

LM193W, LM293W, LM393W

Low power dual voltage comparators

Features

- Wide single supply voltage range or dual supplies: +2 V to +36 V or ±1 V to ±18 V
- Very low supply current (0.4 mA) independent of supply voltage (1 mW/comparator at +5 V)
- Low input bias current: 25 nA typ
- Low input offset current: ±5 nA typ
- Low input offset voltage: ±1 mV typ
- Input common-mode voltage range includes ground
- Low output saturation voltage: 250 mV typ. (I_o = 4 mA)
- Differential input voltage range equal to the supply voltage
- TTL, DTL, ECL, MOS, CMOS compatible outputs
- ESD internal protection: 2 kV

Description

These devices consist of two independent low voltage comparators designed specifically to operate from a single supply over a wide range of voltages. Operation from split power supplies is also possible.

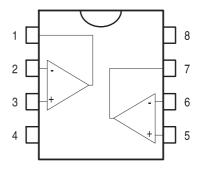
These comparators also have a unique characteristic in that the input common-mode voltage range includes ground even though operated from a single power supply voltage.

All the pins are protected against electrostatic discharge up to 2 kV. As a consequence, the input voltages must not exceed the magnitude of $\rm V_{CC^+}$ or $\rm V_{CC^-}$.

DIP8

(Plastic package)

SOS


(Plastic micropackage)

TSSOP8

(Thin shrink small outline package)

Pin connections (Top view)

- 1 Output 1
- 2 Inverting input 1
- 3 Non-inverting input 1
- 4 V_{CC}
- 5 Non-inverting input 2
- 6 Inverting input 2
- 7 Output 2
- 8 V_{CC}+

Schematic diagram 1

Figure 1. Circuit schematic (1/2 LM193W) VCC+ 3.5µA 100μΑ 100μΑ Non-Inverting Input Inverting VCC-

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	±18 or 36	V
V _{id}	Differential input voltage	$V_{\rm CC}^{-}$ -0.3 to $V_{\rm CC}^{+}$ +0.3	V
V _{in}	Input voltage	VCC -0.3 to VCC +0.3	\ \ \
	Output short-circuit to ground (1)	Infinite	
R _{thja}	Thermal resistance junction to ambient ⁽²⁾ SO-8 TSSOP8 DIP8	125 120 85	°C/W
R _{thjc}	Thermal resistance junction to case ⁽²⁾ SO-8 TSSOP8 DIP8	40 37 41	°C/W
T _j	Junction temperature	150	°C
T _{stg}	Storage temperature range	-65 to +150	°C
	HBM: human body model ⁽³⁾	2000	
ESD	MM: machine model ⁽⁴⁾	200	V
	CDM: charged device model ⁽⁵⁾	1500	

- 1. Short-circuits from the output to V_{CC}^+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20mA independent of the magnitude of V_{CC}^+ .
- 2. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- 3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{icm}	Common mode input voltage range	0 to V _{CC} ⁺ -1.5	V
T _{oper}	Operating free-air temperature range LM193W LM293W LM393W	-55 to +125 -40 to +105 0 to +70	°C

3 Electrical characteristics

Table 3.	V_{CC}^{+} = +5V, V_{CC}^{-} = 0V, T_{amb} = +25°C (unless of	therwise specified)
----------	---	---------------------

