113
$\mathbf{1 1}$	95	81	67	127	109
$\mathbf{1 3}$	95	75	63	129	115
$\mathbf{1 5}$	95	74	61	125	116
$\mathbf{1 7}$	95	77	65	125	113
$\mathbf{1 9}$	95	77	65	125	113
$\mathbf{2 1}$	95	80	65	121	110
$\mathbf{2 3}$	95	80	69	110	
$\mathbf{2 5}$	95		77		

Degrees in table above are the distance between Datum E (that bisects first minor keyway) and the center line of the master keyway

Inserts are available in nine shell sizes, with contact arrangements meeting MIL-DTL-1560, along with additional arrangements, to help maximize flexibility in circuit configurations.

Designed to Perform

1 High-quality silicone seals to help maximize tear resistance and sealing memory

2 Self-locking threaded coupling
3 100\% metal-to-metal bottoming for excellent EMI grounding protection

4 Triple-start threads
5 Grounding fingers providing excellent EMI protection
6 Elongated mounting holes for flexible mounting with standard MIL-DTL-38999 box or wall mount receptacles

7 Contact retention system provides excellent contact retention under severe vibration

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Specifications

MATERIALS

- Shell: Aluminum, composite, stainless steel, marine bronze
- Plating: Olive drab cadmium, passivated, electroless or electrodeposited nickel, nickel PTFE, black zinc nickel
- Insert: Thermoplastic and fluorinated silicone elastomer
- EMI Spring Fingers: Nickel or cadmium-plated beryllium copper
- O-Ring: Fluorinated silicone elastomer

ENVIRONMENTAL

- Temperature Range:

$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

- Fluid Resistance: Fluid immersion per EIA 364.10, including resistance to MIL-PRF-5606: Hydraulic fluid MIL-DTL-83133: JP-8 aviation fuel
MIL-PRF-7808: Lubricating oil
MIL-PRF-23699: Lubricating oil MIL-A-8243: Deicing/defrosting fluid MIL-C-25769: Aircraft cleaning compound MIL-PRF-87937: Aircraft cleaning compound MIL-G-3056: Gasoline
- Salt Spray: 48 hours (Nickel finishes) 500 hours (Cadmium, black zinc nickel, nickel PTFE, and passivated finishes)
2000 hours (Composite classes M and J)
- Thermal Cycling: -65° to $150 / 175 / 200^{\circ} \mathrm{C}$ (max. temperature is class dependent)

MECHANICAL

- Sine Vibration: Up to 60 g for 36 hr .
- Random Vibration: Up to 41.7 g for 16 hr . at $175^{\circ} \mathrm{C}$ Up to 50 g for 16 hr . at ambient temperature
- Shock: $300 \mathrm{~g}, 3 \mathrm{~ms}$ in the 3 axes
- Durability: 500 mating cycles (1500 cycles for composite connectors)
- Contact Retention:

Size 23: 44 N (10 lb.)
Size 22D: 44 N (10 lb.)
Size 20: $67 \mathrm{~N}(15 \mathrm{lb}$.
Size 16: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 12: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 10: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 8: 111 N (25 lb.$)$

ELECTRICAL

- Shell-to-Shell Conductivity:
1.0 mV (nickel finish)
2.5 mV (cadmium finish)

3 mV (passivated finish)

- Shielding Effectiveness: $>90 \mathrm{~dB}$ at $100 \mathrm{MHz},>65 \mathrm{~dB}$ through 10 GHz

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Voltage Rating

Service Rating	Suggested Operating Voltage			Test Voltage at Altitude (VAC $\mathrm{rms}^{\text {) }}$		
	VAC $_{\text {rms }}$	VDC	Sea Level	50,000 Ft.	70,000 Ft.	100,000 Ft.
M	400	550	1300	550	350	200
N	300	450	1000	400	260	200
I	600	850	1800	600	400	200
11	750	1050	2300	800	500	200

Hermetic Connectors

- Hermetic Seal: Sintered glass
- Leakage: $\leq 16 \mathrm{~cm}^{3} / \mathrm{hr}$. ($0.97 \mathrm{in}^{3} / \mathrm{hr}$.) on mated pairs connected under 2.1 bar (4.38 psi)
- Thermal Shock: 10 cycles, $4^{\circ} \mathrm{C}$ max. to $90^{\circ} \mathrm{C}$ min.

Current Rating

Contact Size	Test Current (A)	Voltage Drop (mV)
23	3	73
22 D	5	73
20	7.5	55
16	13	50
12	23	42
10	33	34
8^{*}	46	26

*When commercial power contact replaces twin-ax contact

Thread Sizes

Shell Size	Accessory Thread $(6 \mathrm{~g} 0.10 \mathrm{OR})$	Mating Thread $(0.1 \mathrm{P}-0.3 \mathrm{~L})$	Jam Nut Thread $(6 \mathrm{~g} \mathrm{O.100R})$
9	$\mathrm{M} 12 \times 1.0$.6250	$\mathrm{M} 17 \times 1.0$
11	$\mathrm{M} 15 \times 1.0$.7500	$\mathrm{M} 20 \times 1.0$
13	$\mathrm{M} 18 \times 1.0$.8750	$\mathrm{M} 25 \times 1.0$
15	$\mathrm{M} 22 \times 1.0$	1.0000	$\mathrm{M} 28 \times 1.0$
17	$\mathrm{M} 25 \times 1.0$	1.1875	$\mathrm{M} 32 \times 1.0$
19	$\mathrm{M} 28 \times 1.0$	1.2500	$\mathrm{M} 35 \times 1.0$
21	$\mathrm{M} 31 \times 1.0$	1.3750	$\mathrm{M} 38 \times 1.0$
23	$\mathrm{M} 34 \times 1.0$	1.5000	$\mathrm{M} 41 \times 1.0$
25	$\mathrm{M} 37 \times 1.0$	1.6250	$\mathrm{M} 44 \times 1.0$

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Part Numbering MIL-DTL-38999 and DEUTSCH Commerical Versions

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Part Numbering
EN3645 and DEUTSCH Commercial Versions

INSERT ARRANGEMENT
See Insert Arrangement Tables, page 10

CONTACT TYPE

M Pin

F Socket
A Less Pin
B Less Socket
KEYING POSITIONS
N (Normal)
A, B, C, D, E

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Blue shaded entries are not Mil Spec. Green shading indicates high-density inserts.

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Insert Contact Size/Quantity															
0 3 0 0 1			$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{1}{\Sigma} \\ & \bar{y} \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	$\begin{aligned} & \vec{N} \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	ぁ	N	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \end{aligned}$	N			
19-32	F32									32			\checkmark		
19-35	F35										66		\checkmark		
21-11	G11							11							
21-16	G16								16						
21-20	G20	2								18					
21-23	G23											121			
21-35	G35										79		\checkmark		
21-39	G39								2	37			\checkmark		
21-41	G41									41			\checkmark		
21-48	G48			4											
21-75	G75	4													21-76
21-76	G76	4												\checkmark	
23-06	H6 (H06)	6													
23-21	H21								21						
23-23	H23											151			
23-35	H35										100				
23-53	H53									53			\checkmark		
23-54	H54							4	9		40				
23-55	H55									55					
23-63	H63							4	4		49				
25-04	J4 (J04)								8	48			\checkmark		
25-07	J7 (J07)	2									97				25-09
25-08	J8 (J08)	8													25-10
25-09	J9 (J09)	2									97			\checkmark	
25-10	J10	8												\checkmark	
25-11	J11						9			2					
25-17	J17	6									36				
25-19	J19							19							
25-20	J20	3				4			13	10					25-21
25-21	J21	3				4			13	10				\checkmark	
25-23	J23											187			
25-24	J24							12	12						
25-29	J29								29						
25-35	J35										128		\checkmark		
25-37	J37								37						
25-43	J43								20	23					
25-46	J46		2						4	40					25-47
25-47	J47		2						4	40				\checkmark	
25-61	J61									61			\checkmark		
25-90	J90	2							4	40					25-91
25-91	J91	2							4	40				\checkmark	

Blue shaded entries are not Mil Spec.
Green shading indicates high-density inserts.

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Square Flange Receptacle

Type 20

Shell Size	B	C1	C2	D Max.	E Max.	F	G	P	PP	Mass (g) by Shell Type		
										AI	SS	Composite
09	$\begin{aligned} & 23.80 \\ & 0.937 \end{aligned}$	$\begin{array}{r} 18.26 \\ 0.719 \end{array}$	$\begin{aligned} & 15.09 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 15.75 \\ & 0.620 \end{aligned}$	$\begin{aligned} & 11.90 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & \mathbf{5 . 4 9} \\ & 0.216 \end{aligned}$	10	27	9
11	$\begin{gathered} \mathbf{2 6 . 2 0} \\ 1.031 \end{gathered}$	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 18.90 \\ & 0.744 \end{aligned}$	$\begin{aligned} & 14.90 \\ & 0.587 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	16	36	11
13	$\begin{gathered} 28.60 \\ 1.126 \end{gathered}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 22.10 \\ & 0.870 \end{aligned}$	$\begin{aligned} & 17.90 \\ & 0.705 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	19	45	14
15	$\begin{aligned} & 31.00 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 25.25 \\ & 0.994 \end{aligned}$	$\begin{aligned} & 21.90 \\ & 0.862 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	25	56	18
17	$\begin{gathered} 33.30 \\ 1.311 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{gathered} 29.95 \\ 1.179 \end{gathered}$	$\begin{aligned} & 24.90 \\ & 0.980 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	32	74	23
19	$\begin{aligned} & \mathbf{3 6 . 5 0} \\ & 1.437 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 31.55 \\ & 1.242 \end{aligned}$	$\begin{aligned} & 27.90 \\ & 1.098 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	39	78	26
21	$\begin{aligned} & 39.70 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 34.70 \\ & 1.366 \end{aligned}$	$\begin{gathered} 30.90 \\ 1.217 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 4.93 \\ 0.194 \end{gathered}$	45	95	31
23	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 37.90 \\ & 1.492 \end{aligned}$	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$	54	108	36
25	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 41.10 \\ & 1.618 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$	59	120	43

[^1]
MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Jam Nut Receptacle

 Type 24

Shell Size	A	B	E	F	G	M Max.	Mass (g) by Shell Type		
							AI	SS	Composite
09	$\begin{gathered} 30.20 \\ 1.189 \end{gathered}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 15.75 \\ & 0.620 \end{aligned}$	$\begin{aligned} & 11.90 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 24.00 \\ & 0.945 \end{aligned}$	15	40	11
11	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 18.90 \\ & 0.744 \end{aligned}$	$\begin{aligned} & 14.90 \\ & 0.587 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	21	50	14
13	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 22.10 \\ & 0.870 \end{aligned}$	$\begin{aligned} & 17.90 \\ & 0.705 \end{aligned}$	$\begin{aligned} & 32.00 \\ & 1.260 \end{aligned}$	27	60	18
15	$\begin{aligned} & 41.30 \\ & 1.626 \end{aligned}$	$\begin{aligned} & \mathbf{3 8 . 1 0} \\ & 1.500 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 25.25 \\ & 0.994 \end{aligned}$	$\begin{aligned} & 21.90 \\ & 0.862 \end{aligned}$	$\begin{gathered} 36.00 \\ 1.417 \end{gathered}$	32	72	23
17	$\begin{gathered} 44.50 \\ 1.752 \end{gathered}$	$\begin{aligned} & 41.30 \\ & 1.626 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{gathered} 29.95 \\ 1.179 \end{gathered}$	$\begin{aligned} & 24.90 \\ & 0.980 \end{aligned}$	$\begin{aligned} & 37.00 \\ & 1.457 \end{aligned}$	40	92	29
19	$\begin{aligned} & 49.20 \\ & 1.937 \end{aligned}$	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 31.55 \\ & 1.242 \end{aligned}$	$\begin{aligned} & 27.90 \\ & 1.098 \end{aligned}$	$\begin{aligned} & 41.00 \\ & 1.614 \end{aligned}$	49	96	35
21	$\begin{aligned} & 52.40 \\ & 2.063 \end{aligned}$	$\begin{aligned} & 49.20 \\ & 1.937 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 34.70 \\ & 1.366 \end{aligned}$	$\begin{gathered} 30.90 \\ 1.217 \end{gathered}$	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	54	114	38
23	$\begin{gathered} 55.60 \\ 2.189 \end{gathered}$	$\begin{aligned} & 52.40 \\ & 2.063 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	37.90 1.492	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{aligned} & 50.00 \\ & 1.969 \end{aligned}$	65	130	46
25	$\begin{gathered} \mathbf{5 8 . 7 0} \\ 2.311 \end{gathered}$	$\begin{gathered} 55.60 \\ 2.189 \end{gathered}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 41.10 \\ & 1.618 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{aligned} & \mathbf{5 1 . 2 3} \\ & 2.017 \end{aligned}$	73	143	55

Millimeters Inches

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Shell Size	F Max.	G	S Max.	Mass (g) by Shell Type		
				AI	SS	Composite
09	$\begin{aligned} & 18.40 \\ & 0.724 \end{aligned}$	$\begin{aligned} & 11.90 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 21.80 \\ & 0.858 \end{aligned}$	15	36	9
11	$\begin{aligned} & 21.10 \\ & 0.831 \end{aligned}$	$\begin{aligned} & 14.90 \\ & 0.587 \end{aligned}$	$\begin{aligned} & 25.00 \\ & 0.984 \end{aligned}$	20	50	13
13	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 17.90 \\ & 0.705 \end{aligned}$	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$	27	64	18
15	$\begin{gathered} 28.70 \\ 1.130 \end{gathered}$	$\begin{aligned} & 21.90 \\ & 0.862 \end{aligned}$	$\begin{aligned} & 32.50 \\ & 1.280 \end{aligned}$	34	80	23
17	$\begin{aligned} & 32.20 \\ & 1.268 \end{aligned}$	$\begin{aligned} & 24.90 \\ & 0.980 \end{aligned}$	$\begin{aligned} & 35.70 \\ & 1.406 \end{aligned}$	37	88	25
19	$\begin{aligned} & 34.90 \\ & 1.374 \end{aligned}$	$\begin{aligned} & 27.90 \\ & 1.098 \end{aligned}$	$\begin{gathered} 38.50 \\ 1.516 \end{gathered}$	48	102	32
21	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{gathered} 30.90 \\ 1.217 \end{gathered}$	$\begin{aligned} & 41.70 \\ & 1.642 \end{aligned}$	55	117	35
23	$\begin{aligned} & 41.10 \\ & 1.618 \end{aligned}$	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{gathered} 44.90 \\ 1.768 \end{gathered}$	67	131	41
25	$\begin{aligned} & 44.30 \\ & 1.744 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{aligned} & 48.00 \\ & 1.890 \end{aligned}$	71	145	48

Coupling Torque:
Plug to Receptacle

Shell Size	Engagement and Disengagement (Max.)	Minimum Disengagement		
	$\mathbf{N m}$	Lb.-in.	Nm	Lb.-in.
09	0.9	8		
11	1.4	12	0.2	2
13	1.8	16		
15	2.3	20		
17	2.7	24	0.3	3
19	3.2	28		
21	3.6	32		
23	4.1	36	0.6	5
25	4.6	40		

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Mated/Unmated Dimensions

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Dummy Receptacle

Type PR

Shell Size	B	C1	C2	D Max.	E Max.	F	G	P	PP	Mass (g) by Shell Type		
										AI	SS	Composite
09	$\begin{aligned} & 23.80 \\ & 0.937 \end{aligned}$	$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 15.09 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 15.73 \\ & 0.619 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 5.49 \\ & 0.216 \end{aligned}$	$\begin{aligned} & 5.49 \\ & 0.216 \end{aligned}$	7	10	8
11	$\begin{gathered} 26.20 \\ 1.031 \end{gathered}$	$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 18.91 \\ & 0.744 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	11	16	11
13	$\begin{gathered} 28.60 \\ 1.126 \end{gathered}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 22.08 \\ & 0.869 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	15	22	14
15	$\begin{aligned} & 31.00 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 25.26 \\ & 0.994 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	18	31	18
17	$\begin{gathered} 33.30 \\ 1.311 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{gathered} 29.96 \\ 1.180 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	22	46	23
19	$\begin{aligned} & 36.50 \\ & 1.437 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 31.54 \\ & 1.242 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	26	51	26
21	$\begin{aligned} & 39.70 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 34.72 \\ & 1.367 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	30	65	31
23	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 37.90 \\ & 1.492 \end{aligned}$	$\begin{aligned} & 3.91 \\ & 0.154 \end{aligned}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$	33	78	36
25	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 1.375 \end{aligned}$	$\begin{gathered} 20.10 \\ 0.791 \end{gathered}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 41.07 \\ & 1.617 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{aligned} & 3.91 \\ & 0.154 \end{aligned}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$	36	97	43

Millimeters Inches

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Recommended Panel Cutouts

Square Flange Receptacle

Jam Nut Receptacle

Shell Size	A	C1	H Min.		H1 Max.	K Max.	V Min.	V1 Min.
			Front	Rear				
9	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{gathered} 18.26 \\ 0.719 \end{gathered}$	$\begin{aligned} & 13.11 \\ & 0.516 \end{aligned}$	$\begin{aligned} & 16.66 \\ & 0.656 \end{aligned}$	$\begin{aligned} & 17.78 \\ & 0.700 \end{aligned}$	$\begin{aligned} & 16.70 \\ & 0.657 \end{aligned}$	$\begin{aligned} & 25.58 \\ & 1.007 \end{aligned}$	$\begin{gathered} 20.20 \\ 1.189 \end{gathered}$
11		$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 15.08 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 22.22 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 20.88 \\ & 0.822 \end{aligned}$	$\begin{aligned} & 19.53 \\ & 0.769 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 32.60 \\ & 1.283 \end{aligned}$
13		$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 23.42 \\ & 0.922 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 5 8} \\ & 1.007 \end{aligned}$	$\begin{aligned} & 24.26 \\ & 0.995 \end{aligned}$	$\begin{gathered} 30.20 \\ 1.189 \end{gathered}$	$\begin{gathered} 36.00 \\ 1.417 \end{gathered}$
15		$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 26.59 \\ & 1.047 \end{aligned}$	$\begin{gathered} 28.80 \\ 1.134 \end{gathered}$	$\begin{aligned} & 27.53 \\ & 1.084 \end{aligned}$	$\begin{gathered} 33.30 \\ 1.331 \end{gathered}$	$\begin{aligned} & 39.60 \\ & 1.559 \end{aligned}$
17		$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 25.81 \\ & 1.106 \end{aligned}$	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 31.98 \\ & 1.259 \end{aligned}$	$\begin{aligned} & 30.68 \\ & 1.208 \end{aligned}$	$\begin{aligned} & 36.50 \\ & 1.437 \end{aligned}$	$\begin{aligned} & 43.30 \\ & 1.705 \end{aligned}$
19		$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{gathered} 28.98 \\ 1.141 \end{gathered}$	$\begin{aligned} & 32.94 \\ & 1.297 \end{aligned}$	$\begin{aligned} & 35.15 \\ & 1.384 \end{aligned}$	$\begin{aligned} & 33.86 \\ & 1.333 \end{aligned}$	39.30	$\begin{aligned} & 47.00 \\ & 1.850 \end{aligned}$
21		$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & \mathbf{3 2 . 1 6} \\ & 1.266 \end{aligned}$	$\begin{aligned} & 36.12 \\ & 1.422 \end{aligned}$	$\begin{aligned} & 38.28 \\ & 1.507 \end{aligned}$	$\begin{aligned} & 37.06 \\ & 1.459 \end{aligned}$	$\begin{aligned} & 42.50 \\ & 1.673 \end{aligned}$	$\begin{aligned} & \mathbf{5 0 . 6 0} \\ & 1.992 \end{aligned}$
23	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 39.29 \\ & 1.547 \end{aligned}$	$\begin{aligned} & 41.50 \\ & 1.634 \end{aligned}$	$\begin{aligned} & 40.01 \\ & 1.575 \end{aligned}$	$\begin{aligned} & 45.70 \\ & 1.799 \end{aligned}$	$\begin{gathered} \mathbf{5 4 . 2 0} \\ 2.134 \end{gathered}$
25		$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 37.69 \\ & 1.484 \end{aligned}$	$\begin{aligned} & 42.47 \\ & 1.672 \end{aligned}$	$\begin{gathered} 44.68 \\ 1.759 \end{gathered}$	$\begin{aligned} & 43.41 \\ & 1.709 \end{aligned}$	$\begin{aligned} & 48.80 \\ & 1.921 \end{aligned}$	$\begin{aligned} & 59.70 \\ & 2.350 \end{aligned}$

[^2]
MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series III Connectors

DEUTSCH DTS and ACT Series Connectors

Keying Options

(Viewed from Mating Face of the Receptacle Connector)

Shell Size	Key Position	Polarization (Degrees)			
		A	B	C	D
09	N	105	140	215	265
	A	102	132	248	320
	B	80	118	230	312
	C	35	140	205	275
	D	64	155	234	304
	E	91	131	197	240
$\begin{gathered} 11,13 \\ 15 \end{gathered}$	N	95	141	208	236
	A	113	156	182	292
	B	90	145	195	252
	C	53	156	220	255
	D	119	146	176	298
	E	51	141	184	242
$\begin{gathered} 17,19, \\ 21,23, \\ 25 \end{gathered}$	N	80	142	196	293
	A	135	170	200	310
	B	49	169	200	244
	C	66	140	200	257
	D	62	145	180	280
	E	79	153	197	272

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

DEUTSCH DIV Series connectors from TE Connectivity (TE) are high-performance MIL-DTL-38999 connectors for use in high shock, vibration and EMI environments where reliability is essential.

Qualified to MIL-DTL-38999 specifications, DEUTSCH DIV Series connectors are designed and built using the high-vibration capable breech lock coupling mechanism that only requires 90° of rotation to engage and disengage.
Special grounding fingers form a 360-degree circle just inside the shell, acting as a shield for excellent EMI protection. The connector is actually grounded when the shells meet, even before the contacts engage.
Inserts are available in 8 shell sizes, with contact arrangements meeting MIL-DTL-1560, along with additional arrangements, to help provide flexibility in circuit configurations.

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Specifications

MATERIALS

- Shell: Stainless steel, aluminum
- Plating: Olive drab cadmium, passivated, and electroless nickel (anodized coupling ring for Class F only)
- Insert: Thermoplastic and fluorinated silicone elastomer
- EMI Spring Fingers: Nickel or cadmium-plated beryllium copper
- O-Ring: Fluorinated silicone elastomer

ENVIRONMENTAL

- Temperature Range:

$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ (Class W)
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ (Classes $\mathrm{C}, \mathrm{F}, \mathrm{Y}$ and N)

- Fluid Resistance: Fluid immersion per EIA 364.10, including resistance to MIL-PRF-5606: Hydraulic fluid
MIL-DTL-83133: JP-8 aviation fuel
MIL-PRF-7808: Lubricating oil
MIL-PRF-23699: Lubricating oil
MIL-A-8243: Deicing/defrosting fluid
MIL-C-25769: Aircraft cleaning compound
MIL-PRF-87937: Aircraft cleaning compound MIL-G-3056: Gasoline
- Salt Spray:

48 hours (Nickel finishes)
500 hours (Cadmium and passivated finishes)

- Thermal Cycling: -65° to $150 / 175 / 200^{\circ} \mathrm{C}$ (max. temperature is class dependent)

MECHANICAL

- Sine Vibration: Up to 60 g for 36 hr .
- Random Vibration: Up to 41.7 g for 16 hr . at $175^{\circ} \mathrm{C}$ Up to 50 g for 16 hr . at ambient temperature
- Shock: $300 \mathrm{~g}, 3 \mathrm{~ms}$ in the 3 axes
- Durability: >500 mating cycles
- Contact Retention:

Size 22D: 44 N (10 lb.)
Size 20: $67 \mathrm{~N}(15 \mathrm{lb}$.
Size 16: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 12: 111 N (25 lb.$)$
Size 10: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 8: 111 N (25 lb.$)$

ELECTRICAL

- Shell-to-Shell Conductivity:

Olive Drab Cadmium: 2.5 mV
Passivated: 10.0 mV
Electroless Nickel: 1.0 mV

- Shielding Effectiveness: $>90 \mathrm{~dB}$ at $100 \mathrm{MHz},>65 \mathrm{~dB}$ through 10 GHz

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Voltage Rating

Service Rating	Suggested Operating Voltage			Test Voltage at Altitude (VACrms)		
	$\mathrm{VAC}_{\text {rms }}$	VDC	Sea Level	50,000 Ft.	70,000 Ft.	100,000 Ft.
M	400	550	1300	550	350	200
N	300	450	1000	400	260	200
I	600	850	1800	600	400	200
II	750	1050	2300	800	500	200

Hermetic Connectors

- Hermetic Seal: Sintered glass
- Leakage: $\leq 16 \mathrm{~cm}^{3} / \mathrm{hr}$. ($0.97 \mathrm{in}^{3} / \mathrm{hr}$.) on mated pairs connected under 2.1 bar (4.38 psi)
- Thermal Shock: 10 cycles, $4^{\circ} \mathrm{C}$ max. to $90^{\circ} \mathrm{C}$ min.

Current Rating

Contact Size	Test Current (A)	Voltage Drop (mV)
22 D	5	73
20	7.5	55
16	13	50
12	23	42
10	33	34
8^{*}	46	26

*When commercial power contact replaces twin-ax contact

Thread Sizes

Shell Size	Accssory Thread $(6 \mathrm{~g} 0.100 \mathrm{R})$	Jam Nut Thread $(6 \mathrm{~g} \mathrm{O.10OR})$
11	$\mathrm{M} 15 \times 1.0$	$\mathrm{M} 20 \times 1.0$
13	$\mathrm{M} 18 \times 1.0$	$\mathrm{M} 25 \times 1.0$
15	$\mathrm{M} 22 \times 1.0$	$\mathrm{M} 28 \times 1.0$
17	$\mathrm{M} 25 \times 1.0$	$\mathrm{M} 32 \times 1.0$
19	$\mathrm{M} 28 \times 1.0$	$\mathrm{M} 35 \times 1.0$
21	$\mathrm{M} 31 \times 1.0$	$\mathrm{M} 38 \times 1.0$
23	$\mathrm{M} 34 \times 1.0$	$\mathrm{M} 41 \times 1.0$
25	$\mathrm{M} 37 \times 1.0$	$\mathrm{M} 44 \times 1.0$

MIL-DTL-38999 Series IV Connectors
DEUTSCH DIV Series Connectors

Blue shaded entries are not Mil Spec.

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Insert						Contact Size/Quantity									
	$\begin{aligned} & \text { 3 } \\ & \text { 틀 } \\ & \text { N } \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\sim}{x} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \text { § } \\ & \text { © } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & 0 \\ & \mathbf{O} \\ & \underset{x}{n} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\text { N }}{ }$	の	N	N	$\begin{aligned} & 0 \\ & \mathbf{0} \end{aligned}$			
21-11	G11							11				\checkmark	\checkmark		
21-16	G16								16			\checkmark	\checkmark		
21-20	G20	2								18					
21-35	G35										79	\checkmark	\checkmark		
21-39	G39								2	37		\checkmark	\checkmark		
21-41	G41									41		\checkmark	\checkmark		
21-48	G48			4											
21-75	G75	4													21-76
21-76	G76	4												\checkmark	
23-06	H6	6													
23-21	H21								21			\checkmark	\checkmark		
23-35	H35										100	\checkmark	\checkmark		
23-53	H53									53		\checkmark	\checkmark		
23-54	H54							4	9		40				
23-55	H55									55		\checkmark	\checkmark		
23-63	H63							4	4		49				
25-04	J4								8	48		\checkmark	\checkmark		
25-07	J7	2									97				25-09
25-08	J8	8													25-10
25-09	J9	2									97			\checkmark	
25-10	J10	8												\checkmark	
25-17	J17	6									36				
25-19	J19							19				\checkmark	\checkmark		
25-20	J20	3				4			13	10					25-21
25-21	J21	3				4			13	10				\checkmark	
25-24	J24							12	12			\checkmark	\checkmark		
25-29	J29								29			\checkmark	\checkmark		
25-35	J35										128	\checkmark	\checkmark		
25-37	J37								37			\checkmark			
25-43	J43								20	23			\checkmark		
25-46	J46		2						4	40					25-47
25-47	J47		2						4	40				\checkmark	
25-61	J61									61		\checkmark	\checkmark		
25-90	J90	2							4	40					25-91
25-91	J91	2							4	40				\checkmark	

Blue shaded entries are not Mil Spec.

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Part Numbering
 MIL-DTL-38999 and DEUTSCH Commercial Versions

*Use with Commercial DIV callout only
**Use with Military D38999 callout only

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Wall Mount/Square Flange Receptacle

Shell Size	A Sq. Max.	B Sq.	øC Max.	\varnothing D Max.	F
11	$\begin{gathered} 26.70 \\ 1.051 \end{gathered}$	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 20.15 \\ & 0.793 \end{aligned}$	$\begin{aligned} & 12.93 \\ & 0.509 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$
13	$\begin{gathered} 29.10 \\ 1.146 \end{gathered}$	$\begin{aligned} & 23.02 \\ & 0.906 \end{aligned}$	$\begin{array}{r} 23.35 \\ 0.919 \end{array}$	$\begin{aligned} & 16.10 \\ & 0.634 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$
15	$\begin{aligned} & 31.50 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 24.62 \\ & 0.970 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 5 2} \\ & 1.044 \end{aligned}$	$\begin{aligned} & 19.28 \\ & 0.759 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$
17	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{aligned} & 26.98 \\ & 1.062 \end{aligned}$	$\begin{gathered} 29.72 \\ 1.170 \end{gathered}$	$\begin{aligned} & 22.48 \\ & 0.885 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$
19	$\begin{aligned} & 37.10 \\ & 1.461 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 32.87 \\ & 1.294 \end{aligned}$	$\begin{aligned} & 25.63 \\ & 1.009 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$
21	$\begin{aligned} & 40.20 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 31.76 \\ & 1.250 \end{aligned}$	$\begin{gathered} 36.05 \\ 1.419 \end{gathered}$	$\begin{gathered} 28.80 \\ 1.134 \end{gathered}$	$\begin{aligned} & 3.40 \\ & 0.133 \end{aligned}$
23	$\begin{aligned} & 43.40 \\ & 1.709 \end{aligned}$	$\begin{aligned} & 34.92 \\ & 1374 \end{aligned}$	$\begin{aligned} & 39.22 \\ & 1.544 \end{aligned}$	$\begin{aligned} & 31.98 \\ & 1.259 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 0.133 \end{aligned}$
25	$\begin{aligned} & 46.60 \\ & 1.835 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 42.40 \\ & 1.669 \end{aligned}$	$\begin{aligned} & 35.15 \\ & 1.384 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 0.133 \end{aligned}$

[^3]
MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Jam Nut Receptacle

Shell Size	A A/F Max.	B A/F Max.	C Dia. Max.	D Dia. Max.
11	$\begin{aligned} & 35.40 \\ & 1.394 \end{aligned}$	$\begin{aligned} & 32.00 \\ & 1.260 \end{aligned}$	$\begin{aligned} & 38.60 \\ & 1.520 \end{aligned}$	$\begin{aligned} & 12.93 \\ & 0.509 \end{aligned}$
13	$\begin{aligned} & 38.60 \\ & 1.520 \end{aligned}$	$\begin{gathered} 36.00 \\ 1.417 \end{gathered}$	$\begin{aligned} & 41.70 \\ & 1.642 \end{aligned}$	$\begin{aligned} & 16.10 \\ & 0.634 \end{aligned}$
15	$\begin{aligned} & 41.70 \\ & 1.642 \end{aligned}$	$\begin{aligned} & 41.00 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 44.90 \\ & 1.768 \end{aligned}$	$\begin{aligned} & 19.28 \\ & 0.759 \end{aligned}$
17	$\begin{aligned} & 45.70 \\ & 1.799 \end{aligned}$	$\begin{aligned} & 41.00 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 49.70 \\ & 1.957 \end{aligned}$	$\begin{aligned} & 22.48 \\ & 0.885 \end{aligned}$
19	$\begin{aligned} & 48.50 \\ & 1.909 \end{aligned}$	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & \mathbf{5 1 . 7 0} \\ & 2.035 \end{aligned}$	$\begin{aligned} & 25.63 \\ & 1.009 \end{aligned}$
21	$\begin{aligned} & \mathbf{5 1 . 7 0} \\ & 2.035 \end{aligned}$	$\begin{aligned} & 50.00 \\ & 1.968 \end{aligned}$	$\begin{gathered} 54.80 \\ 2.157 \end{gathered}$	$\begin{gathered} 28.80 \\ 1.134 \end{gathered}$
23	$\begin{gathered} 54.80 \\ 2.157 \end{gathered}$	$\begin{aligned} & 50.00 \\ & 1.968 \end{aligned}$	$\begin{aligned} & 58.00 \\ & 2.283 \end{aligned}$	$\begin{aligned} & 31.98 \\ & 1.259 \end{aligned}$
25	$\begin{aligned} & 58.00 \\ & 2.283 \end{aligned}$	$\begin{gathered} \mathbf{5 5 . 0 0} \\ 2.165 \end{gathered}$	$\begin{aligned} & \mathbf{6 1 . 2 0} \\ & 2.409 \end{aligned}$	$\begin{aligned} & 35.15 \\ & 1.384 \end{aligned}$

[^4]
MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Box Mount Receptacle

Shell Size	A Sq. Max.	B Sq.	ØС Max.	D	ØE	ØF
11	$\begin{gathered} \mathbf{2 6 . 7 0} \\ 1.051 \end{gathered}$	$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 20.15 \\ & 0.793 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 13.41 \\ & 0.528 \end{aligned}$	$\begin{aligned} & 14.50 \\ & 0.571 \end{aligned}$
13	$\begin{aligned} & 29.10 \\ & 1.146 \end{aligned}$	$\begin{aligned} & 23.02 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 23.35 \\ & 0.919 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 16.31 \\ & 0.642 \end{aligned}$	$\begin{aligned} & 17.40 \\ & 0.685 \end{aligned}$
15	$\begin{aligned} & 31.50 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 24.62 \\ & 0.970 \end{aligned}$	$\begin{aligned} & 26.52 \\ & 1.044 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 19.41 \\ & 0.764 \end{aligned}$	$\begin{gathered} 20.60 \\ 0.811 \end{gathered}$
17	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{aligned} & 26.98 \\ & 1.062 \end{aligned}$	$\begin{gathered} 29.72 \\ 1.170 \end{gathered}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 22.61 \\ & 0.890 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 0.937 \end{aligned}$
19	$\begin{aligned} & 37.10 \\ & 1.461 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 32.87 \\ & 1.294 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.102 \end{aligned}$	$\begin{aligned} & 25.30 \\ & 0.996 \end{aligned}$	$\begin{aligned} & 26.52 \\ & 1.044 \end{aligned}$
21	$\begin{aligned} & 40.20 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 31.76 \\ & 1.250 \end{aligned}$	$\begin{gathered} 36.05 \\ 1.419 \end{gathered}$	$\begin{aligned} & 3.40 \\ & 0.133 \end{aligned}$	$\begin{gathered} 28.52 \\ 1123 \end{gathered}$	$\begin{gathered} 29.620 \\ 1.166 \end{gathered}$
23	$\begin{aligned} & 43.40 \\ & 1.709 \end{aligned}$	$\begin{aligned} & 34.92 \\ & 1.374 \end{aligned}$	$\begin{aligned} & 39.22 \\ & 1.544 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 0.133 \end{aligned}$	$\begin{aligned} & 31.70 \\ & 1.248 \end{aligned}$	$\begin{aligned} & 32.82 \\ & 1.292 \end{aligned}$
25	$\begin{aligned} & 46.60 \\ & 1.835 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 42.40 \\ & 1.669 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 0.133 \end{aligned}$	$\begin{gathered} 34.82 \\ 1.371 \end{gathered}$	$\begin{gathered} 36.02 \\ 1.418 \end{gathered}$

Millimeters Inches

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Plug

Shell Size	\varnothing A Max.	Ø B Max.
11	$\begin{aligned} & 26.60 \\ & 1.047 \end{aligned}$	$\begin{aligned} & 19.70 \\ & 0.775 \end{aligned}$
13	$\begin{aligned} & 31.00 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 22.90 \\ & 0.901 \end{aligned}$
15	$\begin{aligned} & 34.20 \\ & 1.346 \end{aligned}$	$\begin{aligned} & 26.40 \\ & 1.039 \end{aligned}$
17	$\begin{aligned} & 37.40 \\ & 1.472 \end{aligned}$	$\begin{gathered} 29.20 \\ 1.149 \end{gathered}$
19	$\begin{gathered} 40.20 \\ 1.583 \end{gathered}$	$\begin{aligned} & 32.40 \\ & 1.275 \end{aligned}$
21	$\begin{aligned} & 43.30 \\ & 1.704 \end{aligned}$	$\begin{gathered} 35.60 \\ 1.401 \end{gathered}$
23	$\begin{gathered} 46.50 \\ 1.831 \end{gathered}$	$\begin{aligned} & 38.80 \\ & 1.527 \end{aligned}$
25	$\begin{aligned} & 49.70 \\ & 1.957 \end{aligned}$	$\begin{aligned} & 41.90 \\ & 1.649 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Recommended Panel Cutouts

Square Flange Receptacle

Jam Nut Receptacle

Shell Size	C1	H Min.		H1 Max.	K Max.	V Min.	V1 Min.
		Front	Rear				
11	20.62	15.08	22.22	20.88	19.53	27.00	32.60
	0.812	0.594	0.875	0.822	0.769	1.063	1.283
13	23.01	19.05	23.42	25.58	24.26	30.20	36.00
	0.906	0.750	0.922	1.007	0.995	1.189	1.417
15	24.61	23.01	26.59	28.80	27.53	33.30	39.60
	0.969	0.906	1.047	1.134	1.084	1.331	1.559
17	26.97	25.81	30.96	31.98	30.68	36.50	43.30
	1.062	1.106	1.219	1.259	1.208	1.437	1.705
19	29.36	28.98	32.94	35.15	33.86	39.30	47.00
	1.156	1.141	1.297	1.384	1.333	1.547	1.850
21	31.75	32.16	36.12	38.28	37.06	42.50	50.60
	1.250	1.266	1.422	1.507	1.459	1.673	1.992
23	34.93	34.93	39.29	41.50	40.01	45.70	54.20
	1.375	1.375	1.547	1.634	1.575	1.799	2.134
25	38.10	37.69	42.47	44.68	43.41	48.80	59.70
	1.500	1.484	1.672	1.759	1.709	1.921	2.350

Millimeters Inches

MIL-DTL-38999 Series IV Connectors

DEUTSCH DIV Series Connectors

Keying Options

(Viewed from Mating Face of the Receptacle Connector)

Clocking	\mathbf{X}° Ref.	\mathbf{Y}° Ref.
N	110	250
A	100	260
B	90	270
C	80	280
D	70	290
K	120	255

Panel Seals

Panel seals help improve the sealing between the structure and connector shell.

- Color: Tan
- Elastomer: Fluorosilicone
- Temperature Range: $-40^{\circ} \mathrm{C}$ to $+93^{\circ} \mathrm{C}$

Rear Flange Mounting
Front Flange Mounting

Size	Part Number	H max.	B max.	C $\pm \mathbf{0 . 1}$	E max.	E1 max.	T max.	H max.	Part Number	Size
09	$108-0003-10$	15.40	24.30	18.30	3.00	5.92	3.30	14.10	$108-0004-10$	09
11	$108-0001-12$	19.20	26.40	20.60	3.00	5.92	3.30	17.20	$108-0004-12$	11
13	$108-0001-14$	22.70	29.10	23.00	3.00	5.92	3.30	20.40	$108-0004-14$	13
15	$108-0001-16$	25.90	31.30	24.60	3.00	5.92	3.30	23.60	$108-0004-16$	15
17	$108-0003-18$	29.10	33.70	27.00	3.00	5.92	3.30	26.80	$108-0004-18$	
19	$108-0003-20$	32.30	36.90	29.40	3.00	5.92	3.30	30.60	$108-0001-20$	
21	$108-0003-22$	35.40	40.10	31.75	3.00	5.16	3.30	33.50	$108-0001-22$	21
23	$108-0003-24$	38.60	43.30	34.90	3.00	5.16	4.30	36.30	$108-0004-24$	23
25	$108-0001-25$	41.40	46.00	38.10	3.00	4.87	4.30	39.00	$108-0012-25$	25

For Square Flange Receptacle Sealed Version

Conductive Panel Seals

In addition to improving sealing, conductive panel seals also improve conductivity and reduce resistivity for EMI improvement between the connector shell and the panel of the structure/system.

- Color: Tan
- Elastomer: Fluorosilicone
- Filler: Silver aluminum
- Hardness: 70 ± 7 Shore A
- Volume Resistivity: 0.010 ohm-cm, maximum
- Density: $2.0 \pm 0.25 \mathrm{~g} / \mathrm{cm}^{3}$
- Tensile Strength: 200 psi, minimum
-Elongation: 60\%-260\%
- 100\%-300\%: 35 ppi, minimum
- Temperature Range: $-55^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

Square Flange Receptacle Shell Size	Conductive (Front) Panel Seal Refs
9 / A	PC-C0161FAB0032-126 SIZE 09-SAFS
11 / B	PC-CO162FAB0032-126 SIZE 11-SAFS
13 / C	PC-CO138FAB0032-126 SIZE 13-SAFS
15 / D	PC-C0163FAB0032-126 SIZE 15-SAFS
17 / E	PC-C0164FAB0032-126 SIZE 17-SAFS
19 / F	PC-CO165FAB0032-126 SIZE 19-SAFS
$21 / \mathrm{G}$	PC-CO136FAB0032-126 SIZE 21-SAFS
23 / H	PC-CO137FAB0032-126 SIZE 23-SAFS
25 / J	PC-CO166FABO032-126 SIZE 25-SAFS

GASKET 09
D38999/20 Series III (Shell Size 09)

Conductive Panel Seals

GASKET 11
D38999/20 Series III (Shell Size 11)

Millimeters Inches

GASKET 13
D38999/20 Series III (Shell Size 13)

Millimeters Inches

Conductive Panel Seals

GASKET 15
D38999/20 Series III (Shell Size 15)

Millimeters Inches

GASKET 17
D38999/20 Series III (Shell Size 17)

Conductive Panel Seals

GASKET 19
D38999/20 Series III (Shell Size 19)

Millimeters Inches

GASKET 21
D38999/20 Series III (Shell Size 21)

Millimeters Inches

Conductive Panel Seals

GASKET 23
D38999/20 Series III (Shell Size 23)

Millimeters Inches

GASKET 25
D38999/20 Series III (Shell Size 25)

MIL-DTL-38999 Hermetic Connectors

Since the early 1960s TE Connectivity has been producing DEUTSCH hermetically sealed glass-to-metal connectors for applications where temperature, pressure, and environmental considerations render standard connectors unusable. Hermetic connectors are used to separate an inert atmosphere or vacuum on one side from wide-ranging high-pressure, high temperature, or corrosive conditions on the other. They are also used to maintain a pressure differential between the two sections. In short, DEUTSCH hermetic connectors are designed to help provide a continuously gas-tight seal while withstanding:

- High pressures
- Extreme temperatures
- High vibration

Hermetic connectors are also an excellent choice when you are not exactly sure of the conditions that will affect your connector's performance. Hermetic connectors may meet many of the most rigid environmental and electrical specifications, which is important when dealing with variables that are unknown.

Glass-to-Metal Sealing

Standard sealing techniques-such as epoxy potting-are useful in many applications, but they may not provide the degree of sealing that is offered by glass-to-metal hermetic seals. This is especially true of applications with high pressure differentials. Glass is a durable, high-strength material that resists extreme changes in temperature or pressure.
Our glass-to-metal seals create a bond between shell, insulator, and contacts by fusing the glass insulator to the metal components. The bond can maintain a helium leak rate of .01 micron $\mathrm{ft}^{3} / \mathrm{h}$ at 14.7 psi. The hermetic bond helps provide enduring reliability, resists cracking that would compromise the performance, and helps withstand a wide range of harsh conditions.

MIL-DTL-38999 Circular Connectors

MIL-DTL-38999 Hermetic Connectors

Compression vs. Matched Seals

DEUTSCH hermetic connectors are produced using both compression seals and matched seals. In a matched seal, the metal and glass have similar coefficients of thermal expansion (CTE). This reduces stress on the glass from thermal expansion and contraction.

In a compression seal, the metal has a higher CTE than the glass. During the firing process the metal expands more than the glass. As the glass and metal then cool, the metal contracts back onto the glass to form an extremely robust bond. Compression seals are used for highpressure applications.

Controlling Quality from Start to Finish

We design and manufacture all the components in our hermetic connectors. Our shells are made with high-grade materials-from stainless steel bar stock to exotic metals like titanium. We use high-grade silica and binders for the glass and the elastomer materials are carefully matched to the required connector application. When fused with the contacts and the shell, the inserts produce a true hermetic seal. Pin or socket contacts are available with solder pot, eyelet, and extended pin terminations. Our contacts can be made from a variety of materials like nickel iron, Alumel, Chromel, and copper-cored nickel iron. An important consideration in material selection is the ability to withstand the high temperatures of the sealing process. All connectors are fully leak tested by TE to help ensure the integrity of the hermetic seal.

