Digitally-Enhanced Power Analog Controller with Integrated Synchronous Driver

Synchronous Buck Features

- Input Voltage: 4.5 V to 32 V
- Output Voltage: 0.5 V to 3.6 V
- Greater than 3.6 V requires external divider
- Switching Frequency: 100 kHz to 1.6 MHz
- Quiescent Current: 5 mA Typical
- High-Drive:
- +5V Gate Drive
- 1A/2A Source Current
- 1A/2A Sink Current
- Low-Drive:
- +5V Gate Drive
- 2A Source Current
- 4A Sink Current
- Peak Current Mode Control
- Differential Remote Output Sense
- Multi-Phase Systems:
- Master or Slave
- Frequency Synchronized
- Common Error Signal
- Multiple Output Systems:
- Master or Slave
- Frequency Synchronized
- AEC-Q100 Qualified
- Configurable Parameters:
- Overcurrent Limit
- Input Undervoltage Lockout
- Output Overvoltage
- Output Undervoltage
- Internal Analog Compensation
- Soft Start Profile
- Synchronous Driver Dead Time
- Switching Frequency
- Thermal Shutdown

Microcontroller Features

- Precision 8 MHz Internal Oscillator Block:
- Factory Calibrated
- Interrupt Capable
- Firmware
- Interrupt-on-Change Pins
- Only 35 Instructions to Learn
- 4096 Words On-Chip Program Memory
- High Endurance Flash:
- 100,000 write Flash Endurance
- Flash Retention: >40 years
- Watchdog Timer (WDT) with Independent Oscillator for Reliable Operation
- Programmable Code Protection
- In-Circuit Debug (ICD) via Two Pins (MCP19111)
- In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) via Two Pins
- 11 I/O Pins and One Input-Only Pin (MCP19110)
- Three Open-Drain Pins
- 14 I/O Pins and One Input-Only Pin (MCP19111)
- Three Open-Drain Pins
- Analog-to-Digital Converter (ADC):
- 10-bit Resolution
- 12 Internal Channels
- Eight External Channels
- Timer0: 8-bit Timer/Counter with 8-Bit Prescaler
- Enhanced Timer1:
- 16-bit Timer/Counter with Prescaler
- Two Selectable Clock Sources
- Timer2: 8-Bit Timer/Counter with Prescaler
- 8-bit Period Register
- $I^{2} \mathrm{C}$ Communication:
- 7-bit Address Masking
- Two Dedicated Address Registers
- SMBus/PMBus ${ }^{\text {TM }}$ Compatibility

Pin Diagram - 24-Pin QFN (MCP19110)

TABLE 1: 24-PIN SUMMARY

1/0		$\begin{aligned} & \underset{\sim}{u} \\ & \stackrel{N}{2} \\ & \underset{4}{2} \end{aligned}$	$\frac{0}{<}$	$\begin{aligned} & \text { n } \\ & \text { E } \\ & i= \end{aligned}$	$\begin{aligned} & 0 \\ & \\ & \end{aligned}$	$\xrightarrow{\text { ²0 }}$	$\frac{\stackrel{\circ}{7}}{\frac{1}{\overline{1}}}$	Basic	Additional
GPA0	1	Y	AN0	-	-	IOC	Y	-	Analog Debug Output ${ }^{(1)}$
GPA1	2	Y	AN1	-	-	IOC	Y	-	Sync. Signal In/Out ${ }^{(2,3)}$
GPA2	3	Y	AN2	TOCKI	-	$\begin{aligned} & \text { IOC } \\ & \text { INT } \end{aligned}$	Y	-	-
GPA3	5	Y	AN3		-	IOC	Y	-	-
GPA4	8	N	-	-	-	IOC	N	-	-
GPA5	7	N	-	-	-	$1 \mathrm{OC}^{(4)}$	$Y^{(5)}$	$\overline{\mathrm{MCLR}}$	-
GPA6	6	N	-	-	-	IOC	N	ICSPDAT	-
GPA7	5	N	-	-	SCL	IOC	N	ICSPCLK	-
GPB0	9	N	-	-	SDA	IOC	N	-	-
GPB1	23	Y	AN4	-	-	IOC	Y	-	Error Signal In/Out ${ }^{(3)}$
GPB2	24	Y	AN5	-	-	IOC	Y	-	-
$\mathrm{V}_{\text {IN }}$	11	N	-	-	-	-	-	$\mathrm{V}_{\text {IN }}$	Device Input Voltage
V_{DR}	14	N	-	-	-	-	-	V_{DR}	Gate Drive Supply Input Voltage
V_{DD}	18	N	-	-	-	-	-	V_{DD}	Internal Regulator Output
GND	10	N	-	-	-	-	-	GND	Small Signal Ground
$\mathrm{P}_{\text {GND }}$	12	N	-	-	-	-	-	-	Large Signal Ground
LDRV	13	N	-	-	-	-	-	-	Low-Side MOSFET Connection
HDRV	16	N	-	-	-	-	-	-	High-Side MOSFET Connection
PHASE	15	N	-	-	-	-	-	-	Switch Node
BOOT	17	N	-	-	-	-	-	-	Floating Bootstrap Supply
$+\mathrm{V}_{\text {SEN }}$	21	N	-	-	-	-	-	-	Output Voltage Differential Sense
$-\mathrm{V}_{\text {SEN }}$	22	N	-	-	-	-	-	-	Output Voltage Differential Sense
$+_{\text {SEN }}$	20	N	-	-	-	-	-	-	Current Sense Input
$-_{\text {ISEN }}$	19	N	-	-	-	-	-	-	Current Sense Input

Note 1: The Analog Debug Output is selected when the ATSTCON<BNCHEN> bit is set.
2: Selected when device is functioning as multiple output master or slave by proper configuration of the MLTPH<2:0> bits in the BUFFCON register.
3: \quad Selected when device is functioning as multi-phase master or slave by proper configuration of the MLTPH<2:0> bits in the BUFFCON register.
4: \quad The IOC is disabled when $\overline{M C L R}$ is enabled.
5: Weak pull-up always enabled when $\overline{\mathrm{MCLR}}$ is enabled, otherwise the pull-up is under user control.

Pin Diagram - 28-Pin QFN (MCP19111)

TABLE 2: 28-PIN SUMMARY

1/0		$$	$\frac{0}{<}$			$\xrightarrow{\text { ²0 }}$	$\frac{\square}{\frac{1}{1}}$	Basic	Additional
GPA0	1	Y	AN0	-	-	IOC	Y	-	Analog Debug Output ${ }^{(1)}$
GPA1	2	Y	AN1	-	-	IOC	Y	-	Sync. Signal In/Out ${ }^{(2,3)}$
GPA2	3	Y	AN2	T0CKI	-	$\begin{aligned} & \text { IOC } \\ & \text { INT } \end{aligned}$	Y	-	-
GPA3	5	Y	AN3		-	IOC	Y	-	-
GPA4	9	N	-	-	-	IOC	N	-	-
GPA5	8	N	-	-	-	$1 \mathrm{OC}^{(4)}$	$Y^{(5)}$	$\overline{\mathrm{MCLR}}$	-
GPA6	7	N	-	-	-	IOC	N	-	-
GPA7	6	N	-	-	SCL	IOC	N	-	-
GPB0	10	N	-	-	SDA	IOC	N	-	-
GPB1	26	Y	AN4	-	-	IOC	Y	-	Error Signal In/Out ${ }^{(3)}$
GPB2	28	Y	AN5	-	-	IOC	Y	-	-
GPB4	4	Y	AN6	-	-	IOC	Y	ICSPDAT ICDDAT	-
GPB5	27	Y	AN7	-	-	IOC	Y	ICSPCLK ICDCLK	Alternate Sync Signal $\ln /$ Out $(2,3)$
GPB6	21	N	-	-	-	IOC	Y	-	-
GPB7	11	N	-	-	-	IOC	Y	-	-
V_{IN}	13	N	-	-	-	-	-	$\mathrm{V}_{\text {IN }}$	Device Input Voltage
V_{DR}	16	N	-	-	-	-	-	V_{DR}	Gate Drive Supply Input Voltage
$V_{D D}$	20	N	-	-	-	-	-	$V_{D D}$	Internal Regulator Output
GND	12	N	-	-	-	-	-	GND	Small Signal Ground
$\mathrm{P}_{\text {GND }}$	14	N	-	-	-	-	-	-	Large Signal Ground
LDRV	15	N	-	-	-	-	-	-	Low-Side MOSFET Connection
HDRV	18	N	-	-	-	-	-	-	High-Side MOSFET Connection
PHASE	17	N	-	-	-	-	-	-	Switch Node
BOOT	19	N	-	-	-	-	-	-	Floating Bootstrap Supply
$+\mathrm{V}_{\text {SEN }}$	24	N	-	-	-	-	-	-	Output Voltage Differential Sense
$-\mathrm{V}_{\text {SEN }}$	25	N	-	-	-	-	-	-	Output Voltage Differential Sense
$+_{\text {SEN }}$	23	N	-	-	-	-	-	-	Current Sense Input
$-_{\text {ISEN }}$	22	N	-	-	-	-	-	-	Current Sense Input

Note 1: The Analog Debug Output is selected when the ATSTCON<BNCHEN> bit is set.
2: Selected when device is functioning as multiple output master or slave by proper configuration of the MLTPH<2:0> bits in the BUFFCON register.
3: Selected when device is functioning as multi-phase master or slave by proper configuration of the MLTPH<2:0> bits in the BUFFCON register.
4: The IOC is disabled when $\overline{M C L R}$ is enabled.
5: Weak pull-up always enabled when $\overline{\mathrm{MCLR}}$ is enabled, otherwise the pull-up is under user control.

MCP19110/11

Table of Contents

1.0 Device Overview 9
2.0 Pin Description 12
3.0 Functional Description 17
4.0 Electrical Characteristics 23
5.0 Digital Electrical Characteristics 29
6.0 Configuring the MCP19110/11 37
7.0 Typical Performance Curves 53
8.0 System Bench Testing 57
9.0 Device Calibration 59
10.0 Relative Efficiency Measurement 67
11.0 Memory Organization 69
12.0 Device Configuration 81
13.0 Oscillator Modes 83
14.0 Resets 85
15.0 Interrupts 93
16.0 Power-Down Mode (Sleep) 101
17.0 Watchdog Timer (WDT) 103
18.0 Flash Program Memory Control 105
19.0 I/O Ports 111
20.0 Interrupt-On-Change 121
21.0 Internal Temperature Indicator Module 123
22.0 Analog-to-Digital Converter (ADC) Module 125
23.0 Timer0 Module 135
24.0 Timer1 Module with Gate Control 137
25.0 Timer2 Module 140
26.0 PWM Module 143
27.0 Master Synchronous Serial Port (MSSP) Module 147
28.0 In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$) 191
29.0 Instruction Set Summary 193
30.0 Development Support 203
31.0 Packaging Information 207
Appendix A: Revision History 213
Index 215
The Microchip Web Site 221
Customer Change Notification Service 221
Customer Support 221
Product Identification System 223

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

MCP19110/11

NOTES:

1.0 DEVICE OVERVIEW

The MCP19110/11 is a highly integrated, mixed signal, analog pulse-width modulation (PWM) current mode controller with an integrated microcontroller core for synchronous DC/DC step-down applications. Since the MCP19110/11 uses traditional analog control circuitry to regulate the output of the $D C / D C$ converter, the integration of the PIC^{\circledR} microcontroller mid-range core is used to provide complete customization of device operating parameters, start-up and shut down profiles, protection levels and fault handling procedures.
The MCP19110/11 is designed to efficiently operate from a single 4.5 V to 32 V supply. It features integrated synchronous drivers, bootstrap device, internal linear regulator and 4 kW nonvolatile memory all in a space-saving 24 -pin $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ QFN package (MCP19110) or 28 -pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN package (MCP19111).

After initial device configuration using Microchip's MPLAB ${ }^{\circledR}$ X Integrated Development Environment (IDE) software, the PMBus or $I^{2} \mathrm{C}$ can be used by a host to communicate with, or modify, the operation of the MCP19110/11.

Two internal linear regulators generate two 5V rails. One 5 V rail is used to provide power for the internal analog circuitry and is contained on-chip. The second 5 V rail provides power to the PIC device and is present on the $V_{D D}$ pin. It is recommended that a $1 \mu \mathrm{~F}$ capacitor be placed between $V_{D D}$ and $P_{G N D}$. The $V_{D D}$ pin may also be directly connected to the $V_{D R}$ pin, or connected through a low-pass $R C$ filter. The $V_{D R}$ pin provides power to the internal synchronous driver.

FIGURE 1-1: TYPICAL APPLICATION CIRCUIT

FIGURE 1-3: MICROCONTROLLER CORE BLOCK DIAGRAM

MCP19110/11

2.0 PIN DESCRIPTION

The MCP19110/11 family of devices feature pins that have multiple functions associated with each pin. Table 2-1 provides a description of the different functions. See Section 2.1 "Detailed Pin Functional Description" for more detailed information.

TABLE 2-1: MCP19110/11 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
GPA0/AN0/ANALOG_TEST	GPA0	TTL	CMOS	General purpose I/O
	AN0	AN	-	A/D Channel 0 input.
	ANALOG_TEST	-	-	Internal analog signal multiplexer output ${ }^{(1)}$
GPA1/AN1/CLKPIN	GPA1	TTL	CMOS	General purpose I/O
	AN1	AN	-	A/D Channel 1 input.
	CLKPIN	-	-	Switching frequency clock input or output (${ }^{(2,3)}$
GPA2/AN2/T0CKI/INT	GPA2	TTL	CMOS	General purpose I/O
	AN2	AN	-	A/D Channel 2 input
	T0CKI	ST	-	Timer0 clock input
	INT	ST	-	External interrupt
GPA3/AN3	GPA3	TTL	CMOS	General purpose I/O
	AN3	AN	-	A/D Channel 3 input
GPA4	GPA4	TTL	OD	General purpose I/O
GPA5/MCLR	GPA5	TTL	-	General purpose input only
	$\overline{\text { MCLR }}$	ST	-	Master Clear with internal pull-up
GPA6/ICSPDAT	GPA6	ST	CMOS	General purpose I/O
	ICSPDAT		CMOS	Serial Programming Data I/O (MCP19110 Only)
GPA7/SCL/ICSPCLK	GPA7	ST	OD	General purpose open-drain I/O
	SCL	$\mathrm{I}^{2} \mathrm{C}$	OD	$\mathrm{I}^{2} \mathrm{C}$ clock
	ICSPCLK	ST	-	Serial Programming Clock (MCP19110 Only)
GPB0/SDA	GPB0	TTL	OD	General purpose I/O
	SDA	$\mathrm{I}^{2} \mathrm{C}$	OD	$1^{2} \mathrm{C}$ data input/output
GPB1/AN4/EAPIN	GPB1	TTL	CMOS	General purpose I/O
	AN4	AN	-	A/D Channel 4 input
	EAPIN	-	-	Error amplifier signal input/output ${ }^{(3)}$
GPB2/AN5	GPB2	TTL	CMOS	General purpose I/O
	AN5	AN	-	A/D Channel 5 input
GPB4/AN6/ICSPDAT (MCP19111 Only)	GPB4	TTL	CMOS	General purpose I/O
	AN6	AN	-	A/D Channel 6 input
	ICSPDAT	ST	CMOS	Serial Programming Data I/O
$\begin{array}{ll} \text { Legend: } & \text { AN }=\text { Analog input } \\ & \text { TTL }=T T L \text { compatib } \end{array}$	output CMOS $=C$ input ST $=$ S	MOS c chmitt T	patible in igger input	with or output $O D=$ Open Drain $I^{2} C=S c h m i t t ~ T r i g g e r ~ i n p u t ~ w i t h ~$ $I^{2} C$
Note 1: Analog Test is select 2: Selected when devic in the BUFFCON reg 3: Selected when devic the BUFFCON regist	d when the ATSTCC is functioning as mu ster.	$\mathrm{N}<\mathrm{BNC}$ liple ou	$\mathrm{N}>$ bit is ut master	r slave by proper configuration of the MLTPH<2:0> bits
	is functioning as mu r	Iti-phase	master or	lave by proper configuration of the MLTPH<2:0> bits in

TABLE 2-1: MCP19110/11 PINOUT DESCRIPTION (CONTINUED)

2.1 Detailed Pin Functional Description

2.1.1 GPAO PIN

GPAO is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak pull-up and interrupt-on-change are also available.

ANO is an input to the A/D. To configure this pin to be read by the A/D on channel 0 , bits TRISAO and ANSA0 must be set.

When the ATSTCON<BNCHEN> bit is set, this pin is configured as the ANALOG_TEST function. It is a buffered output of the internal analog signal multiplexer. Signals present on this pin are controlled by the BUFFCON register, see Register 8-2.

2.1.2 GPA1 PIN

GPA1 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak pull-up and interrupt-on-change are also available.

AN1 is an input to the A/D. To configure this pin to be read by the A/D on channel 1 , bits TRISA1 and ANSA1 must be set.
When the MCP19110/11 is configured as a multiple output or multi-phase MASTER or SLAVE, this pin is configured to be the switching frequency synchronization input or output, CLKPIN. See Section 3.10.6 "Multi-Phase System" and Section 3.10.7 "Multiple Output System" for more information.

2.1.3 GPA2 PIN

GPA2 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak pull-up and interrupt-on-change are also available.
AN2 is an input to the A/D. To configure this pin to be read by the A/D on channel 2 , bits TRISA2 and ANSA2 must be set.
When bit TOCS is set, the TOCKI function is enabled. See Section 23.0 "Timer0 Module" for more information.

GPA2 can also be configured as an external interrupt by setting of the INTE bit. See Section 15.2 "GPA2/INT Interrupt" for more information.

2.1.4 GPA3 PIN

GPA3 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPA. An internal weak pull-up and interrupt-on-change are also available.

AN3 is an input to the A/D. To configure this pin to be read by the A/D on channel 3 , bits TRISA3 and ANSA3 must be set.

2.1.5 GPA4 PIN

GPA4 is a true open-drain general purpose pin whose data direction is controlled in TRISGPA. There is no internal connection between this pin and device $V_{D D}$, making this pin ideal to be used as an SMBus Alert pin. This pin does not have a weak pull-up, but interrupt-onchange is available.

2.1.6 GPA5 PIN

GPA5 is a general purpose TTL input-only pin. An internal weak pull-up and interrupt-on-change are also available.

For programming purposes, this pin is to be connected to the $\overline{M C L R}$ pin of the serial programmer. See Section 28.0 "In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$)" for more information.

2.1.7 GPA6 PIN

GPA6 is a general purpose CMOS input/output pin whose data direction is controlled in TRISGPA. An interrupt-on-change is also available.

On the MCP19110, the ISCPDAT is the serial programming data input function. This is used in conjunction with ICSPCLK to serial program the device. This pin function is only implemented on the MCP19110.

2.1.8 GPA7 PIN

GPA7 is a true open-drain general purpose pin whose data direction is controlled in TRISGPA. There is no internal connection between this pin and device $V_{D D}$. This pin does not have a weak pull-up, but interrupt-onchange is available.
When the MCP19110/11 is configured for $I^{2} C$ communication (see Section $27.2 \quad{ }^{\prime 2}{ }^{2} \mathrm{C}$ Mode Overview"), GPA7 functions as the $\mathrm{I}^{2} \mathrm{C}$ clock, SCL.
On the MCP19110, the ISCPCLK is the serial programming clock function. This is used in conjunction with ICSPDAT to serial program the device. This pin function is only implemented on the MCP19110.

2.1.9 GPB0 PIN

GPB0 is a true open-drain general purpose pin whose data direction is controlled in TRISGPB. There is no internal connection between this pin and device V_{DD}. This pin does not have a weak pull-up, but interrupt-on-change is available.
When the MCP19110/11 is configured for $I^{2} C$ communication (see Section 27.2 " $I^{2} C$ Mode Overview"), GPB0 functions as the $1^{2} \mathrm{C}$ clock, SDA.

