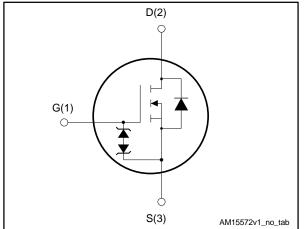

life.augmented


STFH18N60M2

N-channel 600 V, 0.255 Ω typ., 13 A MDmesh[™] M2 Power MOSFET in a TO-220FP wide creepage package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	ID
STFH18N60M2	650 V	0.28 Ω	13 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected
- Wide creepage distance of 4.25 mm between the pins

Applications

- Switching applications
- LLC converters, resonant converters

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

The TO-220FP wide creepage package provides increased surface insulation for Power MOSFETs to prevent failure due to arcing, which can occur in polluted environments.

Table 1: Device summary

Order code	Marking	Package	Packing
STFH18N60M2	18N60M2	TO-220FP wide creepage	Tube

DocID029424 Rev 2

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP wide creepage package information	9
5	Revisio	n history	11

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	± 25	V
ID	Drain current (continuous) at $T_C = 25 \ ^\circ C$	13 ⁽¹⁾	А
lo	Drain current (continuous) at Tc = 100 °C	8 (1)	А
I _{DM} ⁽²⁾	Drain current (pulsed)	52 ⁽¹⁾	А
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	25	W
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; TC = 25 °C)	2500	V
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	- 55 to 150	C

Notes:

⁽¹⁾Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area.

 $^{(3)}I_{SD} \le$ 13 A, di/dt \le 400 A/µs; V_DSpeak < V(BR)DSS, V_DD = 400 V. $^{(4)}V_{DS} \le$ 480 V.

Table 3: Thermal data

Symbol	bol Parameter		Unit
R _{thj-case}	Thermal resistance junction-case max	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	3	А
Eas	Single pulse avalanche energy (starting $T_j=25 \text{ °C}$, $I_D=I_{AR}$; $V_{DD}=50 \text{ V}$)	135	mJ

2 **Electrical characteristics**

(T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	600			V
I _{DSS} Zero gate voltage drain current		$V_{GS} = 0, V_{DS} = 600 V$			1	μA
		$V_{GS} = 0 V$, $V_{DS} = 600 V$, Tc=125 °C ⁽¹⁾			100	μA
lgss	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 25 V$			±10	μA
V _{GS(th)}	Gate threshold voltage	V _{DS} = V _{GS} , I _D = 250 µA	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 6.5 \text{ A}$		0.255	0.28	Ω

_ 1.44

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	791	-	pF
Coss	Output capacitance	$V_{DS} = 100 V, f = 1 MHz,$	-	40	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	5.6	-	pF
Coss eq. ⁽¹⁾	Equivalent output capacitance	V_{DS} = 0 to 480 V, V_{GS} = 0 V	-	164.5	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	5.6	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, \text{ I}_{D} = 13 \text{ A},$	-	21.5	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V	-	3.2	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	11.3	-	nC

Table 6: Dynamic

Notes:

⁽¹⁾Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDSinCreases from 0 to 80% VDSS