Symbol	Parameter	Min	Тур.	Max.	Unit
V _{io}	Input offset voltage ⁽¹⁾ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1	5 9	mV
I _{ib}	Input bias current $^{(2)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		25	250 400	nA
l _{io}	Input offset current $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		5	50 150	nA
A _{vd}	Large signal voltage gain $V_{CC} = 15V$, $R_L = 15k\Omega$, $V_o = 1V$ to 11V	50	200		V/mV
Icc	Supply current (all comparators) $V_{CC} = 5V, \text{ no load}$ $V_{CC} = 30V, \text{ no load}$		0.4 1	1 2.5	mA
V _{icm}	Input common mode voltage range $^{(3)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	V
V _{id}	Differential input voltage (4)			V _{CC} ⁺	V
I _{sink}	Output sink current V_{id} = 1V, V_{o} = 1.5V	6	16		mA
V _{OL}	Low level output voltage, V_{id} = -1V, I_{sink} = 4mA T_{amb} = +25°C $T_{min} \le T_{amb} \le T_{max}$		250	400 700	mV
I _{OH}	$\begin{aligned} & \text{High level output current, V}_{id} = \text{1V, V}_{CC} = \text{V}_{o} = \text{30V} \\ & \text{T}_{amb} = +25^{\circ}\text{C} \\ & \text{T}_{min} \leq \text{T}_{amb} \leq \text{T}_{max} \end{aligned}$		0.1	1	nΑ μΑ
t _{re}	Response time $^{(5)}$ R _L = 5.1k Ω to V_{CC}^+		1.3		μs
t _{rel}	Large signal response time V_i = TTL, $V_{(ref)}$ = +1.4V, R_L = 5.1k Ω to V_{CC}^+		300		ns

^{1.} At output switch point, $V_0 \approx 1.4 \text{ V}$, $R_s = 0$ with V_{CC}^+ from 5 V to 30 V, and over the full common-mode range (0 V to V_{CC}^+ -1.5 V).

^{2.} The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output, so there is no loading charge on the reference of input lines.

^{3.} The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC}^+ -1.5 V, but either or both inputs can go to +30 V without damage.

^{4.} Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V (or 0.3 V below the negative power supply, if used).

The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained.

40

Figure 2. Supply current versus supply voltage

Figure 3. Input current versus supply voltage

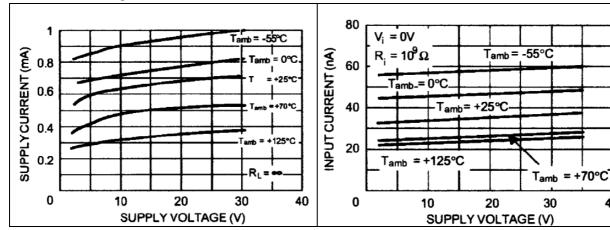


Figure 4. Output saturation voltage versus output current

Figure 5. Response time for various input overdrives - negative transition

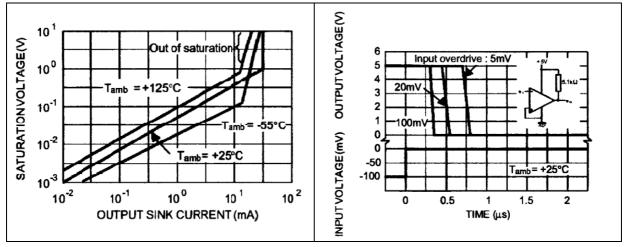
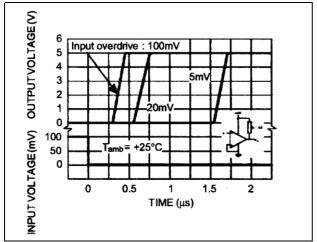