2.1.10 GPB1 PIN

GPB1 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.
AN4 is an input to the A/D. To configure this pin to be read by the A/D on channel 4, bits TRISB1 and ANSB1 must be set.
When the MCP19110/11 is configured as a multiple output or multi-phase MASTER or SLAVE, this pin is configured to be the error amplifier signal input or output. See Section 3.10.6 "Multi-Phase System" and Section 3.10.7 "Multiple Output System", for more information.

2.1.11 GPB2 PIN

GPB2 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

AN5 is an input to the A/D. To configure this pin to be read by the A/D on channel 5 , bits TRISB2 and ANSB2 must be set.

2.1.12 GPB4 PIN

This pin and its associated functions are only available on the MCP19111 device.
GPB4 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

AN6 is an input to the A/D. To configure this pin to be read by the A/D on channel 6, bits TRISB4 and ANSB4 must be set.

On the MCP19111, the ISCPDAT is the serial programming data input function. This is used in conjunction with ICSPCLK to serial program the device. This pin function is only implemented on the MCP19111.

2.1.13 GBP5 PIN

This pin and its associated functions are only available on the MCP19111 device.

GPB5 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.
AN7 is an input to the A/D. To configure this pin to be read by the A/D on channel 7, bits TRISB5 and ANSB5 must be set.
On the MCP19111, the ISCPCLK is the serial programming clock function. This is used in conjunction with ICSPDAT to serial program the device. This pin function is only implemented on the MCP19111.

This pin can also be configured as an alternate switching frequency synchronization input or output, ALT_CLKPIN, for use in multiple output or multi-phase systems. See Section 19.1 "Alternate Pin Function" for more information.

2.1.14 GPB6 PIN

This pin and associated functions is only available on the MCP19111 device.
GPB6 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

2.1.15 GPB7 PIN

This pin and associated functions is only available on the MCP19111 device.
GPB7 is a general purpose TTL input or CMOS output pin whose data direction is controlled in TRISGPB. An internal weak pull-up and interrupt-on-change are also available.

2.1.16 $\quad \mathrm{V}_{\text {IN }}$ PIN

Device input power connection pin. It is recommended that capacitance be placed between this pin and the GND pin of the device.

2.1.17 $\quad V_{D D} P I N$

The output of the internal +5.0 V regulator is connected to this pin. It is recommended that a $1.0 \mu \mathrm{~F}$ bypass capacitor be connected between this pin and the GND pin of the device. The bypass capacitor should be placed physically close to the device.

2.1.18 $V_{D R}$ PIN

The 5 V supply for the low-side driver is connected to this pin. The pin can be connected by an RC filter to the $V_{D D}$ pin.

2.1.19 GND PIN

GND is the small signal ground connection pin. This pin should be connected to the exposed pad, on the bottom of the package.

2.1.20
 $P_{G N D}$ PIN

Connect all large signal level ground returns to $\mathrm{P}_{\mathrm{GND}}$. These large-signal level ground traces should have a small loop area and minimal length to prevent coupling of switching noise to sensitive traces.

2.1.21 LDRV PIN

The gate of the low-side or rectifying MOSFET is connected to LDRV. The PCB tracing connecting LDRV to the gate must be of minimal length and appropriate width to handle the high peak drive currents and fast voltage transitions.

2.1.22 HDRV PIN

The gate of the high-side MOSFET is connected to HDRV. This is a floating driver referenced to PHASE. The PCB trace connecting HDRV to the gate must be of minimal length and appropriate width to handle the high-peak drive current and fast voltage transitions.

2.1.23 PHASE PIN

The PHASE pin provides the return path for the highside gate driver. The source of the high-side MOSFET, drain of the low-side MOSFET and the inductor are connected to this pin.

2.1.24 BOOT PIN

The BOOT pin is the floating bootstrap supply pin for the high-side gate driver. A capacitor is connected between this pin and the PHASE pin to provide the necessary charge to turn on the high-side MOSFET.

2.1.25 $+\mathrm{V}_{\text {SEN }}$ PIN

The non-inverting input of the unity gain amplifier used for output voltage remote sensing is connected to the $+\mathrm{V}_{\text {SEN }}$ pin. This pin can be internally pulled-up to V_{DD} by setting PE1<PUEN> bit.

2.1.26 $\quad-\mathrm{V}_{\text {SEN }}$ PIN

The inverting input of the unity gain amplifier used for output voltage remote sensing is connected to the $-V_{\text {SEN }}$ pin. This pin can be internally pull-down to GND by setting PE1<PDEN> bit.

2.1.27 $\quad \mathrm{I}_{\text {SEN }}$ PIN

The non-inverting input of the current sense amplifier is connected to the ${ }^{\text {I }}$ SEN pin.

2.1.28 - - SEN PIN

The inverting input of the current sense amplifier is connected to the - ISEN pin .

2.1.29 EXPOSED PAD (EP)

There is no internal connection to the Exposed Thermal Pad. The EP should be connected to the GND pin and to the GND PCB plane to aid in the removal of the heat.

3.0 FUNCTIONAL DESCRIPTION

3.1 Linear Regulators

Two internal linear regulators generate two 5 V rails. One 5 V rail is used to provide power for the internal analog circuitry and is contained on-chip. The second 5 V rail provides power to the internal PIC core and it is present on the V_{DD} pin. It is recommended that a $1 \mu \mathrm{~F}$ capacitor be placed between V_{DD} and $\mathrm{P}_{\mathrm{GND}}$.
The $V_{D R}$ pin provides power to the internal synchronous MOSFET driver. $V_{D D}$ can be directly connected to V_{DR} or connected through a low-pass RC filter to provide noise filtering. A $1 \mu \mathrm{~F}$ ceramic bypass capacitor should be placed between $V_{D R}$ and $P_{G N D}$. When connecting $V_{D D}$ to $V_{D R}$, the gate drive current required to drive the external MOSFETs must be added to the MCP19110/11 quiescent current, $\mathrm{I}_{\mathrm{Q}(\max)}$. This total current must be less than the maximum current, $I_{D D-O U T}$, available from $V_{D D}$ that is specified in Section 4.2 "Electrical Characteristics".

EQUATION 3-1: TOTAL REGULATOR CURRENT

$$
I_{D D-\text { OUT }}>\left(I_{Q}+I_{D R I V E}+I_{E X T}\right)
$$

Where:

- $I_{D D-O U T}$ is the total current available from $V_{D D}$
- I_{Q} is the device quiescent current
- I IDRIVE is the current required to drive the external MOSFETs
- $\mathrm{I}_{\mathrm{EXT}}$ is the amount of current used to power additional external circuitry.

EQUATION 3-2: GATE DRIVE CURRENT

$I_{\text {DRIVE }}=\left(Q_{g H I G H}+Q_{g L O W}\right) \times F_{S W}$

Where:

- I IRIVE is the current required to drive the external MOSFETs
- $\mathrm{Q}_{\mathrm{gHIGH}}$ is the total gate charge of the high-side MOSFET
- $Q_{g L o w}$ is the total gate charge of the low-side MOSFET
- $\mathrm{F}_{\text {SW }}$ is the switching frequency

Alternatively, an external regulator can be used to power the synchronous driver. An external 5 V source can be connected to $V_{D R}$. The amount of current required from this external source can be found in Equation 3-2. Care must be taken that the voltage applied to $V_{D R}$ does not exceed the maximum ratings found in Section 4.1 "Absolute Maximum Ratings (\dagger)".

3.2 Internal Synchronous Driver

The internal synchronous driver is capable of driving two N-Channel MOSFETs in a synchronous rectified buck converter topology. The gate of the floating MOSFET is connected to the HDRV pin. The source of this MOSFET is connected to the PHASE pin. The HDRV pin source and sink current is configurable. By setting the DRVSTR bit in the PE1 register, the highside is capable of sourcing and sinking a peak current of 1 A . By clearing this bit, the source and sink peak current is 2 A .

Note 1: The PE1<DRVSTR> bit configures the peak source/sink current of the HDRV pin.

The MOSFET connected to the LDRV pin is not floating. The low-side MOSFET gate is connected to the LDRV pin and the source of this MOSFET is connected to $\mathrm{P}_{\mathrm{GND}}$. The drive strength of the LDRV pin is not configurable. This pin is capable of sourcing a peak current of 2 A . The peak sink current is 4 A . This helps keep the low-side MOSFET off when the high-side MOSFET is turning on.

Note 1: Refer to Figure 1-1 for a graphical representation of the MOSFET connections.

3.2.1 MOSFET DRIVER DEAD TIME

The MOSFET driver dead time is defined as the time between one drive signal going low and the complimentary drive signal going high. Refer to Figure 6-2. The MCP19110/11 has the capability to adjust both the high-side and low-side driver dead time independently. The adjustment of the driver dead time is controlled by the DEADCON register and is adjustable in 4 ns increments.

Note 1: The DEADCON register controls the amount of dead time added to the HDRV or LDRV signal. The dead time circuitry is enabled by the LDLYBY and HDLYBY bits in the PE1 register.

3.2.2 MOSFET DRIVER CONTROL

The MCP19110/11 has the ability to disable the entire synchronous driver or just one side of the synchronous drive signal. The bits that control the MOSFET driver can be found in the Register 8-1.
By setting ATSTCON<DRVDIS>, the entire synchronous driver is disabled. The HDRV and LDRV signals are set low and the PHASE pin is floating. Clearing this bit allows normal operation.
Individual control of the HDRV or LDRV signal is accomplished by setting or clearing the HIDIS or LODIS bits in the ATSTCON register. When either driver is disabled, the output signal is set low.

3.3 Output Voltage

The output voltage is configured by the settings contained in the OVCCON and OVFCON registers. No external resistor divider is needed to set the output voltage. Refer to Section 6.10 "Output Voltage Configuration".
The MCP19110/11 contains a unity gain differential amplifier used for remote sensing of the output voltage. Connect the $+\mathrm{V}_{\text {SEN }}$ and $-\mathrm{V}_{\text {SEN }}$ pins directly at the load for better load regulation. The $+\mathrm{V}_{\text {SEN }}$ and $-\mathrm{V}_{\text {SEN }}$ are the positive and negative inputs, respectively, of the differential amplifier.

3.4 Switching Frequency

The switching frequency is configurable over the range of 100 kHz to 1.6 MHz . The Timer2 module is used to generate the HDRV/LDRV switching frequency. Refer to Section 26.0 "PWM Module" for more information. Example 3-1 shows how to configure the MCP19110/11 for a switching frequency of 300 kHz .

EXAMPLE 3-1: CONFIGURING F ${ }_{\text {SW }}$

BANKSEL	T2CON	
CLRF	T2CON	;Turn off Timer2
CLRF	TMR2	;Initialize module
MOVLW	0×19	;Fsw=300 kHz
MOVWF	PR2	
MOVLW	$0 \times 0 A$;Max duty cycle=40\%
MOVWF	PWMRL	
MOVLW	0×00	; No phase shift
MOVWF	PWMPHL	
MOVLW	0×04	;Turn on Timer2
MOVWF	T2CON	

3.5 Compensation

The MCP19110/11 is an analog peak current mode controller with integrated adjustable compensation. The CMPZCON register is used to adjust the compensation zero frequency and gain. Figure 3-1 shows the internal compensation network with the output differential amplifier.

FIGURE 3-1: SIMPLIFIED INTERNAL COMPENSATION

3.6 Slope Compensation

In current mode control systems, slope compensation needs to be added to the control path to help prevent subharmonic oscillation when operating with greater than 50% duty cycle. In the MCP19110/11, a negative slope is added to the error amplifier output signal before it is compared to the current sense signal. The amount of slope added is controlled by the SLPCRCON register, Register 6-7.

> Note 1: To enable the slope compensation circuitry, the ABECON<SLCPBY> bit must be cleared.

The amount of slope compensation added should be equal to the inductor current down slope during the high-side off time.

3.7 Current Sense

The output current is differentially sensed by the MCP19110/11. The sense element can be either a resistor placed in series with the output, or the series resistance of the inductor. If the inductor series resistance is used, a filter is needed to remove the large AC component of the voltage that appears across the inductor and leave only the small AC voltage that appears across the inductor resistance, as shown in Figure 3-2. This small AC voltage is representative of the output current.

FIGURE 3-2: INDUCTOR CURRENT SENSE FILTER

The value of R_{S} and C_{S} can be found by using Equation 3-3. When the current sense filter time constant is set equal to the inductor time constant, the voltage appearing across C_{S} approximates the current flowing in the inductor, multiplied by the inductor resistance.

EQUATION 3-3: CALCULATING FILTER VALUES

$$
\frac{L}{R_{L}}=\left(R_{S} \times C_{S}\right)
$$

Where:

- L is the inductance value of the output inductor
- R_{L} is the series resistance of the output inductor
- R_{S} is the current sense filter resistor
- C_{S} is the current sense filter capacitor

Both AC gain and DC gain can be added to the current sense signal. Refer to Section 6.3 "Current Sense AC Gain" and Section 6.4 "Current Sense DC Gain" for more information.

3.7.1 PLACEMENT OF THE CURRENT SENSE FILTER COMPONENTS

The amplitude of the current sense signal is typically less than 100 mV peak-to-peak. Therefore, the small signal current sense traces are very susceptible to circuit noise. When designing the printed circuit board, placement of R_{S} and C_{S} is very important. The ${ }^{+} I_{\text {SEN }}$ and $-I_{\text {SEN }}$ traces should be routed parallel to each other with minimum spacing. This Kelvin sense routing technique helps minimize noise sensitivity. The filter capacitor (C_{S}), should be placed as close to the MCP19110/11 as possible. This will help filter any noise that is injected onto the current sense lines. The trace connecting C_{S} to the inductor should occur directly at the inductor and not at any other $+\mathrm{V}_{\text {SEN }}$ trace. The filter resistor $\left(\mathrm{R}_{\mathrm{S}}\right)$, should be placed close to the inductor. See Figure 3-3 for component placement. Care should also be taken to avoid routing the ${ }^{+I_{\text {SEN }}}$ and $-_{\text {SEN }}$ traces near the high current switching nodes of the HDRV, LDRV, PHASE, or BOOST traces. It is recommended that a ground layer be placed between these high current traces and the small signal current sense traces.

FIGURE 3-3: CURRENT SENSE FILTER COMPONENT PLACEMENT

3.8 Protection Features

3.8.1 INPUT UNDERVOLTAGE LOCKOUT

The input Undervoltage Lockout (UVLO) threshold is configurable by the VINLVL register, Register 6-1. When the voltage at the $\mathrm{V}_{\text {IN }}$ pin of the MCP19110/11 is below the configurable threshold, the PIR2<VINIF> flag will be set. This flag is cleared by hardware once the V_{IN} voltage is greater than the configurable threshold. By enabling the global interrupts or polling the VINIF bit, the MCP19110/11 can be disabled when the $\mathrm{V}_{\mathbb{I N}}$ voltage is below the threshold.

Note 1: The UVLO DAC must be enabled by setting the VINLVL<UVLOEN> bit.
2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit (GIE) of the INTCON register.

Some techniques that can be used to disable the switching of the MCP19110/11 while the VINIF flag is set include setting the ATSTCON<DVRDIS> bit, setting the reference voltage to 0 V , setting the PE1<PUEN> bit, or setting the ATSTCON<HIDIS> and ATSTCON<LODIS> bits.

3.8.2 OUTPUT OVERCURRENT

The MCP19110/11 senses the voltage drop across the high-side MOSFET to determine when an output overcurrent (OC) exists. This voltage drop is configurable by the OCCON register (Register 6-2), and is measured when the high-side MOSFET is conducting. To avoid false OC events, leading edge blanking is applied to the measurements. The amount of blanking is controlled by the OCLEB<1:0> bits in the OCCON register. See Section 6.2 "Output Overcurrent" for more information.

When the input voltage is greater than 20V, or if the $R_{\text {Dson }}$ of the high-side MOSFET is such that the programmed overcurrent threshold does not produce acceptable peak overcurrent protection, an alternative method must be used to determine an overcurrent situation. An alternative technique can use the configurable output undervoltage protection, and the PE1<UVTEE> bit, to quickly terminate switching when the output voltage drops because of an overcurrent event.

Note 1: The OC DAC must be enabled by setting

 the OCCON<OCEN> bit.
3.8.3 OUTPUT UNDERVOLTAGE

When the output undervoltage DAC is enabled by setting the ABECON<UVDCEN> bit, the voltage measured between the $+V_{\text {SEN }}$ and $-V_{\text {SEN }}$ pins is monitored and compared to the UV threshold controlled by the OUVCON register (Register 6-12). When the output voltage is below the threshold, the PIR2<UVIF> flag will be set. Once set, firmware can determine how the MCP19110/11 responds to the fault condition and it must clear the UVIF flag.
By setting the PE1<UVTEE> bit, the HDRV and LDRV signals will be asserted low when the UVIF flag is set. The signals will remain low until the flag is cleared.

Note 1: The UV DAC must be enabled by setting the ABECON<UVDCEN> bit.
2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit (GIE) of the INTCON register.
3: The output of the remote sense comparator is compared to the UV threshold. Therefore, the offset in this comparator should be considered when calculating the UV threshold.

3.8.4 OUTPUT OVERVOLTAGE

When the output overvoltage DAC is enabled by setting the ABECON<OVDCEN> bit, the voltage measured between the $+\mathrm{V}_{\text {SEN }}$ and $-\mathrm{V}_{\text {SEN }}$ pins is monitored and compared to the OV threshold controlled by the OOVCON register (Register 6-13). When the output voltage is above the threshold, the PIR2<OVIF> flag will be set. Once set, firmware can determine how the MCP19110/11 responds to the fault condition and it must clear the OVIF flag.
By setting the PE1<OVTEE> bit, the HDRV and LDRV signals will be asserted low when the OVIF flag is set. The signals will remain low until the flag is cleared.

Note 1: The OV DAC must be enabled by setting the ABECON<UVDCEN> bit.
2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit (GIE) of the INTCON register.

3: The output of the remote sense comparator is compared to the OV threshold. Therefore, the offset in this comparator should be considered when calculating the OV threshold.

3.8.5 OVERTEMPERATURE

The MCP19110/11 features a hardware overtemperature shutdown protection typically set at $+160^{\circ} \mathrm{C}$. No firmware fault-handling procedure is required to shutdown the MCP19110/11 for an overtemperature condition. The ABECON<TMPSEN> bit must be set to enable the over temperature circuitry.

3.9 PIC Microcontroller Core

Integrated into the MCP19110/11 is the PIC microcontroller mid-range core. This is a fully functional microcontroller, allowing proprietary features to be implemented. Setting the CONFIG<CP> bit enables the code protection. The firmware is then protected from external reads or writes. Various status and fault bits are available to customize the fault handling response.
A minimal amount of firmware is required to properly configure the MCP19110/11. Section 6.0 "Configuring the MCP19110/11" contains detailed information about each register that needs to be set for the MCP19110/11 device to operate. To aid in the development of the required firmware, a Graphical User Interface (GUI) has been developed. This GUI can be used to quickly configure the MCP19110/11 for basic operation. Customized or proprietary features can then be added to the GUI generated firmware.

Note 1: The GUI can be found on the MCP19110/11 product page on www.microchip.com.
2: Microchip's MPLAB X Integrated Development Environment Software is required to use the GUI.

The MCP19110/11 device features firmware debug support. See Section 30.0 "Development Support" for more information.

3.10 Miscellaneous Features

3.10.1 DEVICE ADDRESSING

The communication address of the MCP19110/11 is stored in the SSPADD register. This value can be loaded when the device firmware is programmed or configured by external components. By reading a voltage on a GPIO with the ADC, a device specific address can be stored into the SSPADD register.
The MCP19110/11 contains a second address register, SSPADD2. This is a 7-bit address that can be used as the SMBus alert address when PMBus communication is used. See Section 27.0 "Master Synchronous Serial Port (MSSP) Module" for more information.