Materials

Standard materials for hermetic connectors include:

- Shell: Stainless steel
- Insert: Glass
- Contacts: Nickel iron (52 Alloy)

Other materials are used, depending on special requirements for:

- High current
- High voltages
- High pressures
- Extreme temperatures
- Severe corrosion conditions

Weight-Saving Aluminum Hermetic Connectors

 DEUTSCH aluminum hermetic connectors use an aluminum alloy shell to create connectors that are 60\% lighter than stainless steel counterpartstwo aluminum connectors weigh less than a single stainless steel equivalent.- Up to 60\% lighter
- Higher conductivity: up to 250 A
- Lower contact resistance: less than half that of nickel-iron contacts
- Wide temperature range: $-85^{\circ} \mathrm{C}$ to $+300^{\circ} \mathrm{C}$

A Full Range of Hermetic Choices

DEUTSCH hermetic connectors are available in a variety of military and commercial styles. Options include a choice of:

Pin or socket contacts: Available with solder pot, eyelet, and extended pin terminations

Rear-release crimp termination to help reduce costs by eliminating soldering processes and potting and by allowing use of standard crimp tools

Feedthroughs provide a single device that can be terminated on both sides

Hermetic assemblies with connectors preinstalled in a mounting fixture to reduce your manufacturing time and speed installation

Custom connectors and configurations for applications not easily accommodated by standard offerings. Hermetic connectors lend themselves well to short production runs.

MIL-DTL-38999 Hermetic Connectors

PC Tail Contacts and Connectors

TE 38999 connectors are available with PC tail contacts for mounting to pc boards or flex circuits. Alignment disks featured
on the high density PCB connectors provide a fitting pattern on mounting to pc boards or flex circuits. Alignment disks featured
on the high density PCB connectors provide a fitting pattern on the tail side, making installation easier.

PC Contact Part Numbering System

MIL-DTL-38999 Circular Connectors

PC Tail Contacts and Connectors

Jam Nut Receptacles

	$\leftarrow \mathbf{A}$	Code	Dim L			Dim A	
			From Grommet AII	From Sawtooth		From Front of Jam Nut Flange	
				Aluminum	Composite	Aluminum	Composite
		A	$\begin{aligned} & 4.14 \\ & 0.163 \end{aligned}$	$\begin{aligned} & 4.14 \\ & 0.163 \end{aligned}$	$\begin{aligned} & 2.92 \\ & 0.115 \end{aligned}$	$\begin{aligned} & 13.54 \\ & 0.533 \end{aligned}$	$\begin{aligned} & 13.74 \\ & 0.541 \end{aligned}$
		B	$\begin{aligned} & 5.33 \\ & 0.210 \end{aligned}$	$\begin{aligned} & 5.33 \\ & 0.210 \end{aligned}$	$\begin{gathered} 4.11 \\ 0.162 \end{gathered}$	$\begin{aligned} & 14.73 \\ & 0.580 \end{aligned}$	$\begin{aligned} & 14.94 \\ & 0.588 \end{aligned}$
		C	$\begin{gathered} 5.84 \\ 0.230 \end{gathered}$	$\begin{gathered} 5.84 \\ 0.230 \end{gathered}$	$\begin{aligned} & 4.62 \\ & 0.182 \end{aligned}$	$\begin{aligned} & \mathbf{1 5 . 2 4} \\ & 0.600 \end{aligned}$	$\begin{aligned} & 15.44 \\ & 0.608 \end{aligned}$
		D	$\begin{gathered} 6.76 \\ 0.266 \end{gathered}$	$\begin{gathered} 6.76 \\ 0.266 \end{gathered}$	$\begin{aligned} & 5.54 \\ & 0.218 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 0.632 \end{aligned}$	$\begin{aligned} & 16.36 \\ & 0.644 \end{aligned}$
		E	$\begin{aligned} & 7.98 \\ & 0.314 \end{aligned}$	$\begin{aligned} & 7.98 \\ & 0.314 \end{aligned}$	$\begin{aligned} & 6.50 \\ & 0.256 \end{aligned}$	$\begin{aligned} & 17.37 \\ & 0.684 \end{aligned}$	$\begin{aligned} & 17.32 \\ & 0.682 \end{aligned}$

Millimeters Inches

Square Flange Receptacles

Code	Dim L			Dim A			
	From Grommet AII	From Sawtooth		Distance from Square Flange			
		Aluminum	Composite	Shell Sizes 9-19		Shell Sizes 21-25	
				Aluminum	Composite	Aluminum	Composite
A	$\begin{aligned} & 4.14 \\ & 0.163 \end{aligned}$	$\begin{aligned} & 4.42 \\ & 0.174 \end{aligned}$	$\begin{aligned} & 3.94 \\ & 0.155 \end{aligned}$	$\begin{aligned} & 13.97 \\ & 0.550 \end{aligned}$	$\begin{gathered} 13.11 \\ 0.516 \end{gathered}$	$\begin{aligned} & 13.39 \\ & 0.527 \end{aligned}$	$\begin{aligned} & 13.11 \\ & 0.516 \end{aligned}$
B	$\begin{aligned} & 5.33 \\ & 0.210 \end{aligned}$	$\begin{aligned} & \mathbf{5 . 6 1} \\ & 0.221 \end{aligned}$	$\begin{gathered} 5.13 \\ 0.202 \end{gathered}$	$\begin{aligned} & 15.16 \\ & 0.597 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.563 \end{aligned}$	$\begin{aligned} & 14.58 \\ & 0.574 \end{aligned}$	$\begin{aligned} & 14.30 \\ & 0.563 \end{aligned}$
C	$\begin{gathered} 5.84 \\ 0.230 \end{gathered}$	$\begin{gathered} 6.12 \\ 0.241 \end{gathered}$	$\begin{gathered} 5.64 \\ 0.222 \end{gathered}$	$\begin{aligned} & 15.67 \\ & 0.617 \end{aligned}$	$\begin{aligned} & 14.81 \\ & 0.583 \end{aligned}$	$\begin{aligned} & 15.09 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 14.81 \\ & 0.583 \end{aligned}$
D	$\begin{gathered} 6.76 \\ 0.266 \end{gathered}$	$\begin{aligned} & 7.04 \\ & 0.277 \end{aligned}$	$\begin{gathered} 6.55 \\ 0.258 \end{gathered}$	$\begin{aligned} & 16.59 \\ & 0.653 \end{aligned}$	$\begin{aligned} & 15.72 \\ & 0.619 \end{aligned}$	$\begin{aligned} & 16.00 \\ & 0.630 \end{aligned}$	$\begin{aligned} & 15.72 \\ & 0.619 \end{aligned}$
E	$\begin{aligned} & 7.98 \\ & 0.314 \end{aligned}$	$\begin{gathered} 8.26 \\ 0.325 \end{gathered}$	$\begin{gathered} 7.77 \\ 0.306 \end{gathered}$	$\begin{aligned} & 17.81 \\ & 0.701 \end{aligned}$	$\begin{aligned} & 16.94 \\ & 0.667 \end{aligned}$	$\begin{aligned} & 17.22 \\ & 0.678 \end{aligned}$	$\begin{aligned} & 16.94 \\ & 0.667 \end{aligned}$

Millimeters Inches

PC Tail Contacts and Connectors

Box Mount Receptacles
$\xrightarrow{\longrightarrow}$

Millimeters Inches
Only epoxy seal (1) available for Box Mount Receptacles

9-06/9-35

9-44

9-98

11-02

11-04

11-05

11-13/11-35

11-98

11-99

13-04

MIL-DTL-38999 Circular Connectors

13-08

13-22/13-35

13-98

15-05

15-15

15-18

MIL-DTL-38999 Circular Connectors

15-19

15-35/15-37

15-35

MIL-DTL-38999 Circular Connectors

15-97

17-06
17-08

N/A

MIL-DTL-38999 Circular Connectors

17-26

17-35/17-55

17-99

19-11

19-28

19-30

19-32

19-35/19-66

19-45

21-11

21-16

21-24

21-27

21-01/21-35

Contact Position	Location	
	X Axis	Y Axis
1	+0.053	+0.426
2	+0.146	+0.404
3	+0.232	+0.362
4	+0.306	+0.302
5	+0.365	+0.227
6	+0.406	+0.141
7	+0.427	+0.048
8	$+0.427$	-0.048
9	+0.406	-0.141
10	+0.365	-0.227
11	+0.306	-0.302
12	+0.232	-0.362
13	+0.146	-0.404
14	+0.053	-0.426
15	-0.053	-0.426
16	-0.146	-0.404
17	-0.232	-0.362
18	-0.306	-0.302
19	-0.365	-0.227
20	-0.406	-0.141
21	-0.427	-0.048
22	-0.427	+0.048
23	-0.406	+0.141
24	-0.365	+0.227
25	-0.306	+0.302
26	-0.232	+0.362
27	-0.146	+0.404

Contact Position	Location	
	X Axis	Y Axis
28	-0.053	+0.426
29	+0.000	+0.323
30	+0.098	+0.322
31	+0.184	+0.280
32	+0.258	+0.220
33	+0.311	+0.141
34	+0.332	+0.048
35	+0.332	-0.048
36	+0.311	-0.141
37	+0.258	-0.220
38	+0.184	-0.280
39	+0.098	-0.322
40	+0.000	-0.347
41	-0.098	-0.322
42	-0.184	-0.280
43	-0.258	-0.220
44	-0.311	-0.141
45	-0.332	-0.048
46	-0.332	+0.048
47	-0.311	+0.141
48	-0.258	+0.220
49	-0.184	+0.280
50	-0.098	+0.322
51	-0.048	+0.241
52	+0.048	+0.241
53	+0.134	+0.199
54	+0.208	+0.139

Contact Position	Location	
	X Axis	Y Axis
55	+0.237	+0.048
56	+0.237	-0.048
57	+0.208	-0.139
58	+0.134	-0.199
59	+0.048	-0.241
60	-0.048	-0.241
61	-0.134	-0.199
62	-0.208	-0.139
63	-0.237	-0.048
64	-0.237	+0.048
65	-0.208	+0.139
66	-0.134	+0.199
67	-0.048	+0.146
68	+0.048	+0.146
69	+0.125	+0.090
70	+0.155	+0.000
71	+0.125	-0.090
72	+0.048	-0.146
73	-0.048	-0.146
74	-0.125	-0.090
75	-0.155	-0.000
76	-0.125	+0.090
77	+0.000	+0.053
78	+0.048	-0.029
79	-0.048	-0.029
-	-	-

21-41

MIL-DTL-38999 Circular Connectors

23-21

23-34

MIL-DTL-38999 Circular Connectors

23-36

23-53

23-55

23-99

25-02

Contact Position	Location	
	X Axis	Y Axis
1	-0.550	+0.039
2	-0.550	-0.068
3	-0.459	+0.253
4	-0.523	+0.175
5	-0.459	+0.092
6	-0.459	-0.014
7	-0.459	-0.122
8	-0.509	-0.215
9	-0.459	-0.307
10	-0.354	+0.420
11	-0.354	+0.315
12	-0.354	+0.210
13	-0.354	+0.105
14	-0.354	+0.000
15	-0.354	-0.105
16	-0.354	-0.210
17	-0.354	-0.315
18	-0.354	-0.420
19	-0.255	+0.457
20	-0.255	+0.352
21	-0.255	+0.247
22	-0.255	+0.142
23	-0.255	+0.037
24	-0.255	-0.068
25	-0.255	-0.173
26	-0.255	-0.278
27	-0.255	-0.383
28	-0.255	-0.488
29	-0.154	+0.525
30	-0.154	+0.420
31	-0.154	+0.315
32	-0.154	+0.210
33	-0.154	+0.105
34	-0.154	+0.000
1		

Contact Position	Location	
	X Axis	Y Axis
35	-0.154	-0.105
36	-0.154	-0.210
37	-0.154	-0.315
38	-0.154	-0.420
39	-0.154	-0.525
40	-0.053	+0.502
41	-0.053	+0.397
42	-0.053	+0.292
43	-0.053	+0.187
44	-0.053	+0.082
45	-0.053	-0.023
46	-0.053	-0.128
47	-0.053	-0.233
48	-0.053	-0.338
49	-0.053	-0.443
50	-0.053	-0.548
51	+0.053	+0.502
52	+0.053	+0.397
53	+0.053	+0.292
54	+0.053	+0.187
55	+0.053	+0.082
56	+0.053	-0.023
57	+0.053	-0.128
58	+0.053	-0.233
59	+0.053	-0.338
60	+0.053	-0.443
61	+0.053	-0.548
62	+0.154	+0.525
63	+0.154	+0.420
64	+0.154	+0.315
65	+0.154	+0.210
66	+0.154	+0.105
67	+0.154	+0.000
68	+0.154	-0.105
4		

Contact Position	Location	
	X Axis	Y Axis
69	+0.154	-0.210
70	+0.154	-0.315
71	+0.154	-0.420
72	+0.154	-0.525
73	+0.255	+0.457
74	+0.255	+0.352
75	+0.255	+0.247
76	+0.255	+0.142
77	+0.255	+0.037
78	+0.255	-0.068
79	+0.255	-0.173
80	+0.255	-0.278
81	+0.255	-0.383
82	+0.255	-0.488
83	+0.354	+0.420
84	+0.354	+0.315
85	+0.354	+0.210
86	+0.354	+0.105
87	+0.354	+0.000
88	+0.354	-0.105
89	+0.354	-0.210
90	+0.354	-0.315
91	+0.354	-0.420
92	+0.459	+0.253
93	+0.523	+0.175
94	+0.459	+0.092
95	+0.459	-0.014
96	+0.459	-0.122
97	+0.509	-0.215
98	+0.459	-0.037
99	+0.550	+0.039
100	+0.550	-0.068

25-04

Contact Position	Location	
	X Axis	Y Axis
A	+0.069	+0.531
B	+0.203	+0.495
C	+0.324	+0.425
D	+0.424	+0.326
E	+0.493	+0.205
F	+0.531	+0.069
G	+0.531	-0.069
H	+0.493	-0.205
J	+0.424	-0.326
K	+0.324	-0.425
L	+0.203	-0.495
M	+0.069	-0.531
N	-0.069	-0.531
P	-0.203	-0.495
R	-0.324	-0.425
S	-0.424	-0.326
T	-0.493	-0.205
U	-0.531	-0.069
V	-0.531	+0.069

Contact Position	Location	
	X Axis	Y Axis
W	-0.493	+0.205
X	-0.424	+0.326
Y	-0.324	+0.425
Z	-0.203	+0.495
a	-0.069	+0.531
b	+0.806	+0.397
c	+0.212	+0.344
d	+0.311	+0.251
e	+0.377	+0.132
f	+0.412	+0.000
g	+0.377	-0.132
h	+0.311	-0.251
k	+0.212	-0.344
m	+0.086	-0.397
n	-0.086	-0.397
p	-0.212	-0.344
q	-0.311	-0.251
r	-0.377	-0.132
s	-0.412	+0.000

Contact Position	Location	
	X Axis	Y Axis
t	-0.377	+0.132
u	-0.311	+0.251
v	-0.212	+0.344
w	-0.086	+0.397
x	+0.069	+0.263
y	+0.172	+0.149
z	+0.258	+0.000
AA	+0.172	-0.149
BB	+0.069	-0.263
CC	-0.069	-0.263
DD	-0.172	-0.149
EE	-0.258	+0.000
FF	-0.172	+0.149
GG	-0.069	+0.263
HH	+0.000	+0.132
JJ	+0.086	+0.000
KK	+0.000	-0.132
LL	-0.086	+0.000

MIL-DTL-38999 Circular Connectors

25-19

25-24

25-29

Contact Position	Location	
	X Axis	Y Axis
1	-0.479	+0.279
2	-0.520	+0.190
3	-0.546	+0.095
4	-0.555	+0.000
5	-0.546	-0.095
6	-0.520	-0.190
7	-0.479	-0.279
8	-0.424	+0.357
9	-0.415	+0.190
10	-0.415	+0.095

Contact Position	Location	
	X Axis	Y Axis
11	-0.415	+0.000
12	-0.415	-0.095
13	-0.415	-0.190
14	-0.424	-0.357
15	-0.332	+0.444
16	-0.332	+0.332
17	-0.332	-0.237
18	-0.332	+0.142
19	-0.332	+0.047
20	-0.332	-0.047

Contact Position	Location	
	X Axis	Y Axis
21	-0.332	-0.142
22	-0.332	-0.237
23	-0.332	-0.332
24	-0.332	-0.427
25	-0.249	+0.496
26	-0.249	+0.380
27	-0.249	+0.285
28	-0.249	+0.190
29	-0.249	+0.095
30	-0.249	+0.000

Contact Position	Location	
	X Axis	Y Axis
31	-0.249	-0.095
32	-0.249	-0.190
33	-0.249	-0.285
34	-0.249	-0.380
35	-0.249	-0.475
36	-0.160	+0.531
37	-0.166	+0.427
38	-0.166	+0.332
39	-0.166	+0.237
40	-0.166	+0.142
41	-0.166	+0.047
42	-0.166	-0.047
43	-0.166	-0.142
44	-0.166	-0.237
45	-0.166	-0.332
46	-0.166	-0.427
47	-0.166	-0.522
48	-0.083	+0.475
49	-0.083	+0.380
50	-0.083	+0.285
51	-0.083	+0.190
52	-0.083	+0.095
53	-0.083	+0.000
54	-0.083	-0.095
55	-0.083	-0.190
56	-0.083	-0.285
57	-0.083	-0.380
58	-0.083	-0.475
59	+0.000	+0.522
60	+0.000	+0.427
61	+0.000	+0.332
62	+0.000	+0.237
63	+0.000	+0.142
4		

contact Position	Location	
	X Axis	Y Axis
64	+0.000	+0.047
65	+0.000	-0.047
66	+0.000	-0.142
67	+0.000	-0.237
68	+0.000	-0.332
69	+0.000	-0.427
70	+0.000	-0.555
71	+0.083	+0.475
72	+0.083	+0.380
73	+0.083	+0.285
74	+0.083	+0.190
75	+0.083	+0.095
76	+0.083	+0.000
77	+0.083	-0.095
78	+0.083	-0.190
79	+0.083	-0.285
80	+0.083	-0.380
81	+0.083	-0.475
82	+0.160	+0.531
83	+0.166	+0.427
84	+0.166	+0.332
85	+0.166	+0.237
86	+0.166	+0.142
87	+0.166	+0.047
88	+0.166	-0.047
89	+0.166	-0.142
90	+0.166	-0.237
91	+0.166	-0.332
92	+0.166	-0.427
93	+0.249	-0.522
94	+0.249	+0.496
95	+0.249	+0.380
96	+0.249	+0.285
7		

Contact Position	Location	
	X Axis	Y Axis
97	+0.249	+0.190
98	+0.249	+0.095
99	+0.249	+0.000
100	+0.249	-0.095
101	+0.249	-0.190
102	+0.249	-0.285
103	+0.249	-0.380
104	+0.249	-0.475
105	+0.332	+0.444
106	-0.232	+0.332
107	-0.232	+0.237
108	-0.232	+0.142
109	-0.232	+0.047
110	-0.232	-0.047
111	-0.232	-0.142
112	-0.232	-0.237
113	-0.232	-0.332
114	-0.232	-0.427
115	+0.424	+0.357
116	+0.415	+0.190
117	+0.415	+0.095
118	+0.415	+0.000
119	+0.415	-0.095
120	+0.415	-0.190
121	+0.424	-0.357
122	+0.479	+0.279
123	+0.520	+0.190
124	+0.546	+0.095
125	+0.555	+0.000
126	+0.546	-0.095
127	+0.520	-0.190
128	+0.479	-0.279
13		
10		

25-43

MIL-DTL-38999 Circular Connectors

Contact Position	Location	
	X Axis	Y Axis
A	+0.196	+0.500
B	+0.314	+0.435
C	+0.413	+0.343
D	+0.485	+0.230
E	+0.527	+0.101
F	+0.536	-0.030
G	+0.511	-0.164
H	+0.454	-0.287
J	+0.368	-0.391
K	+0.259	-0.470
L	+0.134	-0.519
M	+0.000	-0.537
N	-0.134	-0.519
P	-0.259	-0.470
R	-0.368	-0.391
S	-0.454	-0.287
T	-0.511	-0.164
U	-0.536	-0.030
V	-0.527	+0.101
W	-0.485	+0.230
X	-0.413	+0.343

Contact Position	Location	
	X Axis	Y Axis
Y	-0.314	+0.435
Z	-0.196	+0.500
a	-0.068	+0.454
b	+0.068	+0.454
c	+0.173	+0.363
d	+0.285	+0.283
e	+0.362	+0.175
f	+0.399	+0.046
g	+0.392	-0.088
h	+0.341	-0.213
i	+0.251	-0.314
j	+0.133	-0.379
k	+0.000	-0.402
m	-0.133	-0.379
n	-0.251	-0.314
p	-0.341	-0.213
q	-0.392	-0.088
r	-0.399	+0.046
s	-0.362	+0.175
u	-0.285	+0.283
	-0.173	+0.363

Contact Position	Location	
	X Axis	Y Axis
v	+0.000	+0.338
w	+0.147	+0.223
x	$+0.237$	+0.122
y	+0.267	-0.010
z	+0.228	-0.139
AA	+0.131	-0.233
BB	+0.000	-0.267
CC	-0.131	-0.233
DD	-0.228	-0.139
EE	-0.267	-0.010
FF	-0.237	+0.122
GG	-0.147	+0.223
HH	+0.000	+0.200
JJ	+0.105	+0.094
KK	+0.135	-0.041
LL	+0.000	-0.132
MM	-0.135	-0.041
NN	-0.105	+0.094
PP	+0.000	+0.000
-	-	-

DTS-B Series Bronze Connectors

38999 Series III-Style Connectors

DEUTSCH DTS-B threaded connectors are MIL-DTL-38999 Series III and STD CECC 75201-002 styles, but feature a bronze shell with a scoop-proof design, and environmental sealing to help withstand harsh marine environments.

Marine bronze offers excellent corrosion protection. The shell material is robust and inherently resists corrosion, eliminating the need for plating that can wear to expose base materials.

The DEUTSCH DTS-B Series subminiature circular connectors offer a scoop-proof design for easy, reliable mating and a threaded coupling for excellent vibration resistance. Available in nine shell sizes, the connector's arrangements, contacts and tools all conform to standard MIL-DTL 38999 Series III. Excellent corrosion resistance makes them well suited to most marine and military ground vehicle applications.

DTS-B Bronze Connectors

38999 Series III-Style Connectors

Specifications

MATERIALS

- Shell: Marine bronze
- Insert: Thermoplastic and fluorinated silicone elastomer
- EMI Spring Fingers: Nickel or cadmium-plated beryllium copper
- O-Ring: Fluorinated silicone elastomer

ENVIRONMENTAL

- Temperature Range: $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
- Fluid Resistance: Fluid immersion per EIA 364.10, including resistance to MIL-PRF-5606: Hydraulic fluid
MIL-DTL-83133: JP-8 aviation fuel
MIL-PRF-7808: Lubricating oil MIL-PRF-23699: Lubricating oil MIL-A-8243: Deicing/defrosting fluid
MIL-C-25769: Aircraft cleaning compound MIL-PRF-87937: Aircraft cleaning compound MIL-G-3056: Gasoline
- Salt Spray: 500 hours
- Thermal Cycling: per MIL-STD-1344 method 1001 test B

MECHANICAL

- Sine Vibration: Up to 60 g for 36 hr .
- Random Vibration: Up to 41.7 g for 16 hr . at $175^{\circ} \mathrm{C}$

Up to 50 g for 16 hr . at ambient temperature

- Shock: $300 \mathrm{~g}, 3 \mathrm{~ms}$ in the 3 axes
- Durability: 500 mating cycles
- Contact Retention:

Size 23: 44 N (10 lb.)
Size 22D: 44 N (10 lb.)
Size 20: $67 \mathrm{~N}(15 \mathrm{lb}$.
Size 16: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 12: $111 \mathrm{~N}(25 \mathrm{lb}$.
Size 8: $111 \mathrm{~N}(25 \mathrm{lb}$.
ELECTRICAL

- Shell-to-Shell Conductivity: 2.5 mV max.
- Shielding Effectiveness: >90 dB at $100 \mathrm{MHz},>65 \mathrm{~dB}$ through 10 GHz

DTS-B Bronze Connectors

38999 Series III-Style Connectors

Voltage Rating

Service Rating	Suggested Operating Voltage			Test Voltage at Altitude ($\mathrm{VAC}_{\text {rms }}$)		
	VACrms	VDC	Sea Level	50,000 Ft.	70,000 Ft.	100,000 Ft.
M	400	550	1300	550	350	200
N	300	450	1000	400	260	200
I	600	850	1800	600	400	200
11	750	1050	2300	800	500	200

Current Rating

Contact Size	Test Current (A)	Voltage Drop (mV)
23	5	73
22 D	5	73
20	7.5	55
16	13	50
12	23	42
10	33	34
8	46	26

Thread Sizes

Shell Size	Accessory Thread ($6 \mathrm{~g} \mathrm{0.100R)}$	Mating Thread (0.1P-0.3L)	Jam Nut Thread ($6 \mathrm{~g} \mathrm{O.100R}$)
9	M12 $\times 1.0$. 6250	M17 $\times 1.0$
11	M15 $\times 1.0$. 7500	M20 $\times 1.0$
13	M18 $\times 1.0$. 8750	M25 x 1.0
15	$\mathrm{M} 22 \times 1.0$	1.0000	$\mathrm{M} 28 \times 1.0$
17	M 25×1.0	1.1875	M32 $\times 1.0$
19	M28 $\times 1.0$	1.2500	M35 $\times 1.0$
21	M31 $\times 1.0$	1.3750	M38 $\times 1.0$
23	M34 $\times 1.0$	1.5000	M41 $\times 1.0$
25	M37 $\times 1.0$	1.6250	M 44×1.0

DTS-B Bronze Connectors

38999 Series III-Style Connectors

Part Numbering

MIL-DTL-38999 Circular Connectors

DTS-B Bronze Connectors

38999 Series III-Style Connectors

Square Flange Receptacle

Type 20

Shell Size	$\begin{gathered} B \\ \pm 0.3 \\ (\pm 0.012) \end{gathered}$	C1	C2	$\begin{gathered} \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { Max. } \end{gathered}$	$\begin{gathered} F \\ \pm 0.1 \\ (\pm 0.004) \end{gathered}$	$\begin{gathered} \mathbf{G} \\ \pm \mathbf{0 . 1} \\ (\pm 0.004) \end{gathered}$	$\begin{gathered} \mathrm{P} \\ \pm \stackrel{\mathrm{O}}{\mathbf{0} .2} \\ (\pm 0.008) \end{gathered}$	$\begin{gathered} \text { PP } \\ \pm 0.2 \\ (\pm 0.008) \end{gathered}$
09	$\begin{aligned} & 23.80 \\ & 0.937 \end{aligned}$	$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 15.09 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 15.75 \\ & 0.620 \end{aligned}$	$\begin{aligned} & 11.90 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 5.49 \\ & 0.216 \end{aligned}$
11	$\begin{gathered} 26.20 \\ 1.031 \end{gathered}$	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 18.90 \\ & 0.744 \end{aligned}$	$\begin{aligned} & 14.90 \\ & 0.587 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$
13	$\begin{gathered} 28.60 \\ 1.126 \end{gathered}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 22.10 \\ & 0.870 \end{aligned}$	$\begin{aligned} & 17.90 \\ & 0.705 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$
15	$\begin{aligned} & 31.00 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 25.25 \\ & 0.994 \end{aligned}$	$\begin{aligned} & 21.90 \\ & 0.862 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$
17	$\begin{gathered} 33.30 \\ 1.311 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{gathered} 29.95 \\ 1.179 \end{gathered}$	$\begin{aligned} & 24.90 \\ & 0.980 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$
19	$\begin{aligned} & 36.50 \\ & 1.437 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 20.90 \\ & 0.823 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 31.55 \\ & 1.242 \end{aligned}$	$\begin{aligned} & 27.90 \\ & 1.098 \end{aligned}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$
21	$\begin{aligned} & 39.70 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 34.70 \\ & 1.366 \end{aligned}$	$\begin{gathered} 30.90 \\ 1.217 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$
23	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 37.90 \\ & 1.492 \end{aligned}$	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$
25	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 1.375 \end{aligned}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 41.10 \\ & 1.618 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

DTS-B Bronze Connectors

38999 Series III-Style Connectors

Jam Nut Receptacle Type 24

Shell Size	$\begin{gathered} A \\ \pm 0.3 \\ (\pm 0.012) \end{gathered}$	$\begin{gathered} B \\ \pm 0.4 \\ (\pm 0.016) \end{gathered}$	$\begin{gathered} +0.07 /-0.1 \\ (+0.028 /-0.004) \end{gathered}$	$\begin{gathered} F \\ \pm 0.1 \\ (\pm 0.004) \end{gathered}$	$\begin{gathered} \mathbf{G} \\ \pm 0.1 \\ (\pm 0.004) \end{gathered}$	M
09	$\begin{gathered} 30.20 \\ 1.189 \end{gathered}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 15.75 \\ & 0.620 \end{aligned}$	$\begin{aligned} & 11.90 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 21.82 \\ & 0.859 \end{aligned}$
11	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 18.90 \\ & 0.744 \end{aligned}$	$\begin{aligned} & 14.90 \\ & 0.587 \end{aligned}$	$\begin{aligned} & 24.99 \\ & 0.984 \end{aligned}$
13	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 22.10 \\ & 0.870 \end{aligned}$	$\begin{aligned} & 17.90 \\ & 0.705 \end{aligned}$	$\begin{gathered} 29.77 \\ 1.172 \end{gathered}$
15	$\begin{aligned} & 41.30 \\ & 1.626 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{aligned} & 25.25 \\ & 0.994 \end{aligned}$	$\begin{aligned} & 21.90 \\ & 0.862 \end{aligned}$	$\begin{aligned} & 32.91 \\ & 1.296 \end{aligned}$
17	$\begin{gathered} \mathbf{4 4 . 5 0} \\ 1.752 \end{gathered}$	$\begin{aligned} & 41.30 \\ & 1.626 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 0.087 \end{aligned}$	$\begin{gathered} 29.95 \\ 1.179 \end{gathered}$	$\begin{aligned} & 24.90 \\ & 0.980 \end{aligned}$	$\begin{aligned} & 36.12 \\ & 1.422 \end{aligned}$
19	$\begin{aligned} & 49.20 \\ & 1.937 \end{aligned}$	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 31.55 \\ & 1.242 \end{aligned}$	$\begin{aligned} & 27.90 \\ & 1.098 \end{aligned}$	$\begin{aligned} & 39.25 \\ & 1.545 \end{aligned}$
21	$\begin{aligned} & 52.40 \\ & 2.063 \end{aligned}$	$\begin{aligned} & 49.20 \\ & 1.937 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 34.70 \\ & 1.366 \end{aligned}$	$\begin{gathered} 30.90 \\ 1.217 \end{gathered}$	$\begin{aligned} & 42.47 \\ & 1.672 \end{aligned}$
23	$\begin{gathered} 55.60 \\ 2.189 \end{gathered}$	$\begin{aligned} & 52.40 \\ & 2.063 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 37.90 \\ & 1.492 \end{aligned}$	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{aligned} & 45.61 \\ & 1.796 \end{aligned}$
25	$\begin{gathered} 58.70 \\ 2.311 \end{gathered}$	$\begin{gathered} 55.20 \\ 2.173 \end{gathered}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$	$\begin{aligned} & 41.10 \\ & 1.618 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{aligned} & 49.25 \\ & 1.939 \end{aligned}$

Millimeters Inches

DTS-B Bronze Connectors

38999 Series III-Style Connectors

Plug
Type 26

Shell Size	F Max.	G Max.	S Max.
09	$\begin{aligned} & 18.40 \\ & 0.724 \end{aligned}$	$\begin{aligned} & 11.90 \\ & 0.469 \end{aligned}$	$\begin{aligned} & 21.80 \\ & 0.858 \end{aligned}$
11	$\begin{aligned} & 21.10 \\ & 0.831 \end{aligned}$	$\begin{aligned} & 14.90 \\ & 0.587 \end{aligned}$	$\begin{aligned} & 25.00 \\ & 0.984 \end{aligned}$
13	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 17.90 \\ & 0.705 \end{aligned}$	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$
15	$\begin{gathered} 28.70 \\ 1.130 \end{gathered}$	$\begin{aligned} & 21.90 \\ & 0.862 \end{aligned}$	$\begin{aligned} & \mathbf{3 2 . 5 0} \\ & 1.280 \end{aligned}$
17	$\begin{aligned} & 32.20 \\ & 1.268 \end{aligned}$	$\begin{aligned} & 24.90 \\ & 0.980 \end{aligned}$	$\begin{aligned} & 35.70 \\ & 1.406 \end{aligned}$
19	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 27.90 \\ & 1.098 \end{aligned}$	$\begin{gathered} \mathbf{3 8 . 5 0} \\ 1.516 \end{gathered}$
21	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{gathered} 30.90 \\ 1.217 \end{gathered}$	$\begin{aligned} & 41.70 \\ & 1.642 \end{aligned}$
23	$\begin{aligned} & 41.10 \\ & 1.618 \end{aligned}$	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{aligned} & 44.90 \\ & 1.768 \end{aligned}$
25	$\begin{aligned} & 44.30 \\ & 1.744 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{aligned} & 48.00 \\ & 1.890 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

DTS-B Bronze Connectors

38999 Series III-Style Connectors

Panel Cutouts

Square Flange Receptacle
(Type 20)

Jam Nut Receptacle
(Type 24)

Shell Size	C1	H Min.		H1 Max.	K Max.	V Min.	V1 Min.
		Front	Rear				
09	$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 13.11 \\ & 0.516 \end{aligned}$	$\begin{aligned} & 16.66 \\ & 0.656 \end{aligned}$	$\begin{aligned} & 17.70 \\ & 0.697 \end{aligned}$	$\begin{aligned} & 16.99 \\ & 0.669 \end{aligned}$	$\begin{aligned} & 24.60 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 27.80 \\ & 1.094 \end{aligned}$
11	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 15.08 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 22.22 \\ & 0.875 \end{aligned}$	$\begin{aligned} & 20.88 \\ & 0.822 \end{aligned}$	$\begin{aligned} & 19.53 \\ & 0.769 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$	$\begin{aligned} & 32.60 \\ & 1.283 \end{aligned}$
13	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 23.42 \\ & 0.922 \end{aligned}$	$\begin{aligned} & 25.58 \\ & 1.007 \end{aligned}$	$\begin{aligned} & 24.26 \\ & 0.995 \end{aligned}$	$\begin{gathered} 30.20 \\ 1.189 \end{gathered}$	$\begin{gathered} 36.00 \\ 1.417 \end{gathered}$
15	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 5 9} \\ & 1.047 \end{aligned}$	$\begin{gathered} 28.80 \\ 1.134 \end{gathered}$	$\begin{aligned} & 27.53 \\ & 1.084 \end{aligned}$	$\begin{gathered} 33.30 \\ 1.331 \end{gathered}$	$\begin{aligned} & 39.60 \\ & 1.559 \end{aligned}$
17	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 25.81 \\ & 1.106 \end{aligned}$	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 31.98 \\ & 1.259 \end{aligned}$	$\begin{aligned} & 30.68 \\ & 1.208 \end{aligned}$	$\begin{aligned} & 36.50 \\ & 1.437 \end{aligned}$	$\begin{aligned} & 43.30 \\ & 1.705 \end{aligned}$
19	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{gathered} 28.98 \\ 1.141 \end{gathered}$	$\begin{aligned} & 32.94 \\ & 1.297 \end{aligned}$	$\begin{aligned} & 35.15 \\ & 1.384 \end{aligned}$	$\begin{aligned} & 33.86 \\ & 1.333 \end{aligned}$	$\begin{aligned} & 39.30 \\ & 1.547 \end{aligned}$	$\begin{aligned} & 47.00 \\ & 1.850 \end{aligned}$
21	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 32.16 \\ & 1.266 \end{aligned}$	$\begin{aligned} & 36.12 \\ & 1.422 \end{aligned}$	$\begin{aligned} & 38.28 \\ & 1.507 \end{aligned}$	$\begin{aligned} & 37.06 \\ & 1.459 \end{aligned}$	$\begin{aligned} & 42.50 \\ & 1.673 \end{aligned}$	$\begin{aligned} & \mathbf{5 0 . 6 0} \\ & 1.992 \end{aligned}$
23	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 39.29 \\ & 1.547 \end{aligned}$	$\begin{aligned} & 41.50 \\ & 1.634 \end{aligned}$	$\begin{aligned} & 40.01 \\ & 1.575 \end{aligned}$	$\begin{aligned} & 45.70 \\ & 1.799 \end{aligned}$	$\begin{gathered} \mathbf{5 4 . 2 0} \\ 2.134 \end{gathered}$
25	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 37.69 \\ & 1.484 \end{aligned}$	$\begin{aligned} & 42.47 \\ & 1.672 \end{aligned}$	$\begin{gathered} 44.68 \\ 1.759 \end{gathered}$	$\begin{aligned} & 43.41 \\ & 1.709 \end{aligned}$	$\begin{gathered} 48.80 \\ 1.921 \end{gathered}$	$\begin{aligned} & 59.70 \\ & 2.350 \end{aligned}$

Millimeters Inches

Series III Connectors with Integral Accessory

DEUTSCH DTS Connectors DEUTSCH DTS Firewall Connectors

DEUTSCH connectors with integral accessory help provide space and weight savings over using a separate backshell. One or two knurled areas help support reliable shield termination with a band strap. The connectors also accept a heat-shrink boot or overmolding.

The connectors are available in aluminum with a variety of finishes or in stainless steel for Class K engine and firewall applications.

MIL-DTL-38999 Circular Connectors

DTS Aluminum Connectors

Single Banding Sections

Part Numbering

Note: If ordering less contacts, please add -6149 to the end of the part number

DTS Aluminum Connectors

Square Flange Receptacle

Shell Size	$\begin{gathered} \varnothing G \pm 0.38 \\ \pm 0.015 \end{gathered}$	V	W	P	PP	R1	R2	S
09	$\begin{aligned} & 11.43 \\ & 0.450 \end{aligned}$					$\begin{array}{r} 18.26 \\ 0.719 \end{array}$	$\begin{aligned} & 15.09 \\ & 0.594 \end{aligned}$	$\begin{aligned} & 23.80 \\ & 0.937 \end{aligned}$
11	$\begin{aligned} & 14.63 \\ & 0.576 \end{aligned}$					$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{gathered} 18.26 \\ 0.719 \end{gathered}$	$\begin{aligned} & 26.19 \\ & 1.031 \end{aligned}$
13	$\begin{aligned} & 17.53 \\ & 0.690 \end{aligned}$	20.88	2.49			$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{gathered} 28.60 \\ 1.126 \end{gathered}$
15	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$	0.822	0.098	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & \mathbf{3 0 . 9 9} \\ & 1.220 \end{aligned}$
17	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$					$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{gathered} 33.30 \\ 1.311 \end{gathered}$
19	$\begin{aligned} & 26.82 \\ & 1.056 \end{aligned}$					$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 36.50 \\ & 1.437 \end{aligned}$
21	$\begin{gathered} 29.82 \\ 1.174 \end{gathered}$					$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 39.70 \\ & 1.563 \end{aligned}$
23	$\begin{aligned} & 32.82 \\ & 1.292 \end{aligned}$	$\begin{gathered} 20.09 \\ 0.791 \end{gathered}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	3.91	6.15	$\begin{aligned} & 34.93 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$
25	$\begin{aligned} & 35.81 \\ & 1.410 \end{aligned}$			0.154	0.242	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$

Millimeters Inches

DTS Aluminum Connectors

Jam Nut Receptacle

Shell Size	$\begin{gathered} \varnothing \mathbf{G} \pm 0.38 \\ \pm 0.015 \end{gathered}$
09	$\begin{aligned} & 11.43 \\ & 0.450 \end{aligned}$
11	$\begin{aligned} & 14.63 \\ & 0.576 \end{aligned}$
13	$\begin{aligned} & 17.53 \\ & 0.690 \end{aligned}$
15	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
17	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$
19	$\begin{aligned} & \mathbf{2 6 . 8 2} \\ & 1.056 \end{aligned}$
21	$\begin{gathered} 29.82 \\ 1.174 \end{gathered}$
23	$\begin{aligned} & 32.82 \\ & 1.292 \end{aligned}$
25	$\begin{aligned} & 35.81 \\ & 1.410 \end{aligned}$

Millimeters Inches

DTS Aluminum Connectors

Plug

Shell Size	A	$\begin{gathered} \boldsymbol{\varnothing G} \pm 0.38 \\ \pm 0.015 \end{gathered}$
09	$\begin{aligned} & 21.79 \\ & 0.858 \end{aligned}$	$\begin{aligned} & 11.43 \\ & 0.450 \end{aligned}$
11	$\begin{aligned} & 24.99 \\ & 0.984 \end{aligned}$	$\begin{aligned} & 14.63 \\ & 0.576 \end{aligned}$
13	$\begin{gathered} 29.39 \\ 1.157 \end{gathered}$	$\begin{aligned} & 17.53 \\ & 0.690 \end{aligned}$
15	$\begin{aligned} & 32.49 \\ & 1.279 \end{aligned}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$
17	$\begin{aligned} & 35.69 \\ & 1.405 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$
19	$\begin{aligned} & 38.48 \\ & 1.515 \end{aligned}$	$\begin{aligned} & 26.82 \\ & 1.056 \end{aligned}$
21	$\begin{aligned} & 41.68 \\ & 1.641 \end{aligned}$	$\begin{gathered} 29.82 \\ 1.174 \end{gathered}$
23	$\begin{aligned} & 44.91 \\ & 1.768 \end{aligned}$	$\begin{aligned} & 32.82 \\ & 1.292 \end{aligned}$
25	$\begin{aligned} & 47.98 \\ & 1.889 \end{aligned}$	$\begin{aligned} & 35.81 \\ & 1.410 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

DTS-K Stainless Steel Firewall Connectors

Double Banding Sections

Part Numbers

$x x=$ Insert Arrangement Code from dimensions table on next page

Polarization	Plug		Square Flange Receptacle		Jam Nut Receptacle	
	Pin Contact	Socket Contact	Pin Contact	Socket Contact	Pin Contact	Socket Contact
N	781-8037-xx	781-8057-xx	781-8060-xx	781-8070-xx	781-8043-xx	781-8049-xx
A	781-8131-xx	781-8141-xx	781-8061-xx	781-8071-xx	781-8044-xx	781-8050-xx
B	781-8132-xx	781-8142-xx	781-8062-xx	781-8072-xx	781-8045-xx	$781-8051-x x$
C	781-8133-xx	781-8143-xx	781-8063-xx	781-8073-xx	781-8046-xx	781-8052-xx
D	781-8134-xx	781-8144-xx	781-8064-xx	781-8074-xx	781-8047-xx	781-8053-xx
E	781-8135-xx	781-8145-xx	781-8065-xx	781-8075-xx	781-8048-xx	781-8054-xx

Square Flange Receptacle

MIL-DTL-38999 Circular Connectors

DTS-K Stainless Steel Firewall Connectors

Double Banding Sections

Insert Code	Size - Insert	$\begin{aligned} & \mathbf{A} \pm 0.3 \\ & \pm 0.012 \end{aligned}$	$\begin{aligned} & \mathbf{B} \pm 0.10 \\ & \pm 0.005 \end{aligned}$	$\begin{aligned} & C \pm 0.10 \\ & \pm 0.004 \end{aligned}$	$\begin{gathered} \varnothing D \pm 0.12 \\ \pm 0.005 \end{gathered}$	$\begin{gathered} \text { øE } \pm 0.05 \\ \pm 0.002 \end{gathered}$	$\begin{gathered} \varnothing F \pm 0.05 \\ \pm 0.002 \end{gathered}$	G Max.
03	09-35	23.80	18.26	15.09	12.06	11.43	10.46	$\begin{aligned} & 2.50 \\ & 0.098 \end{aligned}$
05	09-98	0.937	0.719	0.594	0.475	0.450	0.412	
10	11-35	$\begin{gathered} 28.60 \\ 1.126 \end{gathered}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$					
11	11-98			$\begin{aligned} & 18.26 \\ & 0.719 \end{aligned}$	$\begin{aligned} & 15.06 \\ & 0.593 \end{aligned}$	$\begin{aligned} & 14.63 \\ & 0.576 \end{aligned}$	$\begin{aligned} & 13.67 \\ & 0.538 \end{aligned}$	
12	11-99							
14	13-08							
16	13-35			$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{array}{r} 18.08 \\ 0.712 \end{array}$	$\begin{aligned} & 17.53 \\ & 0.690 \end{aligned}$	$\begin{aligned} & 16.56 \\ & 0.652 \end{aligned}$	
17	13-98							
18	15-05	$\begin{aligned} & 31.00 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 22.07 \\ & 0.869 \end{aligned}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$	$\begin{aligned} & 19.86 \\ & 0.782 \end{aligned}$	
20	15-18							
21	15-19							
22	15-35							
24	15-97							
25	17-06	$\begin{gathered} 33.30 \\ 1.311 \end{gathered}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 25.07 \\ & 0.987 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 22.86 \\ & 0.900 \end{aligned}$	
26	17-08							
27	17-26							
28	17-35							
31	19-11	36.50	29.36	26.97	28.07	26.83	25.86	
34	19-32	1.437	1.156	1.062	1.105	1.056	1.018	
46	21-39	39.70	31.75	29.36	31.06	29.82	28.91	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$
47	21-41	1.563	1.250	1.156	1.223	1.174	1.138	
55	23-53	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{aligned} & 34.93 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{gathered} 34.06 \\ 1.341 \end{gathered}$	$\begin{aligned} & 32.82 \\ & 1.292 \end{aligned}$	$\begin{aligned} & 31.85 \\ & 1.254 \end{aligned}$	
61	25-04	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 37.06 \\ & 1.459 \end{aligned}$	$\begin{aligned} & 35.81 \\ & 1.410 \end{aligned}$	$\begin{aligned} & 34.85 \\ & 1.372 \end{aligned}$	
65	25-35							
68	25-61							