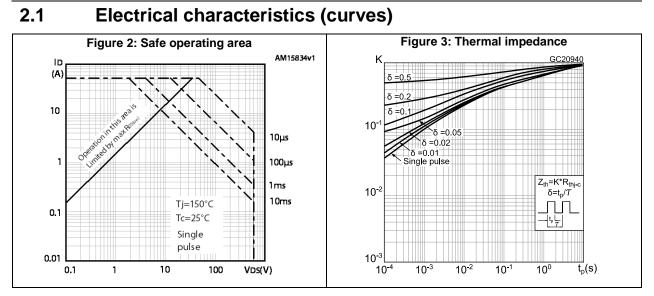
Electrical characteristics

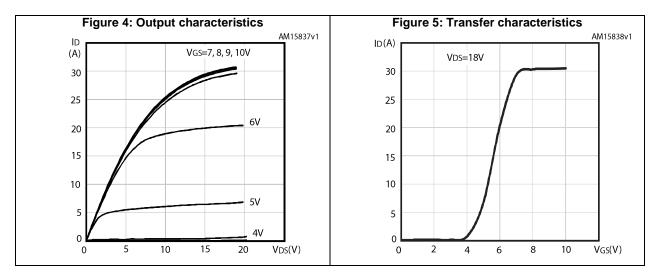
•=							
Table 7: Switching times							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 6.5 \text{ A},$	-	12	-	ns	
tr	Rise time	R _G = 4.7 Ω, V _{GS} = 10 V (see Figure 14: "Test circuit for resistive load switching times" and Figure 19: "Switching time waveform")	-	9	-	ns	
t _{d(off)}	Turn-off delay time		-	47	-	ns	
t _f	Fall time		-	10.6	-	ns	

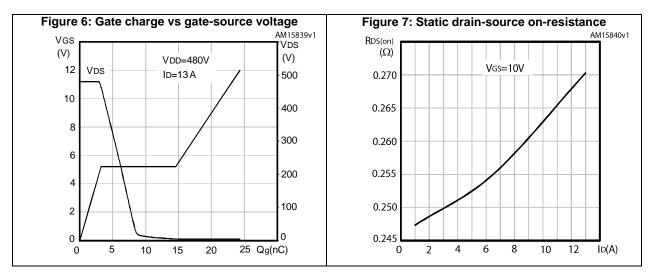
	Table	8:	Source	drain	diode
--	-------	----	--------	-------	-------

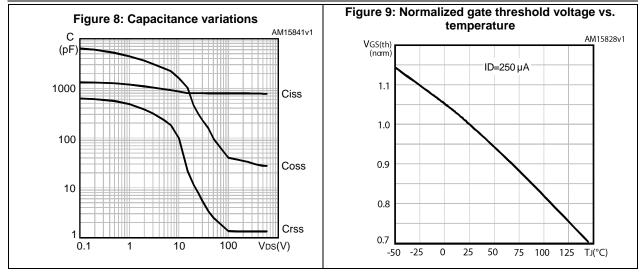
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		13	A
I _{SDM} ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		-		52	A
V _{SD} ⁽³⁾	Forward on voltage	$I_{SD} = 13 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.6	V
trr	Reverse recovery time	I _{SD} = 13 A, di/dt = 100 A/µs	-	305		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	3.3		μC
I _{RRM}	Reverse recovery current		-	22		A
trr	Reverse recovery time	$I_{SD} = 13 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 ^{\circ}\text{C}$ (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	417		ns
Qrr	Reverse recovery charge		-	4.6		μC
I _{RRM}	Reverse recovery current		-	22		А

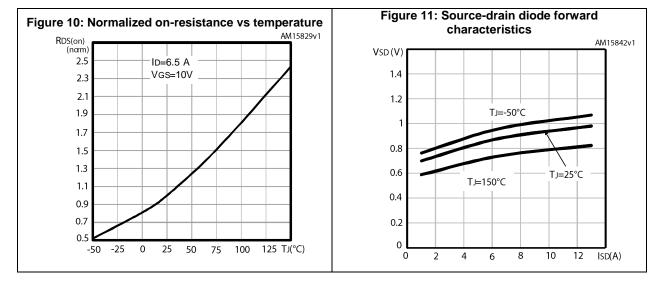
Notes:

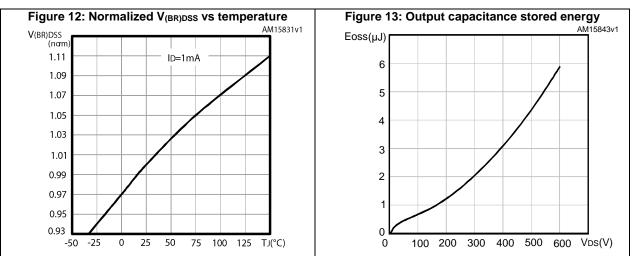

 $^{(1)}\mbox{The}$ value is rated according to $R_{thj\mbox{-}case}$ and limited by package.


⁽²⁾Pulse width limited by safe operating area.