3.10.2 DEVICE ENABLE

A GPIO pin can be configured to be a device enable pin. By configuring the pin as an input, the PORT register or the interrupt on change (IOC) can be used to enable the device. Example 3-2 shows how to configure a GPIO as an enable pin by testing the PORT register.

EXAMPLE 3-2: CONFIGURING GPA3 AS DEVICE ENABLE

3.10.3 OUTPUT POWER GOOD

The output voltage measured between the $+V_{\text {SEN }}$ and $-V_{\text {SEN }}$ pins can be monitored by the internal ADC. In firmware, when this ADC reading matches a userdefined power good value, a GPIO can be toggled to indicate the system output voltage is within a specified range. Delays, hysteresis and time-out values can all be configured in firmware.

3.10.4 OUTPUT VOLTAGE SOFT-START

During start-up, soft start of the output voltage is accomplished in firmware. By using one of the internal timers and incrementing the OVCCON or OVFCON register on a timer overflow, very long soft start times can be achieved.

3.10.5 OUTPUT VOLTAGE TRACKING

The MCP19110/11 can be configured to track another voltage signal at start-up or shutdown. The ADC is configured to read a GPIO that has the desired tracking voltage applied to it. The firmware then handles the tracking of the internal output voltage reference to this ADC reading.

3.10.6 MULTI-PHASE SYSTEM

In a multi-phase system, the output of each converter is connected together. There is one master device that sets the system switching frequency and provides each slave device with an error signal, in order to regulate the output to the same value.
The MCP19110/11 can be configured as a multi-phase master or slave by the setting of the MLTPH<2:0> bits in the BUFFCON register (Register 8-2). When set as a multi-phase master device, the internal switching frequency clock is connected to GPA1 and the output of the error amplifier is connected to GPB1. The GPIOs need to be configured as outputs.
When set as a multi-phase slave device, the GPA1 pin is configured as the CLKPIN function. The switching frequency clock from the master device must be connected to GPA1. The slave device will synchronize its internal switching frequency clock to the master clock. Phase shift can be applied by setting the PWMPHL register of the slave device. The slave GPB1 pin is configured as the error signal input pin (EAPIN). The master error amplifier output must be connected to GPB1. Gain can be added to the master error amplifier output signal by the SLVGNCON register setting (Register 6-8). The slave device will use this master error signal to regulate the output voltage. When set as a slave device, GPA1 and GPB1 need to be configured as inputs. Refer to Section 26.1 "Standard PulseWidth Modulation (PWM) Mode" for additional information.

Note 1: The ALT_CLKPIN can also be used by setting the APFCON<CLKSEL> bit. This function is only available in the MCP19111.

3.10.7 MULTIPLE OUTPUT SYSTEM

In a multiple output system, the switching frequency of each converter should be synchronized to a master clock to prevent beat frequencies from developing. Phase shift is often added to the master clock to help smooth the system input current. The MCP19110/11 has the ability to function as a multiple output master or slave by setting the appropriate MLTPH<2:0> bits in the BUFFCON register (Register 8-2).
When configured as a multiple output master, the GPA1 pin is set as the CLKPIN output function. The internal switching frequency clock is applied to this pin and is to be connected to the GPA1 pin of the slave units.
When configured as a multiple output slave, the GPA1 pin is set as the CLKPIN input function. The switching frequency clock of the master device is connected to this pin. Phase shift can be applied by appropriately setting the PWMPHL register of the slave device. Refer to Section 26.1 "Standard Pulse-Width Modulation (PWM) Mode".

Note 1: The ALT_CLKPIN can also be used by setting the APFCON<CLKSEL> bit. This function is only available in the MCP19111.

3.10.8 SYSTEM BENCH TESTING

The MCP19110/11 is a highly integrated controller. To facilitate system prototyping, various internal signals can be measured by configuring the MCP19110/11 in bench test mode. To accomplish this, the ATSTCON<BNCHEN> bit is set. This configures GPAO as the ANALOG_TEST feature. The signals measured on GPA0 are controlled by the ASEL<4:0> bits of the BUFFCON register. See Section 8.0 "System Bench Testing" for more information.

Note 1: The factory-set calibration words are write-protected even when the MCP19110/11 is placed in a Bench Test mode.

4.0 ELECTRICAL CHARACTERISTICS

4.1 ABSOLUTE MAXIMUM RATINGS ${ }^{(\dagger)}$

$V_{\text {IN }}-V_{\text {GND }}$	-0.3 V to +32 V
$V_{\text {BOOT }} V_{\text {PHA }}$	-0.3 V to +6.5 V
$\mathrm{V}_{\text {PHASE }}$ (continuous)	GND -0.3 V to +38 V
$V_{\text {PHASE }}$ (transient < 100 ns)	GND -5.0 V to +38 V
$V_{\text {DD }}$ internally generated	... $+5 \mathrm{~V} \pm 20 \%$
$V_{\text {HDRV, }}$, HDRV Pin..	+ $\mathrm{V}_{\text {PHASE }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {BOOT }}+0.3 \mathrm{~V}$
V ${ }_{\text {LDRV, }}$ LDRV Pin..	. $+\left(\mathrm{V}_{\mathrm{GND}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Voltage on MCLR with respect to GND	. -0.3 V to +13.5 V
Maximum Voltage: any other pin.	$+\left(\mathrm{V}_{\mathrm{GND}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Maximum output current sunk by any single I/O pin	25 mA
Maximum output current sourced by any single I/O pin.	25 mA
Maximum current sunk by all GPIO	65 mA
Maximum current sourced by all GPIO	65 mA
ESD protection on all pins (HBM).	. 1.0 kV
ESD protection on all pins (MM). 100V

\dagger Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

4.2 Electrical Characteristics

Electrical Specifications: Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.2 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Boldface specifications apply over the T_{A} range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.						
Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Input						
Input Voltage	$\mathrm{V}_{\text {IN }}$	4.5	-	32	V	
Input Quiescent Current	I_{Q}	-	5	10	mA	Not switching
Shutdown Current	$\mathrm{I}_{\text {SHDN }}$	-	1.8	2.2	mA	Note 4
Adjustable Input Undervoltage Lockout Range	UVLO	3	-	32	V	VINLVL is a LOG DAC
Input Undervoltage Lockout Hysteresis	UVLOHYS	-	13	-	\%	Hysteresis applied to adjustable UVLO setpoint
Overcurrent						
Overcurrent Minimum Threshold	$\mathrm{OC}_{\text {MIN }}$	-	160	-	mV	
Overcurrent Maximum Threshold	$\mathrm{OC}_{\text {MAX }}$	-	620	-	mV	
Overcurrent Mid-Scale Threshold	$\mathrm{OC}_{\text {MID }}$	240	400	550	mV	
Overcurrent Step Size	OC STEP_SIZE	10	15	20	mV	
Adjustable OC Leading Edge Blanking Minimum Set Point	LEB ${ }_{\text {min }}$	-	114	-	ns	
Adjustable OC Leading Edge Blanking Maximum Set Point	$\mathrm{LEB}_{\text {max }}$	-	780	-	ns	
Current Sense						
Current Sense Minimum AC Gain	$\mathrm{I}_{\text {AC_GAIN }}$	-	0	-	dB	
Current Sense Maximum AC Gain	$\mathrm{I}_{\text {AC_GAIN }}$	-	22.8	-	dB	
Current Sense AC Gain Mid-Set Point	$\mathrm{I}_{\text {AC_GAIN }}$	8.5	11.5	14	dB	
Current Sense AC Gain Step Size	$\mathrm{I}_{\text {AC_GAIN_STEP }}$	-	1.5	-	dB	
Current Sense AC Gain Offset Voltage	$\mathrm{I}_{\text {AC_OFFSET }}$	-175	9	135	mV	
Current Sense Minimum DC Gain	$\mathrm{I}_{\text {DC_GAIN }}$	-	19.5	-	dB	
Current Sense Maximum DC Gain	$\mathrm{I}_{\text {DC_GAIN }}$	-	35.7	-	dB	
Current Sense DC Gain Mid-Set Point	$\mathrm{I}_{\text {DC_GAIN }}$	27	28.6	30.3	dB	
Current Sense DC Gain Step Size	IDC_GAIN_STEP	-	2.3	-	dB	

Note 1: Ensured by design. Not production tested.
2: $V_{D D-O U T}$ is the voltage present at the $V_{D D} p i n . V_{D D}$ is the internally generated bias voltage.
3: This is the total source current for all GPIO pins combined. Individually, each pin can source a maximum of 25 mA .
4: PE1 $=0 \times 00 \mathrm{~h}, \mathrm{ABECON}=0 \times 00 \mathrm{~h}$, ATSTCON $=0 \times 80 \mathrm{~h}, \mathrm{WPUGPA}=0 \times 00 \mathrm{~h}, \mathrm{WPUGPB}=0 \times 00 \mathrm{~h}$, and SLEEP command issued to PIC core, see SECTION 16.0.

4.2 Electrical Characteristics (Continued)

Electrical Specifications: Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.2 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Boldface specifications apply over the T_{A} range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Current Sense DC Gain Offset Voltage	IDC_OFFSET	1.4	1.56	1.7	V	
Voltage for Zero Current	VZC	-	1.45	-	V	VZCCON $=0 \times 80 \mathrm{~h}$

Voltage Reference

Adjustable $\mathrm{V}_{\text {Out }}$ Range	V ${ }_{\text {OUT_RANGE }}$	0.5	-	3.6	V	$V_{\text {OUT }}$ range with no external voltage divider
$\mathrm{V}_{\text {OUT }}$ Coarse Resolution	$\mathrm{V}_{\text {OUT_COARSE }}$	10.8	15.8	25.8	mV	
$V_{\text {OUT }}$ Coarse Mid Set Point	V ${ }_{\text {OUT_COARSE_MID }}$	1.85	2.04	2.25	V	
$\mathrm{V}_{\text {OUT }}$ Fine Resolution	V OUT_FINE	-	0.8	1	mV	

Output Overvoltage

Adjustable Overvoltage Range	OV $_{\text {RANGE }}$	$\mathbf{0}$	-	4.5	V	
Adjustable Overvoltage Mid-Set Point	OV $_{\text {MID }}$	1.8	2	2.3	V	
Adjustable Overvoltage Resolution	OV $_{\mathrm{R}}$	-	15	-	mV	

Output Undervoltage

Adjustable Undervoltage Range	UV $_{\text {RANGE }}$	$\mathbf{0}$	-	$\mathbf{4 . 5}$		
Adjustable Undervoltage Mid-Set Point	UV $_{\text {MID }}$	1.8	2	2.3	V	
Adjustable Undervoltage Resolution	UV $_{\mathrm{R}}$	-	15	-	mV	

Remote Sense Differential Amplifier

Closed Loop Voltage Gain	$\mathrm{A}_{\mathrm{VOL}}$	0.95	1	1.05	V/V	
Common Mode Range	$\mathrm{V}_{\text {CMR }}$	GND - 0.3	-	$\mathrm{V}_{\mathrm{DD}}+1.0$	V	Note 1
Common Mode Reject Ratio	CMRR	-	57	-	dB	
Differential Amplifier Offset	V_{OS}	-	40	-	mV	See Section 9.5 "Calibration Word 5" and Section 9.6 "Calibration Word 6"
Compensation						
Minimum Zero Frequency	$\mathrm{F}_{\text {ZERO_MIN }}$	-	350	-	Hz	
Maximum Zero Frequency	$\mathrm{F}_{\text {ZERO_MAX }}$	-	35000	-	Hz	
Minimum Error Amplifier Gain	$\mathrm{G}_{\text {EA_MIN }}$	-	0	-	dB	
Maximum Error Amplifier Gain	$\mathrm{G}_{\text {EA_MAX }}$	-	36.15	-	dB	

Note 1: Ensured by design. Not production tested.
2: $\quad \mathrm{V}_{D D-O U T}$ is the voltage present at the $\mathrm{V}_{D D} \mathrm{pin} . \mathrm{V}_{D D}$ is the internally generated bias voltage.
3: This is the total source current for all GPIO pins combined. Individually, each pin can source a maximum of 25 mA .
4: PE1 $=0 x 00 h, A B E C O N=0 x 00 h$, ATSTCON $=0 x 80 h, W P U G P A=0 x 00 h, W P U G P B=0 x 00 h$, and SLEEP command issued to PIC core, see SECTION 16.0.

4.2 Electrical Characteristics (Continued)

Electrical Specifications: Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.2 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Boldface specifications apply over the T_{A} range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Oscillator						
Internal Oscillator Frequency	Fosc	7.60	8.00	8.40	MHz	
Switching Frequency	$\mathrm{F}_{\text {SW }}$	-	$\mathrm{F}_{\text {OSC }} / \mathrm{N}$	-	kHz	
Switching Frequency Range Select	N	5	-	80		
Maximum Duty Cycle		-	($\mathrm{N}-1$)/ N	-	$\begin{gathered} \% / \\ 100 \end{gathered}$	
Dead Time Adjustment						
Dead Time Step Size	DT ${ }_{\text {STEP }}$	-	4	-	ns	
HDRV Output Driver						
HDRV Source Resistance	$\mathrm{R}_{\text {HDRV-SCR }}$	-	1	2.6	Ω	Measured at 500 mA Note 1, High Range
		-	2	3.5	Ω	Measured at 500 mA Note 1, Low Range
HDRV Sink Resistance	$\mathrm{R}_{\text {HDRV-SINK }}$	-	1	2.6	Ω	Measured at 500 mA Note 1, High Range
		-	2	3.5	Ω	Measured at 500 mA Note 1, Low Range
HDRV Source Current	IHDRV-SCR	-	2	-	A	Note 1, High Range
		-	1	-	A	Note 1, Low Range
HDRV Sink Current	$\mathrm{I}_{\text {HDRV-SINK }}$	-	2	-	A	Note 1, High Range
		-	1	-	A	Note 1, Low Range
HDRV Rise Time	t_{RH}	-	15	30	ns	Note 1, $\mathrm{C}_{\text {LOAD }}=3.3 \mathrm{nF}$, High Range
HDRV Fall Time	t_{FH}	-	15	30	ns	Note 1, $\mathrm{C}_{\text {LOAD }}=3.3 \mathrm{nF}$, High Range
LDRV Output Driver						
LDRV Source Resistance	RLDRV-SCR	-	1	2.5	Ω	Measured at 500 mA Note 1
LDRV Sink Resistance	$\mathrm{R}_{\text {LDRV-SINK }}$	-	0.5	1.0	Ω	Measured at 500 mA Note 1
LDRV Source Current	ILDRV-SCR	-	2	-	A	Note 1
LDRV Sink Current	l LDRV-SINK	-	4	-	A	Note 1
LDRV Rise Time	t_{RL}	-	15	30	ns	Note 1, $\mathrm{C}_{\text {LOAD }}=3.3 \mathrm{nF}$
LDRV Fall Time	t_{FL}	-	7	15	ns	Note 1, $\mathrm{C}_{\text {LOAD }}=3.3 \mathrm{nF}$

Note 1: Ensured by design. Not production tested.
2: $V_{D D-O U T}$ is the voltage present at the $V_{D D} p i n . V_{D D}$ is the internally generated bias voltage.
3: This is the total source current for all GPIO pins combined. Individually, each pin can source a maximum of 25 mA .
4: PE1 $=0 \times 00 \mathrm{~h}, \mathrm{ABECON}=0 \times 00 \mathrm{~h}$, ATSTCON $=0 \times 80 \mathrm{~h}, \mathrm{WPUGPA}=0 \times 00 \mathrm{~h}, \mathrm{WPUGPB}=0 \times 00 \mathrm{~h}$, and SLEEP command issued to PIC core, see SECTION 16.0.

4.2 Electrical Characteristics (Continued)

Electrical Specifications: Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.2 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Boldface specifications apply over the T_{A} range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
Linear Regulator						
Bias Voltage, LDO Output	$V_{\text {DD }}$	4.6	5.0	5.4	V	$\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}$ to 32 V , Note 2
Internal Circuitry Bias Voltage	$\mathrm{AV}_{\mathrm{DD}}$	-	5.0	-	V	$\mathrm{V}_{\text {IN }}=6.0 \mathrm{~V}$ to 32 V , Note 2
Maximum VDD Output Current	$\mathrm{I}_{\text {DD }}$	30	-	-	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=6.0 \mathrm{~V} \text { to } 20 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \end{aligned}$ Note 2
Line Regulation	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{DD}} / \\ \left(\mathrm{V}_{\mathrm{DD}} \times \Delta \mathrm{V}_{\mathrm{IN}}\right) \end{gathered}$	-	0.05	0.1	\%/V	$\left(\mathrm{V}_{\mathrm{DD}}+1.0 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{IN}} \leq 20 \mathrm{~V}$ Note 2
Load Regulation	$\Delta \mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DD}}$	-1.75	-0.8	+0.5	\%	$\mathrm{I}_{\mathrm{DD}}=1 \mathrm{~mA}$ to 30 mA Note 2
Output Short Circuit Current	$I_{\text {DD_SC }}$	-	65	-	mA	$\mathrm{V}_{\mathrm{IN}}=\left(\mathrm{V}_{\mathrm{DD}}+1.0 \mathrm{~V}\right)$ Note 2
Dropout Voltage	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {DD }}$	-	0.5	1	V	$\begin{aligned} & \mathrm{I}_{\mathrm{DD}}=30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}+1.0 \mathrm{~V} \end{aligned}$ Note 2
Power Supply Rejection Ratio	PSRR ${ }_{\text {LDO }}$	-	60	-	dB	$\begin{aligned} & \mathrm{f} \leq 1000 \mathrm{~Hz}, \mathrm{I}_{\mathrm{DD}}=25 \mathrm{~mA}, \\ & \mathrm{C}_{\mathrm{IN}}=0 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{DD}}=1 \mu \mathrm{~F} \end{aligned}$
Band Gap Voltage	BG	-2.5\%	1.23	+2.5\%	V	
GPIO Pins						
Maximum GPIO Sink Current	ISINK_GPIO	-	-	90	mA	Note 3, Note 1
Maximum GPIO Source Current	ISOURCE_GPIO	-	-	90	mA	Note 3, Note 1
GPIO Weak Pull-up Current	IPULL-UP_GPIO	50	250	400	$\mu \mathrm{A}$	$V_{D D}=5 \mathrm{~V}$
GPIO Output Low Voltage	$\mathrm{V}_{\text {OL }}$	-	-	0.6	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=7 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+90^{\circ} \mathrm{C} \end{aligned}$
GPIO Output High Voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.7$	-	-	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-2.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+90^{\circ} \mathrm{C} \end{aligned}$
GPIO Input Leakage Current	GPIO_IIL	-	± 0.1	± 1	$\mu \mathrm{A}$	Negative current is defined as current sourced by the pin, $\mathrm{T}_{\mathrm{A}}=+90^{\circ} \mathrm{C}$
GPIO Input Low Voltage	V_{IL}	GND	-	0.8	V	I/O Port with TTL buffer $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+90^{\circ} \mathrm{C}$
		GND		$0.2 \mathrm{~V}_{\text {DD }}$	V	I/O Port with Schmitt Trigger buffer, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+90^{\circ} \mathrm{C}$
		GND		0.2V $\mathrm{V}_{\text {D }}$	V	$\overline{\mathrm{MCLR}}, \mathrm{T}_{\mathrm{A}}=+90^{\circ} \mathrm{C}$

Note 1: Ensured by design. Not production tested.
2: $\mathrm{V}_{\mathrm{DD} \text {-OUT }}$ is the voltage present at the V_{DD} pin. V_{DD} is the internally generated bias voltage.
3: This is the total source current for all GPIO pins combined. Individually, each pin can source a maximum of 25 mA .
4: PE1 $=0 \times 00 \mathrm{~h}, \mathrm{ABECON}=0 \times 00 \mathrm{~h}$, ATSTCON $=0 \times 80 \mathrm{~h}, \mathrm{WPUGPA}=0 \times 00 \mathrm{~h}, \mathrm{WPUGPB}=0 \times 00 \mathrm{~h}$, and SLEEP command issued to PIC core, see SECTION 16.0.