Millimeters Inches

MIL-DTL-38999 Circular Connectors

DTS-K Stainless Steel Firewall Connectors

Double Banding Sections

Insert Code	Size - Insert	ØA Max.	ØВ Max.	$\begin{gathered} \varnothing C \pm 0.12 \\ \pm 0.005 \end{gathered}$	$\begin{gathered} \varnothing D \pm 0.05 \\ \pm 0.002 \end{gathered}$	$\begin{gathered} \varnothing E \pm 0.05 \\ \pm 0.002 \end{gathered}$
03	09-35	21.80	18.60	12.06	11.43	10.46
05	09-98	0.858	0.732	0.475	0.450	0.412
10	11-35	25.0	21.30	15.06	14.63	13.67
11	11-98	0.984	0.839	0.593	0.576	0.538
14	13-08					
16	13-35	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$	$\begin{aligned} & 25.60 \\ & 1.008 \end{aligned}$	$\begin{gathered} 18.08 \\ 0.712 \end{gathered}$	$\begin{aligned} & 17.53 \\ & 0.690 \end{aligned}$	$\begin{aligned} & 16.56 \\ & 0.652 \end{aligned}$
17	13-98					
18	15-05					
20	15-18					
21	15-19	$\begin{aligned} & 32.50 \\ & 1.280 \end{aligned}$	$\begin{gathered} 28.90 \\ 1.138 \end{gathered}$	$\begin{aligned} & 22.07 \\ & 0.869 \end{aligned}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$	$\begin{aligned} & 19.86 \\ & 0.782 \end{aligned}$
22	15-35					
24	15-97					
25	17-06					
26	17-08	35.70	32.40	25.07	23.83	22.86
27	17-26	1.406	1.276	0.987	0.938	0.900
28	17-35					
31	19-11					
34	19-32	$\begin{gathered} \mathbf{3 8 . 5 0} \\ 1.516 \end{gathered}$	$\begin{aligned} & 35.10 \\ & 1.382 \end{aligned}$	$\begin{gathered} 28.07 \\ 1.105 \end{gathered}$	$\begin{aligned} & 26.83 \\ & 1.056 \end{aligned}$	$\begin{gathered} 25.86 \\ 1.018 \end{gathered}$
35	19-35					
45	21-35					
46	21-39	$\begin{aligned} & 41.70 \\ & 1.642 \end{aligned}$	$\begin{aligned} & 38.30 \\ & 1.508 \end{aligned}$	$\begin{aligned} & 31.06 \\ & 1.223 \end{aligned}$	$\begin{gathered} 29.82 \\ 1.174 \end{gathered}$	$\begin{aligned} & 28.91 \\ & 1.138 \end{aligned}$
47	21-41					
55	23-53	$\begin{aligned} & 44.90 \\ & 1.768 \end{aligned}$	$\begin{aligned} & 41.30 \\ & 1.626 \end{aligned}$	$\begin{gathered} 34.06 \\ 1.341 \end{gathered}$	$\begin{aligned} & 32.82 \\ & 1.292 \end{aligned}$	$\begin{aligned} & 31.85 \\ & 1.254 \end{aligned}$
61	25-04					
65	25-35	$\begin{aligned} & 48.00 \\ & 1.890 \end{aligned}$	$\begin{aligned} & 44.50 \\ & 1.752 \end{aligned}$	$\begin{aligned} & 37.06 \\ & 1.459 \end{aligned}$	$\begin{aligned} & 35.81 \\ & 1.410 \end{aligned}$	$\begin{aligned} & 34.85 \\ & 1.372 \end{aligned}$
68	25-61					

Millimeters Inches

MIL-DTL-38999 Circular Connectors

DTS-K Stainless Steel Firewall Connectors

Single Banding Sections

Part Numbers

$x x=$ Insert Arrangement Code from dimensions table on next page

Polarization	Plug		Square Flange Receptacle		Jam Nut Receptacle	
	Pin Contact	Socket Contact	Pin Contact	Socket Contact	Pin Contact	Socket Contact
N	781-8130-xx	781-8010-xx	781-8020-xx	781-8030-xx	781-8043-xx	781-8049-xx
A	781-8131-xx	781-8011-xx	781-8021-xx	781-8031-xx	781-8044-xx	781-8050-xx
B	781-8132-xx	781-8012-xx	$781-8022-x x$	781-8032-xx	781-8045-xx	781-8051-xx
C	781-8133-xx	781-8013-xx	$781-8023-x x$	781-8033-xx	781-8046-xx	$781-8052-x x$
D	781-8134-xx	$781-8014-x x$	781-8024-xx	781-8034-xx	781-8047-xx	781-8053-xx
E	781-8135-xx	781-8015-xx	781-8025-xx	781-8035-xx	781-8048-xx	781-8054-xx

DTS-K Stainless Steel Firewall Connectors

Insert Code (xx)	Size - Insert	$\begin{gathered} \varnothing A \pm 0.12 \\ \pm 0.005 \end{gathered}$	$\begin{gathered} \varnothing \mathbf{B} \pm 0.05 \\ \pm 0.002 \end{gathered}$	$\begin{gathered} \varnothing \subset \pm 0.05 \\ \pm 0.002 \end{gathered}$	$\varnothing \mathrm{D}$ Min.	E Max.
03	9-35	12.06	10.46	11.43	13.46	25.60
05	9-98	0.475	0.412	0.450	0.530	1.008
11	11-98	$\begin{aligned} & 15.06 \\ & 0.593 \end{aligned}$	$\begin{aligned} & 13.67 \\ & 0.538 \end{aligned}$	$\begin{aligned} & 14.63 \\ & 0.576 \end{aligned}$	TBD	TBD
14	13-8	$\begin{aligned} & 18.08 \\ & 0.712 \end{aligned}$	$\begin{aligned} & 16.56 \\ & 0.652 \end{aligned}$	$\begin{aligned} & 17.53 \\ & 0.690 \end{aligned}$		
17	13-98					
18	15-05					$\begin{aligned} & 25.60 \\ & 1.008 \end{aligned}$
20	15-18	$\begin{aligned} & 22.07 \\ & 0.869 \end{aligned}$	$\begin{aligned} & 19.86 \\ & 0.782 \end{aligned}$	$\begin{aligned} & 20.83 \\ & 0.820 \end{aligned}$	$\begin{aligned} & 22.86 \\ & 0.900 \end{aligned}$	
21	15-19					
25	17-6	$\begin{aligned} & 25.07 \\ & 0.987 \end{aligned}$	$\begin{aligned} & 22.86 \\ & 0.900 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 25.86 \\ & 1.018 \end{aligned}$	
26	17-8					
27	17-26					
31	19-11	$\begin{aligned} & 28.07 \\ & 1.105 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 8 6} \\ & 1.018 \end{aligned}$	$\begin{aligned} & 26.82 \\ & 1.056 \end{aligned}$	TBD	TBD
34	19-32					
46	21-39	$\begin{aligned} & 31.06 \\ & 1.223 \end{aligned}$	$\begin{gathered} 28.91 \\ 1138 \end{gathered}$	$\begin{gathered} 29.82 \\ 1.174 \end{gathered}$		
47	21-41					
55	23-53	$\begin{gathered} 34.06 \\ 1.341 \end{gathered}$	$\begin{aligned} & 31.85 \\ & 1.254 \end{aligned}$	$\begin{aligned} & 32.82 \\ & 1.292 \end{aligned}$		
61	25-04	37.06	34.85	35.81		
68	25-61	1.459	1.372	1.410		

Millimeters Inches

DTS-HC High-Current Connectors

38999 Series III-Style Connectors

DEUTSCH DTS-HC high-current circular connectors provide power connections in the familiar 38999 form factor. They are optimized for use in harsh high-vibration environments where space is at a premium.

With integral power and signal wires in some configurations, the connectors also help save space and give you a variety of versatile contact termination options.
Rated to $175^{\circ} \mathrm{C}$, DTS-HC connectors are the rugged choice for high-temperature applications. In addition, interfacial sealing helps provide protection from dust and aggressive fluids, while shielding fingers at the mating interface provide excellent EMI and RFI protection.

Specifications

MATERIALS

- Shell/Coupling Ring: High-strength aluminum alloy
- Plating: Nickel (standard), olive drab cadmium, or zinc cobalt
- Insulators: High-performance thermoplastic
- Seals: Fluorinated silicone
- Contacts: Gold-plated copper alloy

ENVIRONMENTAL/MECHANICAL

- Temperature: $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
- Vibration: Random, 50-2000 Hz, $5 \mathrm{~g}^{2} / \mathrm{Hz}$ (per MIL-DTL-38999)
- Dielectric Withstand Voltage: 1500 VAC
- Insulation Resistance: $5000 \mathrm{M} \Omega$ min., 500 VDC,
- Durability: 500 mating cycles
- Altitude: 30,000 m (100,000 ft.) max.

CURRENT RATING, CONTINUOUS

- Size 00 Contact: 300 A
- Size 4 Contact: 150 A
- Size 20 Contact: 7.5 A

POWER CABLE CONDUCTOR TYPE

- Size 4: 4 AWG, $8 \mathrm{~mm}^{2}, 16 \mathrm{~mm}^{2}$ and $25 \mathrm{~mm}^{2}$ conductor
- Size 00: 70 mm²

CONFIGURATIONS

- Size 21 Shell: 2 Size 4 power contacts
- Size 23 Shell: 1 Size 00 power contact
- Size 23 Shell: 2 Size 4 power contacts and 3 Size 20 contacts
- Size 25 Shell: 4 Size 4 power contacts and 4 Size 20 contacts

DTS-HC High-Current Connectors

38999 Series III-Style Connectors

Insert Arrangements

23-100
One Size 00 Contact

23-24320
2 Size 4 Contacts 3 Size 20 Contacts

25-44420
4 Size 4 Contacts 4 Size 20 Contacts

Part Numbering

MIL-DTL-38999 Circular Connectors

DTS-HC High-Current Connectors

38999 Series III-Style Connectors

Square Flange Receptacle
Type 20

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	B	C1	C2	D Max.	E Max.	F	G	P	PP
21	$\begin{aligned} & 39.70 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{gathered} 29.36 \\ 1.156 \end{gathered}$	$\begin{aligned} & 20.10 \\ & 0.791 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 34.70 \\ & 1.366 \end{aligned}$	$\begin{gathered} \mathbf{3 0 . 9 0} \\ 1.217 \end{gathered}$	$\begin{aligned} & 3.25 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 4.93 \\ & 0.194 \end{aligned}$
23	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{gathered} 34.93 \\ 1.375 \end{gathered}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 37.90 \\ & 1.492 \end{aligned}$	$\begin{aligned} & 33.90 \\ & 1.335 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$
25	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{array}{r} 20.10 \\ 0.791 \end{array}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 41.10 \\ & 1.618 \end{aligned}$	$\begin{aligned} & 36.90 \\ & 1.453 \end{aligned}$	$\begin{gathered} 3.91 \\ 0.154 \end{gathered}$	$\begin{gathered} 6.15 \\ 0.242 \end{gathered}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

DTS-HC High-Current Connectors

38999 Series III-Style Connectors

Millimeters Inches
Plug
Type 26

Shell Size	F Max.	G	S Max.	Mass (g)
21	38.10 1.500	30.90 1.217	41.70 1.642	55
23	41.10 1.618	33.90 1.335	44.90 1.768	67
25	44.30	36.90	48.00	$\mathbf{7 1}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

DTS-HC High-Current Connectors

38999 Series III-Style Connectors

Contacts

Contact Size	Conductor	Pin	Socket	Crimp Tool	Dieset or Positioner	Contact Removal Tool
20	24-20	38941-20	38943-20	M22520/2-01	M22520/2-10	M81969/14-10
8	$6 \mathrm{~mm}^{2}$	611091	611089	M22520/23-01	M22520/23-09	611218
	$14 \mathrm{~mm}^{2}$	605345-01-31	605344	Consult TE for Tooling		
4	4 AWG	611102	611103	D51	31040	610136-TOOL
	$25 \mathrm{~mm}^{2}$	605660	611103-025			
	$16 \mathrm{~mm}^{2}$	605734	611103-016			
	$8 \mathrm{~mm}^{2}$	611102	611103	M22520/23-01 or D51	M22520/23-11	610136-TOOL
00	$70 \mathrm{~mm}^{2}$	610304	601365	Consult TE for Tooling		
OO Bus Bar	**	610364	610299	-	-	-

** Consult TE

POLAMCO High-Power Connectors

38999-Style Connectors for Harsh Military Environments
The POLAMCO high-power connector family provides a simple and effective way of terminating power cables in a harsh environment military connector system.

POLAMCO high-power connectors are optimized for cable sizes ranging from $50 \mathrm{~mm}^{2}$ up to $240 \mathrm{~mm}^{2}$, and are available in shell sizes 19 through 25, depending on the cable being terminated.
Rated to $175^{\circ} \mathrm{C}$, these high-power MIL-DTL-38999 Series I and IIIstyle connector systems give you a variety of versatile options including threaded termination or a screened crimp, with straight or 90° orientation.

Specifications

MATERIALS

- Shell: High-strength aluminum alloy, nickel aluminum bronze, or stainless steel
- Contact Body: Silver-plated copper alloy
- Seals: Silicone elastomer
- Insulators: Thermoplastic: PPS-GL40, UL94V-0
- Plating Finishes:

Olive drab cadmium
Black zinc nickel
Electroless nickel
Zinc cobalt
(Contact TE for additional finishes)

Plating Code	Plating Description	RoHS Compliant	Environmental Protection Conductivity
\mathbf{B}	Olive drab cadmium (5-10 $\mu \mathrm{m})$ QQ-P-416, Type II,	No	500 hours salt spray
Class 3 over electroless nickel			

ELECTRICAL

- Voltage: 1800 VAC / 60 Hz (service rating 1)
- Shell Continuity: $<5 \mathrm{~m} \Omega$
- Current Rating (Approx. @ $40^{\circ} \mathrm{C}$ ambient): Shell Size 25: $1000 \mathrm{~A},<22 \mu \Omega$ Shell Size 23: $800 \mathrm{~A},<25 \mu \Omega$ Shell Size 21: $600 \mathrm{~A},<30 \mu \Omega$
Shell Size 19: $400 \mathrm{~A},<38 \mu \Omega$
- Contact Resistance (Approx. @ $40^{\circ} \mathrm{C}$ ambient): Shell Size 25: <22 $\mu \Omega$
Shell Size 23: $<25 \mu \Omega$
Shell Size 21: $<30 \mu \Omega$
Shell Size 19: <38 $\mu \Omega$

ENVIRONMENTAL/MECHANICAL

- Durability: 500 mating cycles
- Vibration: 6 hours in 3 axis, full current load
(Def-Stan 0035)
- Shock: $500 \mathrm{~m} / \mathrm{s}^{2}, 11 \mathrm{~ms}$ half sine
- Temperature: $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
- Sealing: IP68 (2 m for 0.5 hour)
- Salt Spray: Up to 500 hours (depending on material/finish)

CRIMP CONTACT CURRENT DE-RATING

POLAMCO High-Power Connectors

Part Numbering

(Does not apply to threaded contacts)

$\mathbf{1}$	Straight
$\mathbf{3}$	90°
$\mathbf{6 9}$	IP69K Straight Entry

SHELL SIZE
CRIMP BARREL
(Does not apply to threaded contacts)
240, 185, 120 etc.

Material Description Codes

Material Code	Material Description
1	Aluminum Alloy 6262 / 6082
2	Nickel Aluminum Bronze DGS 1043 / NES 833 (Marine Applications)
4	Stainless Steel 303 S31/304
46	Stainless Steel 316

POLAMCO High-Power Connectors

Shielded Straight Plugs

Shell Size	ØВ Max.	ØС Max.
19	$\begin{gathered} 38.50 \\ 1.516 \end{gathered}$	$\begin{aligned} & 27.60 \\ & 1.087 \end{aligned}$
21	$\begin{aligned} & 41.70 \\ & 1.642 \end{aligned}$	$\begin{aligned} & 31.10 \\ & 1.224 \end{aligned}$
23	$\begin{gathered} 44.90 \\ 1.768 \end{gathered}$	$\begin{gathered} 36.00 \\ 1.417 \end{gathered}$
25	$\begin{aligned} & 48.00 \\ & 1.890 \end{aligned}$	$\begin{aligned} & 39.84 \\ & 1.569 \end{aligned}$

Milimeters Inches

POLAMCO High-Power Connectors

Shielded Right-Angle Plugs

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	\varnothing Ф Max.	øС Max.	L	
			Standard	Extended
19	38.50	31.60	52.00	98.0
	1.516	1.244	2.047	3.858
21	41.70	34.50	54.00	103.0
	1.642	1.358	2.126	4.055
23	44.90	38.50	56.00	108.0
	1.768	1.516	2.205	4.252
25	48.00	40.64	56.00	112.0
	1.890	1.600	2.205	4.409

Millimeters Inches

POLAMCO High-Power Connectors

Shielded Jam Nut Receptacle

Shell Size	A	B	C	E	F	G
$\mathbf{1 9}$	$\mathbf{4 9 . 2 0}$	$\mathbf{4 6 . 0 0}$	$\mathbf{4 0 . 0 0}$	$\mathbf{3 5 . 1 8}$	$\mathbf{3 3 . 9 1}$	$\mathbf{2 7 . 6 0}$
	1.937	1.811	1.575	1.385	1.335	1.087
$2 \mathbf{2 1}$	$\mathbf{5 2 . 4 0}$	$\mathbf{4 9 . 2 0}$	$\mathbf{4 3 . 0 0}$	$\mathbf{3 8 . 3 5}$	$\mathbf{3 7 . 0 8}$	$\mathbf{3 1 . 1 0}$
	2.063	1.937	1.693	1.510	1.460	1.224
$\mathbf{2 3}$	$\mathbf{5 5 . 6 0}$	$\mathbf{5 2 . 4 0}$	$\mathbf{4 6 . 0 0}$	$\mathbf{4 1 . 5 3}$	$\mathbf{4 0 . 2 6}$	$\mathbf{3 6 . 0 0}$
	2.189	2.063	1.811	1.635	1.585	1.417
25	$\mathbf{5 8 . 7 0}$	$\mathbf{5 5 . 6 0}$	$\mathbf{5 0 . 0 0}$	$\mathbf{4 4 . 7 0}$	$\mathbf{4 3 . 4 3}$	$\mathbf{3 9 . 8 4}$
	2.311	2.189	1.969	1.760	1.710	1.569

RECOMMENDED PANEL CUTOUT

Millimeters Inches

POLAMCO High-Power Connectors

Shielded Square Flange Receptacle

VARIABLE LENGTH
STANDARD IS 20.05 [0.787]

Shell Size	B	D	P	PP	R1	R2	S
$\mathbf{1 9}$	$\mathbf{2 . 3 0}$	$\mathbf{2 7 . 6 0}$	$\mathbf{3 . 2 5}$	$\mathbf{4 . 9 3}$	$\mathbf{2 9 . 3 6}$	$\mathbf{2 6 . 9 7}$	$\mathbf{3 6 . 5 0}$
	0.091	1.087	0.128	0.194	1.156	1.062	1.437
$\mathbf{2 1}$	$\mathbf{3 . 0 0}$	$\mathbf{3 1 . 1 0}$	$\mathbf{3 . 2 5}$	$\mathbf{4 . 9 3}$	$\mathbf{3 1 . 7 5}$	$\mathbf{2 9 . 3 6}$	$\mathbf{3 9 . 7 0}$
	0.118	1.224	0.128	0.194	1.250	1.156	1.563
$\mathbf{2 3}$	$\mathbf{3 . 0 0}$	$\mathbf{3 6 . 0 0}$	$\mathbf{3 . 9 1}$	$\mathbf{6 . 1 5}$	$\mathbf{3 4 . 9 3}$	$\mathbf{3 1 . 7 5}$	$\mathbf{4 2 . 9 0}$
	0.118	1.417	0.154	0.242	1.375	1.250	1.689
$\mathbf{2 5}$	$\mathbf{3 . 0 0}$	$\mathbf{3 9 . 8 4}$	$\mathbf{3 . 9 1}$	$\mathbf{6 . 1 5}$	$\mathbf{3 8 . 1 0}$	$\mathbf{3 4 . 9 3}$	$\mathbf{4 6 . 0 0}$
	0.118	1.569	0.154	0.242	1.500	1.375	1.811

Millimeters Inches

MIL-DTL-38999 Circular Connectors

POLAMCO High-Power Connectors

Unshielded Jam Nut Receptacle

VARIABLE LENGTH STANDARD IS 22.60 [0.890]

Shell Size	A	B	C	E	F	G	Female Thread Size
19	$\begin{aligned} & \hline 49.20 \\ & 1.937 \end{aligned}$	$\begin{gathered} \hline 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & \hline 40.00 \\ & 1.575 \end{aligned}$	$\begin{aligned} & 35.18 \\ & 1.385 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 5 0} \\ & 1.043 \end{aligned}$	$\begin{aligned} & 33.91 \\ & 1.335 \end{aligned}$	M8
21	$\begin{aligned} & \mathbf{5 2 . 4 0} \\ & 2.063 \end{aligned}$	$\begin{aligned} & \hline 49.20 \\ & 1.937 \end{aligned}$	$\begin{aligned} & 43.00 \\ & 1.693 \end{aligned}$	$\begin{aligned} & 38.35 \\ & 1.510 \end{aligned}$	$\begin{aligned} & 31.00 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 37.08 \\ & 1.460 \end{aligned}$	M10
23	$\begin{gathered} \mathbf{5 5 . 6 0} \\ 2.189 \end{gathered}$	$\begin{aligned} & \mathbf{5 2 . 4 0} \\ & 2.063 \end{aligned}$	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 41.53 \\ & 1.635 \end{aligned}$	34.40	$\begin{aligned} & 40.26 \\ & 1.585 \end{aligned}$	M10
25	$\begin{gathered} \mathbf{5 8 . 7 0} \\ 2.311 \end{gathered}$	$\begin{gathered} \mathbf{5 5 . 6 0} \\ 2.189 \end{gathered}$	$\begin{aligned} & \mathbf{5 0 . 0 0} \\ & 1.969 \end{aligned}$	$\begin{aligned} & 44.70 \\ & 1.760 \end{aligned}$	$\begin{aligned} & 36.60 \\ & 1.441 \end{aligned}$	43.43	M12

Millimeters Inches

RECOMMENDED PANEL CUTOUT

MIL-DTL-38999 Circular Connectors

POLAMCO High-Power Connectors

Unshielded Square Flange Receptacle

Shell Size	B	D	P	PP	R1	R2	S	Female Thread Size
$\mathbf{1 9}$	$\mathbf{2 . 3 0}$	$\mathbf{2 7 . 5 0}$	$\mathbf{3 . 2 5}$	$\mathbf{4 . 9 3}$	$\mathbf{2 9 . 3 6}$	$\mathbf{2 6 . 9 7}$	$\mathbf{3 6 . 5 0}$	M8
	0.091	1.043	0.128	0.194	1.156	1.062	1.437	
$\mathbf{2 1}$	$\mathbf{3 . 0 0}$	$\mathbf{3 1 . 1 0}$	$\mathbf{3 . 2 5}$	$\mathbf{4 . 9 3}$	$\mathbf{3 1 . 7 5}$	$\mathbf{2 9 . 3 6}$	$\mathbf{3 9 . 7 0}$	M10
	0.118	1.224	0.128	0.194	1.250	1.156	1.563	
$\mathbf{2 3}$	$\mathbf{3 . 0 0}$	$\mathbf{3 4 . 4 0}$	$\mathbf{3 . 9 1}$	$\mathbf{6 . 1 5}$	$\mathbf{3 4 . 9 3}$	$\mathbf{3 1 . 7 5}$	$\mathbf{4 2 . 9 0}$	M10
	$\mathbf{0 . 1 1 8}$	1.354	0.154	0.242	1.375	1.250	1.689	

Millimeters Inches

POLAMCO High-Power Connectors

Bulkhead Feedthrough Jam Nut Receptacle

Shell Size	A	B	C	E	F
$\mathbf{1 9}$	$\mathbf{4 9 . 2 0}$	$\mathbf{4 6 . 0 0}$	$\mathbf{4 0 . 0 0}$	$\mathbf{3 5 . 1 8}$	$\mathbf{3 3 . 9 1}$
	1.937	1.811	1.575	1.385	1.335
$\mathbf{2 1}$	$\mathbf{5 2 . 4 0}$	$\mathbf{4 9 . 2 0}$	$\mathbf{4 3 . 0 0}$	$\mathbf{3 8 . 3 5}$	$\mathbf{3 7 . 0 8}$
	2.063	1.937	1.693	1.510	1.460
$\mathbf{2 3}$	$\mathbf{5 5 . 6 0}$	$\mathbf{5 2 . 4 0}$	$\mathbf{4 6 . 0 0}$	$\mathbf{4 1 . 5 3}$	$\mathbf{4 0 . 2 6}$
	2.189	2.063	1.811	1.635	1.585
$\mathbf{2 5}$	$\mathbf{5 8 . 7 0}$	$\mathbf{5 5 . 6 0}$	$\mathbf{5 0 . 0 0}$	$\mathbf{4 4 . 7 0}$	$\mathbf{4 3 . 4 3}$
	2.311	2.189	1.969	1.760	1.710

Millimeters Inches

MIL-DTL-38999 Circular Connectors

POLAMCO High-Power Connectors

Bulkhead Feedthrough Square Flange Receptacle

Shell Size	C	D	H	T
19	$\begin{aligned} & 36.50 \\ & 1.437 \end{aligned}$	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$	$\begin{aligned} & 32.94 \\ & 1.297 \end{aligned}$	$\begin{aligned} & 3.30 \\ & 0.130 \end{aligned}$
21	$\begin{aligned} & 39.70 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$	$\begin{aligned} & 36.29 \\ & 1.429 \end{aligned}$	
23	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 39.29 \\ & 1.547 \end{aligned}$	
25	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 42.47 \\ & 1.672 \end{aligned}$	

Millimeters Inches

POLAMCO High-Power Connectors

Power Crimp Contacts

Dimensions

Crimp Size (CSA, mm²)	øA Max.	
	Standard Cable	Fine Stranded Cable
50	$\begin{aligned} & 10.00 \\ & 0.394 \end{aligned}$	$\begin{aligned} & 10.30 \\ & 0.406 \end{aligned}$
70	$\begin{aligned} & 11.30 \\ & 0.445 \end{aligned}$	$\begin{aligned} & 12.10 \\ & 0.476 \\ & \hline \end{aligned}$
95	$\begin{gathered} 13.50 \\ 0.531 \end{gathered}$	$\begin{aligned} & 14.20 \\ & 0.559 \end{aligned}$
120	$\begin{aligned} & 15.20 \\ & 0.598 \end{aligned}$	$\begin{aligned} & 16.50 \\ & 0.650 \end{aligned}$
150	$\begin{aligned} & 16.70 \\ & 0.657 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.60 \\ & 0.693 \\ & \hline \end{aligned}$
185	$\begin{aligned} & 19.20 \\ & 0.756 \end{aligned}$	$\begin{aligned} & 19.20 \\ & 0.756 \end{aligned}$
240	$\begin{aligned} & 21.10 \\ & 0.831 \end{aligned}$	N/A
Millimeters Inches		

MATERIALS

- Contact: Silver-plated copper
- Insulator: PPS-GL40, UL94V-0

PERFORMANCE

- Voltage Rating: 1000 VAC / 1410 VDC
- Current Rating:

Shell Size 25: 1000A
Shell Size 23: 800A
Shell Size 21: 600A
Shell Size 19: 400A

Maximum Contact Size by Shell Size

Shell Size	Max. Crimp (CSA, mm $\left.{ }^{\mathbf{2}}\right)$	
	Standard Cable	Fine Stranded Cable
$\mathbf{1 9}$	70	70
$\mathbf{2 1}$	120	95
$\mathbf{2 3}$	185	150
$\mathbf{2 5}$	240	185

SERIES
SHELL SIZE
CRIMP SIZE (CSA)

CABLE TYPE

S Standard
FS Fine Strand
CONTACT TYPE
S Socket
P Pin
H3 90°
MATERIAL
Copper
FINISH

```
    Silver Plate
```


DEUTSCH Lanyard-Release Connectors

38999 Series III Plug Connectors for MIL-STD-1760 Aircraft/Store Electrical Interconnection Systems

DEUTSCH lanyard-release plugs are high-reliability electrical interconnections featuring common interfacing capability for the operation and employment of stores on aircraft.

Advanced aluminum and composite technology applied to mission-critical MIL-STD-1760 (AEIS) systems helps ensure higher performance in terms of corrosion resistance, weight savings, and durability.

Our lanyard-release connectors provide reliable interfaces for controlling and monitoring aircraft stores and other aircraft subsystems. With a variety of high-performance accessories, we help reduce assembly time, increase cost savings, and accommodate the severe environment of the MIL-STD-1760 system.

MATERIALS

- Shell: Composite or aluminum alloy
- Finish: Olive drab cadmium or electroless nickel
- Lanyard Ring: Black anodized aluminum alloy
- Lanyard Cover: PTFE, natural
- Lanyard: Aramid yarn, natural
- Snap Rings and Wafer Spring: Passivated stainless steel
- Resilient Insert: Silicone elastomer
- Plastic Inserts: Thermoplastic

ENVIRONMENTAL/MECHANICAL

- Temperature: $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
- Durability: 500 mating cycles
- Vibration: As per MIL-DTL-38999
- Thermal Shock: As per MIL-DTL-38999

Contact TE for the latest information and design specifications.

SPACE AND WEIGHT SAVINGS

- Almost double the contact density of MIL-DTL-38999 connectors
- Lightweight materials

RUGGED

- Threaded anti-vibration coupling
- Scoop-proof interface
- Aggressive fluid resistance and dust ingress prevention

RELIABLE

- Fully sealed cable and mating interface
- EMI screening as per MIL-DTL-38999 Series III
- RFI mating interface band

VERSATILE

- Multiple keying options
- Various plating and material options
- Backshell or cable braid/boot rear feature that help eliminate need for backshell
- Rear-removable crimp and PCB contacts (consult TE for PCB details)

DEUTSCH Wildcat 38999-Style Connectors

Higher Contact Densities in a Familiar MIL-DTL-38999 Form Factor

Combine high reliability and high contact density in a familiar MIL-DTL-38999 format with Wildcat 38999 connectors. With higher contact density than mil-spec high-density inserts and nearly double the contact density of standard inserts, Wildcat 38999 connectors offer extreme temperature, vibration, and corrosion resistance, and durability of 500 mating cycles in a space-saving design.

The easy-grip coupling ring and triple-start thread make mating and unmating fast and simple.
A variety of material and plating options means versatile choices to match the demands of your application.

ELECTRICAL

- Dielectric Withstand Voltage: 1000 VAC
- Current Rating: 3 amps/contact

ENVIRONMENTAL

- Temperature:

$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ (cadmium)
$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ (nickel)

- Durability: 500 mating cycles min.
- Vibration: MIL-DTL-38999 Series III
- Thermal Shock: MIL-DTL-38999 Series III
- Shock: $300 \mathrm{~g}, 3 \mathrm{~ms}$ in 3 axes
- Fluid resistance: Withstands a wide range of military and aerospace fluids
- Salt spray resistance:

500 hours (cadmium finish) per MIL-STD-1344 Method 100 B and NFC93422.
48 hours (nickel finish)

- Sealing: Up to 30,000 m/100,000 ft. altitude

MATERIALS

- Shell and Coupling Ring: Aerospace grade aluminum alloy as standard
- Plating: Olive drab cadmium, RoHS electroless nickel, black zinc nickel (other finishes available on request)
- Seals: Fluorinated silicone
- Insulators: High-performance thermoplastic
- Contacts: Gold-plated machined copper alloy
- Wire Size: 28 to 24 AWG

Wildcat 38999-Style Connectors

		MIL-DTL-38999				DEUTSCH Wildcat 38999	
		Standard Density Size 22D Contacts		High Density Size 23 Contacts		High Density Size 24 Contacts	
		Insert	No. of Contacts	Insert	No. of Contacts	Insert	No. of Contacts
		9-35	6	9-23	9	09-11	11
	园	11-35	13	11-23	19	11-23	23
		13-35	22	13-23	32	13-41	41
$\begin{gathered} \text { MIL-DTL-38999 } \\ \text { Insert 19-35 } \end{gathered}$	Wildcat 38999 Insert 19-118	15-35	37	15-23	55	15-64	64
66 Contacts, Size 22	118 Contacts, Size 24	19-35	66	19-23	88	19-118	118

Square Flange Receptacle: Shell Type 0

Square Flange Receptacle with Accessory Thread

Shell Size	A Max.	B Max.	D Max.	E Max.	Thread 'T'
09	$\begin{gathered} \hline 24.00 \\ .945 \end{gathered}$				M12 x 1.0-6g
11	$\begin{aligned} & 26.40 \\ & 1.039 \end{aligned}$	31.55	19.90	2.50	M15 x 1.0-6g
13	$\begin{gathered} 28.90 \\ 1.138 \end{gathered}$	1.242	. 783	. 098	M18 $\times 1.0-6 \mathrm{~g}$
15	$\begin{aligned} & 31.30 \\ & 1.232 \end{aligned}$				M22 x 1.0-6g

Milimeters Inches
Consult TE for further information on 19-118 connectors

Square Flange Receptacle with Knurled Rear

Shell Size	A Max.	B Max.	C Max.	D Max.	E Max.
09	24.00	$\begin{aligned} & 33.80 \\ & 1.331 \end{aligned}$	11.30	$\begin{gathered} 19.90 \\ .783 \end{gathered}$	$\begin{aligned} & 2.50 \\ & .098 \end{aligned}$
	. 945		. 445		
11	26.40		14.35		
	1.039		. 565		
13	28.90		17.50		
	1.138		$.689$		
15	31.30		20.65		
	1.232		. 813		

Millimeters Inches
Consult TE for further information on 19-118 connectors

Wildcat 38999－Style Connectors

Square Flange Receptacle Panel Cutouts

Shell Size	$\boldsymbol{\varnothing X}$		Y	
	Front Mount	Rear Mount	Max．	Min．
09	$\mathbf{1 3 . 1 1}$	$\mathbf{1 6 . 6 6}$	$\mathbf{1 8 . 2 6}$	$\mathbf{1 5 . 0 9}$
	.516	.656	.719	.594
11	$\mathbf{1 5 . 0 8}$	$\mathbf{2 2 . 2 2}$	$\mathbf{2 0 . 2 6}$	$\mathbf{1 8 . 2 6}$
	.594	.875	.798	.719
13	$\mathbf{1 9 . 0 5}$	$\mathbf{2 3 . 4 2}$	$\mathbf{2 3 . 0 1}$	$\mathbf{2 0 . 6 2}$
	.750	.922	.906	.812
15	$\mathbf{2 3 . 0 1}$	$\mathbf{2 6 . 5 9}$	$\mathbf{2 4 . 6 1}$	$\mathbf{2 3 . 0 1}$
	.906	1.047	.969	.906
Millimeters Inches				

Jam Nut Receptacle：Shell Type 4

Shell Size	A Max．	B Max．	C Max．	D Max．	E Max．	Thread＇T’
09	$\begin{gathered} 27.20 \\ 1.071 \end{gathered}$	$\begin{gathered} 32.55 \\ 1.281 \end{gathered}$	$\begin{gathered} \mathbf{2 3 . 2 5} \\ .915 \end{gathered}$	$\begin{gathered} 22.40 \\ .882 \end{gathered}$	$\begin{gathered} 2.95 \\ .116 \end{gathered}$	M12x1．0－6g
11	$\begin{aligned} & 32.00 \\ & 1.260 \end{aligned}$		$\begin{aligned} & \mathbf{2 6 . 3 0} \\ & 1.035 \end{aligned}$			M15x1．0－6g
13	$\begin{aligned} & 35.10 \\ & 1.382 \end{aligned}$		$\begin{aligned} & 32.00 \\ & 1.260 \end{aligned}$			M18x1．0－6g
15	$\begin{aligned} & 38.30 \\ & 1.508 \end{aligned}$		$\begin{gathered} 36.00 \\ 1.417 \end{gathered}$			M22x1．0－6g

Millimeters Inches
Consult TE for further information on 19－118 connectors

MIL-DTL-38999 Circular Connectors

Wildcat 38999-Style Connectors

Jam Nut Receptacle Panel Cutouts

Layout	Part No. Option Code	Shell Accessory	Part No.		A		$\begin{gathered} \text { B } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \varnothing \subset \\ \text { Max. } \end{gathered}$	$\begin{aligned} & \varnothing D \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \text { E } \\ \text { Max. } \end{gathered}$	\varnothing F Max.	
			Pins	Sockets	Max.	Min.					Shell Size	Sø Max.
$\begin{aligned} & 09-11 \\ & 11-23 \\ & 13-41 \\ & 15-64 \\ & 19-118 \end{aligned}$	-151	W320	611624-31	611625	$\begin{aligned} & 11.73 \\ & .462 \end{aligned}$	$\begin{gathered} 10.73 \\ .422 \end{gathered}$	$\begin{gathered} \mathbf{5 . 5 5} \\ .219 \end{gathered}$	$\begin{aligned} & .60 \\ & .024 \end{aligned}$	$\begin{aligned} & 1.00 \\ & .039 \end{aligned}$	$\begin{aligned} & 5.74 \\ & .226 \end{aligned}$	09	$\begin{aligned} & 11.07 \\ & .436 \end{aligned}$
	-151	W324	611556-31	611627	$\begin{aligned} & 9.73 \\ & .383 \end{aligned}$	$\begin{aligned} & 8.73 \\ & .344 \end{aligned}$	$\begin{gathered} 5.55 \\ .219 \end{gathered}$	$\begin{aligned} & .60 \\ & .024 \end{aligned}$	$\begin{aligned} & 1.00 \\ & .039 \end{aligned}$	$\begin{aligned} & 5.74 \\ & .226 \end{aligned}$	11	$\begin{gathered} 14.33 \\ .564 \end{gathered}$
	-151	W330	Potted	Potted	$\begin{aligned} & 9.73 \\ & .383 \end{aligned}$	$\begin{aligned} & 8.73 \\ & .344 \end{aligned}$	$\begin{gathered} \mathbf{5 . 5 5} \\ .219 \end{gathered}$	$\begin{aligned} & .60 \\ & .024 \end{aligned}$	$\begin{aligned} & 1.00 \\ & .039 \end{aligned}$	$\begin{aligned} & 5.74 \\ & .226 \end{aligned}$	13	$\begin{gathered} 17.42 \\ .686 \end{gathered}$
	-151	W334	Potted	Potted	$\begin{aligned} & 6.73 \\ & .265 \end{aligned}$	$\begin{aligned} & 5.73 \\ & .226 \end{aligned}$	$\begin{gathered} \mathbf{5 . 5 5} \\ .219 \end{gathered}$	$\begin{aligned} & .60 \\ & .024 \end{aligned}$	$\begin{aligned} & 1.00 \\ & .039 \end{aligned}$	$\begin{aligned} & 5.74 \\ & .226 \end{aligned}$	15	$\begin{gathered} 20.57 \\ .810 \end{gathered}$

Millimeters Inches
Free Plug: Shell Type 6

Plug with Accessory Thread

Shell Size	\varnothing A Max.	B Max.	Thread 'T'
09	$\begin{gathered} 21.30 \\ .839 \end{gathered}$	$\begin{aligned} & 31.10 \\ & 1.224 \end{aligned}$	M12x1.0-6g
11	$\begin{gathered} 23.75 \\ .935 \end{gathered}$		M15x1.0-6g
13	$\begin{aligned} & 29.10 \\ & 1.146 \end{aligned}$		M18x1.0-6g
15	$\begin{gathered} 32.30 \\ 1.272 \end{gathered}$		M $22 \times 1.0-6 \mathrm{~g}$

Millimeters Inches
Consult TE for further information on 19-118 connectors

Plug with Knurled Rear

Shell Size	\varnothing A Max.	B Max.	øC Max.
09	21.30	$\begin{gathered} 33.30 \\ 1.311 \end{gathered}$	11.30
	. 839		. 445
11	23.75		14.35
	. 935		. 565
13	29.10		17.50
	1.146		. 689
15	32.30		27.00
	1.272		1.063

Millimeters Inches
Consult TE for further information on 19-118 connectors

MIL-DTL-38999 Circular Connectors

Wildcat 38999-Style Connectors

CONTACTS

Contact		Current Rating	Wire Size (AWG)	Conductor		Wire Sealing Range	
Pin	Socket			Min. \varnothing	Max. \varnothing	Min. \varnothing	Max. \varnothing
605719-31	605721	3 A	24-28	$\begin{aligned} & \hline .254 \\ & .010 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .511 \\ & .020 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .600 \\ & .024 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .96 \\ & .038 \\ & \hline \end{aligned}$

TOOLING

Ins/Ext Tool	Crimp Tool	Positioner	
		Pin	Socket
605837	$\begin{gathered} \hline \text { M22520/ } \\ 2-01 \end{gathered}$	610286	610287

Millimeters Inches
Filler Plug: Part No. 800300-24

Contact Arrangement

(Viewed from the mating face of a connector with male (pin) contacts)

Shell Size 09

09-11

ACCESSORIES

Protective Caps and Backshells
Wildcat 38999 connectors are compatible with MIL-DTL-38999 Series III style backshells and procaps or equivalent.

Raychem Heat-Shrink Boots

Shell Size	Straight Boot	$\mathbf{9 0}^{\circ}$ Boot
09	202 K 121	222 K 121
11	202 K 132	222 K 121
13	202 K 142	222 K 132
15	202 K 142	222 K 142
19	202 K 153	222 K 152

CRES-Lock Bandstraps

Easy to Use

- Quick, easy, cost-effective and reliable termination of braided shielding

High Performance

- Low profile, one-piece design helps eliminate EMI leakage paths

Rugged

- Shock, vibration and environmental performance to help meet aerospace and defense requirements

Wildcat 38999-Style Connectors

ORDERING INFORMATION

PART NUMBERING SYSTEM
SERIES
Wildcat 38999
SHELL REAR ACCESSORY

1 Braid and Boot Mounting Feature
2 Rear Accessory Thread, Anti-rotation Teeth
3 No Accessory (e.g., Box Mount)
SHELL TYPE
0 Square Flange Receptacle
4 Jam Nut Receptacle
6 Free Plug
7 Reduced Jam Nut Flange Receptacle
COUPLING TYPE
T Triple-start ACME Thread
B Bayonet (Consult TE on Availability)
CLASS CODE
W Aluminum with Olive Drab Cadmium
F Aluminum with Electroless Nickel
Z Aluminum with Black Zinc Nickel
K Stainless Steel
SHELL SIZE - INSERT ARRANGEMENT
09-11 Shell Size 9, 11 Way
11-23 Shell Size 11, 23 Way
13-41 Shell Size 13, 41 Way
15-64 Shell Size 15, 64 Way
19-118 Shell Size 19, 118 Way (Consult TE on Availability)
CONTACT TYPE
P Pin (Male)
S Socket (Female)
KEYING
N Normal
U Universal
A, B, C, D, E
OPTION CODE (3 DIGITS) OR MODIFICATION CODE
090 Supplied without Contacts
51 PCB Contacts

38999-Style HDJ Series Connectors

DEUTSCH HDJ/JN1003 Medium and High Density Connectors
The HDJ Series connectors are bayonet coupling connectors specifically designed for Eurofighter use. The range comprises plugs, receptacles, and cable accessories.

The series is intermateable and intermountable with connectors conforming to LN29729, EN3372, VG 96912 and the DEUTSCH AS range. The connectors are qualified in accordance with J 62.017.