 $^{(3)}\text{Pulsed:}$ pulse duration = 300 µs, duty cycle 1.5%.

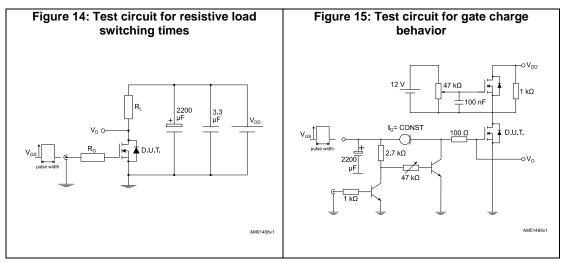

DocID029424 Rev 2

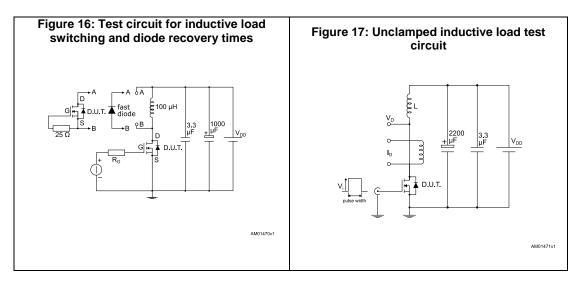


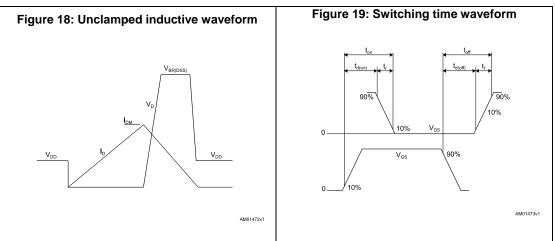

STFH18N60M2

57

Electrical characteristics







DocID029424 Rev 2

3 Test circuits

57

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-220FP wide creepage package information

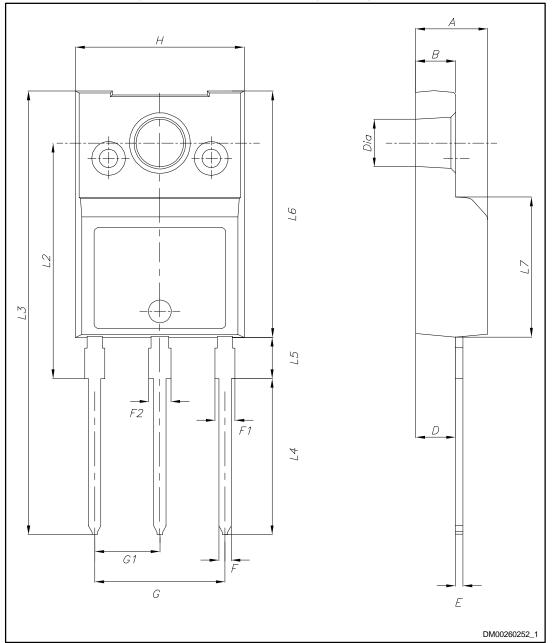


Figure 20: TO-220FP wide creepage package outline

DocID029424 Rev 2

Package information

STFH18N60M2

nformation	rmation STFH18N60					
Tal	ole 9: TO-220FP wide cree	page package mechanica	al data			
Dim		mm				
Dim.	Min.	Тур.	Max.			
A	4.60	4.70	4.80			
В	2.50	2.60	2.70			
D	2.49	2.59	2.69			
E	0.46		0.59			
F	0.76		0.89			
F1	0.96		1.25			
F2	1.11		1.40			
G	8.40	8.50	8.60			
G1	4.15	4.25	4.35			
Н	10.90	11.00	11.10			
L2	15.25	15.40	15.55			
L3	28.70	29.00	29.30			
L4	10.00	10.20	10.40			
L5	2.55	2.70	2.85			
L6	16.00	16.10	16.20			
L7	9.05	9.15	9.25			
Dia	3.00	3.10	3.20			
Dia	0.00	0.10	0.20			

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
08-Jun-2016	1	First release.
16-Jun-2016	2	Document status promoted from preliminary data to production data. Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STFH18N60M2