4.2 Electrical Characteristics (Continued)

Electrical Specifications: Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.2 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Boldface specifications apply over the T_{A} range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Conditions
GPIO Input High Voltage	V_{IH}	2.0	-	V_{DD}	V	I/O Port with TTL buffer, $V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+90^{\circ} \mathrm{C}$
		$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V	I/O Port with Schmitt Trigger buffer, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+90^{\circ} \mathrm{C}$
		$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V	$\overline{\mathrm{MCLR}}, \mathrm{T}_{\mathrm{A}}=+90^{\circ} \mathrm{C}$
Thermal Shutdown						
Thermal Shutdown	$\mathrm{T}_{\text {SHD }}$	-	160	-	${ }^{\circ} \mathrm{C}$	
Thermal Shutdown Hysteresis	TSHD_HYS	-	20	-	${ }^{\circ} \mathrm{C}$	

Note 1: Ensured by design. Not production tested.
2: $V_{D D-O U T}$ is the voltage present at the $V_{D D} p i n . V_{D D}$ is the internally generated bias voltage.
3: This is the total source current for all GPIO pins combined. Individually, each pin can source a maximum of 25 mA .
4: PE1 $=0 \times 00 \mathrm{~h}, \mathrm{ABECON}=0 \times 00 \mathrm{~h}$, ATSTCON $=0 \times 80 \mathrm{~h}, \mathrm{WPUGPA}=0 \times 00 \mathrm{~h}, \mathrm{WPUGPB}=0 \times 00 \mathrm{~h}$, and SLEEP command issued to PIC core, see SECTION 16.0.

4.3 Thermal Specifications

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Temperature Ranges						
Specified Temperature Range	T_{A}	-40	-	+125	${ }^{\circ} \mathrm{C}$	
Operating Temperature Range	T_{A}	-40	-	+125	${ }^{\circ} \mathrm{C}$	
Maximum Junction Temperature	T_{J}	-	-	+150	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	T_{A}	-65	-	+150	${ }^{\circ} \mathrm{C}$	
Thermal Package Resistances						
Thermal Resistance, 24L-QFN 4x4	θ_{JA}	-	42	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Thermal Resistance, 28L-QFN 5x5	θ_{JA}	-	35.3	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

5.0 DIGITAL ELECTRICAL CHARACTERISTICS

5.1 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

Lowercase letters (pp) and their meanings:

pp			
cc	CCP1	osc	OSC1
ck	CLKOUT	rd	$\overline{\mathrm{RD}}$
cs	$\overline{\mathrm{CS}}$	rw	$\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$
di	SDI	sc	SCK
do	SDO	ss	$\overline{\text { SS }}$
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	$\overline{\text { MCLR }}$	wr	$\overline{\mathrm{WR}}$

Uppercase letters and their meanings:

S			
F	Fall	P	Period
H	High	R	Rise
I	Invalid (high-impedance)	V	Valid
L	Low	Z	High-impedance
I^{2} C only			
AA	Output access	High	High
BUF	Bus free	Low	Low

TCC:ST (${ }^{2} \mathrm{C}$ specifications only)			
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 5-1: LOAD CONDITIONS

5.2 AC Characteristics: MCP19110/11 (Industrial, Extended)

FIGURE 5-2: EXTERNAL CLOCK TIMING

TABLE 5-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Typ. †	Max.	Units	Conditions
	$\mathrm{F}_{\mathrm{OSC}}$	Oscillator Frequency $^{(1)}$	-	8	-	MHz	
1	$\mathrm{~T}_{\mathrm{OSC}}$	Oscillator Period $^{(1)}$	-	250	-	ns	
2	$\mathrm{~T}_{\mathrm{CY}}$	Instruction Cycle Time $^{(1)}$	-	1000	-	ns	

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right),+25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: Instruction cycle period (T_{CY}) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code.

FIGURE 5-3: CLKOUT AND I/O TIMING

TABLE 5-2: CLKOUT AND I/O TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Typ. ${ }^{\dagger}$	Max.	Units	Conditions
17	TosH2ioV	OSC1个 (Q1 cycle) to Port out valid	-	50	150*	ns	
			-	-	300	ns	
18	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port input invalid (I/O in hold time)	100	-	-	ns	
19	TioV2osH	Port input valid to OSC1 \uparrow (I/O in setup time)	0	-	-	ns	
20	TioR	Port output rise time	-	10	40	ns	
21	TioF	Port output fall time	-	10	40	ns	
$\begin{gathered} 22 \\ 22 \mathrm{~A} \end{gathered}$	Tinp	INT pin high or low time	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	-	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	
$\begin{gathered} 23 \\ 23 A \end{gathered}$	Trbp Trbp	Port A change INT high or low time	Tcy	-	-	ns	

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right),+25^{\circ} \mathrm{C}$ unless otherwise stated.
FIGURE 5-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 5-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP TIMER REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Typ. ${ }^{\dagger}$	Max.	Units	Conditions
30	$\mathrm{~T}_{\mathrm{MCL}}$	$\overline{\mathrm{MCLR}}$ Pulse Width (low)	2	-	-	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
31	$\mathrm{~T}_{\mathrm{WDT}}$	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	$\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
32	$\mathrm{~T}_{\mathrm{OST}}$	Oscillation Start-up Timer Period	-	$1024 \mathrm{~T}_{\mathrm{OSC}}$	-	-	$\mathrm{T}_{\mathrm{OSC}}=\mathrm{OSC} 1$ period
33^{*}	$\mathrm{~T}_{\mathrm{PWRT}}$	Power-up Timer Period $\left(4 \times \mathrm{T}_{\mathrm{WDT}}\right)$	28	64	132	ms	$\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
34	$\mathrm{~T}_{\text {IOZ }}$	I/O high-impedance from $\overline{\mathrm{MCLR}}$ Low or Watchdog Timer Reset	-	-	2.0	$\mu \mathrm{~s}$	

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right),+25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 5-4: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym.	Characteristic		Min.	Typ. ${ }^{\dagger}$	Max.	Units	Conditions
40*	TtOH	TOCKI High Pulse Width	No Prescaler	$0.5 \mathrm{~T}_{\mathrm{CY}}+20$	-	-	ns	
			With Prescaler	10	-	-	ns	
41*	Tt0L	TOCKI Low Pulse Width	No Prescaler	$0.5 \mathrm{~T}_{\mathrm{CY}}+20$	-	-	ns	
			With Prescaler	10	-	-	ns	
42*	TtOP	TOCKI Period		Greater of: $20 \text { or } \frac{\mathrm{TCY}+40}{\mathrm{~N}}$	-	-	ns	$\begin{aligned} & \mathrm{N}=\text { prescale value } \\ & (2,4, \ldots, 256) \end{aligned}$

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right),+25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 5-6:

PWM TIMING

PWM (CLKPIN)

Note: Refer to Figure 5-1 for load conditions.

TABLE 5-5: PWM REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Typ. \dagger	Max.	Units	Conditions
53^{*}	TccR	PWM (CLKPIN) output rise time	-	10	25	ns	
54^{*}	TccF	PWM (CLKPIN) output fall time	-	10	25	ns	

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right),+25^{\circ} \mathrm{C}$ unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 5-6: MCP19110/11 A/D CONVERTER (ADC) CHARACTERISTICS:
Standard Operating Conditions (unless otherwise stated)
Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$

Param No.	Sym.	Characteristic	Min.	Typ. †	Max.	Units	Conditions
AD01	N_{R}	Resolution	-	-	10	bit	
AD02	E_{IL}	Integral Error	-	-	± 1	LSb	$\mathrm{AV}_{\mathrm{DD}}=5.0 \mathrm{~V}$
AD03	E_{DL}	Differential Error	-	-	± 1	LSb	No missing codes to 10 bits $\mathrm{AV}_{\mathrm{DD}}=5.0 \mathrm{~V}$
AD04	$\mathrm{E}_{\mathrm{OFF}}$	Offset Error	-	+3.0	+5.0	LSb	$\mathrm{AV}_{\mathrm{DD}}=5.0 \mathrm{~V}$
AD07	E_{GN}	Gain Error	-	± 2	± 5	LSb	$\mathrm{AV}_{\mathrm{DD}}=5.0 \mathrm{~V}$
AD06 AD06A	$\mathrm{V}_{\mathrm{REF}}$	Reference Voltage ${ }^{(3)}$	-	$\mathrm{AV}_{\mathrm{DD}}$	-	V	
AD07	$\mathrm{V}_{\text {AIN }}$	Full-Scale Range	GND	-	$\mathrm{AV}_{\mathrm{DD}}$	V	
AD08	$\mathrm{Z}_{\text {AIN }}$	Recommended Impedance of Analog Voltage Source	-	-	10	$\mathrm{k} \Omega$	

* These parameters are characterized but not tested.
\dagger Data in 'Typ' column is at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right),+25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

TABLE 5-7: MCP19110/11 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)
Operating temperature $\quad-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Param No.	Sym.	Characteristic	Min.	Typ. ${ }^{\dagger}$	Max.	Units	Conditions
AD130* ${ }^{\text {A }}$ AD131	T_{AD} $\mathrm{T}_{\mathrm{CNV}}$	A/D Clock Period A/D Internal RC Oscillator Period Conversion Time (not including Acquisition Time) ${ }^{(1)}$	$\begin{gathered} \hline \hline 3.0 \\ 1.6 \\ - \end{gathered}$	$\begin{gathered} - \\ 4.0 \\ 11 \end{gathered}$	$\begin{gathered} \hline \hline 9.0 \\ 6.0 \\ - \end{gathered}$	$\begin{gathered} \hline \hline \mu \mathrm{s} \\ \mu \mathrm{~s} \\ \mathrm{~T}_{\mathrm{AD}} \end{gathered}$	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{OSC}} \text {-based, } \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \text { At } \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$ Set GO/ $\overline{\mathrm{DONE}}$ bit to new data in A/D Result register
AD132*	$\mathrm{T}_{\text {ACQ }}$	Acquisition Time		11.5	-	$\mu \mathrm{s}$	
AD133*	$\mathrm{T}_{\text {AMP }}$	Amplifier Settling Time	-	-	5	$\mu \mathrm{s}$	
AD134	T_{GO}	Q4 to A/D Clock Start	—	$\begin{gathered} \hline \mathrm{T}_{\mathrm{OSC}} / 2 \\ \\ \mathrm{~T}_{\mathrm{OSC}} \\ 2+\mathrm{T}_{\mathrm{CY}} \end{gathered}$	-	-	If the A / D clock source is selected as $R C$, a time of $T_{C Y}$ is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.
\dagger Data in 'Typ' column is at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}\right),+25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: ADRESH and ADRESL registers may be read on the following $T_{C Y}$ cycle.
FIGURE 5-7: A/D CONVERSION TIMING (NORMAL MODE)

Note 1: If the A / D clock source is selected as $R C$, a time of $T_{C Y}$ is added before the A / D clock starts. This allows the SLEEP instruction to be executed.

FIGURE 5-8: A/D CONVERSION TIMING (SLEEP MODE)

Note 1: If the A / D clock source is selected as $R C$, a time of $T_{C Y}$ is added before the A / D clock starts. This allows the SLEEP instruction to be executed.

MCP19110/11

NOTES:

6.0 CONFIGURING THE MCP19110/11

The MCP19110/11 is an analog controller with digital peripheral. This means that device configuration is handled through register settings instead of adding external components. The following sections detail how to set the analog control registers.

6.1 Input Undervoltage Lockout

The VINLVL register contains the digital value that sets the input Undervoltage Lockout. When the input voltage on the $\mathrm{V}_{\text {IN }}$ pin to the MCP19110/11 is below this programmed level, the INTCON<VINIF> flag will be set. This bit is automatically cleared when the MCP19110/11 $V_{\text {IN }}$ voltage rises above this programmed level.

The VINLVL<UVLOEN> bit must be set to enable the input Undervoltage Lockout circuitry.

Note: The VINIF interrupt flag bit is set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register.

REGISTER 6-1: VINLVL: INPUT UNDERVOLTAGE LOCKOUT CONTROL REGISTER

| R/W-0 | U-0 | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UVLOEN | - | UVLO5 | UVLO4 | UVLO3 | UVLO2 | UVLO1 | UVLO0 |
| bit 7 | | | | | | | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 7	UVLOEN: Undervoltage Lockout DAC Control bit
	$1=$ Undervoltage Lockout DAC is enabled
	$0=$ Undervoltage Lockout DAC is disabled
bit 6	Unimplemented: Read as ' 0 '
bit 5-0	UVLO<5:0>: Undervoltage Lockout Configuration bits
	UVLO<5:0> $=26.5^{*} \ln ($ UVLO

6.2 Output Overcurrent

The MCP19110/11 features a cycle-by-cycle peak current limit. By monitoring the OCIF interrupt flag, custom overcurrent fault handling can be implemented.
To detect an output overcurrent, the MCP19110/11 senses the voltage drop across the high-side MOSFET while it is conducting. Leading edge blanking is incorporated to mask the overcurrent measurement for a given amount of time. This helps prevent false overcurrent readings. When the input voltage is greater than 20 V , or if the $\mathrm{R}_{\text {DSON }}$ of the high-side MOSFET is such that the programmed overcurrent threshold does not produce acceptable peak overcurrent protection, an alternative method must be used to determine an output overcurrent situation. An alternative technique can use the configurable output undervoltage protection and the PE1<UVTEE> bit to quickly terminate switching when the output voltage drops because of an overcurrent event.
When an output overcurrent is sensed, the OCIF flag is set and the high-side drive signal is immediately terminated. Without any custom overcurrent handling implemented, the high-side drive signal will be asserted high at the beginning of the next clock cycle. If the overcurrent condition still exists, the high-drive signal will again be terminated.
The OCIF interrupt flag must be cleared in software. However, if a subsequent switching cycle without an overcurrent condition has not occurred, hardware will immediately set the OCIF interrupt flag.
Register OCCON contains the bits used to configure both the output overcurrent limit and the amount of leading edge blanking (see Register 6-2).

The OCCON<OCEN> bit must be set to enable the input overcurrent circuitry.

Note: The OCIF interrupt flag bit is set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register.

REGISTER 6-2: OCCON: OUTPUT OVERCURRENT CONTROL REGISTER

R/W-0	R/W-x						
OCEN	OCLEB1	OCLEB0	OOC4	OOC3	OOC2	OOC1	OOC0
bit 7			bit 0				

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7 OCEN: Output Overcurrent DAC Control bit
1 = Output Overcurrent DAC is enabled
$0=$ Output Overcurrent DAC is disabled
bit 6-5 OCLEB<1:0>: Leading Edge Blanking
$00=114$ ns blanking
$01=213$ ns blanking
$10=400$ ns blanking
$11=780$ ns blanking
bit 4-0 OOC<4:0>: Output Overcurrent Configuration bits
$00000=160 \mathrm{mV}$ drop
$00001=175 \mathrm{mV}$ drop
$00010=190 \mathrm{mV}$ drop
$00011=205 \mathrm{mV}$ drop
$00100=220 \mathrm{mV}$ drop
$00101=235 \mathrm{mV}$ drop
$00110=250 \mathrm{mV}$ drop
$00111=265 \mathrm{mV}$ drop
$01000=280 \mathrm{mV}$ drop
$01001=295 \mathrm{mV}$ drop
$01010=310 \mathrm{mV}$ drop
$01011=325 \mathrm{mV}$ drop
$01100=340 \mathrm{mV}$ drop
$01101=355 \mathrm{mV}$ drop
$01110=370 \mathrm{mV}$ drop
$01111=385 \mathrm{mV}$ drop
$10000=400 \mathrm{mV}$ drop
$10001=415 \mathrm{mV}$ drop
$10010=430 \mathrm{mV}$ drop
$10011=445 \mathrm{mV}$ drop
$10100=460 \mathrm{mV}$ drop
$10101=475 \mathrm{mV}$ drop
$10110=490 \mathrm{mV}$ drop
$10111=505 \mathrm{mV}$ drop
$11000=520 \mathrm{mV}$ drop
$11001=535 \mathrm{mV}$ drop
$11010=550 \mathrm{mV}$ drop
$11011=565 \mathrm{mV}$ drop
$11100=580 \mathrm{mV}$ drop
$11101=595 \mathrm{mV}$ drop
$11110=610 \mathrm{mV}$ drop
$11111=625 \mathrm{mV}$ drop

MCP19110/11

6.3 Current Sense AC Gain

The current measured across the inductor is a square wave that is averaged by the capacitor $\left(\mathrm{C}_{\mathrm{S}}\right)$ connected between ${ }^{+I_{\text {SEN }}}$ and - $_{\text {SEN }}$. This very small voltage plus the ripple can be amplified by the current sense AC gain circuitry. The amount of gain is controlled by the CSGSCON register.

REGISTER 6-3: CSGSCON: CURRENT SENSE AC GAIN CONTROL REGISTER

U-0	R/W-x						
-	Reserved	Reserved	Reserved	CSGS3	CSGS2	CSGS1	CSGS0
bit 7				bit 0			

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6-4 Reserved
bit 3-0 CSGS<3:0>: Current Sense AC Gain Setting bits
$0000=0$ dB
$0001=1.0 \mathrm{~dB}$
$0010=2.5 \mathrm{~dB}$
$0011=4.0 \mathrm{~dB}$
$0100=5.5 \mathrm{~dB}$
$0101=7.0 \mathrm{~dB}$
$0110=8.5 \mathrm{~dB}$
$0111=10.0 \mathrm{~dB}$
$1000=11.5 \mathrm{~dB}$
$1001=13.0 \mathrm{~dB}$
$1010=14.5 \mathrm{~dB}$
$1011=16.0 \mathrm{~dB}$
$1100=17.5 \mathrm{~dB}$
$1101=19.0 \mathrm{~dB}$
$1110=20.5 \mathrm{~dB}$
$1111=22.0 \mathrm{~dB}$

6.4 Current Sense DC Gain

DC gain can be added to the sensed inductor current to allow it to be read by the ADC. The amount of DC gain added is controlled by the CSDGCON register.
Adding DC gain to the current sense signal used by the control loop may also be needed in some multi-phase systems to account for device and component differences. The CSDGEN bit determines if the gained current sense signal is added back to the AC current signal (see Register 6-4). If the CSDGEN bit is cleared, DC gain can still be added, but the gained signal is not added back to the AC current signal.

REGISTER 6-4: CSDGCON: CURRENT SENSE DC GAIN CONTROL REGISTER

| R/W-0 | U-0 | U-0 | U-0 | R/W $-x$ | R/W-x | R/W-x | R/W-x |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSDGEN | - | - | - | Reserved | CSDG2 | CSDG1 | CSDG0 |
| bit 7 | | | | | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7 CSDGEN: Current Sense DC Gain Enable bit
1 = DC gain current sense signal used in control loop.
$0=$ DC gain current sense signal only read by ADC.
bit 6-4 Unimplemented: Read as ' 0 '
bit 3 Reserved
bit 2-0 CSDG<2:0>: Current Sense DC Gain Setting bits
$000=19.5 \mathrm{~dB}$
$001=21.8 \mathrm{~dB}$
$010=24.1 \mathrm{~dB}$
$011=26.3 \mathrm{~dB}$
$100=28.6 \mathrm{~dB}$
$101=30.9 \mathrm{~dB}$
$110=33.2 \mathrm{~dB}$
$111=35.7 \mathrm{~dB}$

MCP19110/11

6.5 Voltage for Zero Current

In multi-phase systems it may be necessary to provide some offset to the sensed inductor current. The VZCCON register can be used to provide a positive or negative offset in the sensed current. Typically, the VZCCON will be set to $0 \times 80 \mathrm{~h}$, which corresponds to the sensed inductor current centered around 1.45 V . However, by adjusting the VZCCON register, this centered voltage can be shifted up or down by approximately 3.28 mV per step.