The connectors are based on MIL-DTL-38999 Series I coupling interface lengths and Series II diameters.

Specifications

MATERIALS

- Shell: Aluminum alloy, plated olive drab cadmium
- RFI Ring: Beryllium copper, plated nickel/cadmium
- Inserts: Thermoplastic and fluorinated silicone elastomer
- Contacts: Copper alloy, plated gold

MECHANICAL

- Vibration: Per J62.017 para. 2.11
- Durability: 500 mating cycles

ENVIRONMENTAL

- Service Temperature: $-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
- Thermal Shock: As per J62.017 para. 2.4
- Sealing: Up to $30,000 \mathrm{~m}$ (100,000 ft.) altitude
- Salt Spray Resistance: per MIL-DTL-38999

38999-Style HDJ Series Connectors

ELECTRICAL

- Insulation Resistance: $\geq 100,000 \mathrm{M} \Omega @ 20^{\circ} \mathrm{C}$
- Contact Current Rating:

Size 22: 5 A
Size 20: 7.5 A
Size 16: 13 A
Size 12: 23 A
Size 8

Dielectric Withstand Voltage

Rating Class	Dielectric Withstand Voltage (VAC ${ }_{\text {rms }}$)	
	Sea Level	$\mathbf{2 2 , 0 0 0} \mathbf{~ m ~ (7 0 , 0 0 0 ~ f t .) ~}$
N	1300	800
I	1000	600
II	1800	1000

Part Numbering

DEUTSCH Series

Part Numbering

Eurofighter Series

MIL-DTL-38999 Circular Connectors

38999-Style HDJ Series Connectors

Square Flange Receptacle - Shell Style OO (JN 1003 Style B)

Shell Size	$\begin{gathered} A \\ \pm 0.40 \\ (\pm 0.016) \end{gathered}$	$\begin{gathered} B \\ \pm 0.13 \\ (\pm 0.005) \end{gathered}$	$\begin{gathered} C \\ \pm 0.10 \\ (\pm 0.004) \end{gathered}$	$\begin{gathered} \text { D } \\ +0 /-0.13 \\ (+0 /-0.005) \end{gathered}$	$\stackrel{\stackrel{E}{+0.15}}{(+0.016) \mathrm{Max} .}$	$\begin{gathered} F \\ +0 /-0.13 \\ (+0 /-0.005) \end{gathered}$	G Max.	H Thread UNEF Class 2a	P Max.
08	$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 15.10 \\ & 0.594 \end{aligned}$		$\begin{aligned} & 12.00 \\ & 0.472 \end{aligned}$				0.4375-28	
10	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 18.30 \\ & 0.720 \end{aligned}$		$\begin{array}{r} 15.00 \\ 0.591 \end{array}$				0.5625-24	
12	$\begin{aligned} & \mathbf{2 6 . 1 9} \\ & 1.031 \end{aligned}$	$\begin{gathered} 20.60 \\ 0.811 \end{gathered}$		$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$				0.6875-24	
14	$\begin{gathered} 28.57 \\ 1.125 \end{gathered}$	$\begin{aligned} & 23.00 \\ & 0.906 \end{aligned}$		$\begin{aligned} & \mathbf{2 2 . 2 2} \\ & 0.875 \end{aligned}$		$\begin{aligned} & 16.05 \\ & 0.632 \end{aligned}$		0.8125-20	
16	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 24.60 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$				0.9375-20	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$
18	$\begin{gathered} 33.32 \\ 1.312 \end{gathered}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$		$\begin{gathered} \mathbf{2 8 . 5 7} \\ 1.125 \end{gathered}$	0.717		0.551	1.0625-18	
20	$\begin{aligned} & 36.53 \\ & 1.438 \end{aligned}$	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$		$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$				1.1875-18	
22	$\begin{aligned} & 39.67 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$		$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$		$\begin{aligned} & 15.29 \\ & 0.602 \end{aligned}$		1.3125-18	
24	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 3.70 \\ & 0.146 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$				1.4375-18	$\begin{gathered} 2.26 \\ 0.089 \end{gathered}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

38999-Style HDJ Series Connectors

Jam Nut Receptacle - Shell Style 07 (JN 1003 Style A)

*H Thread VG 96912 Style Consult TE for availability.

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	A Max.	$\begin{gathered} B \\ \pm 0.41 \\ (\pm 0.016) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \pm 0.43 /-0.41 \\ (\pm 0.017 /-0.016) \end{gathered}$	$\begin{gathered} \text { D } \\ +0 /-0.13 \\ (+0 /-0.005) \end{gathered}$	$\begin{gathered} F \\ +0.13 \\ (+0.005) \end{gathered}$	G Max.	P	H Thread UNEF Class 2a
08	$\begin{aligned} & 27.38 \\ & 1.078 \end{aligned}$	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 12.00 \\ & 0.472 \end{aligned}$	$\begin{gathered} 23.24 \\ 0.915 \end{gathered}$	$\begin{aligned} & 14.10 \\ & 0.555 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 0.126 \\ & \text { Max } \\ & 1.60 \\ & 0.063 \\ & \text { Max } \end{aligned}$	0.4375-28
10	$\begin{aligned} & \mathbf{3 0 . 5 6} \\ & 1.203 \end{aligned}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 22.22 \\ & 0.875 \end{aligned}$	$\begin{array}{r} 15.00 \\ 0.591 \end{array}$				0.5625-24
12	$\begin{gathered} 35.33 \\ 1.391 \end{gathered}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 26.97 \\ & 1.062 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$				0.6875-24
14	$\begin{aligned} & \mathbf{3 8 . 5 1} \\ & 1.516 \end{aligned}$	$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 30.18 \\ & 1.188 \end{aligned}$	$\begin{aligned} & 22.22 \\ & 0.875 \end{aligned}$				0.8125-20
16	$\begin{aligned} & 41.68 \\ & 1.641 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{gathered} 33.32 \\ 1.312 \end{gathered}$	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$				0.9375-20
18	$\begin{aligned} & 44.86 \\ & 1.766 \end{aligned}$	$\begin{aligned} & 41.27 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 36.53 \\ & 1.438 \end{aligned}$	$\begin{gathered} \mathbf{2 8 . 5 7} \\ 1.125 \end{gathered}$				1.0625-18
20	$\begin{aligned} & 49.61 \\ & 1.953 \end{aligned}$	$\begin{aligned} & 46.02 \\ & 1.812 \end{aligned}$	$\begin{aligned} & 39.67 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$				1.1875-18
22	$\begin{aligned} & 52.78 \\ & 2.078 \end{aligned}$	$\begin{aligned} & 49.23 \\ & 1.938 \end{aligned}$	$\begin{aligned} & 42.88 \\ & 1.688 \end{aligned}$	$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$				1.3125-18
24	$\begin{aligned} & 55.96 \\ & 2.203 \end{aligned}$	$\begin{aligned} & 52.37 \\ & 2.062 \end{aligned}$	$\begin{aligned} & 46.02 \\ & 1.812 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$				1.4375-18

Millimeters Inches

Panel Cutout

Shell Size	$\mathbf{0 8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 2}$	$\mathbf{2 4}$
$\mathbf{W} \pm$	$\mathbf{1 4 . 5 3}$	$\mathbf{1 7 . 7}$	$\mathbf{2 2 . 5}$	$\mathbf{2 5 . 7}$	$\mathbf{2 8 . 8 3}$	$\mathbf{3 2 . 0 1}$	$\mathbf{3 5 . 1 8}$	$\mathbf{3 8 . 3 6}$	$\mathbf{4 1 . 5 3}$
$\mathbf{0 . 1 0}$	0.572	0.697	0.886	1.012	1.135	1.260	1.385	1.510	1.635
$\mathbf{Z} \pm$	$\mathbf{1 3 . 6 2}$	$\mathbf{1 6 . 7 9}$	$\mathbf{2 1 . 0}$	$\mathbf{2 4 . 0 8}$	$\mathbf{2 7 . 2 3}$	$\mathbf{3 0 . 4 1}$	$\mathbf{3 3 . 5 8}$	$\mathbf{3 6 . 9 5}$	$\mathbf{3 9 . 9 3}$
$\mathbf{0 . 2}$	0.536	0.661	0.827	0.948	1.072	1.197	1.322	1.455	1.572
\mathbf{Y}	$\mathbf{2 8 . 0}$	$\mathbf{3 1 . 0}$	$\mathbf{3 6 . 0}$	$\mathbf{4 1 . 0}$	$\mathbf{4 3 . 0}$	$\mathbf{4 6 . 0}$	$\mathbf{5 3 . 0}$	$\mathbf{5 8 . 0}$	$\mathbf{6 1 . 0}$
	1.102	1.220	1.417	1.614	1.693	1.811	2.087	2.283	2.402
Millimeters Inches									

MIL-DTL-38999 Circular Connectors

38999-Style HDJ Series Connectors

Box Mount-Shell Style 02 (JN 1003 Style H)

FRONT MOUNTED

Shell Size	$\begin{gathered} A \\ \pm 0.40 \\ (\pm 0.016) \end{gathered}$	$\begin{gathered} B \\ \pm 0.13 \\ (\pm 0.005) \end{gathered}$	øС Min.	$\begin{gathered} \varnothing D \\ +0.00 /-0.13 \\ (+0.00 /-0.005) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (+0.015) \text { Max. } \end{gathered}$	$\begin{gathered} F \\ +0.00 /-0.13 \\ (+0.00 /-0.005) \end{gathered}$	G Max.	$\varnothing H$ Max.	P Max.
08	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 15.10 \\ & 0.594 \end{aligned}$		$\begin{aligned} & 12.00 \\ & 0.472 \end{aligned}$				$\begin{gathered} 11.91 \\ 0.469 \end{gathered}$	
10	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 18.30 \\ & 0.720 \end{aligned}$		$\begin{array}{r} 15.00 \\ 0.591 \end{array}$				$\begin{aligned} & 15.09 \\ & 0.594 \end{aligned}$	
12	$\begin{aligned} & \mathbf{2 6 . 1 9} \\ & 1.031 \end{aligned}$	$\begin{gathered} 20.60 \\ 0.811 \end{gathered}$		19.05 0.750				$\begin{array}{r} \mathbf{1 8 . 2 6} \end{array}$	
14	$\begin{gathered} \mathbf{2 8 . 5 7} \\ 1.125 \end{gathered}$	$\begin{aligned} & 23.00 \\ & 0.906 \end{aligned}$		$\begin{aligned} & 22.22 \\ & 0.875 \end{aligned}$		$\begin{aligned} & 16.05 \\ & 0.632 \end{aligned}$		$\begin{aligned} & 21.44 \\ & 0.844 \end{aligned}$	
16	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 24.60 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 3.20 \\ & 0.126 \end{aligned}$	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$	18.21		$\begin{aligned} & 27.65 \\ & 1.089 \end{aligned}$	$\begin{aligned} & 24.61 \\ & 0.969 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 0.118 \end{aligned}$
18	$\begin{aligned} & 33.32 \\ & 1.312 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$		$\begin{gathered} \mathbf{2 8 . 5 7} \\ 1.125 \end{gathered}$	0.717			$\begin{aligned} & 27.38 \\ & 1.078 \end{aligned}$	
20	$\begin{aligned} & 36.53 \\ & 1.438 \end{aligned}$	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$		$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$				$\begin{aligned} & \mathbf{3 0 . 5 6} \\ & 1.203 \end{aligned}$	
22	$\begin{aligned} & 39.67 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$		$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$		5.29		$\begin{aligned} & 33.73 \\ & 1.328 \end{aligned}$	
24	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 3.70 \\ & 0.146 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$		0.602	$\begin{gathered} 28.72 \\ 1.131 \end{gathered}$	$\begin{aligned} & 36.91 \\ & 1.453 \end{aligned}$	$\begin{aligned} & 2.26 \\ & 0.089 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

38999-Style HDJ Series Connectors

Solder Mount-Shell Style 01H (JN 1003 Style E Type)*

Shell	$\begin{gathered} \varnothing A \\ \pm 0.05 \\ (\pm 0.002) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ +0.00 /-0.16 \\ (+0.00 /-0.006) \end{gathered}$	$\begin{gathered} C \\ \pm 0.05 \\ (\pm 0.002) \end{gathered}$	$\operatorname{Max}_{\mathrm{D}}^{\mathrm{D}}$	$\begin{gathered} \mathrm{E} \\ \pm \pm 1.16 \\ (\pm 0.046) \end{gathered}$	$\stackrel{F}{\text { Fax. }}$
08	$\begin{aligned} & 17.45 \\ & 0.687 \end{aligned}$	$\begin{aligned} & 12.00 \\ & 0.472 \end{aligned}$	$\begin{aligned} & 14.20 \\ & 0.559 \end{aligned}$			
10	$\begin{aligned} & 20.24 \\ & 0.797 \end{aligned}$	$\begin{gathered} 15.00 \\ 0.591 \end{gathered}$	$\begin{aligned} & 16.99 \\ & 0.669 \end{aligned}$			
12	$\begin{aligned} & 23.01 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 19.76 \\ & 0.778 \end{aligned}$			
14	$\begin{aligned} & \hline \mathbf{2 6 . 1 9} \\ & 1.031 \end{aligned}$	$\begin{aligned} & \mathbf{2 2 . 2 2} \\ & 0.875 \end{aligned}$	$\begin{aligned} & \mathbf{2 2 . 9 4} \\ & 0.903 \end{aligned}$	$\begin{aligned} & 17.18 \\ & 0.676 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 2 9} \\ & 1.035 \end{aligned}$	
16	$\begin{aligned} & 29.36 \\ & 1.156 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 4 0} \\ & 1.000 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 1 1} \\ & 1.028 \end{aligned}$			$\begin{gathered} 0.76 \\ 0.030 \end{gathered}$
18	$\begin{gathered} \hline 32.54 \\ 1.281 \end{gathered}$	$\begin{gathered} \mathbf{2 8 . 5 7} \\ 1.125 \end{gathered}$	$\begin{aligned} & \hline 29.29 \\ & 1.153 \end{aligned}$			
20	$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 31.67 \\ & 1.247 \end{aligned}$			
22	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 34.85 \\ & 1.372 \end{aligned}$	17.19	26.30	
24	$\begin{aligned} & 41.27 \\ & 1.625 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 38.02 \\ & 1.497 \end{aligned}$	0.677	1.035	

Millimeters Inches
*Shell Styles 'O1H' and 'O3' are not qualified to JN1OO3

MIL-DTL-38999 Circular Connectors

38999-Style HDJ Series Connectors

Through Bulkhead Receptacle Shell Style 03 (JN 1003 Style J Type)*

Shell Size	$\begin{gathered} A \\ +0.40 \\ (\pm 0.016) \end{gathered}$	$\begin{gathered} B \\ \pm 0.13 \\ (\pm 0.005) \end{gathered}$	$\begin{gathered} C \\ \pm 0.10 \\ (\pm 0.004) \end{gathered}$	$\begin{gathered} \text { D } \\ (+0 /-0.13 \\ (+0.005) \end{gathered}$	$\begin{gathered} F \\ +0 /-0.13 \\ (+0 /-0.005) \end{gathered}$	$\begin{gathered} \mathbf{P} \\ \text { Max. } \end{gathered}$
08	$\begin{gathered} 20.62 \\ 0.812 \end{gathered}$	$\begin{aligned} & 15.10 \\ & 0.594 \end{aligned}$		$\begin{aligned} & 12.00 \\ & 0.472 \end{aligned}$		
10	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 18.30 \\ & 0.720 \end{aligned}$		$\begin{gathered} 15.00 \\ 0.591 \end{gathered}$		
12	$\begin{aligned} & \mathbf{2 6 . 1 9} \\ & 1.031 \end{aligned}$	$\begin{gathered} 20.60 \\ 0.811 \end{gathered}$		19.05 0.750	16.05	
14	$\begin{gathered} \mathbf{2 8 . 5 7} \\ 1.125 \end{gathered}$	$\begin{aligned} & 23.00 \\ & 0.906 \end{aligned}$	3.20	$\begin{aligned} & 22.22 \\ & 0.875 \end{aligned}$	0.632	3.00
16	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 24.60 \\ & 0.969 \end{aligned}$	0.126	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$		0.118
18	$\begin{aligned} & \mathbf{3 3 . 3 2} \\ & 1.312 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$		$\begin{gathered} 28.57 \\ 1.125 \end{gathered}$		
20	$\begin{aligned} & 36.53 \\ & 1.438 \end{aligned}$	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$		$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$		
22	$\begin{aligned} & 39.67 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$		$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$	$\begin{aligned} & \mathbf{1 5 . 2 9} \\ & 0.602 \end{aligned}$	
24	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 3.70 \\ & 0.146 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$		$\begin{gathered} 2.26 \\ 0.089 \end{gathered}$

Millimeters Inches

38999-Style HDJ Series Connectors

Plugs
Plug with Grounding Fingers - Shell Style 06 (JN 1003 Style FG)

Shell Size	A Max.	B Max.	C Max.	H Thread UNEF Class 2a
08	$\begin{aligned} & 18.64 \\ & 0.734 \end{aligned}$			0.4375-28
10	$\begin{aligned} & 21.44 \\ & 0.844 \end{aligned}$			0.5625-24
12	$\begin{aligned} & 25.81 \\ & 1.016 \end{aligned}$			0.6875-24
14	$\begin{gathered} 28.98 \\ 1.141 \end{gathered}$	30.00		0.8125-20
16	$\begin{aligned} & 32.13 \\ & 1.265 \end{aligned}$	1.181	$\begin{array}{r} 15.00 \\ 0.591 \end{array}$	0.9375-20
18	$\begin{gathered} 35.33 \\ 1.391 \end{gathered}$			1.0625-18
20	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$			1.1875-18
22	$\begin{aligned} & 41.27 \\ & 1.625 \end{aligned}$			1.3125-18
24	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$	$\begin{aligned} & 31.50 \\ & 1.240 \end{aligned}$		1.4375-18

Millimeters Inches

38999-Style HDJ Series Connectors

Accessories
Protective Cap, Receptacle (JN 1003 Styles MA/MB)*

TE DEUTSCH Part No.	Eurofighter Ref.	Shell Size
HDJ12 - ${ }^{* *}$	JN1003MB**	${ }^{* *}$
HDJ13 -		

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	D3	D4
08	$\begin{aligned} & 14.6 \\ & 0.575 \end{aligned}$	$\begin{aligned} & 21.95 \\ & 0.864 \end{aligned}$
10	$\begin{aligned} & 17.8 \\ & 0.701 \end{aligned}$	$\begin{aligned} & 26.77 \\ & 1.054 \end{aligned}$
12	$\begin{gathered} 22.5 \\ 0.886 \end{gathered}$	$\begin{aligned} & 31.55 \\ & 1.242 \end{aligned}$
14	$\begin{aligned} & 25.7 \\ & 1.012 \end{aligned}$	$\begin{aligned} & 36.83 \\ & 1.450 \end{aligned}$
16	$\begin{aligned} & 28.9 \\ & 1.138 \end{aligned}$	$\begin{aligned} & 40.31 \\ & 1.587 \end{aligned}$
18	$\begin{gathered} 32.1 \\ 1.264 \end{gathered}$	$\begin{aligned} & 43.18 \\ & 1.700 \end{aligned}$
20	$\begin{aligned} & 35.2 \\ & 1.386 \end{aligned}$	$\begin{aligned} & 46.36 \\ & 1.825 \end{aligned}$
22	$\begin{aligned} & 38.0 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 49.19 \\ & 1.937 \end{aligned}$
24	$\begin{gathered} 41.6 \\ 1.638 \end{gathered}$	$\begin{aligned} & \mathbf{5 2 . 7 1} \\ & 2.075 \end{aligned}$

Millimeters Inches
*Protective caps are not qualified to JN1OO3

38999-Style HDJ Series Connectors

Accessories

Protective Cap, Plug (JN 1003 Style MF)

TE DEUTSCH Part No.	Eurofighter Ref.	Shell Size
HDJ11 - ${ }^{* *}$	JN1003MF**	${ }^{* *}$

MIL-DTL-38999 Circular Connectors

38999-Style HDJ Series Connectors

Accessories

Dummy Stowage (JN 1003 Style R)

TE DEUTSCH Part No.	Eurofighter Ref.	Shell Size
HDJ10 $-^{* *}$	JN1003R**	${ }^{* *}$

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	$\begin{gathered} A \\ +0.40 \\ (+0.016) \end{gathered}$	$\begin{gathered} B \\ \pm 0.13 \\ (\pm 0.005) \end{gathered}$	$\begin{gathered} C \\ \pm 0.10 \\ (\pm 0.004) \end{gathered}$	$\begin{gathered} D \\ +0 /-0.13 \\ (+0 /-0.005) \end{gathered}$	$\begin{gathered} E \\ +0.15 \\ (+0.006) \end{gathered}$	$\begin{gathered} F \\ +0 /-0.13 \\ (+0 /-0.005) \end{gathered}$	P Max.
08	$\begin{aligned} & 20.62 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 15.10 \\ & 0.594 \end{aligned}$		$\begin{aligned} & 12.00 \\ & 0.472 \end{aligned}$			
10	$\begin{aligned} & 23.83 \\ & 0.938 \end{aligned}$	$\begin{aligned} & 18.30 \\ & 0.720 \end{aligned}$		$\begin{array}{r} 15.00 \\ 0.591 \end{array}$			
12	$\begin{aligned} & \mathbf{2 6 . 1 9} \\ & 1.031 \end{aligned}$	$\begin{gathered} 20.60 \\ 0.811 \end{gathered}$		$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$		16.05	
14	$\begin{gathered} 28.57 \\ 1.125 \end{gathered}$	$\begin{aligned} & 23.00 \\ & 0.906 \end{aligned}$	3.20	$\begin{aligned} & 22.22 \\ & 0.875 \end{aligned}$		0.632	3.00
16	$\begin{gathered} 30.96 \\ 1.219 \end{gathered}$	$\begin{aligned} & 24.60 \\ & 0.969 \end{aligned}$	0.126	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 18.21 \\ & 0.717 \end{aligned}$		0.118
18	$\begin{gathered} \mathbf{3 3 . 3 2} \\ 1.312 \end{gathered}$	$\begin{aligned} & 27.00 \\ & 1.063 \end{aligned}$		$\begin{gathered} \mathbf{2 8 . 5 7} \\ 1.125 \end{gathered}$			
20	$\begin{aligned} & 36.53 \\ & 1.438 \end{aligned}$	$\begin{gathered} 29.40 \\ 1.157 \end{gathered}$		$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$			
22	$\begin{aligned} & 39.67 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$		$\begin{aligned} & 34.92 \\ & 1.375 \end{aligned}$		$\begin{gathered} 15.292 \\ 0.602 \end{gathered}$	
24	$\begin{aligned} & 42.90 \\ & 1.689 \end{aligned}$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 3.70 \\ & 0.146 \end{aligned}$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$			$\begin{aligned} & 2.266 \\ & 0.089 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

Insert Arrangements

SIZE 22

SIZE 24

SIZE 24


```
APPLICATION FLEXIBILITY
- Available in various shell sizes:
    9 (1Q1), 17 (2Q2), 19 (4Q4),
    21 (4Q4) and 25 (8Q8)
    - Accepts standard backshells
```


RUGGED

```
- Designed for use with wire seal boots for sealing and optimized alignment
- Front metal-shell design provides a full ground plane
```


SAVES WEIGHT

- Lightweight composite rear shell available in size 19
*Metal ground plane only
The connectors in this section are unique for metal ground plane Quadrax applications and are only inter-mateable with connectors of the opposite gender in this catalog section.

Quadrax Connectors

Custom 38999-Style Series III Connectors

TE Connectivity (TE) offers the highly versatile Quadrax multi-signal contact system consisting of two differential pairs (matched impedance) used with quadraxial Ethernet and Fiber Channel cables.*

Specifications

ELECTRICAL

- Bandwidth: Up to 3 GHz
- Data Rate: >2 Gb/s
- Characteristic Impedance: $100 \Omega(\pm 10 \Omega)$
- Maximum Voltage Rating: 500 Vrms @ sea level
- Dielectric Withstanding Voltage:

1000 VACrms between any two contacts @ sea level 500 VAC $_{\text {rms }}$ between any contact and outer shell @ sea level

MATERIALS

- Contacts, Shells, Ferrules:

Copper alloy with gold over nickel finish
One-piece thermoplastic dielectric

MECHANICAL/ENVIRONMENTAL

- Maximum Mating Force: 2.75 Ibf .
- Minimum Unmating Force: 1.25 Ibf .
- Durability: 500 mating cycles

APPLICATIONS

- Commercial Avionics Systems
- Aircraft Data Networks
- Military Communications
- In-Flight Entertainment
- Space

STANDARDS AND TEST REPORTS

- TE Product Specification: 108-2199
- TE Test Reports: 501-660
- Application Specifications: 114-13163

MIL-DTL-38999 Circular Connectors

Custom 38999-Style Series III Quadrax Connectors

Shell Size	Part No.	Type	Description
9	1738916	Receptacle	1Q1, FR-FR, Jam Nut Style, with PC Tail Contacts
	1811184	Receptacle	1Q1, FR-FR, PCB Mount with Stand-offs and PC Tail Contacts
	2157694	Receptacle	1Q1, RR-RR, Jam Nut Style
	1877384	Plug	1Q1, RR-RR
17	1877774	Receptacle	2Q2, RR-RR
	2157455	Receptacle	2Q2, FR-FR, PCB Mount
	2157695	Receptacle	2Q2, RR-RR, Jam Nut Style
	1877775	Plug	2Q2, RR-RR
19	1738974	Receptacle	4Q4, FR-FR, without PC Tail Contacts
	1877732	Receptacle	4Q4, FR-FR, with PC Tail Contacts
	1811901	Receptacle	4Q4, RR-RR
	2157696	Receptacle	4Q4, RR-RR, Jam Nut Style
	1811902	Plug	4Q4, RR-RR
	2221849	Receptacle	4Q4, with Threaded Mounting Holes
21	1954355	Plug	4Q4, RR-RR
	1954353	Receptacle	4Q4, FR-FR, with PC Tail Contacts
	2101633	Receptacle	4Q4, RR-RR, Flange Mount
23	1877921	Plug	6Q6, RR-RR
	1954577	Receptacle	6Q6, RR-RR
	2221366	Receptacle	6Q6, FR-FR, with PC Tail Contacts
25	1811928	Plug	8Q8, RR-RR
	1811927	Receptacle	8Q8, RR-RR
	2157628	Receptacle	8Q8, RR-RR, Jam Nut Style
	2101395	Receptacle	8Q8, FR-FR, with PC Tail Contacts
	1996625	Receptacle	8Q8, FR-FR, PCB Mount with Stand-offs and PC Tail Contacts

See TE Customer Drawing for finish options

Custom 38999-Style Series III Quadrax Connectors

Plug, Shell Size 9 Single Quadrax, RR-RR
Part No. 1877384

Custom 38999-Style Series III Quadrax Connectors

Receptacle, Shell Size 9, 38999 Style Single Quadrax, FR-FR Jam Nut Style
Part No. 1738916

Contacts sold separately (unless noted)

Receptacle, Shell Size 9, Single Quadrax, FR-FRPCB Mount with Stand-offs Part No. 1811184 (with PC tail contacts)

Receptacle, Shell Size 9, Single Quadrax, RR-RR Jam Nut Style
Part No. 2157694

MIL-DTL-38999 Circular Connectors

Custom 38999-Style Series III Quadrax Connectors

Plug, Shell Size 17, Arrangement 2Q2, RR-RR
Part No. 1877775

Receptacle, Shell Size 17, Arrangement 2Q2, RR-RR
Part No. 1877774

Contacts sold separately (unless noted)

MIL-DTL-38999 Circular Connectors

Custom 38999-Style Series III Quadrax Connectors

Receptacle, Shell Size 17, Arrangement 2Q2, FR-FR
Part No. 2157455

Receptacle, Shell Size 17, Arrangement 2Q2, RR-RRJam Nut Style Part No. 2157695

MIL-DTL-38999 Circular Connectors

Custom 38999-Style Series III Quadrax Connectors

Plug, Shell Size 19, Arrangement 4Q4, RR-RR
Part No. 1811902
01.513

Receptacle, Shell Size 19, Arrangement 4Q4, RR-RR

Part No. 1877732
(w/ PC Tail Contacts)
Part No. 1738974
(connector only)

Custom 38999-Style Series III Quadrax Connectors

Receptacle, Shell Size 19, Arrangement 4Q4, RR-RR
Part No. 1811901

Receptacle, Shell Size 19, Arrangement 4Q4, RR-RR Jam Nut Style Part No. 2157696

MIL-DTL-38999 Circular Connectors

Custom 38999-Style Series III Quadrax Connectors

Receptacle, Shell Size 19 Arrangement 4Q4, With Threaded Mounting Holes Part No. 2221849

Plug, Shell Size 21, Arrangement 4Q4, FR-FR
Part No. 1954354

MIL-DTL-38999 Circular Connectors

Custom 38999-Style Series III Quadrax Connectors

Receptacle, Shell Size 21, Arrangement 4Q4, FR-FR
Part No. 1954353

Receptacle, Shell Size 2138999 Style Arrangement 4Q4, RR-RR Flange Mount Part No. 2101633

Plug, Shell Size 23, Arrangement 6Q6
Part No. 1877921

Custom 38999-Style Series III Quadrax Connectors

Receptacle, Shell Size 23, Arrangement 6Q6, Part No. 1954577

Receptacle, Shell Size 2338999 Style, Arrangement 6Q6, PCB Mount Part No. 2221366

MIL-DTL-38999 Circular Connectors

Custom 38999-Style Series III Quadrax Connectors

Plug, Shell Size 25, Arrangement 8Q8, RR-RR
Part No. 1811928

Receptacle, Shell Size 25 Arrangement 8Q8, RR-RR Part No. 1811927

Receptacle, Shell Size 25 Arrangement 8Q8, FR-FR
Part No. 2101395 (w/ PC Tail Contacts)

Custom 38999-Style Series III Quadrax Connectors

Receptacle, Shell Size 2538999 Style, Arrangement 8Q8,RR-RR Jam Nut Part No. 2157628

Contacts sold separately (unless noted)

Receptacle, Shell Size 25, Arrangement 8Q8, FR-FR Part No. 1996625
$1.811 \pm .010$

Quadrax Contacts

PC Tail Contacts, Pin

Part No.	Dim A	Notes
$1445626-1$	$\mathbf{5 . 7 9} .228$	
$1445626-2$	$\mathbf{1 0 . 7 2} .422$	
$1445626-3$	$\mathbf{4 . 6 0} .181$	
$1445626-4$	$\mathbf{7 . 5 4} .297$	
$1445626-5$	$\mathbf{7 . 5 4} .297$	Solder Dipped Tails

FAST, EASY ASSEMBLY

- One-piece dielectric inserts for
easy assembly and to help lower applied cost
- Crimp type, screw machined,

24 AWG contacts

- Quadrax size 8 shells are keyed per

ARINC 600 for correct orientation

- Asymmetric standoff leg provides built-in keying for direct attach to PC board

HIGH PERFORMANCE

- TE's Quadrax contacts support $100 \Omega \mathrm{GbE}$ and 150Ω Fibre Channel
- Available silicone seal boots
are rated for $50,000 \mathrm{ft}$. altitude
immersion

VERSATILE

- Compatible with a wide range of rectangular and circular connectors
- Cable-applied crimp contacts and PC tail contacts for boardmount soldering

Millimeters Inches

Crimp Contact Kits

Part No.		Hex Crimp	Wire Seal Boot
Pin	Socket		
1445692-1	1445693-1	5.54 .218	No
1445692-3	1445693-3	5.54 .218	Yes
1445692-4*	1445693-4*	-	Yes
Reference cables: NF24Q100, NF26Q100, 24443/03130X-4(LD), 24443/9PO25X-4(LD); Raychem CEC-RWC-18687, Raychem CEC-RWC-18664			
1445692-5	1445693-5	5.54 .218	Yes
1445692-6	1445693-6	5.54 .218	No
Reference cables: F4703-3, F4704-4 (Insulation Diameter Is Larger)			
1877039-1	1877040-1	5.87 . 231	No
1877039-2	1877040-2	5.87 . 231	Yes

Reference cables: 26473/02006X-4(LD); Raychem CEC-RWC-18684, Raychem CEC-RWC-18680
Millimeters Inches

* Qualified to Boeing BACC47GA1 (Pin) and BACC47GB1 (Socket)

Crimp Contacts with Heat-Shrink Tubing

Part No.		Hex Crimp
Pin	Socket	
$1811269-1$	$1811010-1$	$\mathbf{5 . 5 4} .218$
Millimeters Inches		

Direct Attach PCB Contacts

Part No.	Impedance	Tail Length	Dim A
$1954576-1$	150 Ohms	$\mathbf{3 . 1 8} .125$	$\mathbf{6 . 8 6} .270$
$1954576-2$	100 Ohms	$\mathbf{3 . 1 8} .125$	$\mathbf{6 . 8 6} .270$
$1954576-3$	100 Ohms	$\mathbf{5 . 2 1 . 2 0 5}$	$\mathbf{6 . 8 6} .270$
Millimeters Inches			

Differential Twinax Contacts

Part No.		Hex Crimp
Pin	Socket	
$1811865-1$	$1811866-1$	$\mathbf{5 . 5 4} .218$
Millimeters Inches		

Quadrax Contacts

PC Tail Contacts

Part No.	Type	Dim A	Notes
187-0095-01	Pin	7.00 .276	ARINC 600, FAST
187-0095-06		8.10 .319	
187-0095-21		7.00 .276	
187-0095-26		8.10 .319	
187-0178-08	Pin	11.40 .449	FDBA 50, FAST
187-0121-01	Pin	6.35 .250	ARINC 600, FAST, FDBA
187-0121-08		7.45 .293	
187-0121-21		6.35 .250	
187-0121-26		7.45 .293	
187-0136-08	Socket	7.30 .287	ARINC 600, FAST, FDBA
187-0206-08	Pin	12.50 .492	MIL-DTL-38999 Series I, II, and III
187-0281-08	Pin	6.80 .268	983 Series (Arrangement 20-04)

Crimp Contacts

Part No.	Type	Standard	Notes
$187-0205-08 A^{*}$	Socket	EN3155-075F	DMC-M
$187-0204-08 A^{*}$	Pin	EN3155-074M	DMC-M
$187-0109-08$	Socket	ABS 0974	ARINC 600, FAST, FDBA, 983 Series
$187-0108-08$	Pin	Pin	GSC-01-31869-00**
$187-0110-08$	Socket	HDDS 105 Specific	ARINC 600, FAST, FDBA, 983 Series
$187-0191-08$			-
$* * A "$ suffix indicates sealing sleeve $* * G o r e ~ c a b l e ~ s p e c i f i c ~$			

MIL-DTL-38999 Circular Connectors

Quadrax Contacts (continued)

Size 8 Quadrax PCB Pin Contact Front Release/ Front Remove Design Part No. 1445626-1** ** various tail lengths

Blank

Front Release/
Front Remove Design
Part No. 1604940-2

Size 8 Quadrax

Pin Contact Crimp Style Rear Release/ Rear Remove Design Part No. 1445692-1*
*-3 with boot

Size 8 Quadrax Socket Contact Crimp Style Rear Release/ Rear Remove Design
Part No. 1445693-1*
*-3 with boot

Quadrax Contacts (continued)

PC Tail Contact - Direct Attach to PCB

- 100 and 150 ohm Systems
- Simple Direct Attach to PCB without connector for component reduction
- Designed from ARINC size 8 Quadrax contacts
- Low cost solution from both assembly and component ends

Part Number 1954576-1, -2: B = . 125
Part Number 1954576-3: B = . 205

Part No.	Impedance (Ω)	Dim A (Max)	Dim B
$1954576-1$	150	$\mathbf{6 . 8 6}[.270]$	$\mathbf{3 . 1 8}[.125]$
$1954576-2$	100	$\mathbf{6 . 3 5}[.250]$	$\mathbf{3 . 1 8}[.125]$
$1954576-3$	100	$\mathbf{6 . 3 5}[.250]$	$\mathbf{5 . 2 1}[.205]$

Millimeters [Inches]

Size 8 Differential Twinax Contacts

100 Ohm Differential

 Pair Twinax Contact- Designed to help meet the requirements of ARINC Specification 810 for 100 ohm size 8 non-concentric twin-axial contacts
- Works in all connectors accepting ARINC 600 style Quadrax contacts

Part No. 1811865-1

Part No. 1811866-1

Quadrax/Twinax Contact Accessories

Size 8 Quadrax Extraction Tool Part No. 1738894-1

Seal Boots

Wire Seal Boot Part No. 1811481-1 Cable O.D. .145-. 175 . 218 Hex Crimp

Wire Seal Boot

> Cable O.D. .170-. 200 .231 Hex Crimp

Solid Seal Boot

Part No. 1811633-1

RUGGED

- MIL-DTL-32546 style
- Zero bit error rate
- Proven AS39029 crimp contacts
- Uses 38999-style shell

FAST AND QUIET

- 1 G or 10 GbE data delivery
- Excellent impedance matching and minimal crosstalk
- Size 25 shell supports up to four Ethernet channels

HIGH PERFORMANCE

- Designed for use in rugged environments
- Ideal choice for 10G Ethernet, IEEE 1394, USB 2.0 and other high-speed protocols
- Optimized shielding arrangement for superior signal integrity

CONVENIENT

- Fast field assembly, termination, and repair
- Available with aluminum or composite shells with a variety of finishes
- Install/repair using standard insertion/removal and crimping tools
- Range of inserts available for Size 25 shell for other connectivity needs

CeeLok FAS-X Connectors

The High-Performance, Rugged Solution for High-Speed Networks

CeeLok FAS-X connectors with AS39029 contacts were designed for rugged environments and help to provide reliable, consistent high-speed performance.

RJ45 connectors in 38999 shells are much larger than the CeeLok FAS-X connector (shell size 19 versus shell size 11). Additionally, the insulation displacement crimp technology may be unsuitable for use in certain harsh environments for which the M39029 crimp contacts used in the CeeLok FAS-X connector were intentionally designed.

RJ45
One Ethernet Channel
Size 19 Shell
38.35 mm [1.51"] Dia.

CeeLok FAS-X Connector One Ethernet Channel Size 11 Shell 24.89 mm [0.98"] Dia.

CeeLok FAS-X Connector Four Ethernet Channels (Equivalent to four RJ45s)

Size 25 Shell 47.75 mm [1.88"] Dia.

CeeLok FAS-X Connectors

Performance Characteristics

APPLICATIONS

- Military and Aerospace High-Speed Networking
- Gigabit Ethernet and 10G Ethernet Networks
- IEEE 1394b I/O
- Fibre Channel Networks
- Modular 38999

MECHANICAL/ENVIRONMENTAL

- Temperature Rating: $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
- Mating Cycles (Min.): 500
- Plug Diameter: 0.984" and 1.889 " (24.99 mm and 47.98 mm)
- Sealing IP Rating: IP67
- Sealing Altitude Immersion: 50,000'

ELECTRICAL DATA

- Dielectric Withstanding Voltage: 1300 VAC
- Contact Current Rating (Amps/Contact): 5

MATERIALS

- Shells: Aluminum or composite, nickel plated
- Contact Finish: Gold

STANDARDS AND TEST REPORTS

- TE Qualification Test Reports: 10065 and 20101203

Excellent Signal Integrity at Gigabit Rates

Excellent Impedance Matching

CeeLok FAS-X connectors are designed to maintain a highly matched 100-ohm impedance, with excellent signal integrity.

More High-Frequency

 HeadroomThe design and close impedance matching of the CeeLok FAS-X connector helps give you more performance margin to tolerate noisy environments that are sensitive to harmful interference.

Zero Bit Error Rate (BER) under Rugged Testing

The CeeLok FAS-X connector was tested by TE for bit errors for a high speed signal (1.0625 Gb / s) while simultaneously being subjected to random vibration and temperature cycling between $-65^{\circ} \mathrm{C}$ and $+200^{\circ} \mathrm{C}$. No bit errors were detected.

For more information, request Test Reports 10065 and 20101203 from TE.

Differential NEXT

CeeLok FAS-X Connector

MIL-DTL-38999 Circular Connectors

Mil Connectors

ORDERING INFORMATION

MIL-DTL-38999 Circular Connectors

Single-Channel D38999 Circular, Shell Size 11

Square Flange Receptacle

CFX20*1108***

Back Panel Mounting
Max Distance between

Front Panel Mounting Max Distance between
Mounting Screws

Ø $20.96 \pm \pm .028[\emptyset .825 \pm .011]$
Jam Nut Mounting
Panel Thickness: 157-320 [0.062-0.126] Torque: $40 / 45$ inch-lbs

Plug
CFX26*1108***

MIL-DTL-38999 Circular Connectors

Single-Channel D38999 Circular, Shell Size 11, PCB Mount

Square Flange

 ReceptacleCFX20*1108***

Single-Channel D38999 Circular, Shell Size 11, PCB Mount

Jam Nut Receptacle
CFX24*1108***

MIL-DTL-38999 Circular Connectors

Commercial Single-Channel Circular, Shell Size 11

Square Flange Receptacle with Braid Clamp Backshell

CFX30*1108***

Jam Nut Receptacle with Braid Clamp Backshell

CFX34*1108***

Jam Nut Mounting
Panel Thickness: 1.57-3.20 [0.062-0.126]
Torque: $40 / 45$ inch-lbs

EMI/RFI Plug with Braid Clamp Backshell

CFX36*1108***

Socket Insert Marking Shown Above

Quad-Channel D38999 Circular, Shell Size 25

Square Flange Receptacle

CFX2O*2532***

Jam Nut

 ReceptacleCFX24*2532***

Plug

CFX26*2532***

Quad-Channel D38999 Circular, Shell Size 25

Square Flange Receptacle
CFX2O*2532***

PCB Layout

Quad-Channel D38999 Circular, Shell Size 25

Jam Nut Receptacle

 CFX24*2532***

MIL-DTL-38999 Circular Connectors

CeeLok FAS-X Connector Modules

Ceelok FAS-X connectors are also available with a variety of modules to accommodate various counts of Size 22, 20, and 16 contacts in a Size 25 shell. Such capabilities help provide a convenient mixture of signal and power through the connectors.

PRODUCT LINE
MFX CeeLok FAS-X Connector Modules
SHELL SIZE (11)/CONTACT ARRANGEMENT
11022 Size 16 Contacts
11H4 4 Size 22 Contacts (High-Speed Insert Optimized for 150-Ohm Quad Cable)
11044 Size 20 Contacts
11055 Size 20 Contacts
11H8 8 Size 22 Contacts (High-Speed Insert Optimized for 4-Pair 100-Ohm Differential Cables)
113513 Size 22 Contacts
11986 Size 20 Contacts
11997 Size 20 Contacts
CONTACT PLATING
P Pin, Localized Gold Finish
s Socket, Localized Gold Finish
F Pin, Full Gold Finish
G Socket, Full Gold Finish
H Pin, High-Reliability Finish
J Socket, High-Reliability Finish
A Less Pin
B Less Socket
TERMINATION TYPE
$\begin{array}{ll}\mathbf{Z} & \text { Crimp Contacts } \\ \mathbf{A}-\mathbf{Y} & \text { Extended PCB Tail Contacts (Consult TE) }\end{array}$

CeeLok FAS-X Connector Modules

Adapters

Tinel-Lock backshell adapters are available to provide reliable braided shield termination using Tinel-Lock rings and accommodate a lipped heat-shrink boot.

Part No.
TXS201 A X 00-24 BI
TXS201 A X 00-24 AI

Aluminum alloy body with nickel PTFE plating
$\mathrm{BI}=$ Tinel-Lock ring for dual-layer 36 AWG or single layer 30 AWG braid shields
AI = Tinel-Lock ring for single layer 26 AWG braid shields
Consult your TE representative for other plating and shield termination options.

CeeLok FAS-X Connector Modules

Size 22D Contacts
28-22 AWG wire . 160 to 190 recommended strip length

Type	Military Part No.	TE DEUTSCH Part No.*	Color Bands			Crimp Tool	
			1st	2nd	3rd	Basic Tool	Positioner
Pin	M39029/107-620	12331-22	Blue	Red	Black	M22520/2-01	M22520/2-09
	M39029/58-360	$\begin{aligned} & \hline 38941-22, \\ & 38941-22 \mathrm{~L} \end{aligned}$	Blue	Brown	Yellow	M22520/7-01	M22520/7-07
Socket	M39029/106-614	12333-22	Orange	Blue	Black	M22520/2-01	M22520/2-07
	M39029/56-348	$\begin{aligned} & \hline 38943-22, \\ & 38943-22 L \end{aligned}$	Orange	Yellow	Gray	M22520/7-01	M22520/7-05

*12331-22 and 12333-22 are high-durability contacts rated for 1500 mating cycles. 38941-22x and 38943-22x are standard durability contacts rated for 500 mating cycles. The L suffix indicates localized plating; otherwise plating is standard.