Figure 6. Response time for various input overdrives - positive transition

Application information 4

4.1 **Typical applications**

Figure 7. **Basic comparator**

Figure 8. **Driving CMOS** 15k Ω 100k Ω 1/2 LM193 -V (ref) O-

Figure 9. **Driving TTL**

Figure 10. Low-frequency op-amp

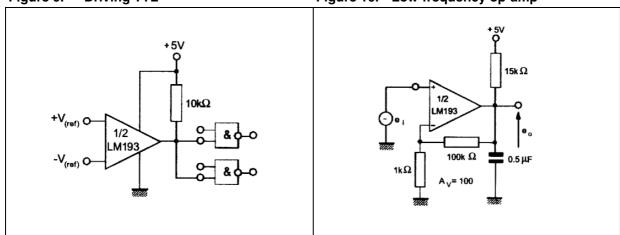


Figure 11. Low-frequency op-amp

Figure 12. Transducer amplifier

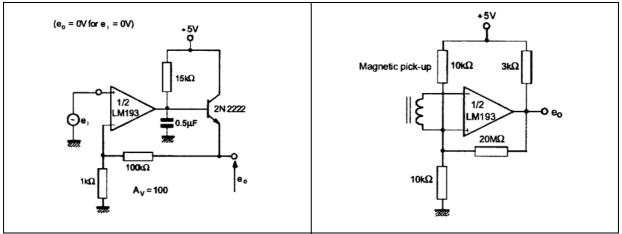
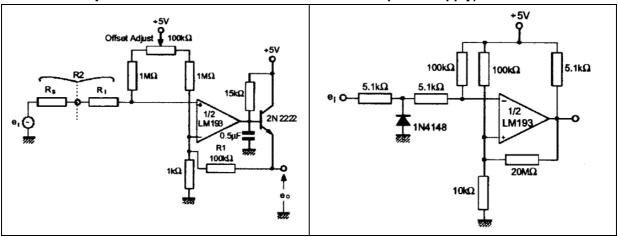
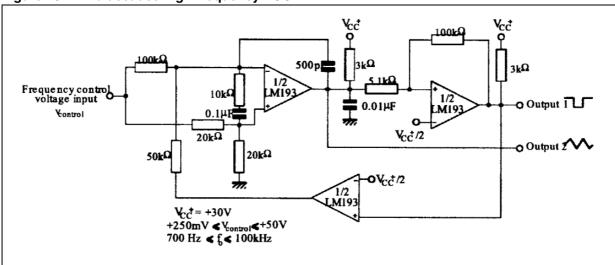
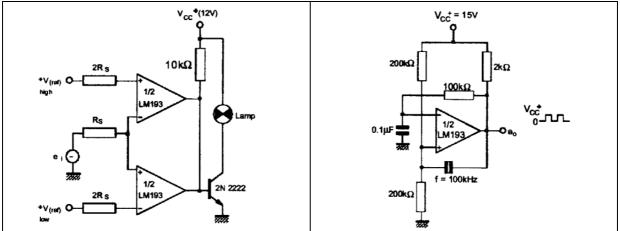


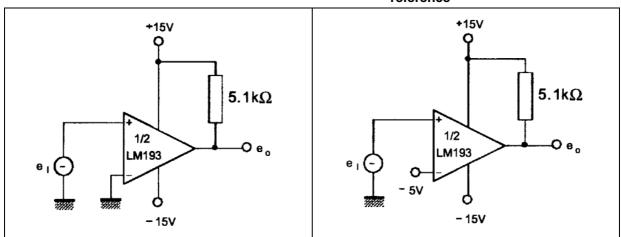
Figure 13. Low frequency op-amp with offset Figure 14. Zero crossing detector (single adjust power supply)


Figure 15. Two decades high-frequency VCO

5//

Figure 16. Limit comparator


Figure 17. Crystal controlled oscillator

4.2 Split-supply applications

Figure 18. Zero crossing detector

Figure 19. Comparator with a negative reference

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

5.1 DIP8 package information

Figure 20. DIP8 package mechanical drawing

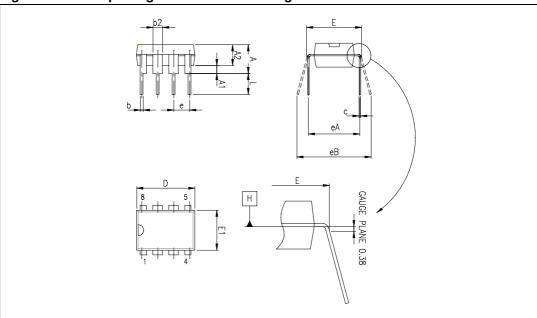


Table 4. DIP8 package mechanical data

			Dimer	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			5.33			0.210
A1	0.38			0.015		
A2	2.92	3.30	4.95	0.115	0.130	0.195
b	0.36	0.46	0.56	0.014	0.018	0.022
b2	1.14	1.52	1.78	0.045	0.060	0.070
С	0.20	0.25	0.36	0.008	0.010	0.014
D	9.02	9.27	10.16	0.355	0.365	0.400
E	7.62	7.87	8.26	0.300	0.310	0.325
E1	6.10	6.35	7.11	0.240	0.250	0.280
е		2.54			0.100	
eA		7.62			0.300	
eB			10.92			0.430
L	2.92	3.30	3.81	0.115	0.130	0.150