REGISTER 6-5: VZCCON: VOLTAGE FOR ZERO CURRENT CONTROL REGISTER

| R/W-x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VZC7 | VZC6 | VZC5 | VZC4 | VZC3 | VZC2 | VZC1 | VZC0 |

bit 7

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-0 VZC<7:0>: Voltage for Zero Current Setting bits
$00000000=-420.00 \mathrm{mV}$ Offset
$00000001=-416.72 \mathrm{mV}$ Offset
-
-
$10000000=0 \mathrm{mV}$ Offset
-
-
$11111110=+413.12 \mathrm{mV}$ Offset
$11111111=+416.40 \mathrm{mV}$ Offset

6.6 Compensation Setting

The MCP19110/11 uses a peak current mode control architecture. A control reference is used to regulate the peak current of the converter directly. The inner current loop essentially turns the inductor into a voltagecontrolled current source. This reduces the control-tooutput transfer function to a simple single-pole model of a current source feeding a capacitor. The desired response of the overall loop can be tuned by proper placement of the compensation zero frequency and gain. Figure $6-1$ shows a simplified drawing of the internal compensation. See Register 6-6 for the adjustable zero frequency and gain settings.

FIGURE 6-1: SIMPLIFIED COMPENSATION

REGISTER 6-6: CMPZCON: COMPENSATION SETTING CONTROL REGISTER

| R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CMPZF3 | CMPZF2 | CMPZF1 | CMPZF0 | CMPZG3 | CMPZG2 | CMPZG1 | CMPZG0 |
| - | | | | | | | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 7-4 CMPZF<3:0>: Compensation Zero Frequency Setting bits
$0000=1500 \mathrm{~Hz}$
$0001=1850 \mathrm{~Hz}$
$0010=2300 \mathrm{~Hz}$
$0011=2840 \mathrm{~Hz}$
$0100=3460 \mathrm{~Hz}$
$0101=4300 \mathrm{~Hz}$
$0110=5300 \mathrm{~Hz}$
$0111=6630 \mathrm{~Hz}$
$1000=8380 \mathrm{~Hz}$
$1001=9950 \mathrm{~Hz}$
$1010=12200 \mathrm{~Hz}$
$1011=14400 \mathrm{~Hz}$
$1100=18700 \mathrm{~Hz}$
$1101=23000 \mathrm{~Hz}$
$1110=28400 \mathrm{~Hz}$
$1111=35300 \mathrm{~Hz}$
bit 3-0 CMPZG<3:0>: Compensation Gain Setting bits
$0000=36.15 \mathrm{~dB}$
$0001=33.75 \mathrm{~dB}$
$0010=30.68 \mathrm{~dB}$
$0011=28.43 \mathrm{~dB}$
$0100=26.10 \mathrm{~dB}$
$0101=23.81 \mathrm{~dB}$
$0110=21.44 \mathrm{~dB}$
$0111=19.10 \mathrm{~dB}$
$1000=16.78 \mathrm{~dB}$
$1001=14.32 \mathrm{~dB}$
$1010=12.04 \mathrm{~dB}$
$1011=9.54 \mathrm{~dB}$
$1100=7.23 \mathrm{~dB}$
$1101=4.61 \mathrm{~dB}$
$1110=2.28 \mathrm{~dB}$
$1111=0.00 \mathrm{~dB}$

6.7 Slope Compensation

A negative voltage slope is added to the output of the error amplifier. This is done to prevent subharmonic instability when:

1. the operating duty cycle is greater than 50%
2. wide changes in the duty cycle occur.

REGISTER 6-7: SLPCRCON: SLOPE COMPENSATION RAMP CONTROL REGISTER

R/W-x								R/W-x
SLPG3	SLPG2	SLPG1	SLPG0	R/W-x	R/W-x	R/W-x	R/W-x	
bit 7	SLPS	SLPS2	SLPS1	SLPS0				
bit 0								

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

$-n=$ Value at POR
bit 7-4 SLPG<3:0>: Slope Compensation Amplitude Configuration bits
$0000=0.017$ VPK-PK, measured for 50% duty cycle waveform
$0001=0.022$ VPK-PK, measured for 50% duty cycle waveform
$0010=0.030$ V PK-PK, measured for 50% duty cycle waveform 2
$0011=0.040$ V PK-PK 2, measured for 50% duty cycle waveform
$0100=0.053 V_{\text {PK-PK }}$, measured for 50% duty cycle waveform
$0101=0.070$ V PK-PK, , measured for 50% duty cycle waveform
$0110=0.094$ V PK-PK, 2 measured for 50% duty cycle waveform
$0111=0.125$ V PK-PK, 2, measured for 50% duty cycle waveform
$1000=0.170$ V PK-PK, , measured for 50% duty cycle waveform
$1001=0.220$ V PK-PK, , measured for 50% duty cycle waveform
$1010=0.300$ V PK-PK, measured for 50% duty cycle waveform
$1011=0.400$ V PK-PK, 2, measured for 50% duty cycle waveform
$1100=0.530$ V PK-PK, 2, measured for 50% duty cycle waveform
$1101=0.700 V_{\text {PK-PK }}$, measured for 50% duty cycle waveform
$1110=0.940 \mathrm{~V}_{\text {PK-PK, }}$, measured for 50% duty cycle waveform
$1111=1.250 V_{\text {PK-PK }}$, measured for 50% duty cycle waveform
bit 3-0 SLPS<3:0>: Slope Compensation $\Delta \mathrm{V} / \Delta \mathrm{t}$ Configuration bits

6.7.1 SLPS<3:0> CONFIGURATION

The SLPS<3:0> directly controls the $\Delta \mathrm{V} / \Delta \mathrm{t}$ of the added ramp. This byte should be set proportional to the switching frequency according to the following equation:

EQUATION 6-1:

$$
n=\left(\frac{F_{S W}}{100,000}\right)-1
$$

Where:

$$
\begin{aligned}
\mathrm{F}_{\text {SW }} & =\text { Device switching frequency } \\
\mathrm{n} & =\text { Decimal equivalent of } S L P S<3: 0>
\end{aligned}
$$

6.7.2 SLPG<3:0> CONFIGURATION

The SLPG<3:0> controls the amplitude of the added ramp. The values listed above correspond to a 50% duty cycle waveform and is true only if the SLPS<3:0> bits are set according to the equation in Section 6.7.1 "SLPS<3:0> Configuration". If less amplitude is required, the SLPS $<3: 0>$ bits can be adjusted to a lower switching frequency.

6.8 MASTER Error Signal Gain

When operating in a multi-phase system, the output of the MASTER's error amplifier is used by all SLAVE devices as their control signal. It is important to balance the current in all phases to maintain a uniform temperature across all phases. Component tolerances make this balancing difficult. Each SLAVE device has the ability to gain or attenuate the MASTER error signal depending upon the settings of Register 6-8.

Note: The SLVGNCON register is configured in the multi-phase SLAVE device.

REGISTER 6-8: SLVGNCON: MASTER ERROR SIGNAL INPUT GAIN CONTROL REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
-	-	-	SLVGN4	SLVGN3	SLVGN2	SLVGN1	SLVGN0

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 SLVGN<4:0>: MASTER Error Signal Gain bits
$00000=-3.3 \mathrm{~dB}$
$00001=-3.1 \mathrm{~dB}$
$00010=-2.9 \mathrm{~dB}$
$00011=-2.7 \mathrm{~dB}$
$00100=-2.5 \mathrm{~dB}$
$00101=-2.3 \mathrm{~dB}$
$00110=-2.1 \mathrm{~dB}$
$00111=-1.9 \mathrm{~dB}$
$01000=-1.7 \mathrm{~dB}$
$01001=-1.4 \mathrm{~dB}$
$01010=-1.2 \mathrm{~dB}$
$01011=-1.0 \mathrm{~dB}$
$01100=-0.8 \mathrm{~dB}$
$01101=-0.6 \mathrm{~dB}$
$01110=-0.4 \mathrm{~dB}$
$01111=-0.2 \mathrm{~dB}$
$10000=0.0 \mathrm{~dB}$
$10001=0.2 \mathrm{~dB}$
$10010=0.4 \mathrm{~dB}$
$10011=0.7 \mathrm{~dB}$
$10100=0.9 \mathrm{~dB}$
$10101=1.1 \mathrm{~dB}$
$10110=1.3 \mathrm{~dB}$
$10111=1.5 \mathrm{~dB}$
$11000=1.7 \mathrm{~dB}$
$11001=1.9 \mathrm{~dB}$
$11010=2.1 \mathrm{~dB}$
$11011=2.3 \mathrm{~dB}$
$11100=2.6 \mathrm{~dB}$
$11101=2.8 \mathrm{~dB}$
$11110=3.0 \mathrm{~dB}$
$11111=3.2 \mathrm{~dB}$

6.9 MOSFET Driver Programmable Dead Time

The turn-on delay of the high-side and low-side drive signals can be configured independently to allow different MOSFETs and circuit board layouts to be used to construct an optimized system. See Figure 6-2.
Setting the HDLYBY and LDLYBY bits of the PE1 register enables the high-side and low-side delay, respectively. The amount of delay added is controlled in the DEADCON register. See Register 6-9 for more information.

FIGURE 6-2: MOSFET DRIVER DEAD TIME

REGISTER 6-9: DEADCON: DRIVER DEAD TIME CONTROL REGISTER

| R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HDLY3 | HDLY2 | HDLY1 | HDLYO | LDLY3 | LDLY2 | LDLY1 | LDLY0 |
| bit $7 \times$ bit 0 | | | | | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$\prime 0$ ' $=$ Bit is cleared

bit 7-4
HDLY<3:0>: High-Side Dead Time Configuration bits
$0000=11$ ns delay
$0001=15$ ns delay
$0010=19$ ns delay
$0011=23$ ns delay
$0100=27$ ns delay
$0101=31$ ns delay
$0110=35 \mathrm{~ns}$ delay
$0111=39$ ns delay
$1000=43$ ns delay
$1001=47 \mathrm{~ns}$ delay
$1010=51$ ns delay
$1011=55$ ns delay
$1100=59$ ns delay
$1101=63 \mathrm{~ns}$ delay
$1110=67$ ns delay
1111 = 71 ns delay
bit 3-0 LDLY<3:0>: Low-Side Dead Time Configuration bits
$0000=4$ ns delay
$0001=8$ ns delay
$0010=12$ ns delay
$0011=16$ ns delay
$0100=20$ ns delay
$0101=24 \mathrm{~ns}$ delay
$0110=28$ ns delay
$0111=32$ ns delay
$1000=36$ ns delay
$1001=40$ ns delay
$1010=44$ ns delay
$1011=48$ ns delay
$1100=52 \mathrm{~ns}$ delay
$1101=56$ ns delay
$1110=60$ ns delay
$1111=64$ ns delay

6.10 Output Voltage Configuration

Two registers control the error amplifier reference voltage. The reference is coarsely set in 15 mV steps and then finely adjusted in 0.82 mV steps above the coarse setting (see Registers $6-10$ and $6-11$). Higher output voltages can be achieved by using a voltage divider connected between the output and the $+\mathrm{V}_{\text {SEN }}$ pin. Care must be taken to ensure maximum voltage rating compliance on all pins.

Note: \quad The OVFCON<VOUTEN> bit must be set to enable the output voltage setting registers.

Note: The units for the $\mathrm{OVC}<7: 0>$ and $\mathrm{OVF}<4: 0>$ equations are volts.

REGISTER 6-10: OVCCON: OUTPUT VOLTAGE SET POINT COARSE CONTROL REGISTER

| R/W-0 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OVC7 | OVC6 | OVC5 | OVC4 | OVC3 | OVC2 | OVC1 | OVC0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-0 OVC<7:0>: Output Voltage Set Point Coarse Configuration bits (Note)
$\mathrm{OVC}<7: 0>=\left(\mathrm{V}_{\mathrm{OUT}} / 0.0158\right)-1$

REGISTER 6-11: OVFCON: OUTPUT VOLTAGE SET POINT FINE CONTROL REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VOUTEN	-	-	OVF4	OVF3	OVF2	OVF1	OVF0
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit $7 \quad$ VOUTEN: Output Voltage DAC Enable bit
1 = Output Voltage DAC is enabled
$0=$ Output Voltage DAC is disabled
bit 6-5 Unimplemented: Read as ' 0 '
bit 4-0 OVF<4:0>: Output Voltage Set Point Fine Configuration bits (Note)
OVF $<4: 0>=\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {OUT_COARSE }}\right) / 0.0008$

6.11 Output UndervoItage

The output voltage is monitored, and when it is below the output undervoltage threshold, the UVIF flag is set. This flag must be cleared in software. See Section 15.3.1.4 "PIR2 Register" for more information.
The output undervoltage threshold is controlled by the OUVCON register, as shown in Register 6-12.

REGISTER 6-12: OUVCON: OUTPUT UNDERVOLTAGE DETECT LEVEL CONTROL REGISTER

| R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OUV7 | OUV6 | OUV5 | OUV4 | OUV3 | OUV2 | OUV1 | OUV0 |
| bit $7 \times$ bit 0 | | | | | | | |

Legend:

$R=$ Readable bit
$-n=$ Value at POR
W $=$ Writable bit
' 1 ' $=$ Bit is set
$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
' 0 ' = Bit is cleared
$x=$ Bit is unknown
bit 7-0 OUV<7:0>: Output Undervoltage Detect Level Configuration bits
OUV<7:0> = (V OUT_UV_Detect_Level $/ \mathbf{0 . 0 1 5}$

6.12 Output OvervoItage

The output voltage is monitored, and when it is above

Note: The units for the OOV<7:0> equation are volts. the output overvoltage threshold, the OVIF flag is set. This flag must be cleared in software. See Section 15.3.1.4 "PIR2 Register" for more information.

The output overvoltage threshold is controlled by the OOVCON register, as shown in Register 6-13.

REGISTER 6-13: OOVCON: OUTPUT OVERVOLTAGE DETECT LEVEL CONTROL REGISTER

| R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OOV7 | OOV6 | OOV5 | OOV4 | OOV3 | OOV2 | OOV1 | OOV0 |
| bit $7 \times$ bit 0 | | | | | | | |

Legend:			
$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplemente	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown

bit 7-0 OOV<7:0>: Output Overvoltage Detect Level Configuration bits
OOV<7:0> = (VOUT_OV_Detect_Level) $/ 0.015$

6.13 Analog Peripheral Control

The MCP19110/11 has various analog peripherals. These peripherals can be configured to allow customizable operation. Refer to Register 6-14 more information.

6.13.1 DIODE EMULATION MODE

The MCP19110/11 can operate in either diode emulation or synchronous rectification mode. When operating in diode emulation mode, the LDRV signal is terminated when the voltage across the low-side MOSFET is approximately 0 V . This condition is true when the inductor current reaches approximately OA. Both the HDRV and LDRV signals are low until the beginning of the next switching cycle. At that time, the HDRV signal is asserted high, turning on the high-side MOSFET.
When operating in Synchronous Rectification mode, the LDRV signal is held high until the beginning of the next switching cycle. At that time, the HDRV signal is asserted high, turning on the high-side MOSFET.
The PE1<DECON> bit controls the operating mode of the MCP19110/11.

6.13.2 HIGH-SIDE DRIVE STRENGTH

The peak source and sink current of the high-side driver can be configured to either be 1A source/sink or 2A source/sink. The PE1<DVRSTR> bit determines the high-side drive strength.

6.13.3 MOSFET DRIVER DEAD TIME

As described in Section 6.9 "MOSFET Driver Programmable Dead Time", the MOSFET drive dead time can be adjusted. In order to enable dead time settings, the proper bypass bits must be cleared. PE1<HDLYBY> and PE1<LDLYBY> control the delay circuits. Clearing the respective bits allows the dead time programmed by the DEADCON register to be added to the appropriate turn-on edge.

6.13.4 OUTPUT VOLTAGE SENSE PULL-UP/PULL-DOWN

A high-impedance pull-up on the $+\mathrm{V}_{\text {SEN }}$ pin can be configured by setting the PE1<PUEN> bit. When set, the $+V_{\text {SEN }}$ pin is internally pulled-up to $V_{D D}$.
A high-impedance pull-down on the $-V_{\text {SEN }}$ can be configured by setting the PE1<PDEN> bit. When set, the $-V_{\text {SEN }}$ pin is internally pulled-down to ground.

6.13.5 OUTPUT UNDERVOLTAGE ACCELERATOR

The MCP19110/11 has additional control circuitry to allow it to respond quickly to an output undervoltage condition. The enabling of this circuitry is handled by the PE1<UVTEE> bit. When this bit is set, the MCP19110/11 will respond to an output undervoltage condition by setting both the HDRV and LDRV signals low and turning off both the high-side and low-side MOSFETs.

6.13.6 OUTPUT OVERVOLTAGE ACCELERATOR

The MCP19110/11 has additional control circuitry to allow it to respond quickly to an output overvoltage condition. The enabling of this circuitry is handled by the PE1<OVTEE> bit. When this bit is set, the MCP19110/11 will respond to an output overvoltage condition by setting both the HDRV and LDRV signals low and turning off both the high-side and low-side MOSFETs.

REGISTER 6-14: PE1: ANALOG PERIPHERAL ENABLE 1 CONTROL REGISTER

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DECON | DVRSTR | HDLYBY | LDLYBY | PDEN | PUEN | UVTEE | OVTEE |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7 DECON: Diode Emulation Mode bit
1 = Diode emulation mode enabled
$0=$ Synchronous rectification mode enabled
bit 6 DVRSTR: High-Side Drive Strength Configuration bit
1 = High-side 1A source/sink drive strength
$0=$ High-side 2A source/sink drive strength
bit 5 HDLYBY: High-Side Dead Time Bypass bit
1 = High-side dead time bypass is enabled
$0=$ High-side dead time bypass is disabled
bit 4 LDLYBY: Low-Side Dead Time Bypass bit
1 = Low-side dead time bypass is enabled
$0=$ Low-side dead time bypass is disabled
bit 3 PDEN: $-V_{\text {SEN }}$ Weak Pull Down Enable bit
$1=-V_{\text {SEN }}$ weak pull down is enabled
$0=-V_{\text {SEN }}$ weak pull down is disabled
bit 2 PUEN: $+V_{\text {SEN }}$ Weak Pull Up Enable bit
$1=+V_{\text {SEN }}$ weak pull up is enabled
$0=+V_{\text {SEN }}$ weak pull up is disabled
bit 1 UVTEE: Output Undervoltage Accelerator Enable bit
1 = Output undervoltage accelerator is enabled
$0=$ Output undervoltage accelerator is disabled
bit $0 \quad$ OVTEE: Output Overvoltage Accelerator Enable bit
1 = Output overvoltage accelerator is enabled
$0=$ Output overvoltage accelerator is disabled

6.14 Analog Blocks Enable Control

Various analog circuit blocks can be enabled or disabled, as shown in Register 6-15. Additional enable bits are located in the ATSTCON register.

6.14.1 OUTPUT OVERVOLTAGE ENABLE

The output overvoltage is enabled by setting the ABECON<OVDCEN> bit. Clearing this bit will disable the output overvoltage circuitry and cause the setting in the OOVCON register to be ignored.

6.14.2 OUTPUT UNDERVOLTAGE ENABLE

The output undervoltage is enabled by setting the ABECON<UVDCEN> bit. Clearing this bit will disable the output undervoltage circuitry and cause the setting in the OUVCON register to be ignored.

6.14.3 RELATIVE EFFICIENCY MEASUREMENT CONTROL

Section 10.0 "Relative Efficiency Measurement" describes the procedure used to measure the relative efficiency of the system. Setting the ABECON<MEASEN> bit initiates the relative measurement.