POLAMCO USB Connector Systems

USB 2.0 and 3.038999 Series III-Style Connectors for Harsh Environments
The POLAMCO high-speed USB connector system incorporates a MIL-DTL-38999 Series III-style metal shell with full 360° shielding and mechanical protection.

These USB connector systems have been designed to help meet the requirements of high-speed data connections where reliability through environmental sealing and full mechanical protection are required.

Each USB connector is designed to help handle high levels of shock, vibration and mechanical impact, and is sealed to IP68 standards to help resist fluids and dust for long-term reliable performance.
Three styles using 38999 shells are available:
USB 2.0 Type A
USB 2.0 Type B
USB 3.0 Type A
The USB 2.0 connectors achieve data rates to $480 \mathrm{Mb} / \mathrm{s}$, while USB 3.0 connectors are capable of $5 \mathrm{~Gb} / \mathrm{s}$ data rates.

MIL-DTL-38999 Circular Connectors

Specifications

SHELL MATERIALS

- Shell: Aluminum, marine bronze, stainless steel
- Finishes:
(Over aluminum with electroless nickel underplating unless noted):
Electroless nickel Olive drab cadmium Olive drab zinc cobalt
Black zinc cobalt
Passivated black zinc nickel Passivated (Stainless steel shell) Unplated (Nickel aluminum bronze shell)
- Seal: Silicone elastomer, fluorosilicone
- O-Ring: Silicone
- Insulator: Polyphenylene sulfide, UL 94, black
- Potting: Clear silicone encapsulant

USB MATERIALS

- Contacts:

USB 2.0: Nickel, selectively gold plated at 30μ USB 3.0: Nickel, selectively gold plated at $0.76 \mu \mathrm{~m}$

- Shielding: Nickel-plated brass
- Body: Polyamide, UL 94V-O
- PCB: FR4, UL 94V-O (PCB termination only)

DATA TRANSMISSION

- USB-A 2.0: $480 \mathrm{Mb} / \mathrm{s}$
- USB-B: $60 \mathrm{Mb} / \mathrm{s}$
- USB 3.0: Up to $5 \mathrm{~Gb} / \mathrm{s}$

ELECTRICAL

- Voltage: 30 VAC
- Current Rating: 1 A max. per contact (1.8 A max. USB 3.0 pins 1 and 4)

ENVIRONMENTAL/MECHANICAL

- Temperature Ranges: $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
- Fluid Resistance: IP68 (mated)
- Cable Retention: >100 N (22.4 lbs.) axial force
- Durability:

USB 2.0: >500 mating cycles
USB 3.0: 5000 mating cycles

USB Connector Options

USB-A 2.0

USB-B

USB 3.0

Connector Orientation Options

MIL-DTL-38999 Circular Connectors

POLAMCO USB Connector Systems

POLAMCO USB-A 2.0 38999-Style Connectors
Plug

Series

PC4D0021: Size 15 Memory Plug Assembly (Standard)
PC4D0048: Size 15 Memory Plug, Isolated
PC4D0059: Size 15 Memory Plug, Kit

PC4D0021: Size 15 Memory Plug, Anti-Tamper

Receptacle

Series

PC4B0054: In-Line Receptacle, Solder (Standard)
PC4B0089: In-Line Feedthrough Receptacle

Jam Nut, Bulkhead-Mount Feedthrough

Series

PC4F0027: Sealed Feedthrough (Standard)
PC4F0049: Sealed Feedthrough (Standard)

Jam Nut Feedthrough Receptacle

Series

PC4F0009: Size 15 Feedthrough
PC4F0043: Size 15 Feedthrough, Solder
PC4F0030: Size 15 Feedthrough with Stand-Offs
PC4F0059: Size 15 Feedthrough, Sealed PC4F0016: Size 15 Feedthrough (Standard)
PC4F0031: Size 17 Assembly

PC4F0032: Size 17 Assembly, Solder

POLAMCO RJ45 Series Connectors

POLAMCO Cat 5 and Cat 6a 38999-Style Connectors for Harsh Environments
The POLAMCO high-speed RJ45 connector system incorporates a MIL-DTL-38999 Series III-style metal shell with full 360-degree shielding and mechanical protection.

These connectors have been designed to help meet the requirements of high-speed data connections where reliability through environmental sealing and full mechanical protection are required.

Tested by TE to $10 \mathrm{~Gb} / \mathrm{s}$ data rates, the connector shells are available in your choice of aluminum, nickel aluminum bronze, and stainless steel for rugged, reliable performance.
The connectors are fully grounded from the shielded RJ45 plug to the 38999-style connectors. Each is designed to help handle high levels of shock, vibration and mechanical impact, and sealed to IP68 standards to help resist fluids and dust for longterm reliable performance.

Specifications

SHELL MATERIALS

- Shell: Aluminum, nickel aluminum bronze, stainless steel
- Finishes:
(Over aluminum with electroless nickel underplating, unless noted):
Electroless nickel
Olive drab cadmium
Olive drab zinc cobalt
Black zinc cobalt
Passivated black zinc nickel
Passivated (Stainless steel shell)
Unplated (Nickel aluminum bronze shell)
- Seal: Silicone elastomer, fluorosilicone
- O-Ring: Silicone elastomer
- Insulator: Polyphenylene sulfide, UL 94, black
- Potting: Clear silicone encapsulant and polyetherimide resin

RJ-45 MATERIALS

- Contacts: Copper, selectively gold plated
- Shielding: Nickel-plated brass
- Body: Polyamide, UL 94V-O
- PCB: FR4, UL 94V-O (PCB termination only)

ELECTRICAL

- Voltage: 50 VDC/35 VAC
- Current Rating: 2.1 A at $70^{\circ} \mathrm{C}$
- Category Rating: Cat 5 or Cat 6a

ENVIRONMENTAL/MECHANICAL

- Temperature Range: $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
- Fluid Resistance: Sealed to IP68 for fluid and dust resistance
- Cable Retention: >100 N (22.4 lbs.) axial force

RJ-45 Orientation Options

W

X

Y

Z

MIL-DTL-38999 Circular Connectors

POLAMCO RJ45 38999-Style Connectors

Plug
Series
PC4D0024: Cat 6a
PC4D0042: Cat 6a, Field Installable
PC4D0002: Cat 5

Jam Nut Receptacle

Series

PC4F0020: Cat 6a, Feedthrough (Standard)
PC4F0023: Cat 6a, 90° Feedthrough
PC4F0084: Cat 6a, Sealed Feedthrough
PC4F0034: Cat 6a, Solder
PC4F0025: Cat 6a, PCB Mount
PC4F0002: Cat 5 Feedthrough (Standard)

Square Flange Receptacle

Series

PC4B0029: Cat 6a Feedthrough
PC4B0102: Cat 6a Sealed Feedthrough
PC4B0038: Cat 6a 90° Feedthrough
PC4B0076: Cat 6a PCB Mount
PC4B0002: Cat 5 Feedthrough (Standard)

Bulkhead-Mount Feedthrough

Series

PC4B0103: Cat 6a Square Flange
PC4F0085: Cat 6a, Jam Nut
PC4B0002: Cat 5e Square Flange
PC4F0002: Cat 5 Jam Nut
Cable assemblies are also available in a variety of configurations. Consult TE.

POLAMCO RJ45 38999-Style Connectors

Typical Part Numbering System
(Not all options are available with every series. Additional options available. Consult TE)

Fiber Optic Connectors

38999 Series III Style

As a trusted leader in optical technology with over 40 years of experience in supplying optical solutions for harsh environments, TE offers high-performance 38999-style connector solutions that are also easy to maintain in the field. Our products are designed to operate reliably in harsh and challenging environments, and the company's technical specialists have an in-depth understanding of application requirements.

- MC801 Connectors: Industry-standard 1.25-mm ARINC 801 termini Up to 32 fibers
- MC3 Mk II Connectors: DEUTSCH 2.5-mm termini 5, 8, 12 fibers
- MC4 Connectors: DEUTSCH 2.5-mm termini 2 fibers in a size 9 shell
- MC5 Connectors: DEUTSCH 1.25-mm termini 1, 2, 4, 6, 8, 10, 18, 24, 30 fibers
- MC6 Connectors: Single MT ferrule in size 11 shell 2, 4, 8, 12, 24, 48 channels
- AviMT Connectors: Four MT ferrules in size 21 shell Up to 96 fibers
- Qualified Connectors: MIL-T- 29504/4 and /5 termini Fit standard size 16 cavities
- PRO BEAM Connectors: Use PRO BEAM EB inserts

1, 2, 4, 8 fibers in size 11 or 15 shell

- EB16 Termini: EB termini

Fit standard size 16 cavities

MIL-DTL-38999 Circular Connectors

Physical Contact (PC) Connectors

A PC connection uses optical ferrules that are mated within an alignment sleeve and holder to help ensure minimal optical losses and repeatable alignment. The termini can be incorporated into standard circular and rectangular connector to offer multi-channel solutions. PC connections offer

- Low insertion loss
- Low reflection
- High density

While most PC connectors use a ceramic ferrule for a single fiber, the MT ferrule is a multifiber variation typically holding 12 or 24 fibers.

PC solutions offer a higher optical density (Number of channels) and can be used in conjunction with EB interconnects to minimize system losses.
The majority of termini solutions available from TE are spring loaded to help prevent optical discontinuities under shock and vibration.

Expanded Beam (EB) Connectors

EB connectors expand and re-focus light at the fiber end faces and allow an air gap in the optical pathway. The EB concept uses optical lenses (typically a 3 -mm ball lens for dedicated inserts or $1.25-\mathrm{mm}$ lens for EB16 termini) to expand and collimate the beam emitted from the launch fiber.

The expanded beam remains collimated across the mechanical interface until the receiving lens focuses the beam onto the receiving fiber.

Standard channel counts for EB-specific connectors are 1, 2, 4 and 8 . Since these connectors are used in rugged and tactical environments, they are usually terminated on robust ruggedized, metal-tubed, and avionics/ flight-grade cable.

The EB16 optical termini employs the same technology from the well-established dedicated inserts into a termini that can be used in 38999 Series III size 16 cavities to allow for flexibility and higher fiber counts.

The absence of physical fiber contact makes EB connectors very useful in demanding environments. They offer:

- Sealed optical interface
- High vibration and shock resistance
- High mating-cycle durability
- Tolerance to dirt and debris
- Easy cleaning

Comparison of PC and EB Connector Technologies

Performance Criteria	PC	EB
Insertion Loss	$\star \star \star \star$	$\star \star$
Return Loss (SM)	$\star \star \star \star$	$\star \star$
Return Loss (SM) - Unmated	\star	$\star \star$
Lateral Connector Misalignment	\star	$\star \star \star \star$
Connector Angular Tilt	$\star \star \star \star$	\star
Mating Durability	$\star \star \star$	$\star \star \star \star$
Water Exposure	$\star \star \star$	$\star \star$

Performance Criteria	PC	EB
Dust Exposure	$\star \star \star \star$	$\star \star \star$
Vibration Susceptibility	$\star \star$	$\star \star \star$
Repair	$\star \star$	$\star \star$
Cleanability	$\star \star$	$\star \star \star$
Wear	\star	$\star \star \star$
Wavelength Range	$\star \star \star \star$	$\star \star$

MC801 Connectors

38999 Series III-Style Fiber Optic Connectors

The MC801 connector combines the high performance of ARINC 801 optical termini with the convenience of a familiar D38999 Series III connector style.

The connector's threaded coupling and the termini's springloaded design make an excellent solution for high-vibration applications. The compact $1.25-\mathrm{mm}$ ferrule provides a highdensity solution-with up to 32 fibers in a size 25 shell. The 38999-style connector offers scoop-proof mating, a wide selection of materials and finishes, six keying options, and compatibility with standard 38999 backshells and hardware.

Optical alignment is achieved with a thermoplastic insert containing precision zirconia alignment sleeves. Inserts, which are available for use with either the plug or receptacle, are removable to simplify cleaning. Stainless steel dowel pins also aid alignment during mating.

MC801 Connectors
38999 Series III-Style Fiber Optic Connectors

Specifications

MATERIALS

- Shell: Aluminum, stainless steel, marine bronze, and composite
- Finishes: Nickel, black zinc nickel, passivated, olive drab cadmium
- Insert and Alignment Sleeve Holder: Thermoplastic
- Alignment Dowel Pins: Stainless steel
- Alignment Sleeve: Zirconia
- Ferrule: Zirconia
- Terminus Body and Crimp Sleeve: Nickel-plated copper
- Spring: Stainless steel

OPTICAL PERFORMANCE

- Insertion Loss: 0.10 dB multimode
0.20 dB single mode (APC finish)
- Return Loss: Up to -65 dB (single mode, APC finish)
- Insertion loss tested against a reference patchcord: IEC 61300-3-4 Method B; also described in ARINC 805 Return Loss: IEC 61300-3-6; also described in ARINC 805

ENVIRONMENTAL/MECHANICAL PERFORMANCE

- Temperature Range: $-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Durability: 100 mating cycles
- Random Vibration: No discontinuities $>1 \mathrm{~dB}$ in excess of $1 \mu \mathrm{~s}$ (TIA/EIA-455-32 Test Condition B)
- Mechanical Shock: No discontinuities $>1 \mathrm{~dB}$ in excess of $1 \mu \mathrm{~s}$ ($100 \mathrm{~g}, 6 \mathrm{~ms}$ half-sine pulse)
- Altitude Immersion: 50,000 ft. (15,200 m)

SPECIFICATIONS

- Product Specification: D1O8-32105
- Qualification Test Reports: D501-32031 (Multimode)

D501-32105 (Single Mode)

MIL-DTL-38999 Circular Connectors

MC801 Connectors

38999 Series III-Style Fiber Optic Connectors

Jam Nut Receptacle Connector

Insert	\varnothing A	B Thread Stub 60° Mod 1P-3L Class 2A (in)	$\varnothing \subset$	$\varnothing 口$	$\varnothing E$	F	G
11-02	$\begin{aligned} & 31.80 \\ & 1.252 \end{aligned}$	0.7500	M15 $\times 1.0$	M20 $\times 1.0$	$\begin{gathered} 34.90 \\ 1.374 \end{gathered}$	$\begin{aligned} & 2.84 \\ & 0.112 \end{aligned}$	$\begin{aligned} & 26.75 \\ & 1.053 \end{aligned}$
13-04	$\begin{aligned} & 34.90 \\ & 1.374 \end{aligned}$	0.8750	M18 $\times 1.0$	M25 $\times 1.0$	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$		$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$
15-06	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	1.0000	M22 $\times 1.0$	M28 $\times 1.0$	$\begin{aligned} & 41.30 \\ & 1.626 \end{aligned}$		$\begin{aligned} & 35.74 \\ & 1.407 \end{aligned}$
17-08	$\begin{aligned} & 41.30 \\ & 1.626 \end{aligned}$	1.1875	M25 $\times 1.0$	M32 $\times 1.0$	$\begin{aligned} & 44.50 \\ & 1.752 \end{aligned}$		$\begin{aligned} & 36.75 \\ & 1.447 \end{aligned}$
19-12	$\begin{gathered} 46.00 \\ 1.811 \end{gathered}$	1.2500	$\mathrm{M} 28 \times 1.0$	M35 x 1.0	$\begin{aligned} & 49.20 \\ & 1.937 \end{aligned}$	$\begin{gathered} 3.61 \\ 0.143 \end{gathered}$	$\begin{aligned} & 40.74 \\ & 1.604 \end{aligned}$
21-16	$\begin{aligned} & 49.20 \\ & 1.937 \end{aligned}$	1.3750	M31 $\times 1.0$	M38 $\times 1.0$	$\begin{aligned} & 52.40 \\ & 2.063 \end{aligned}$		$\begin{aligned} & 45.75 \\ & 1.801 \end{aligned}$
23-24	$\begin{aligned} & \mathbf{5 2 . 4 0} \\ & 2.063 \end{aligned}$	1.5000	M34 $\times 1.0$	M41 $\times 1.0$	$\begin{gathered} 55.60 \\ 2.189 \end{gathered}$		$\begin{aligned} & 49.76 \\ & 1.959 \end{aligned}$
25-32	$\begin{gathered} 55.60 \\ 2.189 \end{gathered}$	1.6250	M37 $\times 1.0$	M44 $\times 1.0$	$\begin{gathered} 58.70 \\ 2.311 \end{gathered}$		$\begin{aligned} & 50.98 \\ & 2.007 \end{aligned}$

Millimeters Inches

Insert Arrangements

MIL-DTL-38999 Circular Connectors

MC801 Connectors

38999 Series III-Style Fiber Optic Connectors

Part Number/Ordering Information

KEYING
N Normal
A, B, C, D, E

ARINC 801 Termini

Fiber Type	Part No.			
	Tight Jacket		Loose Jacket	
	$\mathbf{1 . 8 ~ m m ~ C a b l e ~}$	$\mathbf{9 0 0} \mu \mathbf{m}$ Buffer Cable	$\mathbf{1 . 8} \mathbf{~ m m ~ C a b l e ~}$	$\mathbf{9 0 0} \mu \mathbf{m}$ Buffer Cable
Single Mode	$459266-126 S-02-1$	$459266-126 S-00-1$	$459265-126 \mathrm{~S}-02-1$	$459265-126 \mathrm{~S}-00-1$
Single Mode, APC	$459266-125 A-02-1$	$459266-125 A-00-1$	$459265-125 A-02-1$	$459265-125 A-00-1$
Single Mode	$459266-126 M-02-1$	$459266-126 M-00-1$	$459265-126 M-02-1$	$459265-126 M-00-1$

Note: Customer drawings, models, additional product information, and instruction sheets are available at te.com.

DEUTSCH MC3 Mkll Fiber Optic Connectors

MIL-DTL-38999 Series III Style Connectors

The DEUTSCH MC3 MkII Series ruggedized connectors incorporate individual rear-insertable optical contacts. The removable socket insert helps support easy access to the optical faces to help simplify cleaning and maintenance.

The MC3 MkII Series uses a removable alignment insert for easy cleaning (can be specified in both plug and receptacle shells), and is suitable for use with most single mode and multimode optical fibers with core diameters from 5 to $200 \mu \mathrm{~m}$. $5,8,12$ optical channels are accommodated in the MIL-DTL-38999 Series III-style connector shells.

Featuring spring-loaded optical contacts, tri-start threads and anti-vibration couplings, MC3 MkII connectors are a rugged choice for use in many severe environments and tough application conditions.

MIL-DTL-38999 Circular Connectors

DEUTSCH MC3 Mkll Fiber Optic Connectors
MIL-DTL-38999 Series III Style Connectors

Identical Sprung Optical Contacts in Receptacle and Plug Connectors

Specifications

FIBER TYPE

- Channels: 5, 8 and 12 optical channels
- Cable Size: 1.5 mm to 3.0 mm , outer jacket

MATERIALS

- Shell: Aluminum, stainless steel, marine bronze
- Finishes: Nickel, olive drab cadmium, or black zinc nickel (aluminum shell)
- Contact Body: Arcap, Titanium
- Ferrule: Zirconia
- Alignment Sleeve: Zirconia
- Alignment Pin:
- Seals: Fluorosilicone or nitrile

OPTICAL PERFORMANCE

- Insertion Loss: 0.25 dB typical*
- Return Loss: 40 dB typical*
- Repeatability: 0.1 dB with $50 / 125-\mu \mathrm{m}$ fiber
*Fiber and polishing process dependent.

ENVIRONMENTAL

- Temperature Range: $-65^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
- Fluid Resistance: Fluid immersion per EIA 364.10,
including resistance to
MIL-PRF-5606: Hydraulic fluid
MIL-DTL-83133: JP-8 aviation fuel
MIL-PRF-7808: Lubricating oil MIL-PRF-23699: Lubricating oil MIL-A-8243: Deicing/defrosting fluid MIL-C-25769: Aircraft cleaning compound MIL-PRF-87937: Aircraft cleaning compound MIL-G-3056: Gasoline
- Salt Spray: 48 hours (Nickel finish) 500 hours (Cadmium finish)
- Thermal Cycling: -65° to $150^{\circ} \mathrm{C}$

DEUTSCH MC3 MkII Fiber Optic Connectors

MIL-DTL-38999 Series III Style Connectors

MECHANICAL

- Sine Vibration: 5 to $3000 \mathrm{~Hz}, 30 \mathrm{~g}$
- Bump: 4000 bumps, 40 g
- Random Vibration: Up to 41.7 g for 16 hr . at $175^{\circ} \mathrm{C}$

Up to 50 g for 16 hr . at ambient temperature

- Shock: $\mathbf{3 0 0} \mathrm{g}, 3 \mathrm{~ms}$ in the 3 axes
- Durability: 500 mating cycles
- Thermal Shock: 10 cycles, $4^{\circ} \mathrm{C}$ max. to $90^{\circ} \mathrm{C}$ min.

Square Flange Receptacle

Millimeters Inches

Plug

Size/ Arrangement	ØG
$\mathbf{1 9 - 5}$	37.92
	1.493
$23-8$	44.12
	1.737
$25-12$	47.35
	1.864

Millimeters Inches

DEUTSCH MC3 MkII Fiber Optic Connectors

MIL-DTL-38999 Series III Style Connectors
Dummy Receptacle

Size/ Arrangement	A	B1	B2	C1	C2
$\mathbf{1 9 - 5}$	$\mathbf{3 6 . 5 8}$	$\mathbf{2 9 . 3 5}$	$\mathbf{2 6 . 9 8}$	$\mathbf{5 . 0 0}$	$\mathbf{3 . 5 0}$
	1.440	1.156	1.062	0.197	0.138
$\mathbf{2 3 - 8}$	$\mathbf{4 2 . 9 8}$	$\mathbf{3 4 . 9 2}$	$\mathbf{3 1 . 7 5}$	$\mathbf{6 . 2 3}$	$\mathbf{4 . 0 0}$
	1.692	1.375	1.250	0.245	0.157
$\mathbf{2 5 - 1 2}$	$\mathbf{4 6 . 0 2}$	$\mathbf{3 8 . 1 1}$	$\mathbf{3 4 . 9 2}$	$\mathbf{6 . 2 3}$	$\mathbf{4 . 0 0}$
	1.812	1.500	1.375	0.245	0.157

Millimeters Inches

Procaps

Size/ Arrangement	ØH	ØJ	$\boldsymbol{\varnothing K}$	$\boldsymbol{\varnothing}$
$\mathbf{1 9 - 5}$	$\mathbf{2 7 . 7}$	$\mathbf{3 5 . 4}$	$\mathbf{3 6 . 9 2}$	$\mathbf{2 9 . 4 6}$
	1.091	1.394	1.454	1.160
$\mathbf{2 3 - 8}$	$\mathbf{3 3 . 7}$	$\mathbf{4 1 . 7 5}$	$\mathbf{4 3 . 1 2}$	$\mathbf{3 5 . 8 1}$
	1.327	1.664	1.698	1.410
$\mathbf{2 5 - 1 2}$	$\mathbf{3 6 . 7}$	$\mathbf{4 4 . 9 3}$	$\mathbf{4 6 . 3 5}$	$\mathbf{3 8 . 9 9}$
	1.445	1.769	1.825	1.535

Millimeters Inches

DEUTSCH MC3 Mkll Fiber Optic Connectors

MIL-DTL-38999 Series III Style Connectors
Ordering Information

DEUTSCH MC3 MkII Fiber Optic Connectors

MIL-DTL-38999 Series III Style Connectors

Optical Termini (ordered separately)

Optical termini are supplied with a profile-formed optical end face and are available for single-mode or multimode fibers. Contacts are available in either sprung or rigid versions, depending upon application (rigid contacts should be used in bulkhead receptacles only).

Rigid Type
455494
(Optional for bulkhead receptacles only)

Ordering Information

Crimp Sleeves and Crimp Dies

Cable OD	Sleeve Part No.	Crimp Dies Part No.	A/F
$900 \mu m$ Tight Buffer	-	455608	$1.64 / 1.74$ $0.065 / 0.069$
2.5	$455610-01$	455608	$\mathbf{3 . 1 0 / 3 . 1 2}$ $0.122 / 0.123$
1.8	$455610-02$	455608	$\mathbf{3 . 1 0 / 3 . 1 2}$ $0.122 / 0.123$
	$455610-03$	455608	$\mathbf{3 . 5 6 / 3 . 4 8}$ $0.140 / 0.137$
2.1	$455610-04$	455608	$\mathbf{3 . 1 0 / 3 . 1 2}$ $0.122 / 0.123$

Millimeters Inches

SPACE SAVING

- Two optical channels in a size 9 shell

HIGH PERFORMANCE

- Compact $2.5-\mathrm{mm}$ precision zirconia ceramic ferrules
- Lightweight aluminum shells
- MIL-DTL-38999 Series III antivibration coupling mechanism and tri-start thread

EASY TO USE

- Simple termination process and tooling
- Purpose designed inserts, and insert-to-insert keying aid precision alignment
- Identical spring loaded optical contacts help maintain contact under severe shock and vibration

DEUTSCH MC4 Duplex Connectors

MIL-DTL-38999 Style Series III Connectors

The MC4 Duplex optical fiber connector is based upon shell size 9 Mil-C-38999 Series III making this an extremely compact environmentally sealed 2-way connector. The MC4 is suitable for use with most multimode fibers with core diameters of 50 to $200 \mu \mathrm{~m}$. Simplex and duplex cable constructions can be accommodated with suitable connector backshells.
Precision ceramic ferrules and alignment sleeves help support optimum performance and reliability over the service life of the connector.

The optical termini are spring loaded in both the plug and receptacle shells. This helps provide an axial load equalization so that the contact can be maintained even when the connector is subjected to vibration levels in excess of 30 g .

The coupling nut has a built in antivibration clicker mechanism to help prevent inadvertent uncoupling under adverse vibration conditions.

DEUTSCH MC4 Duplex Connectors

MIL-DTL-38999 Style Series III Connectors

Specifications
OPTICAL

- Attenuation: Less than $0.4 \mathrm{~dB}(50 / 125 \mu \mathrm{~m})$
- Repeatability: Better than 0.2 dB
- Fiber Types: $x / 125,100 / 140,200 / 280 \mu \mathrm{~m}$
- Cable Types:
2.5 mm tight jacketed
4.5 mm duplex

For other cable sizes consult TE
MATERIALS

- Shell: Aluminum alloy, nickel plated
- Ferrule: Zirconia
- Alignment Sleeve: Zirconia
- Seals: Fluorosilicone
- Backshell: Aluminum alloy, nickel plated

MECHANICAL

- Temperature Range: $-65^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
(Cable and epoxy dependent)
- Durability: 500 mating cycles

DEUTSCH MC4 Duplex Connectors

MIL-DTL-38999 Style Series III Connectors

Part Numbering System

Jam Nut Receptacle

Ø30.2

MIL-DTL-38999 Circular Connectors

DEUTSCH MC4 Duplex Connectors

MIL-DTL-38999 Style Series III Connectors

Square Flange Receptacle

Plug

MIL-DTL-38999 Circular Connectors

DEUTSCH MC4 Duplex Connectors

MIL-DTL-38999 Style Series III Connectors

Protective Cap for Receptacle Connectors

Part Numbering System

DEUTSCH MC4 Duplex Connectors

MIL-DTL-38999 Style Series III Connectors

Protective Caps for Plug Connectors

Part Numbering System

HIGH PERFORMANCE

- Compact 1.25 mm precision zirconia ceramic ferrules
- Composite lightweight, high strength, corrosion resistant connector shells
- MIL-DTL-38999 Series III antivibration coupling mechanism and tri-start thread

EASY TO USE

- Simple termination process and tooling
- Purpose designed inserts, and insert-to-insert keying aid precision alignment
- Identical spring loaded optical contacts help maintain contact under severe shock and vibration

VERSATILE

- Extensive range: $1,2,4,6,8,10,18$, 24 and 30 way connectors
- Choose from plug socket/
receptacle pin or plug pin/
receptacle socket configurations
- Easily removable alignment sleeve insert facilitates simple cleaning and maintenance

DEUTSCH MC5 Connectors

MIL-DTL-38999 Style Series III Connectors

The DEUTSCH MC5 high-density fiber optic multiway connector series from TE Connectivity (TE) is capable of sustained performance over a wide range of tough environmental conditions.
The MC5 connector uses precision ceramic ferrules and lightweight MIL-DTL-389999 Series III connector shell materials, combined with purpose-designed inserts to help ensure the optical performance meets the requirements of high reliability optical systems.

Compact spring-loaded precision optical contacts are individually insertable/removable for ease of assembly and maintenance, and the color band indicates full mating. The alignment sleeves provide highly reliable, repeatable optical performance.
The MC5 Series connectors provide excellent performance under some of the most demanding environmental conditions, including military aircraft.

DEUTSCH MC5 Connectors

MIL-DTL-38999 Style Series III Connectors
Specifications
FIBER TYPE

- Channels: $2,4,6,8,10,18,24$, and 30 channels
- Cable Size: $1.8 \mathrm{~mm}, 2.1 \mathrm{~mm}$ and 2.5 mm jacket

MATERIALS

- Shell: Composite
- Contact Body: Arcap
- Ferrules: Zirconia
- Alignment Sleeves: Zirconia
- Seals: Fluorosilicone
- Plating: Nickel

OPTICAL PERFORMANCE

- Insertion Loss: 0.25 dB typical
- Return Loss: -40 dB typical
- Repeatability: 0.1 dB (with $50 / 125 \mu \mathrm{~m}$ fiber)

TEMPERATURE

- High Temperature Endurance: $+150^{\circ} \mathrm{C}, 760$ hours
- Low Temperature Endurance: $-65^{\circ} \mathrm{C}, 500$ hours

MECHANICAL

- Sine Vibration: 5-3000 Hz, $40 \mathrm{~g}, 10$ hours
- Random Vibration: $25-2000 \mathrm{~Hz}, 5 \mathrm{~g} 2 / \mathrm{Hz}$ (50 Grms), 16 hours

DEUTSCH MC5 Connectors

MIL-DTL-38999 Style Series III Connectors

Ordering Information

MODIFICATION CODE

Dimensional Information

Plug

MC506E

Size/ Arrangement	ØF Max.	H Max.	M Max.
11-2	$\begin{aligned} & 24.94 \\ & 0.982 \end{aligned}$	$\begin{aligned} & 19.9 \\ & 0.783 \end{aligned}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$
13-4	$\begin{gathered} 29.34 \\ 1.155 \end{gathered}$	$\begin{aligned} & 19.9 \\ & 0.783 \end{aligned}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$
15-6	$\begin{aligned} & 32.46 \\ & 1.278 \end{aligned}$	$\begin{gathered} 19.9 \\ 0.783 \end{gathered}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$
17-8	$\begin{aligned} & 35.66 \\ & 1.404 \end{aligned}$	$\begin{gathered} 19.9 \\ 0.783 \end{gathered}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$
19-10	$\begin{gathered} 38.46 \\ 1.514 \end{gathered}$	$\begin{gathered} 19.7 \\ 0.776 \end{gathered}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$
21-18	$\begin{aligned} & 41.66 \\ & 1.640 \end{aligned}$	$\begin{gathered} 19.7 \\ 0.776 \end{gathered}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$
23-24	$\begin{aligned} & 44.86 \\ & 1.766 \end{aligned}$	$\begin{gathered} 19.7 \\ 0.776 \end{gathered}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$
25-30	$\begin{aligned} & 47.98 \\ & 1.889 \end{aligned}$	$\begin{gathered} 19.7 \\ 0.776 \end{gathered}$	$\begin{aligned} & 40.86 \\ & 1.609 \end{aligned}$

DEUTSCH MC5 Connectors

MIL-DTL-38999 Style Series III Connectors

Receptacle

MC500E
18.02

Dummy Receptacle

MC530E

Size/ Arrangement	A Max.	B1	B2	C1 Min.	C2 Min.	G Max.
$\mathbf{1 1 - 2}$	$\mathbf{2 6 . 4}$	$\mathbf{2 0 . 6 2}$	$\mathbf{1 8 . 2 6}$	$\mathbf{4 . 8 4}$	$\mathbf{3 . 1 6}$	$\mathbf{3 . 5 2}$
	1.039	0.812	0.719	0.191	0.124	0.139
$\mathbf{1 3 - 4}$	$\mathbf{2 8 . 8 1}$	$\mathbf{2 3 . 0 1}$	$\mathbf{2 0 . 6 2}$	$\mathbf{4 . 8 4}$	$\mathbf{3 . 1 6}$	$\mathbf{3 . 5 2}$
	1.134	0.906	0.812	0.191	0.124	0.139
$\mathbf{1 5 - 6}$	$\mathbf{3 1 . 2}$	$\mathbf{2 4 . 6 1}$	$\mathbf{2 3 . 0 1}$	$\mathbf{4 . 3 1}$	$\mathbf{3 . 1 6}$	$\mathbf{3 . 5 2}$
	1.228	0.969	0.906	0.170	0.124	0.139
$\mathbf{1 7 - 8}$	$\mathbf{3 3 . 5 1}$	$\mathbf{2 6 . 9 7}$	$\mathbf{2 4 . 6 1}$	$\mathbf{4 . 8 4}$	$\mathbf{3 . 1 6}$	$\mathbf{3 . 5 2}$
	1.319	1.062	0.969	0.191	0.124	0.139
$\mathbf{1 9 - 1 0}$	$\mathbf{3 6 . 7 1}$	$\mathbf{2 9 . 3 6}$	$\mathbf{2 6 . 9 7}$	$\mathbf{4 . 8 4}$	$\mathbf{3 . 1 6}$	$\mathbf{3 . 5 2}$
	1.445	1.156	1.062	0.191	0.124	0.139
$\mathbf{2 1 - 1 8}$	$\mathbf{3 9 . 9 1}$	$\mathbf{3 1 . 7 5}$	$\mathbf{2 9 . 3 6}$	$\mathbf{4 . 8 4}$	$\mathbf{3 . 1 6}$	$\mathbf{4 . 3 3}$
	1.571	1.250	1.156	0.191	0.124	0.170
$\mathbf{2 3 - 2 4}$	$\mathbf{4 3 . 1 1}$	$\mathbf{3 4 . 9 3}$	$\mathbf{3 1 . 7 5}$	$\mathbf{6 . 0 6}$	$\mathbf{3 . 8 3}$	$\mathbf{4 . 3 3}$
	1.697	1.375	1.250	0.239	0.151	0.170
$\mathbf{2 5 - 3 0}$	$\mathbf{4 6 . 2 1}$	$\mathbf{3 8 . 1}$	$\mathbf{3 4 . 9 3}$	$\mathbf{6 . 0 6}$	$\mathbf{3 . 8 3}$	$\mathbf{4 . 3 3}$
	1.819	1.500	1.375	0.239	0.151	0.170

Millimeters Inches

DEUTSCH MC5 Connectors

MIL-DTL-38999 Style Series III Connectors

Procap

Procap

MC540E

Size/ Arrangement	$\boldsymbol{\varnothing J}$ Max.	$\boldsymbol{\varnothing}$ Max.	$\boldsymbol{\sigma}$ Min.
$\mathbf{1 1 - 2}$	$\mathbf{2 2 . 9 6}$	$\mathbf{2 4 . 0 0}$	$\mathbf{1 6 . 5 1}$
	0.094	0.945	0.650
$\mathbf{1 3 - 4}$	$\mathbf{2 6 . 0 6}$	$\mathbf{2 7 . 5 6}$	$\mathbf{1 9 . 5 6}$
	1.206	1.085	0.770
$\mathbf{1 5 - 6}$	$\mathbf{2 9 . 2 6}$	$\mathbf{3 1 . 1 0}$	$\mathbf{2 2 . 8 6}$
	1.152	1.224	0.900
$\mathbf{1 7 - 8}$	$\mathbf{3 4 . 1 6}$	$\mathbf{3 5 . 4 6}$	$\mathbf{2 6 . 0 4}$
	1.345	1.396	1.025
$\mathbf{1 9 - 1 0}$	$\mathbf{3 5 . 6 6}$	$\mathbf{3 7 . 1 6}$	$\mathbf{2 9 . 2 1}$
	1.404	1.463	1.150
$\mathbf{2 1 - 1 8}$	$\mathbf{3 8 . 7 5}$	$\mathbf{4 0 . 1 0}$	$\mathbf{3 2 . 3 9}$
	1.526	1.579	1.275
$\mathbf{2 5 - 3 0}$	$\mathbf{4 2 . 0 6}$	$\mathbf{4 3 . 3 6}$	$\mathbf{3 5 . 5 6}$
	1.656	1.707	1.400
	$\mathbf{4 4 . 9 6}$	46.6	$\mathbf{3 8 . 7 4}$
	1.770	1.835	1.525

Millimeters Inches

DEUTSCH MC5 Connectors

MIL-DTL-38999 Style Series III Connectors

MC5 Optical Termini (ordered separately)

Optical termini are supplied with a profile formed optical end face and are available for single-mode or multimode fibers. Contacts are available in either spring-loaded or rigid versions, depending upon application. Rigid contacts should be used in bulkhead receptacles only.

Note: A crimp sleeve is not included for terminating $900-\mu \mathrm{m}$ buffered cable.

Ordering Information

Tooling

- Crimp Tool: Part No. 471716
- Crimping Dies: 457440

MC5 Backshells for Multifiber Cables (ordered separately)

A variety of backshells are available for multifiber cables, with peripheral strain relief (for $900-\mu \mathrm{m}$ buffered cable) and central strain relief. Consult TE.

DEUTSCH MC6 Fiber Optic Ribbon Cable Connectors

38999 Series III-Style Connectors

The DEUTSCH MC6 high-density fiber optic connector series is rugged, versatile, and easy to install and maintain. The connectors are compatible with standard MT ferrule inserts.

The MT ferrule inserts accommodate 2 to 72 channels and can be supplied pre-terminated, if required. The MC6 connector uses the compact MIL-DTL-38999 Series III, shell size 11 body, which is also used on the DEUTSCH MC5 connector.

MC6 connectors have a lightweight, corrosion resistant, metal-plated composite shell, which helps provide high strength and durability combined with excellent EMC shielding. MC6 connector shell are also available in aluminum and Marine Bronze materials
The result is a very compact, rugged, environmentally sealed solution for a wide range of applications, such as avionics, data bus and in-flight entertainment systems.

DEUTSCH MC6 Fiber Optic Ribbon Cable Connectors

38999 Series III-Style Connectors

Specifications

MATERIALS

- Shell: Aluminum, composite or Marine Bronze
- Contact Body: Nickel/cadmium plated composite polymer
- Ferrule: Thermoplastic
- Alignment Pin: Stainless steel
- Seals: Fluorinated silicone elastomer
- Plating: Nickel (Back zinc nickel available for aluminum shells)

OPTICAL

- Insertion Loss: 0.25 dB typ. (fiber dependent)
- Return Loss: -40 dB typ.
- Repeatability: 0.2 dB typ.

ENVIRONMENTAL/MECHANICAL

- Temperature Range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Vibration: 20 to $2000 \mathrm{~Hz}, 20 \mathrm{~g}$
- Durability: 500 mating cycles

FIBER TYPE

- Channels: 2 to 72
- Cable Type: Telecom grade cable

Aerospace grade cable

Thread Sizes

Shell Size	Accessory Thread $(6 \mathrm{g.100R})$	Mating Thread $(\mathbf{0 . 1 P - 0 . 3 L)}$	Jam Nut Thread $(6 \mathrm{~g} \mathrm{.100R})$
11	$\mathrm{M} 15 \times 1.0$.7500	$\mathrm{M} 20 \times 1.0$

DEUTSCH MC6 Fiber Optic Ribbon Cable Connectors

38999 Series III-Style Connectors

Connector Part Numbering

MT Ferrule Part Numbering

FERRULE GENDER
P Pin (With Alignment Pins)
S Socket (No Alignment Pins)

MIL-DTL-38999 Circular Connectors

DEUTSCH MC6 Fiber Optic Ribbon Cable Connectors

38999 Series III-Style Connectors

Square Flange Receptacle

Jam Nut Receptacle

DEUTSCH MC6 Fiber Optic Ribbon Cable Connectors

38999 Series III-Style Connectors

Plug

Dummy Receptacle

DEUTSCH MC6 Fiber Optic Ribbon Cable Connectors

38999 Series III-Style Connectors
Protective Caps for Receptacles

DEUTSCH MC6 Fiber Optic Ribbon Cable Connectors

38999 Series III-Style Connectors

Protective Caps for Plugs

AviMT Connector

D38999 Series IIII Style Connector with Four MT Ferrules
The AviMT connector from TE Connectivity (TE) holds four MT ferrules-for up to 96 fibers-in a compact size 21 shell. The connector is well suited to applications requiring high fiber counts, such as UAV-based video surveillance, C5ISR, avionics, fiber backbone, radar and IFE systems.

Fast, Simple Assembly

The connector is very easily assembled, requiring only a screwdriver to fasten the ferrule retainer into place. The simple assembly contrasts dramatically with many connectors in the industry, which require special tools and fixtures to assemble multiple parts and subassemblies.

Specifications

MATERIALS

- Shell: Nickel-plated aluminum (Consult TE for other shell finishes)
- Insert: Thermoplastic
- Front Retainer Ring: Passivated stainless steel
- Interfacial Seal: Rubber
- Ferrule Retainer: Passivated stainless steel

OPTICAL (Tested with OM3 multimode fiber)

- Insertion Loss (Avg.)

12-Fiber Ferrule: 0.12 dB
24 Fiber Ferrule: 0.17 dB

- Return Loss (Avg.)

12-Fiber Ferrule: 29.3 dB
24 Fiber Ferrule: 29.8 dB
ENVIRONMENTAL/MECHANICAL

- Low Temp Storage: $-50^{\circ} \mathrm{C}$ for 96 hours
- High Temp Storage: $+85^{\circ} \mathrm{C}$ for 96 hours
- Humidity Exposure: Cycled to $+55^{\circ} \mathrm{C}, 95 \% \mathrm{RH}$
- Thermal Cycling: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Sine Sweep Vibration: 10 Hz to $2000 \mathrm{~Hz}, 15 \mathrm{~g}$ peak
- Random Vibration: 16.91 grms
- Mechanical Shock: 50g

APPLICATIONS

- C5ISR	- Commercial aerospace ground radar
- Avionics	- Fiber backbone
- Military aerospace	- IFE systems

AviMT Connector

D38999 Series IIII Style Connector with Four MT Ferrules

Ordering Information

Style	Part No.
Plug	$2828342-1$
Square Flange Receptacle	$2828343-1$
Jam Nut Receptacle	$2320289-1$

Square Flange Receptacle

Plug

38999-Style Connectors

Expanded beam inserts for 38999-style connectors use the same reliable insert technology as our PRO BEAM connectors. Available to accommodate 2 or 4 optical channels in a size 11 shell or 8 channels in a size 15 shell, the inserts give you many of the advantages of expanded beam interfaces in the familiar 38999 form factor.

Connector kits are available to accommodate popular fiber optic cable styles used in the military and aerospace industryincluding tactical cable, 1.8 and $2.2-\mathrm{mm}$ avionics cable, and buffered-only cable.

Expanded beam technology, which physically expands and collimates the transmission signal into an optical beam over 14 times its original diameter for multimode fiber and over 45 times for single-mode fiber. The beam is then refocused back down onto the core of the receiving fiber. This approach provides ease of alignment and low sensitivity to thermal changes and contamination.

38999-Style Connectors with Expanded Beam Inserts

Standard Styles

Plug Connector
Jam Nut Receptacle Connector
Square Flange Receptacle

Insert Kits

2-Channel Mini Insert
(Size 11 Shell)

4 Channel Mini Insert
(Size 11 Shell)

8-Channel Sr. Insert
(Size 15 Shell)

EB Insert Type	No. of Fibers	Multimode $\mathbf{8 5 0 / 1 3 0 0} \mathbf{n m}$	Single Mode $\mathbf{1 3 1 0} \mathbf{~ n m ~}$	Single Mode $\mathbf{1 5 5 0} \mathbf{~ n m ~}$
	2	$1374759-4$	$1588129-2$	$1588128-2$
	4	$1374759-2$	$1588129-3$	$1588128-3$
Sr.	8	$1516256-1$	$1516258-1$	$1516258-2$

38999-Style Connectors with Expanded Beam Inserts

Shell Kits

Typical Configuration and Materials
(Plug Connector Shown)

38999-Style Connectors with Expanded Beam Inserts

Ferrule Kits

38999-Style Connectors with Expanded Beam Inserts

Shell Kits (Plug Connector Shown)

Shell Kits

Part numbers are for N keyed connectors with black zinc nickel finish.
Consult TE for other keying and plating options.