10/15

5.2 SO-8 package information

Figure 21. SO-8 package mechanical drawing

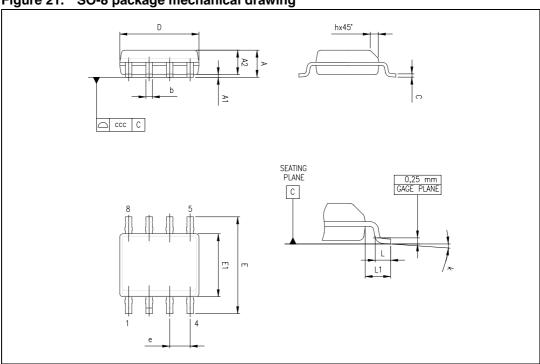


Table 5. SO-8 package mechanical data

		•	Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0		8°	1°		8°
CCC			0.10			0.004

5.3 TSSOP8 package information

Figure 22. TSSOP8 package mechanical drawing

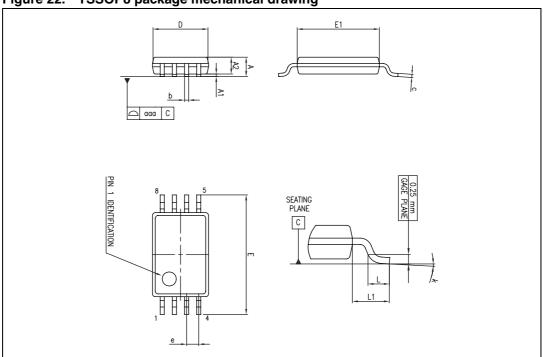


Table 6. TSSOP8 package mechanical data

			Dime	nsions			
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.20			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
е		0.65			0.0256		
k	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1			0.039		
aaa			0.10			0.004	

6 Ordering information

Table 7. Order codes

Part number	Temperature range	Package	Packing	Marking
LM193WD LM193WDT		SO-8	Tube or Tape & reel	193W
LM193WN	-55°C, +125°C	DIP8	Tube	LM193WN
LM193WPT		TSSOP8	Tape & reel	193W
LM293WD LM293WDT		SO-8	Tube or Tape & reel	293W
LM293WN	-40°C, +105°C	DIP8	Tube	LM293WN
LM293WPT		TSSOP8	Tape & reel	293W
LM293WYD ⁽¹⁾ LM293WYDT ⁽¹⁾	-40°C, +105°C	SO-8 Automotive grade	Tube or Tape & reel	293WY
LM293WYPT ⁽²⁾		TSSOP8 Automotive grade	Tape & reel	293WY
LM393WD LM393WDT	202 - 202	SO-8	Tube or Tape & reel	393W
LM393WN	0°C, +70°C	DIP8	Tube	LM393WN
LM393WPT		TSSOP8	Tape & reel	393W
LM393WYD ⁽¹⁾ LM393WYDT ⁽¹⁾	0°C, +70°C	SO-8 Automotive grade	Tube or Tape & reel	393WY
LM393WYPT ⁽²⁾	0 0, +70 0	TSSOP8 Automotive grade	Tape & reel	393WY

Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

5/

^{2.} Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

7 Revision history

Table 8. Document revision history

Date	Revision	Changes
12-May-2004	1	Initial release.
11-Dec-2008	2	Updated document format. Added ESD parameters in <i>Table 1: Absolute maximum ratings</i> . Added values for R _{thja} and R _{thjc} in <i>Table 1: Absolute maximum ratings</i> . Added junction temperature T _j in <i>Table 1: Absolute maximum ratings</i> . Deleted power dissipation P _D in <i>Table 1: Absolute maximum ratings</i> . Updated ECOPACK® information in <i>Chapter 5</i> . Corrected DIP8 package information in <i>Section 5.1</i> . Added automotive grade products in <i>Table 7: Order codes</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

LM393WDT LM393AWDT