6.14.4 SLOPE COMPENSATION CONTROL

The slope compensation described in Register 6-7 can be bypassed by setting the ABECON<SLCPBY> bit. Under normal operation, this bit will always be set.

6.14.5 CURRENT MEASUREMENT CONTROL

The peak current measurement circuitry is controlled by the $A B E C O N<C R T M E N>$ bit. Setting this bit enables the current measurement circuitry. Under normal operation, this bit will be set.

6.14.6 INTERNAL TEMPERATURE MEASUREMENT CONTROL

The internal temperature of the silicon can be measured with the ADC. To enable the internal temperature measurement circuitry, the ABECON<TMPSEN> bit must be set.

6.14.7 RELATIVE EFFICIENCY CIRCUITY CONTROL

Section 10.0 "Relative Efficiency Measurement" describes the procedure used to measure the relative efficiency of the system. Setting the ABECON<RECIREN> bit enables the relative efficiency measurement circuitry.

6.14.8 SIGNAL CHAIN CONTROL

Setting the ABECON<PATHEN> bit enables the voltage control path. Under normal operation, this bit is set.

REGISTER 6-15: ABECON: ANALOG BLOCK ENABLE CONTROL REGISTER

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OVDCEN | UVDCEN | MEASEN | SLCPBY | CRTMEN | TMPSEN | RECIREN | PATHEN |
| bit 7 | | | | bit 0 | | | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 7 OVDCEN: Output overvoltage DAC control bit
1 = Output overvoltage DAC is enabled
$0=$ Output overvoltage DAC is disabled
bit 6 UVDCEN: Output undervoltage DAC control bit
1 = Output undervoltage DAC is enabled
$0=$ Output undervoltage DAC is disabled
bit 5 MEASEN: Relative efficiency measurement control bit
1 = Initiate relative efficiency measurement
$0=$ Relative efficiency measurement not in progress
bit 4 SLCPBY: Slope compensation bypass control bit
1 = Slope compensation is disabled
$0=$ Slope compensation is enabled
bit 3 CRTMEN: Current measurement circuitry control bit
1 = Current measurement circuitry is enabled
$0=$ Current measurement circuitry is disabled
bit 2 TMPSEN: Internal temperature sensor and over temperature control bit
1 = Internal temperature sensor and over temperature circuitry is enabled
$0=$ Internal temperature sensor and over temperature circuitry is disabled
bit 1 RECIREN: Relative efficiency circuitry control bit
1 = Relative efficiency measurement circuitry is enabled
$0=$ Relative efficiency measurement circuitry is disabled
bit $0 \quad$ PATHEN: Signal chain circuitry control bit
1 = Signal chain circuitry is enabled
$0=$ Signal chain circuitry is disabled

7.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

FIGURE 7-1: $\quad I_{Q}$ vs. Temperature.

FIGURE 7-2: OVCCON DAC INL vs. Code and Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

FIGURE 7-3: OVCCON DAC DNL vs. Code and Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

FIGURE 7-4: OVFCON DAC INL vs. Code and Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

FIGURE 7-5: OVFCON DAC DNL vs. Code and Temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

FIGURE 7-6: $\quad V_{D D}$ vs. Input Voltage.

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

FIGURE 7-7: $\quad V_{D D}$ vs. Output Current.

FIGURE 7-8: $\quad V_{\text {REGREF }}$ vs. Temperature
$\left(V_{\text {REGREF }}=0.6 \mathrm{~V}\right)$.

FIGURE 7-9: $\quad V_{\text {REGREF }}$ vs. Temperature
$\left(V_{\text {REGREF }}=1.8 \mathrm{~V}\right)$.

FIGURE 7-10: $\quad V_{\text {REGREF }}$ vs. Temperature ($V_{\text {REGREF }}=3.3 \mathrm{~V}$).

FIGURE 7-11: HDRV Dead Time vs.
HDLY Code.

FIGURE 7-12: LDRV Dead Time vs.
LDLY Code.

Note: Unless otherwise indicated, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

FIGURE 7-13: HDRV $R_{D S o n} v s$.
Temperature.

FIGURE 7-14: HDRV $R_{D S o n} v s$. Temperature.

FIGURE 7-15: LDRV $R_{D S o n}$ vs.
Temperature.

FIGURE 7-16: Oscillator Frequency vs. Temperature.

FIGURE 7-17:
CRNT Voltage vs. Output Current.

FIGURE 7-18: Remote Sense Amplifier CMRR.

MCP19110/11

NOTES:

8.0 SYSTEM BENCH TESTING

To allow for easier system design and bench testing, the MCP19110/11 family of devices feature a multiplexer used to output various internal analog signals. These signals can be measured on the GPAO pin through a unity gain buffer. The configuration control of the GPAO pin is found in the ATSTCON register, as shown in Register 8-1.
Control of the signals present at the output of the unity gain buffer is found in the BUFFCON register, as shown in Register 8-2.

8.1 Analog Bench Test Control

8.1.1 ATSTCON REGISTER

The ATSTCON register contains the bits used to disable the MOSFET drivers and configure the GPA0 pin as the unity gain buffer out, as shown in Register 8-1.

Note 1: The DRVDIS bit is reset to ' 1 ' so the highside and low-side drivers are in a known state after reset. This bit must be cleared by software for normal operation.

REGISTER 8-1: ATSTCON: ANALOG BENCH TEST CONTROL REGISTER

R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1
Reserved	-	-	Reserved	HIDIS	LODIS	BNCHEN	DRVDIS
bit 7							

Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 7	Reserved
bit 6-5	Unimplemented: Read as '0'
bit 4	Reserved
bit 3	HIDIS: High-side driver control bit 1 = High-side driver is disabled $0=$ High-side driver is enabled
bit 2	LODIS: Low-side driver control bit 1 = Low-side driver is disabled 0 = Low-side driver is enabled
bit 1	BNCHEN: GPAO bench test configuration control bit $1=$ GPAO is configured for analog bench test output $0=$ GPA0 is configured for normal operation
bit 0	DRVDIS: MOSFET driver disable control bit 1 = High-side and low-side drivers are set low, PHASE pin is floating $0=$ High-side and low-side drivers are set for normal operation

8.2 Unity Gain Buffer

The unity gain buffer module is used during a multiphase application and while operating in Bench Test mode.
When the ATSTCON<BNCHEN> bit is set, the device is in Bench Test mode and the ASEL<4:0> bits of the BUFFCON register determine which internal analog signal can be measured on the GPA0 pin.

When measuring signals with the unity gain buffer, the buffer offset must be added to the measured signal. The factory measured buffer offset can be read from memory location 2087h. Refer to Section 11.1.1 "Reading Program Memory as Data" for more information.

REGISTER 8-2: BUFFCON: UNITY GAIN BUFFER CONTROL REGISTER

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MLTPH2 | MLTPH1 | MLTPH0 | ASEL4 | ASEL3 | ASEL2 | ASEL1 | ASEL0 |
| bit 7 | | | bit 0 | | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-5 MLTPH<2:0>: System configuration bits
$000=$ Device set as stand-alone unit
001 = Device set as multiple output MASTER
$010=$ Device set as multiple output SLAVE
011 = Device set as multi-phase MASTER
$100=$ Device set as multi-phase SLAVE
bit 4-0

```
ASEL<4:0>: Multiplexer output control bit
    00000= Voltage proportional to current in the inductor
    00001 = Error amplifier output plus slope compensation, input to PWM comparator
    00010 = Input to slope compensation circuitry
    00011 = Band gap reference
    00100 = Output voltage reference
    00101 = Output voltage after internal differential amplifier
    00110 = Unimplemented
    0 0 1 1 1 = \text { Voltage proportional to the internal temperature}
    01000 = Internal ground for current sense circuitry, see Section 6.5 "Voltage for Zero Current"
    01001 = Output overvoltage comparator reference
    01010 = Output undervoltage comparator reference
    01011 = Error amplifier output
    01100 = For a multi-phase SLAVE, error amplifier signal received from MASTER
    01101 = For multi-phase SLAVE, error signal received from MASTER with gain,
        see Section 6.8 "MASTER Error Signal Gain"
    01110 = V VIN divided down by 13
    01111 = DC inductor valley current
    10000= Unimplemented
•
•
\bullet
11100 = Unimplemented
11101 = Overcurrent reference
11110 = Unimplemented
11111 = Unimplemented
```


9.0 DEVICE CALIBRATION

Read-only memory locations 2080h through 208Fh contain factory calibration data. Refer to Section 18.0 "Flash Program Memory Control" for information on how to read from these memory locations.

9.1 Calibration Word 1

The $\mathrm{DOV}<3: 0>$ bits at memory location 2080h set the offset calibration for the output voltage remote sense differential amplifier. Firmware must read these values and write them to the DOVCAL register for proper calibration.

The FCAL<6:0> bits at memory location 2080h set the internal oscillator calibration. Firmware must read these values and write them to the OSCCAL register for proper calibration.

REGISTER 9-1: CALWD1: CALIBRATION WORD 1 REGISTER

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	
-	-	DOV3	DOV2	DOV1	DOV0	
bit 13						

U-0	R/P-1						
-	FCAL6	FCAL5	FCAL4	FCAL3	FCAL2	FCAL1	FCAL0
bit 7							

Legend:		
$R=$ Readable bit	$P=$ Programmable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 13-12	Unimplemented: Read as ' 0 '
bit 11-8	DOV<3:0>: Output voltage remote sense differential amplifier offset calibration bits.
bit 7	Unimplemented: Read as ' 0 '
bit 6-0	FCAL<6:0>: Internal oscillator calibration bits.

9.2 Calibration Word 2

The VRO<3:0> bits at memory location 2082h calibrate the offset of the buffer amplifier of the output voltage regulation reference set point. This effectively changes the band gap reference. Firmware must read these values and write them to the VROCAL register for proper calibration.

The BGR<3:0> bits at memory location 2082h calibrate the internal band gap. Firmware must read these values and write them to the BGRCAL register for proper calibration.

REGISTER 9-2: CALWD2: CALIBRATION WORD 2 REGISTER

bit 13-12	Unimplemented: Read as ' 0 '
bit 11-8	VRO<3:0>: Reference voltage offset calibration bits.
bit 7-4	Unimplemented: Read as ' 0 '
bit 3-0	BGR<3:0>: Internal band gap calibration bits.

9.3 Calibration Word 3

The TTA<3:0> bits at memory location 2083h calibrate the overtemperature shutdown threshold point. Firmware must read these values and write them to the TTACAL register for proper calibration.

The ZRO<3:0> bits at memory location 2083h calibrate the offset of the error amplifier. Firmware must read these values and write them to the ZROCAL register for proper calibration.

REGISTER 9-3: CALWD3: CALIBRATION WORD 3 REGISTER

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
-	-	TTA3	TTA2	TTA1	TTA0
bit 13					

| U-0 | U-0 | U-0 | U-0 | R/P-1 | R/P-1 | R/P-1 | R/P-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | ZRO3 | ZRO2 | ZRO1 | ZRO0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$P=$ Programmable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 13-12	Unimplemented: Read as ' 0 '
bit 11-8	TTA<3:0>: Overtemperature shutdown threshold calibration bits.
bit 7-4	Unimplemented: Read as ' 0 '
bit 3-0	ZRO<3:0>: Error amplifier offset voltage calibration bits.

9.4 Calibration Word 4

The TANA<9:0> bits at memory location 2084h contain the ADC reading from the internal temperature sensor when the silicon temperature is at $+30^{\circ} \mathrm{C}$. The temperature coefficient of the internal temperature sensor is $16 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

REGISTER 9-4: CALWD4: CALIBRATION WORD 4 REGISTER

U-0	U-0	U-0	U-0	R/P-1	R/P-1
-	-	-	-	TANA9	TANA8
bit 13			bit 8		

R/P-1							
R/P-1							
TANA7	TANA6	TANA5	TANA4	TANA3	TANA2	TANA1	TANA0
bit 7				bit 0			

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{P}=$ Programmable bit	$\mathrm{U}=$ Unimplemented bit, read as '0'
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 13-10 Unimplemented: Read as ' 0 '
bit 9-0 TANA<9:0>: ADC internal temperature sensor at $+30^{\circ} \mathrm{C}$ calibration bits
TANA $\langle 9: 0\rangle=\left(\right.$ Temperature $\left.\times 13.3 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)+1.75$

9.5 Calibration Word 5

The DIFC<7:0> bits at memory location 2085h contain the offset voltage information for the output voltage difference amplifier. The value is an 8-bit two's complement number that represents the number of the OVCCON counts needed to adjust for the differential amplifier offset. This value can be used to completely remove the differential amplifier offset.
For example, the offset of the differential amplifier is measured to be -64 mV . Since one OVCCON count equals 16 mV , this represents four counts of the OVCCON register. Therefore, the value stored at location 2085h would be 0xFCh, where the setting of the DIFC7 bit represents a negative number.

REGISTER 9-5: CALWD5: CALIBRATION WORD 5 REGISTER

U-0	U-0	U-0	U-0	U-0	U-0
-	-	-	-	-	-
bit 13					

| R/P-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DIFC7 | DIFC6 | DIFC5 | DIFC4 | DIFC3 | DIFC2 | DIFC1 | DIFC0 |
| bit 7 | | | | | | | |

Legend:		
$R=$ Readable bit	$P=$ Programmable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0 '=$ Bit is cleared

bit 13-8	Unimplemented: Read as ' 0 '
bit 7-0	DIFC $<7: 0>$: OVCCON counts to adjust for differential amplifier offset calibration bits

9.6 Calibration Word 6

The DIFF<7:0> bits at memory location 2086h contain the offset voltage information for the output voltage difference amplifier. The value is an 8-bit two's complement number that represents the number of the OVFCON counts needed to adjust for the differential amplifier offset. This value can be used to completely remove the differential amplifier offset.
For example, the offset of the differential amplifier is measured to be +4.2 mV . Since one OVFCON count equals 0.7 mV , this represents six counts of the OVFCON register. Therefore the value stored at location 2086 h would be $0 \times 06 \mathrm{~h}$, where clearing the DIFF7 bit represents a positive number.

REGISTER 9-6: CALWD6: CALIBRATION WORD 6 REGISTER

U-0	U-0	U-0	U-0	U-0	U-0
-	-	-	-	-	-
bit 13			bit 8		

| R/P-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DIFF7 | DIFF6 | DIFF5 | DIFF4 | DIFF3 | DIFF2 | DIFF1 | DIFF0 |
| bit 7 | | | | | | | |

Legend:		
$R=$ Readable bit	$P=$ Programmable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 13-8 Unimplemented: Read as ' 0 '
bit 7-0 DIFF<7:0>: OVFCON counts to adjust for differential amplifier offset calibration bits

9.7 Calibration Word 7

The BUFF<7:0> bits at memory location 2087h represent the offset voltage of the unity gain buffer in millivolts. This is an 8 -bit two's complement number. The MSB is the sign bit. If the MSB is set to 1 , the resulting number is negative.
REGISTER 9-7: CALWD7: CALIBRATION WORD 7 REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	
-	-	-	-	-	-	
bit 13						

| R/P-1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BUFF7 | BUFF6 | BUFF5 | BUFF4 | BUFF3 | BUFF2 | BUFF1 | BUFF0 |
| bit 7 | | | | | | | |

Legend:

$R=$ Readable bit	$P=$ Programmable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 13-8 Unimplemented: Read as ' 0 '
bit 7-0 BUFF<7:0>: Unity gain buffer offset voltage calibration bits

MCP19110/11

NOTES:

10.0 RELATIVE EFFICIENCY MEASUREMENT

With a constant input voltage, output voltage and load current, any change in the high-side MOSFET on-time represents a change in the system efficiency. The MCP19110/11 is capable of measuring the on-time of the high-side MOSFET. Therefore, the relative efficiency of the system can be measured and optimized by changing the system parameters, such as switching frequency, driver dead time or high-side drive strength.

10.1 Relative Efficiency Measurement Procedure

To measure the relative efficiency, the RELEFF register, ABECON<MEASEN> and ABECON<RECIREN> bits, and the ADC RELEFF input are used. The following steps outlines the measurement process:

1. Set the ABECON<RECIREN> bit to enable the measurement circuitry.
2. Clear the ABECON<MEASEN> bit.
3. With the ADC, read the RELEFF channel and store this reading as the High.
4. With the ADC, read the VZC channel and store this reading as the Low.
5. Set the ABECON<MEASEN> bit to initiate a measurement cycle.
6. Monitor the RELEFF<MSDONE> bit. When set, it indicates the measurement is complete.
7. When the measurement is complete, use the ADC to read the RELEFF channel. This value becomes the Fractional variable in Equation 10-1. This reading should be accomplished approximately 50 ms after the RELESS<MSDONE> bit is set.
8. Read the value of the $R E<6: 0>$ bits in the RELEFF register and store the reading as Whole.
9. Clear the ABECON<MEASEN> bit.
10. The relative efficiency is then calculated by the following equation:

EQUATION 10-1:

$$
\text { Duty Cycle }=\frac{\left(\text { Whole }+\frac{(\text { Fractional }- \text { Low })}{(\text { High }- \text { Low })}\right)}{(\text { PR } 2+1)}
$$

Where:

$$
\begin{aligned}
& \text { Whole }= \begin{array}{l}
\text { Value obtained in Step } 8 \text { of the } \\
\text { measurement procedure }
\end{array} \\
& \text { Fractional }=\begin{array}{l}
\text { Value obtained in Step } 7 \text { of the } \\
\text { measurement procedure }
\end{array} \\
& \text { High }=\begin{array}{l}
\text { Value obtained in Step } 3 \text { of the } \\
\text { measurement procedure }
\end{array} \\
& \text { Low }=\begin{array}{l}
\text { Value obtained in Step } 4 \text { of the } \\
\text { measurement procedure }
\end{array}
\end{aligned}
$$

Note 1: The RELEFF<MSDONE> bit is set and cleared automatically.

REGISTER 10-1: RELEFF: RELATIVE EFFICIENCY MEASUREMENT REGISTER

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSDONE | RE6 | RE5 | RE4 | RE3 | RE2 | RE1 | RE0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as '0'
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7 MSDONE: Relative efficiency measurement done bit
1 = Relative efficiency measurement is complete
$0=$ Relative efficiency measurement is not complete
bit 6-0 $\quad \mathbf{R E}<6: 0>$: Whole clock counts for relative efficiency measurement result

MCP19110/11

NOTES:

11.0 MEMORY ORGANIZATION

There are two types of memory in the MCP19110/11:

- Program Memory
- Data Memory
- Special Function Registers (SFRs)
- General Purpose RAM

11.1 Program Memory Organization

The MCP19110/11 has a 13-bit program counter capable of addressing an $8 \mathrm{~K} \times 14$ program memory space. Only the first $4 \mathrm{~K} \times 14$ (0000h-0FFFh) is physically implemented. Addressing a location above this boundary will cause a wrap-around within the first $4 \mathrm{~K} \times 14$ space. The Reset vector is at 0000 h and the interrupt vector is at 0004h (see Figure 11-1). The width of the program memory bus (instruction word) is 14-bits. Since all instructions are a single word, the MCP19110/11 has space for 4K of instructions.

FIGURE 11-1: PROGRAM MEMORY MAP AND STACK FOR MCP19110/11

Note 1: Not code protected.

11.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set a Files Select Register (FSR) to point to the program memory.

11.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 11-1.

EXAMPLE 11-1: RETLW INSTRUCTION

```
constants
    RETLW DATA0 ;Index0 data
    RETLW DATA1 ;Index1 data
    RETLW DATA2
    RETLW DATA3
my_function
    ;... LOTS OF CODE...
    MOVLW DATA_INDEX
    call constants
    ;... THE CONSTANT IS IN W
```


11.2 Data Memory Organization

The data memory (see Table 11-1) is partitioned into four banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). The Special Function Registers are located in the first 32 locations of each bank. Register locations 20h-7Fh in Bank 0, A0h-EFh in Bank 1 and 120h-16Fh in Bank 2 are General Purpose Registers, implemented as static RAM. All other RAM is unimplemented and returns ' 0 ' when read. The $R P<1: 0>$ bits of the STATUS register are the bank select bits.