Shell Size 11 Kit

Connector Style	1.8 mm Avionics Cable	Mil Tactical Distrib. Cable	Buffered Fiber
	$6754518-7$	$1-1985021-3$	$1-1918883-3$
	$6754519-7$	$1-2064163-3$	$1-1918884-3$
Flange-Mount Receptacle	-	$1-2064166-3$	$1-1918885-3$

Shell Size 15 Kit

Connector Style	$\mathbf{2 . 2 ~ m m}$ Avionics Cable	End Nut Non-Jacketed Cable
	$1516342-7$	$1516338-7$
Jam Nut Receptacle	$1516343-7$	$1516339-7$
Flange-Mount Receptacle	$1516344-7$	$1516340-7$

38999-Style Connectors with Expanded Beam Inserts

Plug
Shell Size 11

RECOMMENDED PANEL CUTOUT

Jam Nut Receptacle
Shell Size 11

RECOMMENDED PANEL CUTOUT

38999-Style Connectors with Expanded Beam Inserts

Square Flange Receptacle

Shell Size 11

Recommended Panels Cutouts

Jam Nut Receptacle

INDUSTRY STANDARDIZATION

PRO BEAM EB16 Optical Termini

Bring Rugged Optical Performance to Mil-Standard Connectors

Leveraging our industry-accepted PRO BEAM expanded beam technology, the PRO BEAM EB16 termini are adding rugged, reliable optical performance to familiar Mil Spec connectors. The EB16 termini are a size 16 optical contact, fit-form compliant to MIL-DTL-38999 Series III size 16 cavities. These termini are a drop-in replacement for the M29504/4 and /5 physical contact termini used in many ruggedized circular connector systems.

Non-Contacting Interface

The non-contacting interface typically results in less wear and tear overall, especially in high-mating cycle or highvibration applications.
The termini's ball lens physically expands and collimates the optical signal into an optical beam well beyond its original size to help provide easier optical alignment, lowers sensitivity to contamination, and helps provide consistent performance over thermal changes. The beam is then refocused back down onto the core of the receiving fiber.
The beam area is expanded 30 times between lenses. The signal will not deteriorate by airborne contamination particles of the same size that affect the performance of the PC connection. The termini's endface is easily cleaned.

MIL-DTL-38999 Circular Connectors

PRO BEAM EB16 Optical Termini

Specifications

MATERIALS

- Terminus Body and Crimp Sleeve: Nickel-plated brass
- Ferrule and Split Sleeve: Zirconia
- Ball Lens: Glass, with antireflection coating
- Spacer: Stainless steel
- Spring: Stainless steel
- Protective Cap: Vinyl

MECHANICAL/ENVIRONMENTAL

- Durability: >1000 mating cycles
- Operating Temperature: $-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$ (Cable dependent)
- Sinusoidal Vibration: TIA/EIA-455-11C, Test Condition IV
- Random Vibration: TIA/EIA-455-11C, Test Condition VI-J
- Mechanical Shock: TIA/EIA-455-14A, Test Condition C
- Thermal Cycling: TIA/EIA-455-3B, Test Condition C-2
- Thermal Shock: TIA/EIA-455-71, Schedule C-O (5 cycles)

OPTICAL

- Insertion Loss: 1.5 dB max. @ 850/1300 nm (Multimode fiber)

STANDARDS

- Industry Standards: SAE AS3 AS6250, AS6251, and ARINC 845
- TE Application Specification: 108-127013
- TE Instruction Sheet: 408-32132
- TE Qualification Test Report: 501-32028

APPLICATIONS

- Radar and Sensor Systems
- Rugged Network Applications
- Fixed Wing and Rotary Aircraft
- Unmanned Systems
- Commercial Aviation

Type	Part No.
Pin	$2125059-1$
Socket	$2125046-1$

MIL-T-29504 Style Optical Termini

Widely used in rotary and fixed-wing aerospace applications, our rugged optical termini is rated for 500 mating cycles and feature spring-loaded socket contacts to help ensure consistent mating pressure and performance levels. They are designed for use in any MIL-DTL-38999 Size 16 cavity, and manufactured to meet MIL-T-29504/4 and/5 requirements.

Specifications

FIBER TYPES

- Single Mode: 9/125 $\mu \mathrm{m}$
- Multimode: 50/125, 62.5/125, 200/280 $\mu \mathrm{m}$
- Cable Size: $1.8 \mathrm{~mm}, 2.5 \mathrm{~mm}$

OPTICAL PERFORMANCE
(Depends on fiber type and finish)

- Insertion Loss: 0.6 dB typical
- Return Loss: -40 dB typical
- Repeatability: 0.2 dB typica

MATERIALS

- Ferrule: Zirconia
- Alignment Sleeve: Ceramic zirconia
- Spring: Stainless steel
- Terminus Assembly: ARCAP alloy
- Heat Shrink Sleeve: PVDF

ENVIRONMENTAL/MECHANICAL

- Temperature Range: $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Durability: 500 mating cycles
- Vibration: 20 g, 20 to 2000 Hz

MIL-T-29504 Style Optical Termini

Socket (457462)

Pin (457463)

Part Numbering

POLAMCO BT Series Banding Backshells

BT Series backshells terminate the shield with a stainless steel band strap. Additional strain relief can be obtained with a heatshrink boot.

Part Numbering System

POLAMCO BT Series Banding Backshells

SLOT OPTION - SL (Pigtail Termination)

BTF Series for 38999 Series I
(Consult TE for Series II)

Shell Size	A Thread BTH (BTF)	ØВ Max. BTF	$\begin{gathered} \varnothing \text { ØT } \\ \text { Min. } \end{gathered}$	$\stackrel{C}{\text { Max. }}$	$\begin{gathered} \text { D } \\ \text { Max. } \end{gathered}$	$\stackrel{E}{\text { Max. }}$	F Max.	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$
09	7/16-28	$\begin{aligned} & 18.3 \\ & 0.720 \end{aligned}$	$\begin{gathered} 6.7 \\ 0.264 \end{gathered}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{aligned} & \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{aligned} & \hline \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
11	9/16-24	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{aligned} & 10.2 \\ & 0.402 \end{aligned}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	$\begin{array}{r} 26.9 \\ 1.059 \end{array}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
13	11/16-24	$\begin{gathered} \mathbf{2 4 . 5} \\ 0.965 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 0.531 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{gathered} \mathbf{2 7 . 3} \\ 1.075 \end{gathered}$	$\begin{gathered} 31.2 \\ 1.228 \end{gathered}$	$\begin{aligned} & 33.7 \\ & 1.327 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
15	13/16-20	$\begin{gathered} 27.8 \\ 1.094 \end{gathered}$	$\begin{aligned} & 16.2 \\ & 0.638 \end{aligned}$	$\begin{gathered} \mathbf{1 5 . 5} \\ 0.610 \end{gathered}$	$\begin{aligned} & 28.2 \\ & 1.110 \end{aligned}$	$\begin{gathered} 37.2 \\ 1.465 \end{gathered}$	$\begin{aligned} & 35.2 \\ & 1.386 \end{aligned}$	$\begin{gathered} 24.5 \\ 0.965 \end{gathered}$
17	15/16-20	$\begin{aligned} & 30.8 \\ & 1.213 \end{aligned}$	$\begin{gathered} 19.4 \\ 0.764 \end{gathered}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 36.9 \\ & 1.453 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$
19	1-1/16-18	$\begin{gathered} 34.1 \\ 1.343 \end{gathered}$	$\begin{aligned} & 21.8 \\ & 0.858 \end{aligned}$	$\begin{aligned} & 16.8 \\ & 0.661 \end{aligned}$	$\begin{aligned} & 29.3 \\ & 1.154 \end{aligned}$	$\begin{aligned} & 44.7 \\ & 1.760 \end{aligned}$	$\begin{aligned} & 38.5 \\ & 1.516 \end{aligned}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$
21	1-3/16-18	$\begin{gathered} 37.3 \\ 1.469 \end{gathered}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{aligned} & 30.1 \\ & 1.185 \end{aligned}$	$\begin{aligned} & 49.2 \\ & 1.937 \end{aligned}$	$\begin{array}{r} 40.1 \\ 1.579 \end{array}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$
23	1-5/16-18	$\begin{aligned} & 40.5 \\ & 1.594 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 1.110 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{gathered} 51.7 \\ 2.035 \end{gathered}$	$\begin{gathered} 41.6 \\ 1.638 \end{gathered}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$
25	1-7/16-18	$\begin{aligned} & 43.7 \\ & 1.720 \end{aligned}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{gathered} 53.2 \\ 2.094 \end{gathered}$	$\begin{gathered} 43.1 \\ 1.697 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

POLAMCO BT Series Banding Backshells

BTH Series for 38999 Series III and IV

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	A Thread	$\begin{gathered} \varnothing \text { в } \\ \text { Max. } \end{gathered}$	ØТ Min.	C Max.	$\begin{gathered} \mathrm{D} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { E } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Max. } \end{gathered}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$
09	M12 x 1.0	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$	$\begin{gathered} 6.7 \\ 0.264 \end{gathered}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{aligned} & 25.7 \\ & 1.012 \end{aligned}$	$\begin{aligned} & 25.7 \\ & 1.012 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
11	M15 x 1.0	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{gathered} 10.2 \\ 0.402 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 9} \\ & 1.059 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
13	M18 x 1.0	$\begin{gathered} \mathbf{2 4 . 5} \\ 0.965 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 0.531 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{gathered} 27.3 \\ 1.075 \end{gathered}$	$\begin{gathered} \mathbf{3 1 . 2} \\ 1.228 \end{gathered}$	$\begin{aligned} & 33.7 \\ & 1.327 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
15	M22 $\times 1.0$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{gathered} 16.2 \\ 0.638 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 0.610 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 1.110 \end{aligned}$	$\begin{gathered} 37.2 \\ 1.465 \end{gathered}$	$\begin{gathered} 35.2 \\ 1.386 \end{gathered}$	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$
17	M25 $\times 1.0$	$\begin{aligned} & 32.5 \\ & 1.280 \end{aligned}$	$\begin{gathered} 19.4 \\ 0.764 \end{gathered}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 36.9 \\ & 1.453 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$
19	M28 $\times 1.0$	$\begin{aligned} & 35.5 \\ & 1.398 \end{aligned}$	$\begin{gathered} 21.8 \\ 0.858 \end{gathered}$	$\begin{aligned} & 16.8 \\ & 0.661 \end{aligned}$	$\begin{aligned} & 29.3 \\ & 1.154 \end{aligned}$	$\begin{gathered} 44.7 \\ 1.760 \end{gathered}$	$\begin{aligned} & 38.5 \\ & 1.516 \end{aligned}$	$\begin{gathered} \mathbf{2 7 . 0} \\ 1.063 \end{gathered}$
21	M31 $\times 1.0$	$\begin{aligned} & 37.0 \\ & 1.457 \end{aligned}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{aligned} & 30.1 \\ & 1.185 \end{aligned}$	$\begin{aligned} & 49.2 \\ & 1.937 \end{aligned}$	$\begin{array}{r} 40.1 \\ 1.579 \end{array}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$
23	M34 x 1.0	$\begin{aligned} & \mathbf{4 0 . 0} \\ & 1.575 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 1.110 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{gathered} \mathbf{5 1 . 7} \\ 2.035 \end{gathered}$	$\begin{gathered} \hline 41.6 \\ 1.638 \end{gathered}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$
25	M37 $\times 1.0$	$\begin{aligned} & 43.5 \\ & 1.713 \end{aligned}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{gathered} 53.2 \\ 2.094 \end{gathered}$	$\begin{gathered} 43.1 \\ 1.697 \end{gathered}$	$\begin{aligned} & \hline \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$

Millimeters Inches
Entry Size Dimensions

Entry Size	$\varnothing \mathbf{G}$ Min.	$\begin{gathered} \text { ØH } \\ \text { Max. } \end{gathered}$	No. Of Optional Slots
03	$\begin{gathered} 4.7 \\ 0.185 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1
04	$\begin{gathered} 6.3 \\ 0.248 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1
05	$\begin{gathered} 7.9 \\ 0.311 \end{gathered}$	$\begin{gathered} \mathbf{1 5 . 5} \\ 0.610 \end{gathered}$	1
06	$\begin{gathered} 9.5 \\ 0.374 \end{gathered}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	2
07	$\begin{gathered} 11.1 \\ 0.437 \end{gathered}$	$\begin{gathered} 18.7 \\ 0.736 \end{gathered}$	2
08	$\begin{gathered} 12.7 \\ 0.500 \end{gathered}$	$\begin{aligned} & 20.3 \\ & 0.799 \end{aligned}$	2
09	$\begin{aligned} & 14.2 \\ & 0.559 \end{aligned}$	$\begin{gathered} 21.9 \\ 0.862 \end{gathered}$	2
10	$\begin{gathered} 15.8 \\ 0.622 \end{gathered}$	$\begin{aligned} & 23.5 \\ & 0.925 \end{aligned}$	2
11	$\begin{gathered} 17.4 \\ 0.685 \end{gathered}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	2
12	$\begin{gathered} 19.0 \\ 0.748 \end{gathered}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	2
13	$\begin{aligned} & 20.6 \\ & 0.811 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	2

Entry Size	$\varnothing \mathbf{G}$ Min.	ØH Max.	No. Of Optional Slots
14	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{aligned} & 29.9 \\ & 1.177 \end{aligned}$	4
15	$\begin{aligned} & 23.8 \\ & 0.937 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	4
16	$\begin{gathered} \mathbf{2 5 . 4} \\ 1.000 \end{gathered}$	$\begin{gathered} 33.1 \\ 1.303 \end{gathered}$	4
17	$\begin{gathered} \mathbf{2 7 . 0} \\ 1.063 \end{gathered}$	$\begin{aligned} & 34.7 \\ & 1.366 \end{aligned}$	4
18	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{aligned} & 36.3 \\ & 1.429 \end{aligned}$	4
19	$\begin{aligned} & 30.2 \\ & 1.189 \end{aligned}$	$\begin{gathered} 37.9 \\ 1.492 \end{gathered}$	4
20	$\begin{gathered} 31.8 \\ 1.252 \end{gathered}$	$\begin{array}{r} 39.5 \\ 1.555 \end{array}$	4
21	$\begin{aligned} & 33.3 \\ & 1.311 \end{aligned}$	$\begin{array}{r} 41.1 \\ 1.618 \end{array}$	4
22	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$	$\begin{aligned} & 42.7 \\ & 1.681 \end{aligned}$	4
23	$\begin{aligned} & 36.5 \\ & 1.437 \end{aligned}$	$\begin{aligned} & 44.3 \\ & 1.744 \end{aligned}$	4
24	$\begin{gathered} 38.1 \\ 1.500 \end{gathered}$	$\begin{aligned} & 45.9 \\ & 1.807 \end{aligned}$	4

POLAMCO 64 Series Cone Clamp Adapters

The 64 Series adapters terminate individual shields with a castellated cone to compress the braid.

Part Numbering System

POLAMCO 64 Series Cone Clamp Adapters

Angle 3: 90°

64F Series for 38999 Series I Connectors
(Consult TE for Series II)

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	A Thread (UNEF)	øВ Max.	$\begin{gathered} C \\ \pm 0.5 \\ (0.020) \end{gathered}$	D Max.	E Max.	F Max.	ØG Min.	ØW Max.	ØH Max.	$\underset{\text { Max. }}{\text { J. }}$	$\begin{gathered} K \\ \pm 0.5 \\ (0.020) \end{gathered}$	$\begin{gathered} M \\ \pm 0.5 \\ (0.020) \end{gathered}$
09	7/16-28	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 16.4 \\ 0.646 \end{gathered}$	$\begin{gathered} 24.6 \\ 0.969 \end{gathered}$	$\begin{gathered} 22.7 \\ 0.894 \end{gathered}$	$\begin{aligned} & 30.1 \\ & 1.185 \end{aligned}$	$\begin{gathered} 6.6 \\ 0.260 \end{gathered}$	$\begin{aligned} & 20.7 \\ & 0.815 \end{aligned}$	$\begin{gathered} 16.0 \\ 0.630 \end{gathered}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 0.591 \end{aligned}$	$\begin{gathered} 7.8 \\ 0.307 \end{gathered}$
11	9/16-24	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 2} \\ & 1.031 \end{aligned}$	$\begin{gathered} 31.9 \\ 1.256 \end{gathered}$	$\begin{gathered} 9.3 \\ 0.366 \end{gathered}$	$\begin{aligned} & 23.8 \\ & 0.937 \end{aligned}$	$\begin{gathered} 19.0 \\ 0.748 \end{gathered}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$	$\begin{gathered} 8.6 \\ 0.339 \end{gathered}$
13	11/16-24	$\begin{gathered} 24.5 \\ 0.965 \end{gathered}$	$\begin{aligned} & 17.6 \\ & 0.693 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 3} \\ & 1.035 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 1.150 \end{aligned}$	$\begin{aligned} & 33.4 \\ & 1.315 \end{aligned}$	$\begin{gathered} 12.6 \\ 0.496 \end{gathered}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$	$\begin{aligned} & \mathbf{2 2 . 0} \\ & 0.866 \end{aligned}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 0.402 \end{aligned}$
15	13/16-20	$\begin{gathered} 27.8 \\ 1.094 \end{gathered}$	$\begin{gathered} 18.5 \\ 0.728 \end{gathered}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{aligned} & 34.9 \\ & 1.374 \end{aligned}$	$\begin{gathered} 14.6 \\ 0.575 \end{gathered}$	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$	$\begin{gathered} 10.4 \\ 0.409 \end{gathered}$
17	15/16-20	$\begin{aligned} & 30.8 \\ & 1.213 \end{aligned}$	$\begin{gathered} 19.2 \\ 0.756 \end{gathered}$	$\begin{gathered} 27.5 \\ 1.083 \end{gathered}$	$\begin{gathered} 35.7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 36.6 \\ & 1.441 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{aligned} & 31.8 \\ & 1.252 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{gathered} 12.4 \\ 0.488 \end{gathered}$
19	1-1/16-18	$\begin{gathered} 34.1 \\ 1.343 \end{gathered}$	$\begin{gathered} 19.6 \\ 0.772 \end{gathered}$	$\begin{gathered} 27.8 \\ 1.094 \end{gathered}$	$\begin{aligned} & 39.7 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 38.2 \\ & 1.504 \end{aligned}$	$\begin{gathered} 19.8 \\ 0.780 \end{gathered}$	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 1.260 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{gathered} 23.0 \\ 0.906 \end{gathered}$	$\begin{gathered} 15.4 \\ 0.606 \end{gathered}$
21	1-3/16-18	$\begin{gathered} 37.3 \\ 1.469 \end{gathered}$	$\begin{gathered} 20.4 \\ 0.803 \end{gathered}$	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{aligned} & 42.2 \\ & 1.661 \end{aligned}$	$\begin{aligned} & 39.8 \\ & 1.567 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 0.906 \end{aligned}$	$\begin{gathered} 38.1 \\ 1.500 \end{gathered}$	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$	$\begin{gathered} 18.2 \\ 0.717 \end{gathered}$	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$	$\begin{aligned} & 17.3 \\ & 0.681 \end{aligned}$
23	1-5/16-18	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 1.161 \end{aligned}$	$\begin{aligned} & 45.2 \\ & 1.780 \end{aligned}$	$\begin{gathered} 41.3 \\ 1.626 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 2} \\ & 1.031 \end{aligned}$	$\begin{aligned} & 39.7 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 0} \\ & 1.024 \end{aligned}$	$\begin{gathered} 18.8 \\ 0.740 \end{gathered}$
25	117/16-18	$\begin{aligned} & 43.7 \\ & 1.720 \end{aligned}$	$\begin{gathered} 21.7 \\ 0.854 \end{gathered}$	$\begin{aligned} & 29.9 \\ & 1.177 \end{aligned}$	$\begin{aligned} & 48.2 \\ & 1.898 \end{aligned}$	$\begin{aligned} & 42.8 \\ & 1.685 \end{aligned}$	$\begin{array}{r} 29.1 \\ 1.146 \end{array}$	$\begin{aligned} & 44.5 \\ & 1.752 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 0} \\ & 1.102 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 0.882 \end{aligned}$

Millimeters Inches

POLAMCO 64 Series Cone Clamp Adapters

64H Series for 38999 Series III and IV

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	A Thread	$\begin{gathered} \varnothing в \\ \text { Max. } \end{gathered}$	$\begin{gathered} C \\ \pm 0.5 \\ (0.020) \end{gathered}$	$\begin{gathered} \text { D } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { E } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Max. } \end{gathered}$	ØG Min.	$\begin{aligned} & \varnothing W \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \varnothing \mathrm{H} \\ \text { Max. } \end{gathered}$	$\underset{\text { Max. }}{\text { J. }}$	$\begin{gathered} K \\ \pm 0.5 \\ (0.020) \end{gathered}$	$\begin{gathered} M \\ \pm 0.5 \\ (0.020) \end{gathered}$
09	M12 $\times 1.0$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{aligned} & 24.6 \\ & 0.969 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{aligned} & 30.1 \\ & 1.185 \end{aligned}$	$\begin{gathered} 6.6 \\ 0.260 \end{gathered}$	$\begin{aligned} & 20.7 \\ & 0.815 \end{aligned}$	$\begin{gathered} 16.0 \\ 0.630 \end{gathered}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$	$\begin{gathered} 7.8 \\ 0.307 \end{gathered}$
11	M15 $\times 1.0$	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$	$\begin{gathered} 31.9 \\ 1.256 \end{gathered}$	$\begin{gathered} 9.3 \\ 0.366 \end{gathered}$	$\begin{aligned} & 23.8 \\ & 0.937 \end{aligned}$	$\begin{gathered} 19.0 \\ 0.748 \end{gathered}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$	$\begin{gathered} 8.6 \\ 0.339 \end{gathered}$
13	M18 $\times 1.0$	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{array}{r} \mathbf{2 6 . 3} \\ 1.035 \end{array}$	$\begin{gathered} 31.2 \\ 1.228 \end{gathered}$	$\begin{aligned} & 33.4 \\ & 1.315 \end{aligned}$	$\begin{gathered} 12.6 \\ 0.496 \end{gathered}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$	$\begin{aligned} & 22.0 \\ & 0.866 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 0.598 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 0.402 \end{aligned}$
15	M22 $\times 1.0$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{gathered} 15.5 \\ 0.610 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$	$\begin{gathered} 37.2 \\ 1.465 \end{gathered}$	$\begin{aligned} & 34.9 \\ & 1.374 \end{aligned}$	$\begin{gathered} 14.6 \\ 0.575 \end{gathered}$	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{array}{r} 26.5 \\ 1.043 \end{array}$	$\begin{aligned} & 15.2 \\ & 0.598 \end{aligned}$	$\begin{aligned} & 24.5 \\ & 0.965 \end{aligned}$	$\begin{gathered} 10.4 \\ 0.409 \end{gathered}$
17	M25 x 1.0	$\begin{aligned} & 32.5 \\ & 1.280 \end{aligned}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{gathered} 27.5 \\ 1.083 \end{gathered}$	$\begin{aligned} & 40.2 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 36.6 \\ & 1.441 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{gathered} 31.8 \\ 1.252 \end{gathered}$	$\begin{aligned} & 29.8 \\ & 1.173 \end{aligned}$	$\begin{gathered} 15.2 \\ 0.598 \end{gathered}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	$\begin{gathered} 12.4 \\ 0.488 \end{gathered}$
19	M28 $\times 1.0$	$\begin{gathered} \hline 35.5 \\ 1.398 \\ \hline \end{gathered}$	$\begin{aligned} & 16.8 \\ & 0.661 \\ & \hline \end{aligned}$	$\begin{gathered} 27.8 \\ 1.094 \end{gathered}$	$\begin{aligned} & \hline 44.7 \\ & 1.760 \\ & \hline \end{aligned}$	$\begin{gathered} 38.2 \\ 1.504 \\ \hline \end{gathered}$	$\begin{gathered} \hline 19.8 \\ 0.780 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 35.0 \\ & 1.378 \\ & \hline \end{aligned}$	$\begin{array}{r} 33.0 \\ 1.299 \\ \hline \end{array}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{gathered} 27.0 \\ 1.063 \\ \hline \end{gathered}$	$\begin{gathered} \hline 15.4 \\ 0.606 \\ \hline \end{gathered}$
21	M31 $\times 1.0$	$\begin{gathered} 37.0 \\ 1.457 \end{gathered}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{aligned} & 49.2 \\ & 1.937 \end{aligned}$	$\begin{aligned} & 39.8 \\ & 1.567 \end{aligned}$	$\begin{gathered} 23.0 \\ 0.906 \end{gathered}$	$\begin{gathered} 38.1 \\ 1.500 \end{gathered}$	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$	$\begin{gathered} 18.2 \\ 0.717 \end{gathered}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 0.681 \end{aligned}$
23	M34 $\times 1.0$	$\begin{aligned} & 40.0 \\ & 1.575 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{aligned} & 29.5 \\ & 1.161 \end{aligned}$	$\begin{gathered} \mathbf{5 1 . 7} \\ 2.035 \end{gathered}$	$\begin{gathered} \hline 41.3 \\ 1.626 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 2} \\ & 1.031 \end{aligned}$	$\begin{gathered} \mathbf{3 9 . 7} \\ 1.563 \end{gathered}$	$\begin{aligned} & 38.0 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	$\begin{aligned} & 18.8 \\ & 0.740 \end{aligned}$
25	M37 $\times 1.0$	$\begin{aligned} & 43.5 \\ & 1.713 \end{aligned}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{aligned} & 29.9 \\ & 1.177 \end{aligned}$	$\begin{gathered} 53.2 \\ 2.094 \end{gathered}$	$\begin{aligned} & \hline 42.8 \\ & 1.685 \end{aligned}$	$\begin{array}{r} 29.1 \\ 1.146 \end{array}$	$\begin{aligned} & 44.5 \\ & 1.752 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{gathered} 18.2 \\ 0.717 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{aligned} & 22.4 \\ & 0.882 \end{aligned}$

Millimeters Inches

POLAMCO 70 Series Memory Ring Adapters

The 70 Series adapters help provide a high-reliability, low profile shield termination using magna-form memory ring technology. The adapters are available with an optional pre-terminated braid sock.

Part Numbering System

POLAMCO 70 Series Memory Ring Adapters

70F Series for 38999 Series I

(Consult TE for Series II)

Shell Size	A Thread (UNEF)	$\begin{gathered} \varnothing B \\ \text { Max. } \end{gathered}$	$\varnothing \top$ Min.	$\begin{gathered} C \\ \text { Max. } \end{gathered}$	$\begin{gathered} D \pm 0.5 \\ (0.020) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{Max} . \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Max. } \end{gathered}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$
09	7/16-28	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 6.8 \\ 0.268 \end{gathered}$	$\begin{gathered} 16.4 \\ 0.646 \end{gathered}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{gathered} 22.7 \\ 0.894 \end{gathered}$	$\begin{gathered} \mathbf{2 4 . 0} \\ 0.945 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 0.591 \end{aligned}$
11	9/16-24	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{gathered} 10.2 \\ 0.402 \end{gathered}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 2} \\ & 1.031 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$
13	11/16-24	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{gathered} 17.6 \\ 0.693 \end{gathered}$	$\begin{aligned} & 18.6 \\ & 0.732 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 1.150 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 1.071 \end{aligned}$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$
15	13/16-20	$\begin{gathered} 27.8 \\ 1.094 \end{gathered}$	$\begin{gathered} 16.2 \\ 0.638 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 0.728 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 0.768 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{aligned} & 28.7 \\ & 1.130 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
17	15/16-20	$\begin{aligned} & 30.8 \\ & 1.213 \end{aligned}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{aligned} & 20.2 \\ & 0.795 \end{aligned}$	$\begin{aligned} & 20.3 \\ & 0.799 \end{aligned}$	$\begin{gathered} 35.7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 30.4 \\ & 1.197 \end{aligned}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$
19	1-1/16-18	$\begin{gathered} 34.1 \\ 1.343 \end{gathered}$	$\begin{aligned} & 22.3 \\ & 0.878 \end{aligned}$	$\begin{gathered} 19.6 \\ 0.772 \end{gathered}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{aligned} & 39.7 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 1.260 \end{aligned}$	$\begin{gathered} 23.0 \\ 0.906 \end{gathered}$
21	1-3/16-18	$\begin{gathered} 37.3 \\ 1.469 \end{gathered}$	$\begin{aligned} & 25.8 \\ & 1.016 \end{aligned}$	$\begin{aligned} & 20.4 \\ & 0.803 \end{aligned}$	$\begin{gathered} 21.7 \\ 0.854 \end{gathered}$	$\begin{aligned} & 42.2 \\ & 1.661 \end{aligned}$	$\begin{aligned} & 33.6 \\ & 1.323 \end{aligned}$	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$
23	1-5/16-18	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{gathered} 22.0 \\ 0.866 \end{gathered}$	$\begin{aligned} & 45.2 \\ & 1.780 \end{aligned}$	$\begin{gathered} 35.1 \\ 1.382 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 0} \\ & 1.024 \end{aligned}$
25	1-7/16-18	$\begin{aligned} & 43.7 \\ & 1.720 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	$\begin{gathered} 21.7 \\ 0.854 \end{gathered}$	$\begin{aligned} & 22.9 \\ & 0.902 \end{aligned}$	$\begin{gathered} 48.2 \\ 1.898 \end{gathered}$	$\begin{aligned} & 36.6 \\ & 1.441 \end{aligned}$	$\begin{aligned} & 28.0 \\ & 1.102 \end{aligned}$

[^5]
MIL-DTL-38999 Circular Connectors

POLAMCO 70 Series Memory Ring Adapters

70H Series for 38999 Series III and IV

Shell Size	A Thread	$\begin{gathered} \varnothing B \\ \text { Max. } \end{gathered}$	$\boldsymbol{\varnothing}$ Min.	$\begin{gathered} \mathrm{C} \\ \mathrm{Max} . \end{gathered}$	$\begin{gathered} D \pm 0.5 \\ (0.020) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{Max} . \end{gathered}$	$\begin{gathered} F \\ \text { Max. } \end{gathered}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$
09	M12 $\times 1.0$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 6.7 \\ 0.264 \end{gathered}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{aligned} & 25.7 \\ & 1.012 \end{aligned}$	$\begin{gathered} \mathbf{2 4 . 0} \\ 0.945 \end{gathered}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
11	M15 $\times 1.0$	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{gathered} 10.2 \\ 0.402 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
13	M18 $\times 1.0$	$\begin{gathered} 24.5 \\ 0.965 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 0.531 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{gathered} 18.6 \\ 0.732 \end{gathered}$	$\begin{gathered} 31.2 \\ 1.228 \end{gathered}$	$\begin{aligned} & 27.2 \\ & 1.071 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
15	M22 $\times 1.0$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{aligned} & 16.2 \\ & 0.638 \end{aligned}$	$\begin{gathered} 15.5 \\ 0.610 \end{gathered}$	$\begin{gathered} 19.5 \\ 0.768 \end{gathered}$	$\begin{gathered} 37.2 \\ 1.465 \end{gathered}$	$\begin{aligned} & 28.7 \\ & 1.130 \end{aligned}$	$\begin{gathered} 24.5 \\ 0.965 \end{gathered}$
17	M25 $\times 1.0$	$\begin{aligned} & 32.5 \\ & 1.280 \end{aligned}$	$\begin{gathered} 19.4 \\ 0.764 \end{gathered}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{aligned} & 20.3 \\ & 0.799 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 30.4 \\ & 1.197 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$
19	M28 $\times 1.0$	$\begin{aligned} & 35.5 \\ & 1.398 \end{aligned}$	$\begin{gathered} 21.8 \\ 0.858 \end{gathered}$	$\begin{aligned} & 16.8 \\ & 0.661 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{aligned} & \hline 44.7 \\ & 1.760 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 1.260 \end{aligned}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$
21	M31 x 1.0	$\begin{gathered} 37.0 \\ 1.457 \end{gathered}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{gathered} 21.7 \\ 0.854 \end{gathered}$	$\begin{aligned} & 49.2 \\ & 1.937 \end{aligned}$	$\begin{aligned} & 33.6 \\ & 1.323 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$
23	M34 $\times 1.0$	$\begin{aligned} & 40.0 \\ & 1.575 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 2} \\ & 1.110 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{aligned} & 22.0 \\ & 0.866 \end{aligned}$	$\begin{gathered} \mathbf{5 1 . 7} \\ 2.035 \end{gathered}$	$\begin{gathered} \mathbf{3 5 . 1} \\ 1.382 \end{gathered}$	$\begin{array}{r} 31.5 \\ 1.240 \end{array}$
25	M37 $\times 1.0$	$\begin{aligned} & 43.5 \\ & 1.713 \end{aligned}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{aligned} & 22.9 \\ & 0.902 \end{aligned}$	$\begin{gathered} \mathbf{5 3 . 2} \\ 2.094 \end{gathered}$	$\begin{aligned} & 36.6 \\ & 1.441 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$

Millimeters Inches

Entry Size Dimensions

Entry Size	ØG Min.	$\begin{gathered} \text { ØH } \\ \text { Max. } \end{gathered}$	No. Of Optional Slots
03	$\begin{gathered} 4.7 \\ 0.185 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1
04	$\begin{gathered} 6.3 \\ 0.248 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1
05	$\begin{gathered} 7.9 \\ 0.311 \end{gathered}$	$\begin{gathered} \mathbf{1 5 . 5} \\ 0.610 \end{gathered}$	1
06	$\begin{gathered} 9.5 \\ 0.374 \end{gathered}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	2
07	$\begin{gathered} 11.1 \\ 0.437 \end{gathered}$	$\begin{gathered} 18.7 \\ 0.736 \end{gathered}$	2
08	$\begin{gathered} 12.7 \\ 0.500 \end{gathered}$	$\begin{gathered} 20.3 \\ 0.799 \end{gathered}$	2
09	$\begin{gathered} 14.2 \\ 0.559 \end{gathered}$	$\begin{gathered} 21.9 \\ 0.862 \end{gathered}$	2
10	$\begin{aligned} & 15.8 \\ & 0.622 \end{aligned}$	$\begin{gathered} \mathbf{2 3 . 5} \\ 0.925 \end{gathered}$	2
11	$\begin{gathered} 17.4 \\ 0.685 \end{gathered}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	2
12	$\begin{aligned} & 19.0 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	2
13	$\begin{aligned} & 20.6 \\ & 0.811 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	2

Entry Size	$\varnothing G$ Min.	$\begin{gathered} \text { ØH } \\ \operatorname{Max} . \end{gathered}$	No. Of Optional Slots
14	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{aligned} & 29.9 \\ & 1.177 \end{aligned}$	4
15	$\begin{aligned} & 23.8 \\ & 0.937 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	4
16	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{gathered} 33.1 \\ 1.303 \end{gathered}$	4
17	$\begin{gathered} \mathbf{2 7 . 0} \\ 1.063 \end{gathered}$	$\begin{aligned} & 34.7 \\ & 1.366 \end{aligned}$	4
18	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{aligned} & 36.3 \\ & 1.429 \end{aligned}$	4
19	$\begin{aligned} & 30.2 \\ & 1.189 \end{aligned}$	$\begin{aligned} & 37.9 \\ & 1.492 \end{aligned}$	4
20	$\begin{aligned} & 31.8 \\ & 1.252 \end{aligned}$	$\begin{aligned} & 39.5 \\ & 1.555 \end{aligned}$	4
21	$\begin{aligned} & 33.3 \\ & 1.311 \end{aligned}$	$\begin{gathered} 41.1 \\ 1.618 \end{gathered}$	4
22	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$	$\begin{aligned} & 42.7 \\ & 1.681 \end{aligned}$	4
23	$\begin{aligned} & 36.5 \\ & 1.437 \end{aligned}$	$\begin{aligned} & 44.3 \\ & 1.744 \end{aligned}$	4
24	$\begin{gathered} 38.1 \\ 1.500 \end{gathered}$	$\begin{aligned} & 45.9 \\ & 1.807 \end{aligned}$	4

POLAMCO 91 Series Spring Adapters

The 91 Series adapters use a constant-force spring to help provide a fast, reliable shield termination without tools.

Part Numbering System

MIL-DTL-38999 Circular Connectors

POLAMCO 91 Series Spring Adapters

Angle 1: Straight

SLOT OPTION - SL (PIGTAIL TERMINATION)

91F Series for 38999 Series I
(Consult TE for Series II)

Shell Size	A Thread (UNEF)	ØВ Max.	$\varnothing \mathbf{~} \mathbf{T}$ Min.	$\begin{gathered} C \pm 0.5 \\ (0.020) \end{gathered}$	D Max.	E Max.	F Max.	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$
09	7/16-28	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$	$\begin{gathered} 6.8 \\ 0.268 \end{gathered}$	$\begin{gathered} 16.4 \\ 0.646 \end{gathered}$	$\begin{aligned} & 25.7 \\ & 1.012 \end{aligned}$	$\begin{gathered} 22.7 \\ 0.894 \end{gathered}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 0.591 \end{aligned}$
11	9/16-24	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{aligned} & 10.2 \\ & 0.402 \end{aligned}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 9} \\ & 1.059 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 2} \\ & 1.031 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$
13	11/16-24	$\begin{gathered} 24.5 \\ 0.965 \end{gathered}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{aligned} & 17.6 \\ & 0.693 \end{aligned}$	$\begin{aligned} & \mathbf{2 7 . 3} \\ & 1.075 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 1.150 \end{aligned}$	$\begin{aligned} & 33.7 \\ & 1.327 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$
15	13/16-20	$\begin{gathered} \hline 27.8 \\ 1.094 \end{gathered}$	$\begin{gathered} 16.2 \\ 0.638 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 0.728 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 1.110 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{gathered} 35.2 \\ 1.386 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
17	15/16-20	$\begin{aligned} & 30.8 \\ & 1.213 \end{aligned}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{aligned} & 19.2 \\ & 0.756 \end{aligned}$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{gathered} 35.7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 36.9 \\ & 1.453 \end{aligned}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$
19	1-1/16-18	$\begin{gathered} 34.1 \\ 1.343 \end{gathered}$	$\begin{aligned} & 22.3 \\ & 0.878 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 0.772 \end{aligned}$	$\begin{array}{r} 29.3 \\ 1.154 \end{array}$	$\begin{gathered} 39.7 \\ 1.563 \end{gathered}$	$\begin{aligned} & 38.5 \\ & 1.516 \end{aligned}$	$\begin{gathered} 23.0 \\ 0.906 \end{gathered}$
21	1-3/16-18	$\begin{gathered} 37.3 \\ 1.469 \end{gathered}$	$\begin{aligned} & 25.8 \\ & 1.016 \end{aligned}$	$\begin{gathered} 20.4 \\ 0.803 \end{gathered}$	$\begin{array}{r} 30.1 \\ 1.185 \end{array}$	$\begin{aligned} & 42.2 \\ & 1.661 \end{aligned}$	$\begin{gathered} \mathbf{4 1 . 1} \\ 1.618 \end{gathered}$	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$
23	1-5/16-18	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{aligned} & 45.2 \\ & 1.780 \end{aligned}$	$\begin{gathered} 41.6 \\ 1.638 \end{gathered}$	$\begin{gathered} \mathbf{2 6 . 0} \\ 1.024 \end{gathered}$
25	1-7/16-18	$\begin{aligned} & 43.7 \\ & 1.720 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	$\begin{gathered} 21.7 \\ 0.854 \end{gathered}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{aligned} & 48.2 \\ & 1.898 \end{aligned}$	$\begin{gathered} 43.1 \\ 1.697 \end{gathered}$	$\begin{aligned} & 28.0 \\ & 1.102 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

POLAMCO 91 Series Spring Adapters

91H Series for 38999 Series III and IV

Shell Size	A Thread	$\begin{gathered} \text { øВ } \\ \text { Max. } \end{gathered}$	$\varnothing \top$ Min.	$\begin{gathered} C \pm 0.5 \\ (0.020) \end{gathered}$	$\stackrel{\text { Dax. }}{\text { Man }}$	$\begin{gathered} \mathrm{E} \\ \mathrm{Max} . \end{gathered}$	$\begin{gathered} F \\ \text { Max. } \end{gathered}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$
09	M12 $\times 1.0$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 6.7 \\ 0.264 \end{gathered}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{aligned} & \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
11	M15 $\times 1.0$	$\begin{aligned} & 21.0 \\ & 0.827 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 0.402 \end{aligned}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 9} \\ & 1.059 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$
13	M18 $\times 1.0$	$\begin{aligned} & 24.5 \\ & 0.965 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 0.531 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{gathered} 27.3 \\ 1.075 \end{gathered}$	$\begin{gathered} 31.2 \\ 1.228 \end{gathered}$	$\begin{aligned} & 33.7 \\ & 1.327 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
15	M22 $\times 1.0$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{gathered} 16.2 \\ 0.638 \end{gathered}$	$\begin{aligned} & \mathbf{1 5 . 5} \\ & 0.610 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 1.110 \end{aligned}$	$\begin{gathered} 37.2 \\ 1.465 \end{gathered}$	$\begin{aligned} & 35.2 \\ & 1.386 \end{aligned}$	$\begin{gathered} \mathbf{2 4 . 5} \\ 0.965 \end{gathered}$
17	M25 x 1.0	$\begin{aligned} & 32.5 \\ & 1.280 \end{aligned}$	$\begin{gathered} 19.4 \\ 0.764 \end{gathered}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 1.583 \end{aligned}$	$\begin{aligned} & 36.9 \\ & 1.453 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$
19	M28 $\times 1.0$	$\begin{aligned} & 35.5 \\ & 1.398 \end{aligned}$	$\begin{gathered} 21.8 \\ 0.858 \end{gathered}$	$\begin{aligned} & 16.8 \\ & 0.661 \end{aligned}$	$\begin{aligned} & 29.3 \\ & 1.154 \end{aligned}$	$\begin{aligned} & 44.7 \\ & 1.760 \end{aligned}$	$\begin{aligned} & 38.5 \\ & 1.516 \end{aligned}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$
21	M31 x 1.0	$\begin{aligned} & 37.0 \\ & 1.457 \end{aligned}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{aligned} & 30.1 \\ & 1.185 \end{aligned}$	$\begin{aligned} & 49.2 \\ & 1.937 \end{aligned}$	$\begin{array}{r} 40.1 \\ 1.579 \end{array}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$
23	M34 $\times 1.0$	$\begin{aligned} & \mathbf{4 0 . 0} \\ & 1.575 \end{aligned}$	$\begin{aligned} & 28.2 \\ & 1.110 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	$\begin{gathered} \mathbf{5 1 . 7} \\ 2.035 \end{gathered}$	$\begin{gathered} \hline 41.6 \\ 1.638 \end{gathered}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$
25	M37 $\times 1.0$	$\begin{aligned} & 43.5 \\ & 1.713 \end{aligned}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{gathered} 31.4 \\ 1.236 \end{gathered}$	$\begin{gathered} 53.2 \\ 2.094 \end{gathered}$	$\begin{gathered} 43.1 \\ 1.697 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$

Millimeters Inches

Entry Size Dimensions

Entry Size	$\begin{aligned} & \text { øG } \\ & \text { Min. } \end{aligned}$	$\begin{gathered} \text { ØH } \\ \text { Max. } \end{gathered}$	No. Of Optional Slots	Spring Ref	J Max. (Unconstrained)
03	$\begin{gathered} 4.7 \\ 0.185 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1	HEO5O	$\begin{gathered} 7.5 \\ 0.295 \end{gathered}$
04	$\begin{gathered} 6.3 \\ 0.248 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1		
05	$\begin{aligned} & 7.9 \\ & 0.311 \end{aligned}$	$\begin{aligned} & \mathbf{1 5 . 5} \\ & 0.610 \end{aligned}$	1	HE100	$\begin{gathered} 9.1 \\ 0.358 \end{gathered}$
06	$\begin{gathered} 9.5 \\ 0.374 \end{gathered}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	2		
07	$\begin{gathered} 11.1 \\ 0.437 \end{gathered}$	$\begin{gathered} 18.7 \\ 0.736 \end{gathered}$	2		
08	$\begin{gathered} 12.7 \\ 0.500 \end{gathered}$	$\begin{aligned} & 20.3 \\ & 0.799 \end{aligned}$	2	HE2OO	$\begin{gathered} 12.8 \\ 0.504 \end{gathered}$
09	$\begin{gathered} 14.2 \\ 0.559 \end{gathered}$	$\begin{gathered} 21.9 \\ 0.862 \end{gathered}$	2		
10	$\begin{aligned} & 15.8 \\ & 0.622 \end{aligned}$	$\begin{gathered} \mathbf{2 3 . 5} \\ 0.925 \end{gathered}$	2		
11	$\begin{gathered} 17.4 \\ 0.685 \end{gathered}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	2		

Entry Size	ØG Min.	$\begin{gathered} \varnothing \mathrm{H} \\ \operatorname{Max} . \end{gathered}$	No. Of Optional Slots	Spring Ref	J Max. (Unconstrained)
12	$\begin{gathered} 19.0 \\ 0.748 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$	2		
13	$\begin{aligned} & 20.6 \\ & 0.811 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	2		
14	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{aligned} & 29.9 \\ & 1.177 \end{aligned}$	4	HE300	$\begin{aligned} & 17.9 \\ & 0.705 \end{aligned}$
15	$\begin{aligned} & 23.8 \\ & 0.937 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	4		
16	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{gathered} 33.1 \\ 1.303 \end{gathered}$	4		
17	$\begin{gathered} \hline \mathbf{2 7 . 0} \\ 1.063 \end{gathered}$	$\begin{aligned} & 34.7 \\ & 1.366 \end{aligned}$	4		
18	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{aligned} & 36.3 \\ & 1.429 \end{aligned}$	4		
19	$\begin{aligned} & 30.2 \\ & 1.189 \end{aligned}$	$\begin{gathered} 37.9 \\ 1.492 \end{gathered}$	4		
20	$\begin{gathered} \mathbf{3 1 . 8} \\ 1.252 \\ \hline \end{gathered}$	$\begin{array}{r} \hline 39.5 \\ 1.555 \\ \hline \end{array}$	4	HE400	21.8
21	$\begin{aligned} & 33.3 \\ & 1.311 \end{aligned}$	$\begin{gathered} 41.1 \\ 1.618 \end{gathered}$	4		0.858
22	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$	$\begin{aligned} & 42.7 \\ & 1.681 \end{aligned}$	4		
23	$\begin{aligned} & 36.5 \\ & 1.437 \end{aligned}$	$\begin{aligned} & 44.3 \\ & 1.744 \end{aligned}$	4		
24	$\begin{gathered} 38.1 \\ 1.500 \end{gathered}$	$\begin{aligned} & 45.9 \\ & 1.807 \end{aligned}$	4		

[^6]

POLAMCO 96 Series Strain Relief Adapters

The 96 Series adapters provide stain relief in an open-frame cable clamp. The backshell is machined from solid aluminum alloy to support strength, reliability, and low weight.