RP1	RP0	
0	0	$->$ Bank 0 is selected
0	1	$->$ Bank 1 is selected
1	0	$->$ Bank 2 is selected
1	1	$->$ Bank 3 is selected

To move values from one register to another register, the value must pass throught the W register. This means that for all register-to-register moves, two instruction cycles are required.
The STATUS register, shown in Register 11-1, contains:

- the arithmetic status of the ALU
- the Reset status
- the bank select bits for data memory (RAM)

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, $D C$ or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.
For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as ' 000 u uluu' (where $u=$ unchanged).
Therefore, it is recommended that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits, see the Section 29.0 "Instruction Set Summary".

Note 1: The C and DC bits operate as $\overline{\text { Borrow }}$ and Digit Borrow out bits, respectively, in subtraction.

REGISTER 11-1: STATUS: STATUS REGISTER

R/W-0	R/W-0	R/W-0	R-1	$R-1$	$R / W-x$	$R / W-x$	$R / W-x$
IRP	RP1	RP0	$\overline{\mathrm{TO}}$	$\overline{\mathrm{PD}}$	Z	$\mathrm{DC}^{(1)}$	$\mathrm{C}^{(1)}$
bit 7							
bit 0							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit $7 \quad$ IRP: Register Bank Select bit (used for Indirect addressing)
1 = Bank 2 \& 3 (100h - 1FFh)
0 = Bank 0 \& 1 ($00 \mathrm{~h}-\mathrm{FFh}$)
bit 6-5 $\quad \mathbf{R P}<1: 0>$: Register Bank Select bits (used for Direct addressing)
00 = Bank 0 (00h-7Fh)
01 = Bank 1 ($80 \mathrm{~h}-\mathrm{FFh}$)
$10=$ Bank 2 (100h-17Fh)
11 = Bank 3 (180h-1FFh)
bit $4 \quad \overline{\text { TO}: ~ T i m e-o u t ~ b i t ~}$
1 = After power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred
bit 3 PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
$0=$ By execution of the SLEEP instruction
bit 2
Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
$0=$ The result of an arithmetic or logic operation is not zero
bit 1
DC: Digit Carry/Digit Borrow bit ${ }^{(1)}$ (ADDWF, ADDLW, SUBLW, SUBWF instructions)
$1=$ A carry-out from the $4^{\text {th }}$ low-order bit of the result occurred
$0=$ No carry-out from the $4^{\text {th }}$ low-order bit of the result
bit $0 \quad$ C: Carry/Borrow bit $^{(1)}$ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ${ }^{(1)}$
1 = A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

11.2.1 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (see Table 11-1). These registers are static RAM.
The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the microcontroller core are described in this section. Those related to the operation of the peripheral features are described in the associated section for that peripheral feature.

11.3 DATA MEMORY

TABLE 11-1: MCP19110/11 DATA MEMORY MAP

TABLE 11-2: MCP19110/11 SPECIAL REGISTERS SUMMARY BANK 0

Adr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other resets ${ }^{(1)}$
Bank 0											
00h	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)								xxxx xxxy	xxxx xxxx
01h	TMR0	Timer0 Module's Register								xxxx xxxx	uuuu uuuu
02h	PCL	Program Counter's (PC) Least Significant byte								00000000	00000000
03h	STATUS	IRP	RP1	RP0	TO	$\overline{\text { PD }}$	Z	DC	C	0001 1xxx	000q quuu
04h	FSR	Indirect data memory address pointer								xxxx xxxx	uuuu uauu
05h	PORTGPA	GPA7	GPA6	GPA5	GPA4	GPA3	GPA2	GPA1	GPA0	xxxx xxyx	uuuu uauu
06h	PORTGPB	GPB7	GPB6	GPB5	GPB4	-	GPB2	GPB1	GPB0	xxx- xxxx	uuu- uuuu
07h	PIR1	-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF	-000--00	-000--00
08h	PIR2	UVIF	-	OCIF	OVIF	-	-	VINIF	DCERIF	0-00 --00	0-00 --00
09h	PCON	-	-	-	-	-	$\overline{\text { OT }}$	$\overline{\text { POR }}$	-	---- -qq-	---- -uu-
OAh	PCLATH	-	-	-	Write buffer for upper 5 bits of program counter					---0 0000	---0 0000
OBh	INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF ${ }^{(3)}$	0000 000x	0000 000u
OCh	TMR1L	Holding register for the Least Significant byte of the 16-bit TMR1								xxxx xxxx	uuuu uuuu
ODh	TMR1H	Holding register for the Most Significant byte of the 16-bit TMR1								xxxx xxxx	uuuu uauu
OEh	T1CON	-	-	T1CKPS1	T1CKPS0	-	-	TMR1CS	TMR1ON	--00 --00	--uu --uu
OFh	TMR2	Timer2 Module Register								00000000	uuuu uauu
10h	T2CON	-	-	-	-	-	TMR2ON	T2CKPS1	T2CKPS0	----- -000	----- -000
11h	PR2	Timer2 Module Period Register								11111111	11111111
12h	-	Unimplemented								-	-
13h	PWMPHL	SLAVE Phase Shift Register								xxxx xxxx	uuuu uauu
14h	PWMPHH	SLAVE Phase Shift Register								xxxx xxyx	uuuu uuuu
15h	PWMRL	PWM Register Low Byte								xxxx xxyx	uuuu unuu
16h	PWMRH	PWM Register High Byte								xxxx xxxx	uuuu uauu
17h	-	Unimplemented								-	-
18h	-	Unimplemented								-	-
19h	OVCCON	OVC7	OVC6	OVC5	OVC4	OVC3	OVC2	OVC1	OVC0	00000000	00000000
1Ah	OVFCON	VOUTON	-	-	OVF4	OVF3	OVF2	OVF1	OVFO	0--0 0000	0--0 0000
1Bh	OSCTUNE	-	-	-	TUN4	TUN3	TUN2	TUN1	TUNO	---0 0000	---0 0000
1Ch	ADRESL	Least significant 8 bits of the right-shifted result								xxxx xxxx	uuuu uuuu
1Dh	ADRESH	Most significant 2 bits of right-shifted result								---- --xx	uuuu uuuu
1Eh	ADCONO	-	CHS4	CHS3	CHS2	CHS1	CHSO	GO/DONE	ADON	-000 0000	-000 0000
1Fh	ADCON1	-	ADCS2	ADCS1	ADCS0	-	-	-	-	-000 ----	-000 -----

Legend: - = Unimplemented locations read as ' 0 ', $u=$ unchanged, $x=$ unknown, $q=$ value depends on condition, shaded = unimplemented
Note 1: Other (non power-up) resets include $\overline{M C L R}$ Reset and Watchdog Timer Reset during normal operation.
2: \quad IRP \& RP1 bits are reserved, always maintain these bits clear.
3: $\overline{M C L R}$ and WDT reset does not affect the previous value data latch. The IOCF bit will be cleared upon reset but will set again if the mismatch exists.

TABLE 11-3: MCP19110/11 SPECIAL REGISTERS SUMMARY BANK 1

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Values on all other resets ${ }^{(1)}$
Bank 1											
80h	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)								xxxx xxxx	uuuu uuau
81h	OPTION_REG	$\overline{\text { RAPU }}$	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	11111111	11111111
82h	PCL	Program Counter's (PC) Least Significant byte								00000000	00000000
83h	STATUS	IRP(2)	$\mathrm{RP} 1{ }^{(2)}$	RP0	TO	$\overline{P D}$	Z	DC	C	0001 1xxx	000q quuu
84h	FSR	Indirect data memory address pointer								xxxx xxxx	uuuu uuuu
85h	TRISGPA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11111111	11111111
86h	TRISGPB	TRISB7	TRISB6	TRISB5	TRISB4	-	TRISB2	TRISB1	TRISB0	11111111	11111111
87h	PIE1	-	ADIE	BCLIE	SSPIE	-	-	TMR2IE	TMR1IE	-000 --00	-000--00
88h	PIE2	UVIE	-	OCIE	OVIE	-	-	VINIE	DCERIE	0-00 --00	0-00--00
89h	APFCON	-	-	-	-	-	-	-	CLKSEL	---- ---0	-------0
8Ah	PCLATH	-	-	-	Write buffer for upper 5 bits of program counter					---0 0000	---0 0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	$\mathrm{IOCF}^{(4)}$	0000 000x	0000 000u
8Ch	-	Unimplemented								-	-
8Dh	-	Unimplemented								-	-
8Eh	-	Unimplemented								-	-
8Fh	-	Unimplemented								-	-
90h	VINLVL	UVLOEN	-	UVLO5	UVLO4	UVLO3	UVLO2	UVLO1	UVLO0	0-xx xxxx	0-uu uuuu
91h	OCCON	OCEN	OCLEB1	OCLEB0	OOC4	OOC3	OOC2	OOC1	OOC0	0xxx xxxx	Ounu uuuu
92h	-	-	-	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	--xx xxxx	--uu uuuu
93h	CSGSCON	-	Reserved	Reserved	Reserved	CSGS3	CSGS2	CSGS1	CSGS0	-xxx xxxx	-uuu uuuu
94h	-	Reserved	xxxx mxxx	uuuu uauu							
95h	CSDGCON	CSDGEN	-	-	-	Reserved	CSDG2	CSDG1	CSDG0	0--- xxxx	0--- uuuu
96h	-	-	-	-	-	Reserved	Reserved	Reserved	Reserved	---- xxxx	---- uuuu
97h	VZCCON	VZC7	VZC6	VZC5	VZC4	VZC3	VZC2	VZC1	VZC0	xxxx xxxx	uuuu uuuu
98h	CMPZCON	CMPZF3	CMPZF2	CMPZF1	CMPZF0	CMPZG3	CMPZG2	CMPZG1	CMPZG0	xxxx xxxx	uuuu uuuu
99h	OUVCON	OUV7	OUV6	OUV5	OUV4	OUV3	OUV2	OUV1	OUV0	xxxx xxxx	uuuu uauu
9Ah	OOVCON	OOV7	OOV6	OOV5	OOV4	OOV3	OOV2	OOV1	OOV0	xxxx xxxx	uuuu uauu
9Bh	DEADCON	HDLY3	HDLY2	HDLY1	HDLY0	LDLY3	LDLY2	LDLY1	LDLY0	xxxx xxxx	unuu unuu
9Ch	SLPCRCON	SLPG3	SLPG2	SLPG1	SLPG0	SLPS3	SLPS2	SLPS1	SLPS0	xxxx xxxx	uuuu uuuu
9Dh	SLVGNCON	-	-	-	SLVGN4	SLVGN3	SLVGN2	SLVGN1	SLVGN0	---x xxxx	---u uuuu
9Eh	RELEFF	MSDONE	RE6	RE5	RE4	RE3	RE2	RE1	RE0	00000000	00000000
9Fh	-				Unimple	mented				-	-

Legend: - = Unimplemented locations read as ' 0 ', $u=$ unchanged, $x=$ unknown, $q=$ value depends on condition, shaded = unimplemented
Note 1: Other (non power-up) resets include $\overline{M C L R}$ Reset and Watchdog Timer Reset during normal operation.
IRP \& RP1 bits are reserved, always maintain these bits clear.
3: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.
4: $\overline{M C L R}$ and WDT Reset does not affect the previous value data latch. The IOCF bit will be cleared upon reset but will set again if the mismatch exists.

TABLE 11-4: MCP19110/11 SPECIAL REGISTERS SUMMARY BANK 2

Adr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other resets ${ }^{(1)}$
Bank 2											
100h	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)								xxxx xxxx	xxxx xxxx
101h	TMR0	Timer0 Module's Register								xxxx xxxx	uuuu uuuu
102h	PCL	Program Counter's (PC) Least Significant byte								00000000	00000000
103h	STATUS	$1 \mathrm{RP}^{(2)}$	$\mathrm{RP} 1{ }^{(2)}$	RP0	TO	$\overline{P D}$	Z	DC	C	0001 1xxx	000q quuu
104h	FSR	Indirect data memory address pointer								xxxx xxxx	uuuu uuuu
105h	WPUGPA	-	-	WPUA5	-	WPUA3	WPUA2	WPUA1	WPUAO	--1- 1111	--u- uuuu
106h	WPUGPB	WPUB7	WPUB6	WPUB5	WPUB4	-	WPUB2	WPUB1	-	1111 -11-	uuuu -uu-
107h	PE1	DECON	DVRSTR	HDLYBY	LDLYBY	PDEN	PUEN	UVTEE	OVTEE	00001100	00001100
108h	BUFFCON	MLTPH2	MLTPH1	MLTPH0	ASEL4	ASEL3	ASEL2	ASEL1	ASELO	00000000	00000000
109h	ABECON	OVDCEN	UVDCEN	MEASEN	SLCPBY	CRTMEN	TMPSEN	RECIREN	PATHEN	00000000	00000000
10Ah	PCLATH	-	-	-	Write buffer for upper 5 bits of program counter					---0 0000	---0 0000
10Bh	INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF ${ }^{(3)}$	0000 000x	0000 000u
10Ch	-	Unimplemented								-	-
10Dh	-	Unimplemented								-	-
10Eh	-	Unimplemented								-	-
10Fh	-	Unimplemented								-	-
110h	SSPADD	ADD<7:0>								00000000	00000000
111h	SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								xxxx xxxx	uuuu uuuu
112h	SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM>3:0>				00000000	00000000
113h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	00000000	00000000
114h	SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	00000000	00000000
115h	SSPMSK	MSK<7:0>								11111111	11111111
116h	SSPSTAT	SMP	CKE	D/ \bar{A}	P	S	R/W	UA	BF	-	-
117h	SSPADD2	ADD2<7:0>								00000000	00000000
118h	SSPMSK2	MSK2<7:0>								11111111	11111111
119h	-	Unimplemented								-	-
11Ah	-	Unimplemented								-	-
11Bh	-	Unimplemented								-	-
11Ch	-	Unimplemented								-	-
11Dh	-	Unimplemented								-	-
11Eh	-	Unimplemented								-	-
11Fh	-	Unimplemented								-	-

Legend: - = Unimplemented locations read as ' 0 ', $u=$ unchanged, $x=$ unknown, $q=$ value depends on condition, shaded = unimplemented
Note 1: Other (non power-up) resets include MCLR Reset and Watchdog Timer Reset during normal operation.
2: $\quad \operatorname{IRP} \& R P 1$ bits are reserved, always maintain these bits clear.
3: $\overline{M C L R}$ and WDT reset does not affect the previous value data latch. The IOCF bit will be cleared upon reset but will set again if the mismatch exists.

TABLE 11-5: MCP19110/11 SPECIAL REGISTERS SUMMARY BANK 3

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Values on all other resets ${ }^{(1)}$
Bank 3											
180h	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)								xxxx xxxx	uuuu uuuu
181h	OPTION_REG	$\overline{\text { RAPU }}$	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PSO	11111111	11111111
182h	PCL	Program Counter's (PC) Least Significant byte								00000000	00000000
183h	STATUS	$\mathrm{IRP}^{(2)}$	$\mathrm{RP} 1{ }^{(2)}$	RP0	$\overline{\mathrm{TO}}$	$\overline{\mathrm{PD}}$	Z	DC	C	0001 1xxx	000q quuu
184h	FSR	Indirect data memory address pointer								xxxx xxxx	uuuu uuuu
185h	IOCA	IOCA7	IOCA6	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCAO	00000000	00000000
186h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	-	IOCB2	IOCB1	IOCB0	0000-000	0000-000
187h	ANSELA	-	-	-	-	ANSA3	ANSA2	ANSA1	ANSAO	---- 1111	---- 1111
188h	ANSELB	-	-	ANSB5	ANSB4	-	ANSB2	ANSB1	-	--11 -11-	--11 -11-
189h	-	Unimplemented								-	-
18Ah	PCLATH	-	-	-	Write buffer for upper 5 bits of program counter					---0 0000	---0 0000
18Bh	INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	$\mathrm{IOCF}^{(4)}$	0000 000x	0000 000u
18Ch	PORTICD ${ }^{(5)}$	In-Circuit Debug Port Register									
18Dh	TRISICD ${ }^{(5)}$	In-Circuit Debug TRIS Register									
18Eh	ICKBUG ${ }^{(5)}$	In-Circuit Debug Register								0---- ----	0---- ----
18Fh	BIGBUG ${ }^{(5)}$	In-Circuit Debug Breakpoint Register								--	---- ----
190h	PMCON1	-	CALSEL	-	-	-	WREN	WR	RD	-0-- -000	-0-- -000
191h	PMCON2	Program Memory Control Register 2 (not a physical register)								-- ----	---- ----
192h	PMADRL	PMADRL7	PMADRL6	PMADRL5	PMADRL4	PMADRL3	PMADRL2	PMADRL1	PMADRLO	00000000	00000000
193h	PMADRH	-	-	-	-	PMADRH3	PMADRH2	PMADRH1	PMADRH0	---- 0000	---- 0000
194h	PMDATL	PMDATL7	PMDATL6	PMDATL5	PMDATL4	PMDATL3	PMDATL2	PMDATL1	PMDATLO	00000000	00000000
195h	PMDATH	-	-	PMDATH5	PMDATH4	PMDATH3	PMDATH2	PMDATH1	PMDATH0	--00 0000	--00 0000
196h	-	Unimplemented								-	-
197h	-	Unimplemented								-	-
198h	OSCCAL	-	FCALT6	FCALT5	FCALT4	FCALT3	FCALT2	FCALT1	FCALTO	xxxx xxxx	uuuu uuuu
199h	DOVCAL	-	-	-	-	DOVT3	DOVT2	DOVT1	DOVT0	xxxx xxxx	uauu uauz
19Ah	TTACAL	-	-	-	-	TTA3	TTA2	TTA1	TTAO	xxxx xxxx	uuuu uuuu
19Bh	BGRCAL	Reserve d	Reserved	Reserved	Reserved	BGRT3	BGRT2	BGRT1	BGRT0	xxxx xxxx	uuuu uuuu
19Ch	VROCAL	-	-	-	-	VROT3	VROT2	VROT1	VROT0	xxxx xxyx	uuuu uuuu
19Dh	ZROCAL	-	-	-	-	ZROT3	ZROT2	ZROT1	ZROT0	xxxx xxxx	unuu umuu
19Eh	-				Unimp	emented				-	-
19Fh	ATSTCON	-	-	-	-	HIDIS	LODIS	BNCHEN	DRVDIS	1--0 0001	1--0 0001

Legend: - = Unimplemented locations read as ' 0 ', $\mathrm{u}=$ unchanged, $\mathrm{x}=$ unknown, $\mathrm{q}=$ value depends on condition, shaded = unimplemented
Note 1: Other (non power-up) resets include $\overline{M C L R}$ Reset and Watchdog Timer Reset during normal operation.
2: IRP \& RP1 bits are reserved, always maintain these bits clear.
3: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.
4: $\overline{M C L R}$ and WDT Reset does not affect the previous value data latch. The IOCF bit will be cleared upon reset but will set again if the mismatch exists.
5: Only accessible when $\overline{\text { DBGEN }}=0$ and ICKBUG<INBUG> $=1$.