Part Numbering System

MIL-DTL-38999 Circular Connectors

POLAMCO 96 Series Strain Relief Adapters

96F Series for 38999 Series I and II

Dash No.	Shell Size: Series I (Series II)	A Thread (UNEF)	$\begin{gathered} \varnothing \text { ø } \\ \text { Max. } \end{gathered}$	C Max.	$\begin{gathered} \text { Dax. } \end{gathered}$	ØE Min.	$\begin{gathered} \text { Hax. } \end{gathered}$	$\underset{\text { Max. }}{\text { J. }}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$ Clamping Diameter	$\begin{gathered} M \pm 0.5 \\ (0.020) \end{gathered}$ Clamping Diameter
08	09 (08)	7/16-28	$\begin{gathered} 18.3 \\ 0.720 \end{gathered}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{gathered} 18.8 \\ 0.740 \end{gathered}$	$\begin{gathered} 6.7 \\ 0.264 \end{gathered}$	$\begin{gathered} 19.0 \\ 0.748 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 0.748 \end{aligned}$	$\begin{gathered} 5.7 \\ 0.224 \end{gathered}$	$\begin{gathered} 4.7 \\ 0.185 \end{gathered}$
10	11 (10)	9/16-24	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{gathered} \mathbf{2 1 . 5} \\ 0.846 \end{gathered}$	$\begin{gathered} 21.1 \\ 0.831 \end{gathered}$	$\begin{gathered} 10.1 \\ 0.398 \end{gathered}$	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{gathered} 6.9 \\ 0.272 \end{gathered}$	$\begin{gathered} 5.3 \\ 0.209 \end{gathered}$
12	13 (12)	11/16-24	$\begin{gathered} \mathbf{2 4 . 5} \\ 0.965 \end{gathered}$	$\begin{aligned} & \mathbf{2 3 . 5} \\ & 0.925 \end{aligned}$	$\begin{gathered} 23.1 \\ 0.909 \end{gathered}$	$\begin{aligned} & 13.0 \\ & 0.512 \end{aligned}$	$\begin{aligned} & 25.2 \\ & 0.992 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 . 2} \\ & 0.992 \end{aligned}$	$\begin{gathered} \mathbf{8 . 5} \\ 0.335 \end{gathered}$	$\begin{gathered} 5.8 \\ 0.228 \end{gathered}$
14	15 (14)	13/16-20	$\begin{gathered} \hline 27.8 \\ 1.094 \end{gathered}$	$\begin{aligned} & \mathbf{2 3 . 5} \\ & 0.925 \end{aligned}$	$\begin{gathered} 25.5 \\ 1.004 \end{gathered}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{aligned} & 10.4 \\ & 0.409 \end{aligned}$	$\begin{gathered} 7.7 \\ 0.303 \end{gathered}$
16	17 (16)	15/16-20	$\begin{aligned} & 30.8 \\ & 1.213 \end{aligned}$	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{array}{r} 29.1 \\ 1.146 \end{array}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{gathered} 31.7 \\ 1.248 \end{gathered}$	$\begin{gathered} 31.7 \\ 1.248 \end{gathered}$	$\begin{gathered} 11.4 \\ 0.449 \end{gathered}$	$\begin{gathered} 8.2 \\ 0.323 \end{gathered}$
18	19 (18)	1-1/16-18	$\begin{gathered} 34.1 \\ 1.343 \end{gathered}$	$\begin{gathered} 27.5 \\ 1.083 \end{gathered}$	$\begin{gathered} 35.1 \\ 1.382 \end{gathered}$	$\begin{aligned} & 21.8 \\ & 0.858 \end{aligned}$	$\begin{aligned} & 34.9 \\ & 1.374 \end{aligned}$	$\begin{aligned} & 34.9 \\ & 1.374 \end{aligned}$	$\begin{aligned} & 14.9 \\ & 0.587 \end{aligned}$	$\begin{gathered} 9.7 \\ 0.382 \end{gathered}$
20	21 (20)	1-3/16-18	$\begin{gathered} 37.3 \\ 1.469 \end{gathered}$	$\begin{aligned} & 34.5 \\ & 1.358 \end{aligned}$	$\begin{gathered} 37.7 \\ 1.484 \end{gathered}$	$\begin{aligned} & \mathbf{2 5 . 2} \\ & 0.992 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 16.8 \\ & 0.661 \end{aligned}$	$\begin{aligned} & 10.7 \\ & 0.421 \end{aligned}$
22	23 (22)	1-5/16-18	$\begin{aligned} & 40.5 \\ & 1.594 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 1.358 \end{aligned}$	$\begin{gathered} 39.8 \\ 1.567 \end{gathered}$	$\begin{array}{r} 28.1 \\ 1.106 \end{array}$	$\begin{aligned} & 42.8 \\ & 1.685 \end{aligned}$	$\begin{gathered} 41.2 \\ 1.622 \end{gathered}$	$\begin{aligned} & \mathbf{2 3 . 9} \\ & 0.941 \end{aligned}$	$\begin{gathered} 11.8 \\ 0.465 \end{gathered}$
24	25 (24)	1-7/16-18	$\begin{aligned} & 43.7 \\ & 1.720 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathbf{3 4 . 5} \\ 1.358 \\ \hline \end{array}$	$\begin{aligned} & 42.0 \\ & 1.654 \end{aligned}$	$\begin{gathered} 31.3 \\ 1.232 \end{gathered}$	$\begin{aligned} & 46.0 \\ & 1.811 \end{aligned}$	$\begin{aligned} & 44.4 \\ & 1.740 \end{aligned}$	$\begin{aligned} & 22.8 \\ & 0.898 \end{aligned}$	$\begin{gathered} 12.7 \\ 0.500 \\ \hline \end{gathered}$

Millimeters Inches

96H Series for 38999 Series III and IV

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	A Thread	$\begin{gathered} \varnothing \text { } \\ \text { Max. } \end{gathered}$	C Max.	$\begin{gathered} \text { D } \\ \text { Max. } \end{gathered}$	ØЕ Min.	$\begin{gathered} \mathrm{H} \\ \text { Max. } \end{gathered}$	$\underset{\text { Max. }}{\text { J. }}$	K ± 0.5 Clamping Diameter	M ± 0.5 Clamping Diameter
09	M12 $\times 1.0$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{aligned} & 20.4 \\ & 0.803 \end{aligned}$	$\begin{gathered} 6.7 \\ 0.264 \end{gathered}$	$\begin{gathered} 19.0 \\ 0.748 \end{gathered}$	$\begin{aligned} & 20.6 \\ & 0.811 \end{aligned}$	$\begin{gathered} 5.7 \\ 0.224 \end{gathered}$	$\begin{gathered} 5.2 \\ 0.205 \end{gathered}$
11	M15 $\times 1.0$	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{gathered} 21.4 \\ 0.843 \end{gathered}$	$\begin{gathered} 10.1 \\ 0.398 \end{gathered}$	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{gathered} 6.9 \\ 0.272 \end{gathered}$	$\begin{gathered} 5.2 \\ 0.205 \end{gathered}$
13	M18 $\times 1.0$	$\begin{gathered} \mathbf{2 4 . 5} \\ 0.965 \end{gathered}$	$\begin{gathered} \mathbf{2 3 . 5} \\ 0.846 \end{gathered}$	$\begin{aligned} & 22.4 \\ & 0.882 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 0.512 \end{aligned}$	$\begin{gathered} \mathbf{2 5 . 2} \\ 0.992 \end{gathered}$	$\begin{aligned} & 23.7 \\ & 0.933 \end{aligned}$	$\begin{gathered} \mathbf{8 . 5} \\ 0.335 \end{gathered}$	$\begin{gathered} 5.6 \\ 0.220 \end{gathered}$
15	M22 $\times 1.0$	$\begin{gathered} \hline 27.5 \\ 1.083 \end{gathered}$	$\begin{aligned} & \mathbf{2 3 . 5} \\ & 0.925 \end{aligned}$	$\begin{aligned} & 23.4 \\ & 0.921 \end{aligned}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{aligned} & \hline \mathbf{2 6 . 9} \\ & 1.059 \end{aligned}$	$\begin{gathered} 10.4 \\ 0.409 \end{gathered}$	$\begin{gathered} 6.4 \\ 0.252 \end{gathered}$
17	M25 $\times 1.0$	$\begin{gathered} 31.0 \\ 1.220 \end{gathered}$	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.925 \end{aligned}$	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{gathered} 31.7 \\ 1.248 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{gathered} 11.4 \\ 0.449 \end{gathered}$	$\begin{gathered} 6.5 \\ 0.256 \end{gathered}$
19	M28 $\times 1.0$	$\begin{aligned} & \hline \mathbf{3 4 . 0} \\ & 1.339 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 27.5 \\ 0.965 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 7 . 9} \\ 1.098 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 21.8 \\ 0.858 \\ \hline \end{array}$	$\begin{aligned} & 34.9 \\ & 1.374 \end{aligned}$	$\begin{gathered} \hline 31.7 \\ 1.248 \\ \hline \end{gathered}$	$\begin{gathered} 14.9 \\ 0.587 \\ \hline \end{gathered}$	$\begin{gathered} 7.0 \\ 0.276 \\ \hline \end{gathered}$
21	M31 $\times 1.0$	$\begin{aligned} & 37.0 \\ & 1.457 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 1.083 \end{aligned}$	$\begin{gathered} 31.9 \\ 1.256 \end{gathered}$	$\begin{aligned} & \mathbf{2 5 . 2} \\ & 0.992 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 1496 \end{aligned}$	$\begin{aligned} & 34.9 \\ & 1.374 \end{aligned}$	$\begin{aligned} & 16.8 \\ & 0.661 \end{aligned}$	$\begin{gathered} 8.5 \\ 0.335 \end{gathered}$
23	M34 $\times 1.0$	$\begin{aligned} & 40.0 \\ & 1.575 \end{aligned}$	$\begin{gathered} 37.5 \\ 1.358 \end{gathered}$	$\begin{gathered} 35.4 \\ 1.394 \end{gathered}$	$\begin{gathered} 28.1 \\ 1.106 \end{gathered}$	$\begin{aligned} & 42.8 \\ & 1.685 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 23.9 \\ & 0.941 \end{aligned}$	$\begin{gathered} 9.4 \\ 0.370 \end{gathered}$
25	M37 $\times 1.0$	$\begin{aligned} & 43.5 \\ & 1.713 \end{aligned}$	$\begin{gathered} 37.5 \\ 1.476 \end{gathered}$	$\begin{aligned} & 36.4 \\ & 1.433 \end{aligned}$	$\begin{gathered} 31.3 \\ 1.232 \end{gathered}$	$\begin{aligned} & 46.0 \\ & 1.811 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 1.496 \end{aligned}$	$\begin{aligned} & 22.8 \\ & 0.898 \end{aligned}$	$\begin{gathered} 9.4 \\ 0.370 \end{gathered}$

Millimeters Inches

POLAMCO 97 Series Heat-Shrink Boot Adapters

The 97 Series adapters are designed to help provide high performance when used with an optional heat-shrink boot to provide strain relief. Many shell sizes are available from stock, providing an easy alternative to M85049/62 backshells.

Part Numbering System

POLAMCO 97 Series Heat-Shrink Boot Adapters

97F Series for 38999 Series I (Consult TE for Series II)

$\begin{aligned} & \text { Shell } \\ & \text { Size } \end{aligned}$	A Thread	$\begin{gathered} \varnothing B \\ M a x . \end{gathered}$	$\begin{gathered} \varnothing \mathbf{~} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { ØH } \\ \text { Max. } \end{gathered}$	$\begin{gathered} C \\ \pm 0.5 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { Max. } \end{gathered}$	$\begin{gathered} F \\ \text { Max. } \end{gathered}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$	Recommended Boot Size
09	7/16-28	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$	$\begin{gathered} 6.8 \\ 0.268 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 0.531 \end{aligned}$	$\begin{gathered} 16.4 \\ 0.646 \end{gathered}$	$\begin{gathered} 17.6 \\ 0.693 \end{gathered}$	$\begin{gathered} 22.7 \\ 0.894 \end{gathered}$	$\begin{gathered} 25.5 \\ 1.004 \end{gathered}$	$\begin{aligned} & \mathbf{1 5 . 0} \\ & 0.591 \end{aligned}$	2O2K121
11	9/16-24	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{aligned} & 10.2 \\ & 0.402 \end{aligned}$	$\begin{gathered} 15.4 \\ 0.606 \end{gathered}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 2} \\ & 1.031 \end{aligned}$	$\begin{gathered} \mathbf{2 7 . 3} \\ 1.075 \end{gathered}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$	202K121
13	11/16-24	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{gathered} 19.7 \\ 0.776 \end{gathered}$	$\begin{gathered} 17.6 \\ 0.693 \end{gathered}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{aligned} & \mathbf{2 9 . 2} \\ & 1.150 \end{aligned}$	$\begin{aligned} & 28.7 \\ & 1.130 \end{aligned}$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	202K142
15	13/16-20	$\begin{gathered} \hline 27.8 \\ 1.094 \end{gathered}$	$\begin{aligned} & 16.2 \\ & 0.638 \end{aligned}$	$\begin{gathered} 21.3 \\ 0.839 \end{gathered}$	$\begin{gathered} 18.5 \\ 0.728 \end{gathered}$	$\begin{aligned} & 19.6 \\ & 0.772 \end{aligned}$	$\begin{aligned} & 32.2 \\ & 1.268 \end{aligned}$	$\begin{aligned} & 30.2 \\ & 1.189 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$	202K142
17	15/16-20	$\begin{aligned} & 30.8 \\ & 1.213 \end{aligned}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{gathered} \mathbf{2 4 . 5} \\ 0.965 \end{gathered}$	$\begin{gathered} 19.2 \\ 0.756 \end{gathered}$	$\begin{aligned} & 20.4 \\ & 0.803 \end{aligned}$	$\begin{gathered} 35.7 \\ 1.406 \end{gathered}$	$\begin{gathered} 31.9 \\ 1.256 \end{gathered}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	202K153
19	1-1/16-18	$\begin{gathered} 34.1 \\ 1.343 \end{gathered}$	$\begin{aligned} & 22.3 \\ & 0.878 \end{aligned}$	$\begin{aligned} & \mathbf{2 6 . 5} \\ & 1.043 \end{aligned}$	$\begin{gathered} 19.6 \\ 0.772 \end{gathered}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{aligned} & 39.7 \\ & 1.563 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 1.319 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 0.906 \end{aligned}$	202K153
21	1-3/16-18	$\begin{gathered} 37.3 \\ 1.469 \end{gathered}$	$\begin{array}{r} 25.8 \\ 1.016 \end{array}$	$\begin{gathered} 31.0 \\ 1.220 \end{gathered}$	$\begin{aligned} & 20.4 \\ & 0.803 \end{aligned}$	$\begin{gathered} 21.6 \\ 0.850 \end{gathered}$	$\begin{aligned} & 42.2 \\ & 1.661 \end{aligned}$	$\begin{gathered} 35.1 \\ 1.382 \end{gathered}$	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$	202K153
23	1-5/16-18	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	$\begin{aligned} & 34.4 \\ & 1.354 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 0.886 \end{aligned}$	$\begin{aligned} & 45.2 \\ & 1.780 \end{aligned}$	$\begin{gathered} 36.7 \\ 1.445 \end{gathered}$	$\begin{aligned} & 26.0 \\ & 1.024 \end{aligned}$	202K163
25	1-7/16-18	$\begin{aligned} & 43.7 \\ & 1.720 \end{aligned}$	$\begin{gathered} \mathbf{3 1 . 5} \\ 1.240 \end{gathered}$	$\begin{aligned} & 36.6 \\ & 1.441 \end{aligned}$	$\begin{gathered} 21.7 \\ 0.854 \end{gathered}$	$\begin{aligned} & 22.9 \\ & 0.902 \end{aligned}$	$\begin{aligned} & 48.2 \\ & 1.898 \end{aligned}$	$\begin{gathered} \mathbf{3 8 . 1} \\ 1.500 \end{gathered}$	$\begin{aligned} & 28.0 \\ & 1.102 \end{aligned}$	202K163

[^7]
MIL-DTL-38999 Circular Connectors

POLAMCO 97 Series Heat-Shrink Boot Adapters

97H Series for 38999 Series III and IV

Shell Size	A Thread	$\begin{gathered} \text { øB } \\ \text { Max. } \end{gathered}$	$\begin{aligned} & \varnothing B^{\prime} \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \text { ØG } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { ØH } \\ \text { Max. } \end{gathered}$	$\begin{gathered} C \\ \pm 0.5 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { Max. } \end{gathered}$	F Max.	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$	Recommended Boot Size	M
09	M12 $\times 1.0$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{aligned} & 20.30 \\ & 0.799 \end{aligned}$	$\begin{gathered} 6.8 \\ 0.268 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 0.531 \end{aligned}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{gathered} 17.6 \\ 0.693 \end{gathered}$	$\begin{aligned} & \mathbf{2 5 . 7} \\ & 1.012 \end{aligned}$	$\begin{gathered} 25.5 \\ 1.004 \end{gathered}$	$\begin{gathered} 17.5 \\ 0.689 \end{gathered}$	2O2K121	$\begin{aligned} & 17.00 \\ & 0.669 \end{aligned}$
11	M15 x 1.0	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{aligned} & 23.70 \\ & 0.933 \end{aligned}$	$\begin{gathered} 9.9 \\ 0.390 \end{gathered}$	$\begin{gathered} \mathbf{1 5 . 4} \\ 0.606 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{aligned} & \mathbf{2 6 . 7} \\ & 1.051 \end{aligned}$	$\begin{aligned} & \mathbf{2 7 . 3} \\ & 1.075 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 0.689 \end{aligned}$	202K121	$\begin{gathered} 30.40 \\ 1.197 \end{gathered}$
13	M18 x 1.0	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{aligned} & 27.15 \\ & 1.069 \end{aligned}$	$\begin{gathered} 13.6 \\ 0.535 \end{gathered}$	$\begin{gathered} 19.7 \\ 0.776 \end{gathered}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{gathered} 31.2 \\ 1.228 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 7} \\ & 1.130 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$	202K142	$\begin{aligned} & 23.85 \\ & 0.939 \end{aligned}$
15	M22 $\times 1.0$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{aligned} & 32.05 \\ & 1.262 \end{aligned}$	$\begin{gathered} 15.9 \\ 0.626 \end{gathered}$	$\begin{gathered} 21.3 \\ 0.839 \end{gathered}$	$\begin{gathered} \mathbf{1 5 . 5} \\ 0.610 \end{gathered}$	$\begin{gathered} 19.6 \\ 0.772 \end{gathered}$	$\begin{gathered} 37.2 \\ 1.465 \end{gathered}$	$\begin{aligned} & 30.2 \\ & 1.189 \end{aligned}$	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	2O2K142	$\begin{gathered} \mathbf{2 8 . 7 5} \\ 1.132 \end{gathered}$
17	M25 x 1.0	$\begin{aligned} & \hline 32.5 \\ & 1.280 \end{aligned}$	$\begin{aligned} & 35.35 \\ & 1.392 \end{aligned}$	$\begin{gathered} 18.9 \\ 0.744 \end{gathered}$	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{gathered} 16.1 \\ 0.634 \end{gathered}$	$\begin{aligned} & 20.4 \\ & 0.803 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 1.583 \end{aligned}$	$\begin{gathered} 31.9 \\ 1.256 \end{gathered}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	202K153	$\begin{aligned} & 32.05 \\ & 1.262 \end{aligned}$
19	M28 $\times 1.0$	$\begin{aligned} & 35.5 \\ & 1.398 \end{aligned}$	$\begin{gathered} 38.55 \\ 1.518 \end{gathered}$	$\begin{gathered} 21.9 \\ 0.862 \end{gathered}$	$\begin{gathered} 26.5 \\ 1.043 \end{gathered}$	$\begin{aligned} & 16.8 \\ & 0.661 \end{aligned}$	$\begin{aligned} & 20.8 \\ & 0.819 \end{aligned}$	$\begin{aligned} & 44.7 \\ & 1.760 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 1.319 \end{aligned}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$	202K153	$\begin{aligned} & 35.25 \\ & 1.388 \end{aligned}$
21	M31 x 1.0	$\begin{aligned} & 37.0 \\ & 1.457 \end{aligned}$	$\begin{aligned} & 39.85 \\ & 1.569 \end{aligned}$	$\begin{gathered} 25.2 \\ 0.992 \end{gathered}$	$\begin{aligned} & 31.0 \\ & 1.220 \end{aligned}$	$\begin{gathered} 17.1 \\ 0.673 \end{gathered}$	$\begin{aligned} & 21.6 \\ & 0.850 \end{aligned}$	$\begin{aligned} & 49.2 \\ & 1.937 \end{aligned}$	$\begin{gathered} 35.1 \\ 1.382 \end{gathered}$	$\begin{aligned} & 30.5 \\ & 1.201 \end{aligned}$	202K153	$\begin{aligned} & 36.55 \\ & 1.439 \end{aligned}$
23	M34 $\times 1.0$	$\begin{aligned} & 40.0 \\ & 1.575 \end{aligned}$	$\begin{gathered} 42.95 \\ 1.691 \end{gathered}$	$\begin{gathered} \mathbf{2 7 . 4} \\ 1.079 \end{gathered}$	$\begin{aligned} & 34.4 \\ & 1.354 \end{aligned}$	$\begin{gathered} 17.7 \\ 0.697 \end{gathered}$	$\begin{gathered} 22.5 \\ 0.886 \end{gathered}$	$\begin{gathered} \mathbf{5 1 . 7} \\ 2.035 \end{gathered}$	$\begin{aligned} & 36.7 \\ & 1.445 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	202K163	$\begin{aligned} & 39.65 \\ & 1.561 \end{aligned}$
25	M37 $\times 1.0$	$\begin{aligned} & 43.5 \\ & 1.713 \end{aligned}$	$\begin{aligned} & 46.12 \\ & 1.816 \end{aligned}$	$\begin{aligned} & 30.4 \\ & 1.197 \end{aligned}$	$\begin{aligned} & 36.6 \\ & 1.441 \end{aligned}$	$\begin{gathered} 18.4 \\ 0.724 \end{gathered}$	$\begin{aligned} & 22.9 \\ & 0.902 \end{aligned}$	$\begin{gathered} 53.2 \\ 2.094 \end{gathered}$	$\begin{gathered} 38.1 \\ 1.500 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	202K163	$\begin{aligned} & 42.82 \\ & 1.686 \end{aligned}$

Millimeters Inches

Entry Size Dimensions

Entry Size	$\begin{aligned} & \text { ØG } \\ & \text { Min. } \end{aligned}$	$\begin{gathered} \varnothing H \\ M a x . \end{gathered}$	No. Of Optional Slots
03	$\begin{gathered} 4.7 \\ 0.185 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1
04	$\begin{gathered} 6.3 \\ 0.248 \end{gathered}$	$\begin{gathered} 13.9 \\ 0.547 \end{gathered}$	1
05	$\begin{aligned} & 7.9 \\ & 0.311 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 0.610 \end{aligned}$	1
06	$\begin{gathered} 9.5 \\ 0.374 \end{gathered}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	2
07	$\begin{gathered} 11.1 \\ 0.437 \end{gathered}$	$\begin{gathered} 18.7 \\ 0.736 \end{gathered}$	2
08	$\begin{gathered} 12.7 \\ 0.500 \end{gathered}$	$\begin{aligned} & 20.3 \\ & 0.799 \end{aligned}$	2
09	$\begin{aligned} & 14.2 \\ & 0.559 \end{aligned}$	$\begin{gathered} 21.9 \\ 0.862 \end{gathered}$	2
10	$\begin{gathered} 15.8 \\ 0.622 \end{gathered}$	$\begin{gathered} 23.5 \\ 0.925 \end{gathered}$	2
11	$\begin{gathered} 17.4 \\ 0.685 \end{gathered}$	$\begin{gathered} 25.1 \\ 0.988 \end{gathered}$	2
12	$\begin{gathered} 19.0 \\ 0.748 \end{gathered}$	$\begin{aligned} & 26.7 \\ & 1.051 \end{aligned}$	2
13	$\begin{aligned} & 20.6 \\ & 0.811 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	2

Entry Size	ØG Min.	$\begin{gathered} \varnothing H \\ \operatorname{Max} . \end{gathered}$	No. Of Optional Slots
14	$\begin{aligned} & 22.2 \\ & 0.874 \end{aligned}$	$\begin{aligned} & 29.9 \\ & 1.177 \end{aligned}$	4
15	$\begin{aligned} & 23.8 \\ & 0.937 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	4
16	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{gathered} 33.1 \\ 1.303 \end{gathered}$	4
17	$\begin{gathered} \mathbf{2 7 . 0} \\ 1.063 \end{gathered}$	$\begin{aligned} & 34.7 \\ & 1.366 \end{aligned}$	4
18	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$	$\begin{aligned} & 36.3 \\ & 1.429 \end{aligned}$	4
19	$\begin{aligned} & 30.2 \\ & 1.189 \end{aligned}$	$\begin{aligned} & 37.9 \\ & 1.492 \end{aligned}$	4
20	$\begin{aligned} & 31.8 \\ & 1.252 \end{aligned}$	$\begin{aligned} & 39.5 \\ & 1.555 \end{aligned}$	4
21	$\begin{aligned} & 33.3 \\ & 1.311 \end{aligned}$	$\begin{gathered} \hline 41.1 \\ 1.618 \\ \hline \end{gathered}$	4
22	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$	$\begin{aligned} & 42.7 \\ & 1.681 \end{aligned}$	4
23	$\begin{aligned} & 36.5 \\ & 1.437 \end{aligned}$	$\begin{aligned} & 44.3 \\ & 1.744 \end{aligned}$	4
24	$\begin{gathered} \mathbf{3 8 . 1} \\ 1.500 \\ \hline \end{gathered}$	$\begin{gathered} 45.9 \\ 1.807 \\ \hline \end{gathered}$	4

[^8]
HIGH PERFORMANCE

- Mesh tape bundle creates
windowless EMI barrier, even without overall screen braid
- 360° termination of multiple or individual screens
- Optional heat-shrink boot available for sealing and strain relief

EASY TO USE

- Tool-free termination
- Reworkable

KMA Series Mesh Tape Backshells

The KMA Series backshells are a mesh tape bundle system that creates a windowless EMI barrier, even without overall screen braid by using 360° termination of multiple individual screens.

Part Numbering System

KMA Series Mesh Tape Backshells

Angle A: Straight

KMAF Series for 38999 Series I
(Consult TE for Series II)

Shell Size	A Thread (UNEF)	$\begin{aligned} & \varnothing B \\ & \text { Max. } \end{aligned}$	$\begin{gathered} \mathrm{C} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \text { Max. } \end{gathered}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$	$\boldsymbol{\varnothing} \mathbf{G}$ Min.	$\underset{\text { Max. }}{\underset{\text { ØH }}{ }}$
09	7/16-28	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 12.5 \\ 0.492 \end{gathered}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{gathered} 13.7 \\ 0.539 \end{gathered}$	$\begin{gathered} 6.8 \\ 0.268 \end{gathered}$	$\begin{gathered} 13.2 \\ 0.520 \end{gathered}$
11	9/16-24	$\begin{aligned} & 21.0 \\ & 0.827 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 0.512 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 0.591 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 0.906 \end{aligned}$	$\begin{gathered} 23.0 \\ 0.906 \end{gathered}$	$\begin{gathered} 14.7 \\ 0.579 \end{gathered}$	$\begin{gathered} 10.2 \\ 0.402 \end{gathered}$	$\begin{gathered} 16.7 \\ 0.657 \end{gathered}$
13	11/16-24	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{gathered} 13.6 \\ 0.535 \end{gathered}$	$\begin{aligned} & \mathbf{1 5 . 5} \\ & 0.610 \end{aligned}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$	$\begin{aligned} & \mathbf{2 4 . 5} \\ & 0.965 \end{aligned}$	$\begin{gathered} 17.2 \\ 0.677 \end{gathered}$	$\begin{gathered} 13.1 \\ 0.516 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
15	13/16-20	$\begin{gathered} 27.8 \\ 1.094 \end{gathered}$	$\begin{aligned} & \mathbf{1 4 . 0} \\ & 0.551 \end{aligned}$	$\begin{gathered} 16.0 \\ 0.630 \end{gathered}$	$\begin{aligned} & 28.0 \\ & 1.102 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{gathered} 16.7 \\ 0.657 \end{gathered}$	$\begin{gathered} 16.2 \\ 0.638 \end{gathered}$	$\begin{gathered} 22.7 \\ 0.894 \end{gathered}$
17	15/16-20	$\begin{aligned} & 30.8 \\ & 1.213 \end{aligned}$	$\begin{aligned} & \mathbf{1 5 . 0} \\ & 0.591 \end{aligned}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$	$\begin{gathered} 31.0 \\ 1.220 \end{gathered}$	$\begin{aligned} & 30.0 \\ & 1.181 \end{aligned}$	$\begin{aligned} & 18.2 \\ & 0.717 \end{aligned}$	$\begin{gathered} 19.3 \\ 0.760 \end{gathered}$	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$
19	1-1/16-18	$\begin{gathered} 34.1 \\ 1.343 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 0.630 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 1.417 \end{aligned}$	$\begin{array}{r} 31.5 \\ 1.240 \end{array}$	$\begin{aligned} & 21.2 \\ & 0.835 \end{aligned}$	$\begin{gathered} 22.3 \\ 0.878 \end{gathered}$	$\begin{aligned} & 28.3 \\ & 1.114 \end{aligned}$
21	1-3/16-18	$\begin{gathered} 37.3 \\ 1.469 \end{gathered}$	$\begin{gathered} 16.6 \\ 0.654 \end{gathered}$	$\begin{gathered} \mathbf{1 8 . 5} \\ 0.728 \end{gathered}$	$\begin{aligned} & 39.0 \\ & 1.535 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 1.299 \end{aligned}$	$\begin{gathered} 22.2 \\ 0.874 \end{gathered}$	$\begin{aligned} & \mathbf{2 5 . 8} \\ & 1.016 \end{aligned}$	$\begin{gathered} 31.6 \\ 1.244 \end{gathered}$
23	1-5/16-18	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 1.358 \end{aligned}$	$\begin{aligned} & 23.2 \\ & 0.913 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	$\begin{aligned} & 34.7 \\ & 1.366 \end{aligned}$
25	1-7/16-18	$\begin{aligned} & 43.7 \\ & 1.720 \end{aligned}$	$\begin{gathered} 17.4 \\ 0.685 \end{gathered}$	$\begin{aligned} & 19.5 \\ & 0.768 \end{aligned}$	$\begin{gathered} 47.0 \\ 1.850 \end{gathered}$	$\begin{aligned} & 36.0 \\ & 1.417 \end{aligned}$	$\begin{aligned} & 27.7 \\ & 1.091 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	$\begin{aligned} & 37.9 \\ & 1.492 \end{aligned}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

KMA Series Mesh Tape Backshells

KMAH Series for 38999 Series III and IV

Shell Size	A Thread	$\begin{gathered} \text { ØВ } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { Dax. } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { Max. } \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \text { Max. } \end{gathered}$	$\begin{gathered} K \pm 0.5 \\ (0.020) \end{gathered}$	$\boldsymbol{\varnothing} \mathbf{G}$ Min.	$\begin{gathered} \text { ØH } \\ \text { Max. } \end{gathered}$
09	M12 $\times 1.0$	$\begin{gathered} 18.0 \\ 0.709 \end{gathered}$	$\begin{gathered} 12.5 \\ 0.492 \end{gathered}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$	$\begin{gathered} 21.5 \\ 0.846 \end{gathered}$	$\begin{aligned} & 13.5 \\ & 0.531 \end{aligned}$	$\begin{gathered} 6.8 \\ 0.268 \end{gathered}$	$\begin{gathered} 13.2 \\ 0.520 \end{gathered}$
11	M15 x 1.0	$\begin{aligned} & 21.0 \\ & 0.827 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 0.512 \end{aligned}$	$\begin{aligned} & \mathbf{1 5 . 0} \\ & 0.591 \end{aligned}$	$\begin{gathered} \mathbf{2 3 . 0} \\ 0.906 \end{gathered}$	$\begin{aligned} & 23.0 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 0.571 \end{aligned}$	$\begin{gathered} 10.3 \\ 0.406 \end{gathered}$	$\begin{gathered} 16.7 \\ 0.657 \end{gathered}$
13	M18 $\times 1.0$	$\begin{aligned} & 24.5 \\ & 0.965 \end{aligned}$	$\begin{gathered} 13.6 \\ 0.535 \end{gathered}$	$\begin{aligned} & 15.5 \\ & 0.610 \end{aligned}$	$\begin{gathered} 27.0 \\ 1.063 \end{gathered}$	$\begin{aligned} & 24.5 \\ & 0.965 \end{aligned}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$	$\begin{gathered} 13.6 \\ 0.535 \end{gathered}$	$\begin{aligned} & 20.0 \\ & 0.787 \end{aligned}$
15	M22 $\times 1.0$	$\begin{aligned} & 29.0 \\ & 1.142 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 0.551 \end{aligned}$	$\begin{gathered} 16.0 \\ 0.630 \end{gathered}$	$\begin{aligned} & 28.0 \\ & 1.102 \end{aligned}$	$\begin{aligned} & \mathbf{2 8 . 5} \\ & 1.122 \end{aligned}$	$\begin{gathered} 16.5 \\ 0.650 \end{gathered}$	$\begin{gathered} 16.3 \\ 0.642 \end{gathered}$	$\begin{gathered} 22.7 \\ 0.894 \end{gathered}$
17	M25 $\times 1.0$	$\begin{aligned} & 32.5 \\ & 1.280 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 0.591 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 0.669 \end{aligned}$	$\begin{aligned} & 31.0 \\ & 1.220 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 1181 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$	$\begin{gathered} 19.5 \\ 0.768 \end{gathered}$	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$
19	M28 $\times 1.0$	$\begin{aligned} & 35.5 \\ & 1.398 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 0.630 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0.709 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 1.417 \end{aligned}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	$\begin{aligned} & 21.0 \\ & 0.827 \end{aligned}$	$\begin{gathered} 21.9 \\ 0.862 \end{gathered}$	$\begin{aligned} & \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$
21	M31 x 1.0	$\begin{gathered} 37.0 \\ 1.457 \end{gathered}$	$\begin{gathered} 16.6 \\ 0.654 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 0.728 \end{aligned}$	$\begin{aligned} & 39.0 \\ & 1.535 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 1.299 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 0.866 \end{aligned}$	$\begin{gathered} 25.2 \\ 0.992 \end{gathered}$	$\begin{gathered} 31.6 \\ 1.244 \end{gathered}$
23	M34x1.0	$\begin{aligned} & \mathbf{4 0 . 0} \\ & 1.575 \end{aligned}$	$\begin{gathered} 17.0 \\ 0.669 \end{gathered}$	$\begin{aligned} & 19.0 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 34.5 \\ & 1.358 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 0.906 \end{aligned}$	$\begin{aligned} & \hline \mathbf{2 8 . 3} \\ & 1.114 \end{aligned}$	$\begin{aligned} & 34.7 \\ & 1.366 \end{aligned}$
25	M37x1.0	$\begin{aligned} & 43.5 \\ & 1.713 \end{aligned}$	$\begin{gathered} 17.4 \\ 0.685 \end{gathered}$	$\begin{gathered} 19.5 \\ 0.768 \end{gathered}$	$\begin{gathered} 47.0 \\ 1.850 \end{gathered}$	$\begin{aligned} & 36.0 \\ & 1.417 \end{aligned}$	$\begin{gathered} 27.5 \\ 1.083 \end{gathered}$	$\begin{gathered} 31.5 \\ 1.240 \end{gathered}$	$\begin{gathered} 37.9 \\ 1.492 \end{gathered}$

Millimeters Inches

INDUSTRY STANDARD

- Meets AS85049 NAVAIR standards

RELIABLE

- Self-coupling locking nut provides excellent mechanical protection against loosening under vibration
- Corrosion resistant stainless steel

EASY TO USE

- Band straps available flat for side entry or precoiled for end entry
- Side-entry band straps allow easier installation and repair

VERSATILE

- Three band strap widths

Part Numbering System

Raychem AS85049 Band Straps

The AS85049 industry standard is used on most military circular connectors, including M38999. The band strap termination system provides ease of installation and repair. TE offers the corrosion-resisting steel bands in three styles to help meet your shield termination needs and termination tool of your choice.

APPLICATION TOOLING

- M85049/128-7 \& 8 AS81306/1-02
- M85049/128-3 \& 4 AS81306/1-01
- M85049/128-1 \& 2 AS81306/2-01

CONFIGURATION

1 Flat, 6.22 (0.245) Width
2 Precoiled, 6.22 (0.245) Width
3 Flat, 6.35 (0.250) Width
4 Precoiled, , 6.35 (0.250) Width
7 Flat, 3.05 (0.120) Width
8 Precoiled, 3.05 (0.120) Width

Raychem AS85049 Band Straps

FIGURE 1

FIGURE 2 CONFIGURATION 2

PRECOILED

FIGURE 3

FIGURE 4
CONFIGURATION 4 AND 8 PRECOILED

Configurations and Dimensions

Configuration	Figure	$\begin{aligned} & A \pm 1.52 \\ & (.060) \end{aligned}$	$\begin{gathered} \mathrm{B} \pm 0.79 \\ (.031) \end{gathered}$	$\begin{gathered} C \pm 0.25 \\ (.010) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \text { Ref. } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { Ref. } \end{gathered}$	$\begin{gathered} \text { F } \\ \text { Ref. } \end{gathered}$	$\begin{gathered} \mathbf{G} \\ \text { Max. } \end{gathered}$	$\underset{\text { Ref }}{\mathrm{H}}$ Ref.
1	1	$\begin{gathered} 355.6 \\ 14.0 \end{gathered}$	$\begin{gathered} 8.33 \\ 0.328 \end{gathered}$	$\begin{aligned} & 6.22 \\ & 0.245 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.019 \end{aligned}$	$\begin{aligned} & \mathbf{2 . 5 4} \\ & 0.100 \end{aligned}$	-	-	-
2	2	-	-	-	-	-	-	$\begin{aligned} & 3.56 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 44.46 \\ & 1.750 \end{aligned}$
3	3	$\begin{aligned} & 362.10 \\ & 14.526 \end{aligned}$	$\begin{aligned} & 8.89 \\ & 0.350 \end{aligned}$	$\begin{aligned} & 6.35 \\ & 0.250 \end{aligned}$	$\begin{gathered} 0.51 \\ 0.020 \end{gathered}$	$\begin{aligned} & 3.30 \\ & 0.130 \end{aligned}$	$\begin{aligned} & \mathbf{5 1 . 5 9} \\ & 2.031 \end{aligned}$	-	-
4	4	-	-	-	-	-	-	$\begin{aligned} & 3.81 \\ & 0.150 \end{aligned}$	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$
7	3	$\begin{gathered} 206.38 \\ 8.125 \end{gathered}$	$\begin{aligned} & 4.95 \\ & 0.195 \end{aligned}$	$\begin{aligned} & 3.05 \\ & 0.120 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 0.053 \end{aligned}$	$\begin{aligned} & \mathbf{5 1 . 5 9} \\ & 2.031 \end{aligned}$	-	-
8	4	-	-	-	-	-	-	$\begin{aligned} & 1.85 \\ & 0.073 \end{aligned}$	$\begin{gathered} 21.8 \\ 0.860 \end{gathered}$

Millimeters Inches

Raychem AS85049 Adapters and Bandstraps

Meeting NAVAIR requirements, Raychem AS85049 adapters help provide a reliable termination of shielded cables. The detented self-locking coupling nut helps provide mechanical protection against loosening under vibration and provides audible indication of proper engagement.

MATERIALS

- Adapters: Aluminum
- Plating: Olive drab cadmium, electroless nickel, or black zinc nickel

Part Numbering System

MIL-DTL-38999 Circular Connectors

Raychem AS85049 Adapters and Bandstraps

Straight Adapters AS85049/85 Adapters for 38999 Series I and II AS85049/88 Adapters for 38999 Series III and IV

Shell Size		A Dia. Max.	B Dia. $\pm .010$		C Dia. Ref		
		02	03	02	03		
9	A		$\begin{gathered} 21.8 \\ 0.858 \end{gathered}$	N/A	$\begin{gathered} 6.4 \\ 0.250 \end{gathered}$	N/A	$\begin{gathered} 10.0 \\ 0.395 \end{gathered}$
11	B	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$	N/A	$\begin{gathered} 7.9 \\ 0.312 \end{gathered}$	N/A	$\begin{gathered} 11.6 \\ 0.457 \end{gathered}$	
13	C	$\begin{aligned} & 29.4 \\ & 1.157 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 0.312 \end{aligned}$	$\begin{gathered} 11.1 \\ 0.438 \end{gathered}$	$\begin{aligned} & 11.6 \\ & 0.457 \end{aligned}$	$\begin{gathered} 14.8 \\ 0.583 \end{gathered}$	
15	D	$\begin{aligned} & 32.5 \\ & 1.279 \end{aligned}$	$\begin{gathered} 11.1 \\ 0.438 \end{gathered}$	$\begin{gathered} 14.3 \\ 0.562 \end{gathered}$	$\begin{gathered} 14.8 \\ 0.583 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 0.707 \end{aligned}$	
17	E	$\begin{gathered} 35.7 \\ 1.406 \end{gathered}$	$\begin{gathered} 12.7 \\ 0.500 \end{gathered}$	$\begin{gathered} 15.9 \\ 0.625 \end{gathered}$	$\begin{gathered} 16.4 \\ 0.645 \end{gathered}$	$\begin{gathered} 19.6 \\ 0.770 \end{gathered}$	
19	F	$\begin{aligned} & \mathbf{3 8 . 5} \\ & 1.516 \end{aligned}$	$\begin{gathered} 15.9 \\ 0.625 \end{gathered}$	$\begin{gathered} 19.1 \\ 0.750 \end{gathered}$	$\begin{gathered} 19.6 \\ 0.770 \end{gathered}$	$\begin{gathered} 22.7 \\ 0.895 \end{gathered}$	
21	G	$\begin{gathered} \hline 41.7 \\ 1.642 \end{gathered}$	$\begin{aligned} & 15.9 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 20.6 \\ & 0.812 \end{aligned}$	$\begin{gathered} \hline 19.6 \\ 0.770 \\ \hline \end{gathered}$	$\begin{gathered} 24.3 \\ 0.957 \end{gathered}$	
23	H	$\begin{aligned} & 44.9 \\ & 1.768 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.688 \end{gathered}$	$\begin{gathered} 23.8 \\ 0.938 \end{gathered}$	$\begin{gathered} 21.1 \\ 0.829 \end{gathered}$	$\begin{gathered} 27.5 \\ 1.083 \end{gathered}$	
25	J	$\begin{aligned} & 48.0 \\ & 1.889 \end{aligned}$	$\begin{gathered} 19.1 \\ 0.750 \end{gathered}$	$\begin{gathered} 25.4 \\ 1.000 \end{gathered}$	$\begin{aligned} & 22.7 \\ & 0.895 \end{aligned}$	$\begin{aligned} & 29.1 \\ & 1.145 \end{aligned}$	

Millimeters Inches

MIL-DTL-38999 Circular Connectors

Raychem AS85049 Adapters and Bandstraps

45° Adapters
AS85049/86 Adapters for 38999 Series I and II AS85049/89 Adapters for 38999 Series III and IV

ØB

Shell Size		A Dia. Max.	B Dia. $\pm .010$		C Dia. Ref		D	E	F Ref.		G Max.		
		02	03	02	03	02			03	02	03		
9	A		$\begin{aligned} & 21.8 \\ & 0.858 \end{aligned}$	N/A	$\begin{gathered} 6.4 \\ 0.250 \end{gathered}$	N/A	$\begin{gathered} 10.0 \\ 0.395 \end{gathered}$	$\begin{gathered} 25.7 \\ 1.01 \end{gathered}$	$\begin{gathered} 29.5 \\ 1.16 \end{gathered}$	N/A	$\begin{aligned} & \mathbf{5 6 . 3} \\ & 2.22 \end{aligned}$	N/A	$\begin{aligned} & 50.0 \\ & 1.97 \end{aligned}$
11	B	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$	N/A	$\begin{gathered} 7.9 \\ 0.312 \end{gathered}$	N/A	$\begin{gathered} 11.6 \\ 0.457 \end{gathered}$	$\begin{aligned} & 26.2 \\ & 1.03 \end{aligned}$	$\begin{gathered} 30.2 \\ 1.19 \end{gathered}$	N/A	$\begin{aligned} & \mathbf{5 7 . 9} \\ & 2.28 \end{aligned}$	N/A	$\begin{aligned} & 51.6 \\ & 2.03 \end{aligned}$	
13	C	$\begin{aligned} & 29.4 \\ & 1.157 \end{aligned}$	$\begin{gathered} 7.9 \\ 0.312 \end{gathered}$	$\begin{gathered} 11.1 \\ 0.438 \end{gathered}$	$\begin{gathered} 11.6 \\ 0.457 \end{gathered}$	$\begin{gathered} 14.8 \\ 0.583 \end{gathered}$	$\begin{aligned} & 26.9 \\ & 1.06 \end{aligned}$	$\begin{gathered} 30.7 \\ 1.21 \end{gathered}$	$\begin{aligned} & 59.1 \\ & 2.33 \end{aligned}$	$\begin{aligned} & 60.2 \\ & 2.37 \end{aligned}$	$\begin{aligned} & 52.8 \\ & 2.08 \end{aligned}$	$\begin{gathered} \mathbf{5 3 . 9} \\ 2.12 \end{gathered}$	
15	D	$\begin{aligned} & 32.5 \\ & 1.279 \end{aligned}$	$\begin{gathered} 11.1 \\ 0.438 \end{gathered}$	$\begin{gathered} 14.3 \\ 0.562 \end{gathered}$	$\begin{gathered} 14.8 \\ 0.583 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 0.707 \end{aligned}$	$\begin{aligned} & 27.4 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 1.24 \end{aligned}$	$\begin{aligned} & 61.2 \\ & 2.41 \end{aligned}$	$\begin{aligned} & \mathbf{6 2 . 4} \\ & 2.46 \end{aligned}$	$\begin{gathered} \mathbf{5 4 . 9} \\ 2.16 \end{gathered}$	$\begin{aligned} & \hline \mathbf{5 6 . 1} \\ & 2.21 \end{aligned}$	
17	E	$\begin{array}{r} 35.7 \\ 1.406 \end{array}$	$\begin{aligned} & 12.7 \\ & 0.500 \end{aligned}$	$\begin{aligned} & 15.9 \\ & 0.625 \end{aligned}$	$\begin{gathered} 16.4 \\ 0.645 \end{gathered}$	$\begin{aligned} & 19.6 \\ & 0.770 \end{aligned}$	$\begin{gathered} 28.2 \\ 1.11 \end{gathered}$	$\begin{aligned} & 32.0 \\ & 1.26 \end{aligned}$	$\begin{aligned} & 62.9 \\ & 2.48 \end{aligned}$	$\begin{aligned} & 64.0 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 56.6 \\ & 2.23 \end{aligned}$	$\begin{aligned} & \mathbf{5 7 . 7} \\ & 2.27 \end{aligned}$	
19	F	$\begin{aligned} & 38.5 \\ & 1.516 \end{aligned}$	$\begin{aligned} & 15.9 \\ & 0.625 \end{aligned}$	$\begin{gathered} 19.1 \\ 0.750 \end{gathered}$	$\begin{gathered} 19.6 \\ 0.770 \end{gathered}$	$\begin{gathered} 22.7 \\ 0.895 \end{gathered}$	$\begin{gathered} 28.4 \\ 1.12 \end{gathered}$	$\begin{aligned} & 32.3 \\ & 1.27 \end{aligned}$	$\begin{aligned} & 64.5 \\ & 2.54 \end{aligned}$	$\begin{aligned} & 65.6 \\ & 2.58 \end{aligned}$	$\begin{aligned} & 58.2 \\ & 2.29 \end{aligned}$	$\begin{aligned} & \mathbf{5 9 . 3} \\ & 2.33 \end{aligned}$	
21	G	$\begin{gathered} 41.7 \\ 1.642 \end{gathered}$	$\begin{aligned} & 15.9 \\ & 0.625 \end{aligned}$	$\begin{aligned} & 20.6 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 0.770 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 0.957 \end{aligned}$	$\begin{gathered} 29.2 \\ 1.15 \end{gathered}$	$\begin{aligned} & 33.0 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 65.8 \\ & 2.59 \end{aligned}$	$\begin{aligned} & 67.5 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 59.5 \\ & 2.34 \end{aligned}$	$\begin{aligned} & \mathbf{6 1 . 2} \\ & 2.41 \end{aligned}$	
23	H	$\begin{aligned} & 44.9 \\ & 1.768 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 0.688 \end{aligned}$	$\begin{gathered} 23.8 \\ 0.938 \end{gathered}$	$\begin{gathered} 21.1 \\ 0.829 \end{gathered}$	$\begin{gathered} 27.5 \\ 1.083 \end{gathered}$	$\begin{gathered} 29.7 \\ 1.17 \end{gathered}$	$\begin{aligned} & 33.8 \\ & 1.33 \end{aligned}$	$\begin{aligned} & 67.4 \\ & 2.65 \end{aligned}$	$\begin{aligned} & 69.6 \\ & 2.74 \end{aligned}$	$\begin{aligned} & 61.1 \\ & 2.40 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 2.49 \end{aligned}$	
25	J	$\begin{array}{r} 48.0 \\ 1.889 \\ \hline \end{array}$	$\begin{gathered} 19.1 \\ 0.750 \\ \hline \end{gathered}$	$\begin{gathered} \hline 25.4 \\ 1.000 \\ \hline \end{gathered}$	$\begin{gathered} 22.7 \\ 0.895 \end{gathered}$	$\begin{array}{r} 29.1 \\ 1.145 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{3 0 . 5} \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{3 4 . 3} \\ & 1.35 \\ & \hline \end{aligned}$	$\begin{aligned} & 69.1 \\ & 2.72 \end{aligned}$	$\begin{aligned} & 71.3 \\ & 2.81 \\ & \hline \end{aligned}$	$\begin{aligned} & 62.8 \\ & 2.47 \end{aligned}$	$\begin{aligned} & 65.0 \\ & 2.56 \\ & \hline \end{aligned}$	

Millimeters Inches

Raychem AS85049 Adapters and Bandstraps

90° Adapters
AS85049/87 Adapters for 38999 Series I and II AS85049/90 Adapters for 38999 Series III and IV

Shell Size		A Dia. Max.	B Dia. $\pm .010$		C Dia. Ref		D	E	F Ref.	
		02	03	02	03					
9	A		$\begin{gathered} 21.8 \\ 0.858 \end{gathered}$	N/A	$\begin{gathered} 6.4 \\ 0.250 \end{gathered}$	N/A	$\begin{aligned} & 10.0 \\ & 0.395 \end{aligned}$	$\begin{aligned} & 34.9 \\ & 1.375 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 1.417 \end{aligned}$	$\begin{gathered} 41.2 \\ 1.623 \end{gathered}$
11	B	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$	N/A	$\begin{gathered} 7.9 \\ 0.312 \end{gathered}$	N/A	$\begin{gathered} 11.6 \\ 0.457 \end{gathered}$	$\begin{aligned} & 36.5 \\ & 1.437 \end{aligned}$	$\begin{gathered} 37.6 \\ 1.480 \end{gathered}$	$\begin{aligned} & 42.8 \\ & 1.685 \end{aligned}$	
13	C	$\begin{aligned} & 29.4 \\ & 1.157 \end{aligned}$	$\begin{gathered} 7.9 \\ 0.312 \end{gathered}$	$\begin{gathered} 11.1 \\ 0.438 \end{gathered}$	$\begin{gathered} 11.6 \\ 0.457 \end{gathered}$	$\begin{gathered} 14.8 \\ 0.583 \end{gathered}$	$\begin{aligned} & 39.7 \\ & 1.562 \end{aligned}$	$\begin{aligned} & 39.4 \\ & 1.553 \end{aligned}$	$\begin{aligned} & 46.0 \\ & 1.810 \end{aligned}$	
15	D	$\begin{aligned} & 32.5 \\ & 1.279 \end{aligned}$	$\begin{gathered} 11.1 \\ 0.438 \end{gathered}$	$\begin{gathered} 14.3 \\ 0.562 \end{gathered}$	$\begin{aligned} & 14.8 \\ & 0.583 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0.707 \end{aligned}$	$\begin{aligned} & 42.8 \\ & 1.687 \end{aligned}$	$\begin{aligned} & 41.0 \\ & 1.614 \end{aligned}$	$\begin{gathered} 49.1 \\ 1.935 \end{gathered}$	
17	E	$\begin{aligned} & 35.7 \\ & 1.406 \end{aligned}$	$\begin{gathered} 12.7 \\ 0.500 \end{gathered}$	$\begin{aligned} & 15.9 \\ & 0.625 \end{aligned}$	$\begin{gathered} 16.4 \\ 0.645 \end{gathered}$	$\begin{aligned} & 19.6 \\ & 0.770 \end{aligned}$	$\begin{aligned} & 44.4 \\ & 1.750 \end{aligned}$	$\begin{aligned} & 42.6 \\ & 1.678 \end{aligned}$	$\begin{aligned} & 50.8 \\ & 1.998 \end{aligned}$	
19	F	$\begin{aligned} & 38.5 \\ & 1.516 \end{aligned}$	$\begin{gathered} 15.9 \\ 0.625 \end{gathered}$	$\begin{gathered} 19.1 \\ 0.750 \end{gathered}$	$\begin{aligned} & 19.6 \\ & 0.770 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 0.895 \end{aligned}$	$\begin{aligned} & 47.6 \\ & 1.875 \end{aligned}$	$\begin{aligned} & 45.0 \\ & 1.773 \end{aligned}$	$\begin{aligned} & 53.9 \\ & 2.123 \end{aligned}$	
21	G	$\begin{gathered} 41.7 \\ 1.642 \end{gathered}$	$\begin{gathered} 15.9 \\ 0.625 \end{gathered}$	$\begin{aligned} & 20.6 \\ & 0.812 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 0.770 \end{aligned}$	$\begin{aligned} & 24.3 \\ & 0.957 \end{aligned}$	$\begin{aligned} & 49.2 \\ & 1.938 \end{aligned}$	$\begin{aligned} & 45.6 \\ & 1.796 \end{aligned}$	$\begin{aligned} & 55.5 \\ & 2.186 \end{aligned}$	
23	H	$\begin{aligned} & 44.9 \\ & 1.768 \end{aligned}$	$\begin{gathered} 17.5 \\ 0.688 \end{gathered}$	$\begin{gathered} 23.8 \\ 0.938 \end{gathered}$	$\begin{gathered} 21.1 \\ 0.829 \end{gathered}$	$\begin{gathered} 27.5 \\ 1.083 \end{gathered}$	$\begin{gathered} \mathbf{5 2 . 4} \\ 2.062 \end{gathered}$	$\begin{gathered} 47.2 \\ 1.859 \end{gathered}$	$\begin{aligned} & 58.7 \\ & 2.310 \end{aligned}$	
25	J	$\begin{aligned} & 48.0 \\ & 1.889 \end{aligned}$	$\begin{gathered} 19.1 \\ 0.750 \\ \hline \end{gathered}$	$\begin{gathered} 25.4 \\ 1.000 \\ \hline \end{gathered}$	$\begin{gathered} 22.7 \\ 0.895 \end{gathered}$	$\begin{array}{r} 29.1 \\ 1.145 \end{array}$	$\begin{aligned} & 54.0 \\ & 2.125 \end{aligned}$	$\begin{aligned} & 48.7 \\ & 1.919 \end{aligned}$	$\begin{aligned} & 60.3 \\ & 2.373 \end{aligned}$	

Millimeters Inches

Raychem AS85049 Adapters and Bandstraps

AS85049/128 Band Straps

FIGURE 1
\rightleftarrows

FIGURE 2 CONFIGURATION 2 PRECOILED

FIGURE 3

FIGURE 4 CONFIGURATION 4 AND 8 PRECOILED

Raychem HexaShield EMC Adaptors

High-Performance EMC Protection for Harsh Military and Commercial Environments

Raychem HexaShield high-performance adaptors help provide excellent EMC protection and reliability in a variety of military and commercial applications.
Easy to install, maintain and repair, HexaShield adaptors help provide outstanding shielding effectiveness by providing 360-degree EMC shielding on the termination area of each individual cable. They are available for circular connectors in a variety of angles, plus swept and long body configurations.
HexaShield adaptors outperform traditional pigtail terminations, especially in HIRF application. They provide excellent EMC protection with minimal degradation of shielding performance. The adaptors also help provide excellent mechanical and environmental protection.

Specifications

MATERIALS

- Shell: Aluminum alloy
- Platings: Electroless nickel (MIL-DTL-26074) or olive drab cadmium (QQ-P-416 Type II, Class 3)

INSTALLATION PROCEDURES

- RPIP-696-00: HEX-A-O2X and HET-A-O4X
- RPIP-696-03: HET-O3X

GENERAL PROCEDURES

- RPIP-696-07: Cylindrical connectors, right-angle body
- RPIP-696-04: Cylindrical connectors, straight body

Raychem HexaShield EMC Adaptors

HexaShield Adaptors for Circular Connectors

MIL-DTL-38999 Circular Connectors

Raychem HexaShield EMC Adaptors

HexaShield Adaptor for Circular Connectors

Part Numbering System

RILLED STAR
See Applicable SCD for Star Options

HexaShield Ferrule Kits

Use	Part No.	
	Cadmium Finish	Electroless Nickel Finish
Small-Size Cable with SolderShield Terminator	HET-A-O2B	HET-A-O2C
Ferrules with Heat-Shrinkable Tubing for Unshielded Cables	HET-A-O3B	HET-A-O3C
Large-Size Cable with SolderShield Terminator	HET-A-O4B	HET-A-O4C
Ferrule, Solid Blank for Use When HET-A Is Not Needed	HEXO7-AB	HEXO7-AC

Raychem HexaShield EMC Adaptors

Generalized System Performance

(Actual system performance in any one test method may differ.)

Transfer Impedance

Protection Level

Frequency Spectrum Of Test Methods

Stirred Mode

ACTOO Lightweight Composite Tie-Style Strain Relief Adapters

ACTOO strain relief adapters offer composite bodies to help provide a simple, lightweight strain relief for cable uses in lightduty application. Cable can be secured to the body adapter with a tie wrap. Body adapters are available with various conductive platings to help support grounding, while a secondary grommet provides wire sealing.
The adapters are available with inserts to match the insert arrangement of the connector on which it is used.

MATERIALS

- Coupling Nut and Body Adapter: Composite
- Body Adapter Finish: Nickel, tin, or olive drab cadmium
- Secondary Grommet: Silicone elastomer

Shell Size	$\begin{gathered} \varnothing A \\ \pm 0.15(0.006) \end{gathered}$	$\begin{gathered} \text { B } \\ \pm 0.80(0.031) \end{gathered}$	Strength Bending Moment, Min. (kg, lb.)
9 (A)	$\begin{aligned} & 0.650 \\ & 0.026 \end{aligned}$	$\begin{aligned} & 1.948 \\ & 0.077 \end{aligned}$	$\begin{aligned} & 11 \\ & 25 \end{aligned}$
11 (B)	$\begin{aligned} & 0.775 \\ & 0.031 \end{aligned}$	$\begin{aligned} & 2.010 \\ & 0.079 \end{aligned}$	$\begin{aligned} & 11 \\ & 25 \end{aligned}$
13 (C)	$\begin{aligned} & 0.905 \\ & 0.036 \end{aligned}$	$\begin{aligned} & 2.075 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 11 \\ & 25 \end{aligned}$
15 (D)	$\begin{aligned} & 1.030 \\ & 0.041 \end{aligned}$	$\begin{aligned} & 2.135 \\ & 0.084 \end{aligned}$	$\begin{aligned} & 22 \\ & 50 \end{aligned}$
17 (E)	$\begin{aligned} & 1.160 \\ & 0.046 \end{aligned}$	$\begin{aligned} & 2.198 \\ & 0.087 \end{aligned}$	$\begin{aligned} & \mathbf{2 2} \\ & 50 \\ & \hline \end{aligned}$
19 (F)	$\begin{aligned} & 1.270 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 2.258 \\ & 0.089 \end{aligned}$	$\begin{aligned} & 22 \\ & 50 \end{aligned}$
21 (G)	$\begin{aligned} & 1.400 \\ & 0.055 \end{aligned}$	$\begin{aligned} & 2.320 \\ & 0.091 \end{aligned}$	$\begin{aligned} & 34 \\ & 75 \end{aligned}$
23 (H)	$\begin{aligned} & 1.525 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 2.383 \\ & 0.094 \end{aligned}$	$\begin{aligned} & 34 \\ & 75 \end{aligned}$
25 (J)	$\begin{aligned} & 1.655 \\ & 0.065 \end{aligned}$	$\begin{aligned} & 2.445 \\ & 0.096 \end{aligned}$	$\begin{gathered} 45 \\ 100 \end{gathered}$

Millimeters Inches

MIL-DTL-38999 Circular Connectors

ACTOO Lightweight Composite Tie-Style Strain Relief Adapters

Part Numbering System

Cable Code Table: Use to Specify the Insert Arrangement

Cable Code	Insert Arrangement	Cable Code	Insert Arrangement
38	09-35	53	17-35
39	09-98	54	19-11
40	11-05	55	19-32
41	11-35	56	19-35
42	11-99	57	21-11
43	13-04	58	21-16
44	13-35	59	21-35
45	13-98	60	21-41
46	15-05	61	23-21
47	15-18	62	23-35
48	15-35	63	23-53
49	15-97	64	23-55
50	17-06	65	25-04
51	17-08	66	25-19
52	17-26	67	25-20

Cable Code	Insert Arrangement
68	$25-24$
69	$25-29$
70	$25-35$
71	$25-61$
92	$11-98$
93	$15-19$
94	$13-08$
95	$17-99$
96	$21-39$
97	$25-43$
98	$15-23$
99	$17-19$
100	$15-26$

MIL-DTL-38999 Circular Connectors

38999-Style Accessories

Metal Protective Covers

Series III

Plug Cap
(with attachment)

Shell Size	A Max.	B Max.
$\mathbf{0} 9$	$\mathbf{1 4 . 5 6}$	$\mathbf{2 0 . 8 3}$
	0.573	0.820
$\mathbf{1 1}$	$\mathbf{1 7 . 8 1}$	$\mathbf{2 3 . 8 8}$
	0.701	0.940
$\mathbf{1 3}$	$\mathbf{2 1 . 6 2}$	$\mathbf{2 7 . 1 8}$
	0.851	1.070
$\mathbf{1 5}$	$\mathbf{2 4 . 8 4}$	$\mathbf{3 0 . 2 3}$
	0.978	1.190
$\mathbf{1 7}$	$\mathbf{2 8 . 0 2}$	$\mathbf{3 3 . 5 3}$
	1.103	1.320
$\mathbf{1 9}$	$\mathbf{3 0 . 7 3}$	$\mathbf{3 6 . 5 8}$
	1.210	1.440
$\mathbf{2 1}$	$\mathbf{3 3 . 9 1}$	$\mathbf{3 9 . 8 8}$
	1.335	1.570
$\mathbf{2 3}$	$\mathbf{3 7 . 0 8}$	$\mathbf{4 2 . 9 2}$
	1.460	1.690
$\mathbf{2 5}$	$\mathbf{4 0 . 2 6}$	$\mathbf{4 6 . 2 3}$
	1.585	1.820
Millimeters Inches		

Millimeters Inches

Series I

Receptacle Cap
(with attachment)

Shell Size	A Max.
09	$\mathbf{2 1 . 8 4}$
	0.860
11	24.89
	0.980
13	29.46
	1.160
15	32.51
	1.280
17	35.81
	1.410
19	38.61
	1.520
21	41.91
	1.650
25	44.96
	1.770

Millimeters Inches

38999-Style Accessories

Metal Protective Covers

Series III

Plug Cap
(with attachment)

Shell Size	$\begin{gathered} \varnothing A \\ +0.03 /-0.13 \\ (0.001 / 0.005) \end{gathered}$	$\begin{gathered} \varnothing \text { В } \\ \text { Max. } \end{gathered}$	$\varnothing G$ Min.
08	$\begin{aligned} & 12.00 \\ & 0.472 \end{aligned}$	$\begin{aligned} & 18.28 \\ & 0.720 \end{aligned}$	$\begin{gathered} 10.60 \\ 0.417 \end{gathered}$
10	$\begin{aligned} & 14.99 \\ & 0.590 \end{aligned}$	$\begin{aligned} & 21.59 \\ & 0.850 \end{aligned}$	$\begin{aligned} & 13.72 \\ & 0.540 \end{aligned}$
12	$\begin{aligned} & 19.05 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 17.50 \\ & 0.689 \end{aligned}$
14	$\begin{aligned} & 22.23 \\ & 0.875 \end{aligned}$	$\begin{gathered} 28.70 \\ 1.130 \end{gathered}$	$\begin{aligned} & 20.67 \\ & 0.814 \end{aligned}$
16	$\begin{aligned} & 25.40 \\ & 1.000 \end{aligned}$	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & 24.00 \\ & 0.945 \end{aligned}$
18	$\begin{gathered} 28.58 \\ 1.125 \end{gathered}$	$\begin{aligned} & 35.05 \\ & 1.380 \end{aligned}$	$\begin{aligned} & 26.39 \\ & 1.039 \end{aligned}$
20	$\begin{aligned} & 31.75 \\ & 1.250 \end{aligned}$	$\begin{aligned} & \mathbf{3 8 . 1 0} \\ & 1.500 \end{aligned}$	$\begin{gathered} 29.60 \\ 1.165 \end{gathered}$
22	$\begin{aligned} & \mathbf{3 4 . 9 3} \\ & 1.375 \end{aligned}$	$\begin{aligned} & 41.40 \\ & 1.630 \end{aligned}$	$\begin{aligned} & 32.74 \\ & 1.289 \end{aligned}$
24	$\begin{aligned} & 38.10 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 44.45 \\ & 1.750 \end{aligned}$	$\begin{aligned} & 35.92 \\ & 1.414 \end{aligned}$

Millimeters Inches

38999-Style Accessories

Metal Protective Covers

Series III
Plug Cap
(with attachment)

Shell Size	$\varnothing \mathbf{A}$ Max.	$\varnothing \subset$ Min.
09	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$	$\begin{gathered} 12.6 \\ 0.496 \end{gathered}$
11	$\begin{gathered} 24.5 \\ 0.965 \end{gathered}$	$\begin{gathered} 15.8 \\ 0.622 \end{gathered}$
13	$\begin{aligned} & 28.0 \\ & 1.102 \end{aligned}$	$\begin{gathered} 19.4 \\ 0.764 \end{gathered}$
15	$\begin{aligned} & 30.0 \\ & 1.181 \end{aligned}$	$\begin{gathered} 22.6 \\ 0.890 \end{gathered}$
17	$\begin{aligned} & 34.0 \\ & 1.339 \end{aligned}$	$\begin{aligned} & 25.8 \\ & 1.016 \end{aligned}$
19	$\begin{aligned} & 37.0 \\ & 1.457 \end{aligned}$	$\begin{aligned} & 28.6 \\ & 1.126 \end{aligned}$
21	$\begin{aligned} & 40.0 \\ & 1.575 \end{aligned}$	$\begin{aligned} & 31.8 \\ & 1.252 \end{aligned}$
23	$\begin{aligned} & 43.0 \\ & 1.693 \end{aligned}$	$\begin{aligned} & 34.8 \\ & 1.370 \end{aligned}$
25	$\begin{aligned} & 47.0 \\ & 1.850 \end{aligned}$	$\begin{gathered} \mathbf{3 8 . 1} \\ 1.500 \end{gathered}$

Millimeters Inches

Series III

Receptacle Cap
(with attachment)

Shell Size	ØA Max.
09	18.0
	0.709
11	21.4
	0.843
13	25.8
	1.016
15	28.8
	1.134
17	32.0
	1.260
19	35.0
	1.378
21	38.3
	1.508
25	41.7
	1.642

Millimeters Inches

38999-Style Accessories

Metal Protective Covers

Series III

Anti-Decoupling Cap
(with attachment)

Shell Size	$\boldsymbol{\varnothing B}$ Max.
09	21.8
	0.858
11	25.0
	0.984
13	29.4
	1.157
15	32.5
	1.280
17	35.7
	1.406
19	38.5
	1.516
21	41.7
	1.642
25	44.9
	1.768

Millimeters Inches

Series III

Anti-Tamper Cap
(with attachment)

Shell Size	$\boldsymbol{\varnothing B}$ Max.
09	22.6
	0.890
11	26.1
	1.028
13	29.3
	1.154
15	32.5
	1.280
17	37.9
	1.492
19	38.8
	1.528
21	42.0
	1.654
25	45.5
	1.791

Millimeters Inches

38999-Style Accessories

Metal Protective Covers

Series III
Arctic Grip Plug Cap
(with attachment)

Shell Size	$\begin{aligned} & \text { ØA } \\ & \text { Max. } \end{aligned}$
09	$\begin{gathered} 21.0 \\ 0.827 \end{gathered}$
11	$\begin{aligned} & 25.0 \\ & 0.984 \end{aligned}$
13	$\begin{aligned} & 28.0 \\ & 1.102 \end{aligned}$
15	$\begin{aligned} & 31.0 \\ & 1.220 \end{aligned}$
17	$\begin{aligned} & 35.0 \\ & 1.378 \end{aligned}$
19	$\begin{gathered} \hline \mathbf{3 7 . 0} \\ 1.457 \\ \hline \end{gathered}$
21	$\begin{aligned} & 40.0 \\ & 1.575 \end{aligned}$
23	$\begin{aligned} & 43.0 \\ & 1.693 \end{aligned}$
25	$\begin{gathered} 47.0 \\ 1.850 \end{gathered}$

Millimeters Inches

Series III

Arctic Grip Receptacle Cap
(with attachment)

Shell Size	$\boldsymbol{\varnothing B}$ Max.
09	23.7
	0.933
11	27.2
	1.071
13	30.7
	1.209
$\mathbf{1 5}$	32.7
	1.287
$\mathbf{1 7}$	36.7
	1.445
19	39.7
	1.563
21	42.7
	1.681
25	45.7
	1.799

Millimeters Inches

MIL-DTL-38999 Circular Connectors

Metal Protective Covers for 38999 Series III
POLAMCO Protective Caps - Lanyard Options

POLAMCO Connector Savers

38999-Style Series III and Series IV Connectors

POLAMCO Connector Savers help protect connectors that are mated and unmated frequently. The one-piece connectors use plug interface on one end and a receptacle interface on the other to allow them to serve as an intermediary between plug and receptacle connector. This helps allow the connector saver to take the wear and tear of repeated mating cycles. In particular, this helps allow box-mounted receptacles to be more protected from wear and the eventual need to be replaced.

POLAMCO connector savers are available in both MIL-DTL-38999 Series III and IV styles. Options include aluminum, stainless steel, or marine bronze shells with a wide range of plating options.

- Shell Material: Aluminum, stainless steel, or nickel aluminum bronze
- Finish: See part numbering description
- Seals: Silicone elastomer
- Insert: Thermoset plastic
- Contacts: Copper alloy, gold plated

POLAMCO Connector Savers

38999-Style Series III and Series IV Connectors

Series III Connector Saver

Series IV Connector Saver

Shell Size	\varnothing B	
	Series III	Series IV
9	$\begin{gathered} 21.8 \\ 0.858 \end{gathered}$	-
11	$\begin{gathered} 25.0 \\ 0.984 \end{gathered}$	$\begin{gathered} 26.6 \\ 1.047 \end{gathered}$
13	$\begin{aligned} & 29.4 \\ & 1.157 \end{aligned}$	$\begin{gathered} 31.0 \\ 1.220 \end{gathered}$
15	$\begin{aligned} & \mathbf{3 2 . 5} \\ & 1.280 \end{aligned}$	$\begin{aligned} & 34.2 \\ & 1.346 \end{aligned}$
17	$\begin{gathered} 35.7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 37.4 \\ & 1.472 \end{aligned}$
19	$\begin{aligned} & \mathbf{3 8 . 5} \\ & 1.516 \end{aligned}$	$\begin{aligned} & 40.2 \\ & 1.583 \end{aligned}$
21	$\begin{gathered} 41.7 \\ 1.642 \end{gathered}$	$\begin{aligned} & 43.3 \\ & 1.705 \end{aligned}$
23	$\begin{aligned} & 44.9 \\ & 1.768 \end{aligned}$	$\begin{aligned} & 46.5 \\ & 1.831 \end{aligned}$
25	$\begin{aligned} & 48.0 \\ & 1.890 \end{aligned}$	$\begin{aligned} & 49.7 \\ & 1.957 \end{aligned}$

Millimeters Inches

POLAMCO Connector Savers

38999-Style Series III and Series IV Connectors

DEUTSCH CBC Series Circuit Board Connectors

38999 Series III Style Connectors with Bussed Contacts

DEUTSCH CBC connectors contain an internal printed circuit board used to bus contacts. A number of bussing arrangements are available. The lightweight connectors are available with either composite or aluminum shells. They offer an integrated solution for bussing needs by eliminating the need for external components.

Specifications

- Current: Traces and sockets carry current levels up to the threshold of a: MS22073-3 circuit breaker for contact size 22 MS22073-5 circuit breaker for contact size 20 MS22073-7.5 circuit breaker for contact size 16
- Conformal Coating: per MIL-I-46058 and able to withstand 100 VDC for two seconds
- Insulation Resistance: greater than 100 megohms when tested at 45 VDC
- Applicable Specifications: IPC-600C
IPC 0-275
MIL-P-55110
MS22073
MIL-I-46058
MIL-STD-1560
- Frequency: maximum of 3200 Hz (analog circuit) and $100 \mathrm{~kb} / \mathrm{s}$ (for ARINC 429 signals)
- Circuit-to-Circuit Crosstalk Rejection: minimum of 60 dB , nominal 80 dB
- Temperature: $125^{\circ} \mathrm{C}$ maximum continuous operating temperature for finished circuit board

MIL-DTL-38999 Circular Connectors

DEUTSCH CBC Series Circuit Board Connectors

	CBC Connector Base Typical Part No.			
	$\mathbf{5 9 0 5 2}$	$\mathbf{5 9 1 0 8}$	$\mathbf{6 6 3 6 3}$	$\mathbf{5 9 0 9 1}$
Shell Sizes	$13,15,19,25$	15	$9,11,13,15,17,19,23,25$	$\mathbf{2 5}$
Shell Material	Composite	Composite	Aluminum	Nickel-Plated Composite
Backpack Cover		Composite or Aluminum	Nickel-Plated Composite	
Contacts	Copper Alloy	Copper Alloy		
Contact Plating	DEUTSCH COAT V	Gold over Nickel		
Resilient Inserts		Silicone Elastomers		
Plastic Inserts		Thermoplastic		

Dimensions

Shell Size	ØA Max.	øв Max.
9	$\begin{aligned} & 21.79 \\ & 0.858 \end{aligned}$	$\begin{aligned} & 18.29 \\ & 0.720 \end{aligned}$
11	$\begin{aligned} & 24.99 \\ & 0.984 \end{aligned}$	$\begin{aligned} & 21.21 \\ & 0.835 \end{aligned}$
13	$\begin{gathered} 29.39 \\ 1.157 \end{gathered}$	$\begin{aligned} & \mathbf{2 4 . 2 1} \\ & 0.953 \end{aligned}$
15	$\begin{aligned} & 32.49 \\ & 1.279 \end{aligned}$	$\begin{aligned} & 28.19 \\ & 1.110 \end{aligned}$
17	$\begin{aligned} & 35.69 \\ & 1.405 \end{aligned}$	$\begin{aligned} & 31.19 \\ & 1.228 \end{aligned}$
19	$\begin{gathered} 38.48 \\ 1.515 \end{gathered}$	$\begin{aligned} & \mathbf{3 4 . 2 1} \\ & 1.347 \end{aligned}$
23	$\begin{aligned} & 44.91 \\ & 1.768 \end{aligned}$	$\begin{aligned} & 40.21 \\ & 1.583 \end{aligned}$
25	$\begin{aligned} & 47.98 \\ & 1.889 \end{aligned}$	$\begin{aligned} & 43.18 \\ & 1.700 \end{aligned}$

Part Numbering
See each product family for availability of different options.
Consult TE for configurations not shown here.

MIL-DTL-38999 Circular Connectors

59052 Composite Plug

| Insert Arrangement 13-98
 Trace Pattern A |
| :---: | :---: |
| Typical Part No. 59052-13A98PN |

Insert Arrangement 13-98
Trace Pattern B
Typical Part No. 59052-13B98PN

Buss Size	Contact Numbers
2 Bussed Contacts	E, H
	F, G
3 Bussed Contacts	A, B, J
Spare	C, D, K

Insert Arrangement 19-32 Trace Pattern A
Typical Part No. 59052-19A32SN

Buss Size	Contact Numbers
3 Bussed Contacts	D, E, F
4 Bussed Contacts	U, V, W, X
5 Bussed Contacts	d, e, f, g, h
	A, B, C, G, H
Spare	J, K, L, M, N
	P, R, S, T, Y
	Z, a, b, C, j

\(\left.$$
\begin{array}{cc}\hline \begin{array}{c}\text { Insert Arrangement 25-04 } \\
\text { Trace Pattern C }\end{array}
$$

Typical Part No. 59052-25C04SA\end{array}\right]\)| Contact Numbers | |
| :---: | :---: |
| 3 Bussed Contacts | M, N, P |
| Bussed Contacts | A, B, C, D |
| | DD, EE, FF, JJ |

Insert Arrangement 25-35 Trace Pattern - (Dash) Typical Part No. 59052-25-35PN	
Buss Size	Contact Numbers
3 Bussed Contacts	$\begin{array}{r} 1,2,3 \\ 4,5,6 \\ 8,9,10 \end{array}$ 11, 12, 13 14, 24, 35 23, 34, 46 47, 57, 58 59, 60, 61 62, 63, 64 65, 66, 67 68, 69, 70 80, 81, 93 92, 103, 113 104, 114, 121 115, 116, 117 118, 119, 120 122, 123, 124 125, 126, 127
4 Bussed Contacts	$\begin{gathered} 15,16,17,18 \\ 19,20,21,22 \\ 26,27,28,29 \\ 30.31,32,33 \\ 95,96,97,98 \\ 99,100,101,102 \\ 105,106,107,108 \\ 109,110,111,112 \end{gathered}$
5 Bussed Contacts	$\begin{aligned} & 25,37,38,39,40 \\ & 41,42,43,44,45 \\ & 36,48,49,50,51 \\ & 52,53,54,55,56 \\ & 82,71,72,73,74 \\ & 75,76,77,78,79 \\ & 94,83,84,85,86 \\ & 87,88,89,90,91 \end{aligned}$
Spare	7, 28
Insert Arrangement 25-61 Trace Pattern - (Dash) Typical Part No. 59052-25-61PN	
Buss Size	Contact Numbers
4 Bussed Contacts	$\begin{gathered} \text { G, H, g, h } \\ \text { J, I, y, z } \\ \text { P, m, CC, MM } \\ \text { R, n, DD, EE } \\ \text { S, T, U, V } \\ \text { W, X, Y, I } \\ \text { Z, u, HH, JJ } \\ \text { a, v, w, x } \\ \text { p, q, r, s } \end{gathered}$
5 Bussed Contacts	$\begin{gathered} A, B, C, D, E, \\ b, c, d, e, f \\ K, L, j, A A, K K \\ M, N, k, B B, L L \end{gathered}$
Spare	F

MIL-DTL-38999 Circular Connectors

59108 Composite Plug

Insert Arrangement 15-35Trace Pattern C59108-15C35PN Bussing Arrangements	
Buss Size	Contact Numbers
21 Bussed Contacts	$\begin{gathered} 1,2,3,4,5,6,7,8,9,10 \\ 11,12,13,14,15,16,17,18 \\ 32,33,34 \end{gathered}$
15 Bussed Contacts	$\begin{gathered} 19,20,21,22,23,24,25, \\ 26,27,28,29,30,31 \\ 36,37 \end{gathered}$
Spare	35

66363 Aluminum

Insert Arrangement 09-35 Trace Pattern A Typical Part No. 66363W09A35PA	
Buss Size	Contact Numbers
2 Bussed Contacts	$\begin{aligned} & 1,2 \\ & 3,4 \end{aligned}$
Spare	5,6
Insert Arrangement 09-35 Trace Pattern B Typical Part No. 66363W09B35PN	
Buss Size	Contact Numbers
2 Bussed Contacts	$\begin{aligned} & 1,2 \\ & 3,4 \end{aligned}$
Spare	5,6
Insert Arrangement 09-35 Trace Pattern C Typical Part No. 66363W09C35PN	
Buss Size	Contact Numbers
2 Bussed Contacts	5,6
Spare	1, 2, 3, 4
Insert Arrangement 11-35Trace Pattern ATypical Part No. 66363W11A35PN	
Buss Size	Contact Numbers
3 Bussed Contacts	$\begin{gathered} 1,3,6 \\ 2,4,5 \\ 9,10,11 \end{gathered}$
Spare	7, 8, 12, 13

Insert Arrangement 11-35 Trace Pattern B	
Typical Part No. 66363W11B35PN	

MIL-DTL-38999 Circular Connectors

66363 Aluminum (continued)

Insert Arrangement 11-35 Trace Pattern F Typical Part No. 66363W11F35PN	
Buss Size	Contact Numbers
2 Bussed Contacts	$\begin{aligned} & 1,10 \\ & 2,9 \\ & 3,8 \\ & 4,7 \\ & 5,6 \end{aligned}$
Spare	11, 12, 13
Insert Arrangement 15-35 Trace Pattern A Typical Part No. 66363W15A35PN	
Buss Size	Contact Numbers
2 Bussed Contacts	$\begin{aligned} & 1,7 \\ & 2,11 \\ & 3,15 \end{aligned}$
4 Bussed Contacts	$\begin{gathered} 4,8,12,16 \\ 5,9,13,17 \\ 6,10,14,18 \end{gathered}$
Spare	19 through 37
Insert Arrangement 15-35Trace Pattern BTypical Part No.66363W15B35PN	
Buss Size	Contact Numbers
2 Bussed Contacts	$\begin{gathered} 4,8,12,16 \\ 5,9,13,17 \\ 6,10,14,18 \end{gathered}$
4 Bussed Contacts	$\begin{gathered} 4,8,12,16 \\ 5,9,13,17 \\ 6,10,14,18 \end{gathered}$
Spare	21 through 37

Insert Arrangement 23-55 Trace Pattern A Typical Part No. 66363W23A55PN	
Buss Size	Contact Numbers
2 Bussed Contacts	$\begin{aligned} & \text { D, V } \\ & \text { E, U } \\ & \text { F, T } \\ & \text { G, S } \\ & \text { H, R } \\ & \text { J, P } \\ & \text { K, N } \\ & \mathrm{L}, \mathrm{M} \\ & \mathrm{w}, \mathrm{z} \\ & \mathrm{x}, \mathrm{y} \end{aligned}$
Spare	$A, B, C, W, X, Y, Z, a, b, c$, d, e, f, g, h, j, k, m, n, p. q, $u, v, A A, B B, C C, D D, E E$, FF, GG, HH, i, r, s, l, u
Insert Arrangement 23-55 Trace Pattern B Typical Part No. 66363W23B55PN	
Buss Size	Contact Numbers
2 Bussed Contacts	$\begin{gathered} \text { A, C } \\ \text { M, d } \\ \text { N, c } \\ \text { S, b } \\ \text { T, o } \\ \text { P, Z } \\ \text { R, Y } \\ \text { U, X } \\ \text { V, W } \\ \text { e. p } \\ \text { y, AA } \\ \text { z, BB } \end{gathered}$
Spare	$\begin{gathered} \text { B, D, E, F, G, H, J, K, L, q, } \\ \text { n, r, h, u, w, x, CC, DD, FF, } \\ \text { GG, HH, EE, m, s, k, I, j, } \\ \text { v, f, g, i } \end{gathered}$
Insert Arrangement 25-35 Trace Pattern A Typical Part No. 66363W25A35PN	
Buss Size	Contact Numbers
3 Bussed Contacts	$\begin{aligned} & 54,66,77 \\ & 55,67,78 \\ & 61,62,63 \\ & 72,73,74 \end{aligned}$
4 Bussed Contacts	$\begin{aligned} & 52,64,75,87 \\ & 53,65,76,88 \end{aligned}$
Spare	1 through 51, 56, 57, 58, 59, 60, 68, 69, 70, 71, 79 through 86, 89 through 128

Assembly Instructions

Contact Crimping

1 Burn through the insulation with a hot wire stripper or use other approved stripping method. Do not remove the insulation at this point. This will help protect the wire strands from splaying. Refer to contact information sheet for proper wire insulation strip length.

3 Drop the contact into the crimping tool with the contact crimp barrel facing up.

5 Insert the bare wire into the open end of the contact and squeeze the handles of the tool together. The crimping tool will not release until the full crimping cycle has been performed. Remove the crimped contact and wire from the tool.

2 Set the dial of the crimp to the proper setting for wire gage and contact as noted on the contact information sheet or on the tool. Be sure that the proper locator is used. See contact information sheet for proper locator.

4 Remove the small piece of insulation from the wire. Do not pinch the insulation with the fingernails during this procedure. The wire is now ready to be crimped to the contact.

6 Two series of 4 indents grip the wire and secure the contact to the wire. Visibility of the wire in the contact inspection hole (arrow) indicates that the wire is crimped into the contact at the proper depth. Inspect to make sure there are no loose or nicked strands.

Assembly Instructions

Contact Insertion

1 Hold the insertion half of the tool between the thumb and forefinger and lay the wire against the slot of the tool, then snap the wire into the slot.

3 Holding the connector with the rear grommet facing you, slowly push the contact straight into the grommet cavity. Do not twist the tool. Note: Some wire constructions may not require the use of an insertion tool.

2 After the wire snaps into the tool, seat the retention shoulder against the tip of the tool.

4 A firm stop will be evident when the contact positively seats in the connector. Remove the tool by sliding it back on the wire. The contact will now be securely locked in place.

Assembly Instructions

Contact Removal

1 With the rear of the connector facing you, lay the wire of the contact along the slot of the tool, leaving about $1 / 2$ " from the end of the tool to the rear of the connector. Squeeze the wire firmly into the tool between the thumb and forefinger about $1 / 2$ " from the tip and quickly pull the tool away from the connector.

3 Press the wire of the contact against the serrations of the plastic tool and pull both the tool and the contact/wire assembly out of the connector.

Caution: When using minimum diameter wire, the tool may have a tendency to stop against the rear of the contact crimp barrel. If this should occur, careful manipulation of the tool will help permit it to ride over the crimp barrel and into the proper position to unlock the contact.

Notes

LET'S CONNECT

We make it easy to connect with our experts and are ready to
provide all the support you need. Just call your local support number or visit www.te.com/industrial to chat with a Product Information Specialist.

Technical Support
te.com/support-center

North America
North America (Toll)
EMEA/South Africa
EMEA (Toll)
India (Toll-Free)
+18005226752
+17179867777
$+80004405100$
+31736246999
+800 4405100

Asia Pacific
Japan
Australia
New Zealand
$+864008206015$
+810448448180
+61295542695
+64 (0) 96344580

te.com/38999

Abstract

AMP, AGASTAT, CeeLok FAS-X, CII, DEUTSCH, HARTMAN, HexaShield, KILOVAC, MICRODOT, NANONICS, POLAMCO, PRO BEAM, Raychem, SEACON, TE, TE Connectivity and the TE connectivity (logo) are trademarks of TE Connectivity. Other products, logos, and company names mentioned herein may be trademarks of their respective owners. While TE Connectivity (TE) has made every reasonable effort to ensure the accuracy of the information herein, nothing herein constitutes any guarantee that such information is error-free, or any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. The TE entity issuing this publication reserves the right to make any adjustments to the information contained herein at any time without notice. All implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose are expressly disclaimed. The dimensions herein are for reference purposes only and are subject to change without notice. Specifications are subject to change without notice.

Consult TE for the latest dimensions and design specifications. (c) 2018 TE Connectivity. All Rights Reserved.

[^0]: *Inactive for new designs

[^1]: Millimeters Inches

[^2]: Millimeters Inches

[^3]: Millimeters Inches

[^4]: Millimeters Inches

[^5]: Millimeters Inches

[^6]: Millimeters Inches

[^7]: Millimeters Inches

[^8]: Millimeters Inches