11.3.0.1 OPTION Register

The OPTION register is a readable and writable register, which contains various control bits to configure:

- Timer0/WDT prescaler

Note 1: To achieve a 1:1 prescaler assignment for Timer0, assign the prescaler to the WDT by setting PSA bit to ' 1 ' of the OPTION register. See Section 23.1.3 "Software Programmable Prescaler"

- External GPA2/INT interrupt
- Timer0
- Weak pull-ups on PORTGPA and PORTGPB

REGISTER 11-2: OPTION_REG: OPTION REGISTER (Note 1)

| R/W-1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { RAPU }}$ | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PS0 |
| bit 7 | | | | | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit $7 \quad \overline{R A P U}:$ Port GPx Pull-up Enable bit
1 = Port GPx pull-ups are disabled
$0=$ Port GPx pull-ups are enabled
bit 6 INTEDG: Interrupt Edge Select bit
$0=$ Interrupt on rising edge of INT pin
1 = Interrupt on falling edge of INT pin
bit 5 TOCE: TMRO Clock Source Select bit
1 = Transition on TOCKI pin
0 = Internal instruction cycle clock
bit 4 TOSE: TMRO Source Edge Select bit
1 = Increment on high-to-low transition on TOCKI pin
$0=$ Increment on low-to-high transition on TOCKI pin
bit $3 \quad$ PSA: Prescaler Assignment bit
1 = Prescaler is assigned to WDT
$0=$ Prescaler is assigned to the Timer0 module
bit 2-0 $\quad \mathbf{P S}<2: 0>$: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	$1: 2$	
001	$1: 4$	$1: 2$
010	$1: 8$	$1: 4$
011	$1: 16$	$1: 8$
100	$1: 32$	$1: 16$
101	$1: 64$	$1: 32$
110	$1: 128$	$1: 64$
111	$1: 256$	$1: 128$

Note 1: Individual WPUx bit must also be enabled.

11.4 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte ($\mathrm{PC}<12: 8>$) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 11-2 shows the two situations for loading the PC. The upper example in Figure 11-2 shows how the PC is loaded on a write to PCL (PCLATH $<4: 0>\rightarrow \mathrm{PCH}$). The lower example in Figure 11-2 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 11-2: LOADING OF PC IN DIFFERENT SITUATIONS

11.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter $\mathrm{PC}<12: 8>$ bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire content of the program counter to be changed by writing the desired upper 5 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

11.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFFh to 0X00h in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the table location within the table.

For more information, refer to Application Note AN556

- "Implementing a Table Read" (DS00556).

11.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provides another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the $\mathrm{PCH}<2: 0>$ and PCL registers are loaded with the operand of the CALL instruction. $\mathrm{PCH}<4: 3>$ is loaded with PCLATH<4:3>.

11.4.4 STACK

The MCP19110/11 has an 8-level x 13-bit wide hardware stack (refer to Figure 11-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no Status bits to indicate Stack Overflow or Stack Underflow conditions.

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

11.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00 h . Writing to the INDF register directly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 11-3.
A simple program to clear RAM location 40h-7Fh using indirect addressing is shown in Example 11-2.

EXAMPLE 11-2: INDIRECT ADDRESSING

	MOVLW	0×40	; initialize pointer
MOVWF	FSR	; to RAM	
NEXT	CLRF	INDF	;clear INDF register
	INCF	FSR	;inc pointer
BTFSS	FSR,7	;all done?	
GOTO	NEXT	; no clear next	
CONTINUE		;yes continue	

FIGURE 11-3: DIRECT/INDIRECT ADDRESSING

For memory map detail, see Figure 11-2.

MCP19110/11

NOTES:

12.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word, and Code Protection.

12.1 Configuration Word

There are several Configuration Word bits that allow different timers to be enabled and memory protection options. These are implemented as Configuration Word at 2007h.

Note: The $\overline{\text { DBGEN }}$ bit in Configuration Word is managed automatically by device development tools, including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

REGISTER 12-1: CONFIG - CONFIGURATION WORD REGISTER

R/P-1	U-1	R/P-1	R/P-1	U-1	U-1
$\overline{\text { DBGEN }}$	-	WRT1	WRT0	-	-
bit 13					

| U-1 | R/P-1 | R/P-1 | R/P-1 | R/P-1 | U-1 | $\mathrm{U}-1$ | $\mathrm{U}-1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | $\overline{\mathrm{CP}}$ | MCLRE | $\overline{\mathrm{PWRTF}}$ | WDTE | - | - | - |
| bit 7 | | | | | | | |

Legend:		
$R=$ Readable bit	$P=$ Programmable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 13	$\overline{\text { DBGEN: }}$: ICD Debug bit
	$1=$ ICD debug mode disabled
	$0=$ ICD debug mode enabled

bit 12 Unimplemented: Read as ' 1 '
bit 11-10 WRT<1:0>: Flash Program Memory Self Write Enable bit
$11=$ Write protection off
$10=000 \mathrm{~h}$ to 3 FFh write protected, 400 h to FFFh may be modified by PMCON1 control
$01=000 \mathrm{~h}$ to 7 FFh write protected, 800 h to FFFh may be modified by PMCON1 control
$00=000 \mathrm{~h}$ to FFFh write protected, entire program memory is write protected.
bit 9-7 Unimplemented: Read as ' 1 '
bit $6 \quad \overline{\mathbf{C P}}$: Code Protection
1 = Program memory code protection is disabled
$0=$ Program memory code protection is enabled
bit 5 MCLRE: $\overline{M C L R}$ Pin Function Select
$1=\overline{M C L R}$ pin is $\overline{M C L R}$ function and weak internal pull-up is enabled
$0=\overline{M C L R}$ pin is alternate function, $\overline{M C L R}$ function is internally disabled
bit 4 PWRTE: Power-up Timer Enable bit
1 = PWRT disabled
$0=$ PWRT enabled
bit 3 WDTE: Watchdog Timer Enable bit
1 = WDT enabled
$0=$ WDT disabled
bit 2-0 Unimplemented: Read as ' 1 '

12.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting.

12.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the $\overline{\mathrm{CP}}$ bit in the Configuration Word. When $\overline{\mathrm{CP}}=0$, external reads and writes of the program memory are inhibited and a read will return all ' 0 's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See Section 12.3 "Write Protection" for more information.

12.3 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.
The WRT<1:0> bits in the Configuration Word define the size of the program memory block that is protected.

12.4 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are reported when using MPLAB Integrated Development Environment (IDE).

13.0 OSCILLATOR MODES

The MCP19110/11 has one oscillator configuration which is an 8 MHz internal oscillator.

13.1 Internal Oscillator (INTOSC)

The Internal Oscillator module provides a system clock source of 8 MHz . The frequency of the internal oscillator can be trimmed with a calibration value in the OSCTUNE register.

13.2 Oscillator Calibration

The 8 MHz internal oscillator is factory calibrated. The factory calibration values reside in the read-only Calibration Word 1 register. These values must be read from the Calibration Word 1 register and stored in the OSCCAL register. Refer to Section 18.0 "Flash Program Memory Control" for the procedure on reading from program memory.

Note 1: The FCAL<6:0> bits from the Calibration Word 1 register must be written into the OSCCAL register to calibrate the internal oscillator.

13.3 Frequency Tuning in User Mode

In addition to the factory calibration, the base frequency can be tuned in the user's application. This frequency tuning capability allows the user to deviate from the factory-calibrated frequency. The user can tune the frequency by writing to the OSCTUNE register (see Register 13-1).

REGISTER 13-1: OSCTUNE - OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	-	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7-5 Unimplemented: Read as ' 0 '
bit 4-0 TUN<4:0>: Frequency Tuning bits
01111 = Maximum frequency
$01110=$
-
-
-
$00001=$
$00000=$ Center frequency. Oscillator Module is running at the calibrated frequency.
$11111=$
-
-
-
$10000=$ Minimum frequency

13.3.1 OSCILLATOR DELAY UPON POWER-UP, WAKE-UP AND BASE FREQUENCY CHANGE

In applications where the OSCTUNE register is used to shift the frequency of the internal oscillator, the application should not expect the frequency of the internal oscillator to stabilize immediately. In this case, the frequency may shift gradually toward the new value. The time for this frequency shift is less than eight cycles of the base frequency.

On power up, the device is held in reset by the power-up time, if the power-up timer is enabled.
Following a wake-up from Sleep mode or POR, an internal delay of $\sim 10 \mu \mathrm{~s}$ is invoked to allow the memory bias to stabilize before program execution can begin.

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0Register on Page	
OSCTUNE	-	-	-	TUN4	TUN3	TUN2	TUN1	TUN0	83

Legend: - = unimplemented locations read as ' 0 '. Shaded cells are not used by clock sources.

TABLE 13-2: SUMMARY OF CALIBRATION WORD ASSOCIATED WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CALWD1	13:8	-	-	-	-	DOV3	DOV2	DOV1	DOV0	59
	7:0	-	FCAL6	FCAL5	FCAL4	FCAL3	FCAL2	FCAL1	FCALO	

Legend: - = unimplemented locations read as ' 0 '. Shaded cells are not used by clock sources.

14.0 RESETS

The Reset logic is used to place the MCP19110/11 into a known state. The source of the Reset can be determined by using the device status bits.
There are multiple ways to reset this device:

- Power-on Reset (POR)
- Overtemperature Reset (OT)
- $\overline{M C L R}$ Reset
- WDT Reset

To allow V_{DD} to stabilize, an optional power-up timer can be enabled to extend the Reset time after a POR event.

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- Power-on Reset
- MCLR Reset
- $\overline{M C L R}$ Reset during Sleep
- WDT Reset

WDT wake-up does not cause register resets in the same manner as a WDT Reset, since wake-up is viewed as the resumption of normal operation. $\overline{\mathrm{TO}}$ and $\overline{\text { PD }}$ bits are set or cleared differently in different Reset situations, as indicated in Table 14-1. Software can use these bits to determine the nature of the Reset. See Table 14-2 for a full description of Reset states of all registers.
A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 14-1.
The $\overline{M C L R}$ Reset path has a noise filter to detect and ignore small pulses. See Section 5.0 "Digital Electrical Characteristics" for pulse-width specifications.

FIGURE 14-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Note 1: Refer to the Configuration Word register (Register 12-1).

TABLE 14-1: TIME-OUT IN VARIOUS SITUATIONS

Power-up		}{Sleep}
$\overline{\text { PWRTE }}=\mathbf{0}$	$\overline{\text { PWRTE }}=1$	
$\mathrm{T}_{\text {PWRT }}$	-	-

TABLE 14-2: STATUS/PCON BITS AND THEIR SIGNIFICANCE

$\overline{\text { POR }}$	$\overline{\mathbf{T O}}$	$\overline{\mathbf{P D}}$	Condition
0	1	1	Power-on Reset
u	0	u	WDT Reset
u	0	0	WDT Wake-up
u	u	u	$\overline{\text { MCLR Reset during normal operation }}$
u	1	0	$\overline{\text { MCLR Reset during Sleep }}$

Legend: $u=$ unchanged, $x=$ unknown

14.1 Power-on Reset (POR)

The on-chip POR circuit holds the chip in Reset until $V_{D D}$ has reached a high enough level for proper operation. To take advantage of the POR, simply connect the $\overline{M C L R}$ pin through a resistor to $V_{D D}$. This will eliminate external RC components usually needed to create Power-on Reset.

Note: The POR circuit does not produce an internal Reset when $V_{D D}$ declines. To re-enable the POR, V_{DD} must reach V_{SS} for a minimum of $100 \mu \mathrm{~s}$.
When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure proper operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

14.2 MCLR

MCP19110/11 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.
It should be noted that a WDT Reset does not drive $\overline{M C L R}$ pin low.
Voltages applied to the $\overline{M C L R}$ pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{M C L R}$ pin no longer be tied directly to $V_{D D}$. The use of an RC network, as shown in Figure 14-2, is suggested.
An internal $\overline{M C L R}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE $=0$, the Reset signal to the chip is generated internally. When the MCLRE $=1$, the $\overline{M C L R}$ pin becomes an external Reset input. In this mode, the $\overline{M C L R}$ pin has a weak pull-up to $V_{D D}$.

FIGURE 14-2: RECOMMENDED $\overline{M C L R}$ CIRCUIT

14.3 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR Reset. The Power-up Timer operates from an internal RC oscillator. The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the V_{DD} to rise to an acceptable level. A Configuration bit (PWRTE), can disable (if set) or enable (if cleared or programmed) the Power-up Timer.

The Power-up Timer delay will vary from chip-to-chip due to:

- $V_{D D}$ variation
- Temperature variation
- Process variation

Note: Voltage spikes below V_{SS} at the $\overline{\mathrm{MCLR}}$ pin, inducing currents greater than 80 mA , may cause latch-up. Thus, a series resistor of $50-100 \Omega$ should be used when applying a "low" level to the $\overline{M C L R}$ pin, rather than pulling this pin directly to V_{SS}.

14.4 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits in the STATUS register are changed to indicate the WDT Reset. See Section 17.0 "Watchdog Timer (WDT)" for more information.

14.5 Power-Up Timer

The Power-up Timer optionally delays device execution after a POR event. This timer is typically used to allow V_{DD} to stabilize before allowing the device to start running.
The Power-up Timer is controlled by the PWRTE bit of Configuration Word.

14.6 Start-up Sequence

Upon the release of a POR, the following must occur before the device will begin executing:

- Power-up Timer runs to completion (if enabled)
- Oscillator start-up timer runs to completion
- $\overline{\mathrm{MCLR}}$ must be released (if enabled)

The total time-out will vary based on PWRTE bit status. For example, with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figures 14-3, 14-4 and 14-5 depict time-out sequences.
Since the time-outs occur from the POR pulse, if $\overline{M C L R}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\mathrm{MCLR}}$ high will begin execution immediately (see Figure 14-4). This is useful for testing purposes or to synchronize more than one MCP19110/11 device operating in parallel.

14.6.1 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last.

FIGURE 14-3: TIME-OUT SEQUENCE ON POWER-UP (DELAYED $\overline{\text { MCLR }}$): CASE 1

FIGURE 14-4: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2

FIGURE 14-5: TIME-OUT SEQUENCE ON POWER-UP ($\overline{M C L R}$ WITH $V_{D D}$)

TABLE 14-3: INITIALIZATION CONDITION FOR REGISTERS
\(\left.$$
\begin{array}{|l|c|c|c|c|}\hline \text { Register } & \text { Address } & \begin{array}{c}\text { Power-on } \\
\text { Reset }\end{array} & \begin{array}{c}\text { MCLR Reset } \\
\text { WDT Reset }\end{array} & \begin{array}{c}\text { Wake-up from Sleep through } \\
\text { Interrupt }\end{array}
$$

Wake-up from Sleep through

WDT Time-out\end{array}\right]\)| uuuu uuuu |
| :--- |
| W |

Legend: $u=$ unchanged, $x=$ unknown, $-=$ unimplemented bit, reads as ' 0 ', $q=$ value depends on condition.
Note 1: If $V_{D D}$ goes too low, Power-on Reset will be activated and registers will be affected differently.
2: One or more bits in INTCON and/or PIRx will be affected (to cause wake-up).
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
4: See Table 14-5 for Reset value for specific condition.

TABLE 14-3: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Register	Address	Power-on Reset	$\overline{\text { MCLR }}$ Reset WDT Reset	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
PIE1	87h	-000 --00	-000 --00	-uuu --uu
PIE2	88h	0-00 --00	0-00 --00	u-uu --uu
APFCON	89h	---- ---0	---- ---0	---- ---u
VINLVL	90h	$0-x \mathrm{x}$ xxxx	0-uu uuuu	u-uu uauu
OCCON	91h	0xxx xxxx	Ouuu uuuu	uauu uaun
CSGSCON	93h	-xxx xxyx	- uuu uuuu	-uuu uauu
CSDGCON	95h	0--- xxxx	0--- uuuu	u--- uuuu
VZCCON	97h	xxxx xxxx	uuau uuuu	uuuu uaux
CMPZCON	98h	xxxx xxxx	uuuu uuuu	uuuu uuuu
OUVCON	99h	xxxx xxxx	uuuu umuu	uuuu uauu
OOVCON	9Ah	xxxx xxxx	uuau uuuu	uuuu uaux
DEADCON	9Bh	xxxx xxxx	uauu uuuu	uuuu uuuu
SLPCRCON	9Ch	xxxx xxxx	uuuu uuuu	uauu uaux
SLVGNCON	9Dh	---x xxxx	---u uuuu	---u uuuu
RELEFF	9Eh	00000000	00000000	uuuu uuuu
WPUGPA	105h	--1- 1111	--u- uuuu	--u- uuuu
WPUGPB	106h	1111 -11-	uuuu -uu-	uuuu -uu-
PE1	107h	00001100	00001100	uauu uauu
BUFFCON	108h	000-0000	000-0000	uuu- uuuu
ABECON	109h	00000000	00000000	uauu uauu
SSPADD	110h	00000000	00000000	uauu uaux
SSPBUF	111h	xxxx xxxx	uuuu uuuu	uuuu uaux
SSPCON1	112h	00000000	00000000	uauu uaux
SSPCON2	113h	00000000	00000000	uaua uaur
SSPCON3	114h	00000000	00000000	uaua uaur
SSPMSK	115h	11111111	11111111	uuuu uauu
SSPSTAT	116h			
SSPADD2	117h	00000000	00000000	uauu uauu
SSPMSK2	118h	11111111	11111111	uuuu uauu
IOCA	185h	00000000	00000000	uaua uauk
IOCB	186h	0000-000	0000-000	uuuu -uuu
ANSELA	187h	---- 1111	---- 1111	---- uuuu
ANSELB	188h	--11 -11-	--11 -11-	--uu -uu-
PMCON1	190h	-0-- -000	-0-- -000	-u-- -uuu
PMCON2	191h	- ----	- ----	---- ----
PMADRL	192h	00000000	00000000	uauu uuuu
PMADRH	193h	-----000	---- -000	---- -uuu
PMDATL	194h	00000000	00000000	uuuu uuuu

Legend: $u=$ unchanged, $x=$ unknown, $-=$ unimplemented bit, reads as ' 0 ', $q=$ value depends on condition.
Note 1: If $V_{D D}$ goes too low, Power-on Reset will be activated and registers will be affected differently.
2: One or more bits in INTCON and/or PIRx will be affected (to cause wake-up).
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
4: See Table 14-5 for Reset value for specific condition.

TABLE 14-3: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Register	Address	Power-on Reset	$\overline{\text { MCLR }}$ Reset WDT Reset	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
PMDATH	195h	--00 0000	--00 0000	--uu uuuu
OSCCAL	198h	-xxx xxxx	-uuu uuuu	-uuu uuuu
DOVCAL	199h	--- xxxx	---- uuuu	---- uuuu
TTACAL	19Ah	-- xxxx	-- uuuu	---- uuuu
BGRCAL	19Bh	---- xxxx	---- uuuu	---- uuuu
VROCAL	19Ch	---- xxxx	---- uuuu	---- uuuu
ZROCAL	19Dh	---- xxxx	---- uuuu	---- uuuu
ATSTCON	19F	1--- 0001	1--- 0001	u--- uuuu

Legend: $u=$ unchanged, $x=$ unknown, $-=$ unimplemented bit, reads as ' 0 ', $q=$ value depends on condition.
Note 1: If $V_{D D}$ goes too low, Power-on Reset will be activated and registers will be affected differently.
2: One or more bits in INTCON and/or PIRx will be affected (to cause wake-up).
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
4: See Table 14-5 for Reset value for specific condition.

14.7 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 14-4 and Table 14-5 show the Reset conditions of these registers.

TABLE 14-4: RESET STATUS BITS AND THEIR SIGNIFICANCE

$\overline{\text { POR }}$	$\overline{\text { TO }}$	$\overline{\text { PD }}$	Condition
0	1	1	Power-on Reset
u	0	u	WDT Reset
u	0	0	WDT Wake-up from Sleep
u	1	0	Interrupt Wake-up from Sleep
u	u	u	$\overline{\text { MCLR }}$ Reset during normal operation
u	1	0	$\overline{\text { MCLR Reset during Sleep }}$
0	0	x	Not allowed. $\overline{\text { TO }}$ is set on POR
0	x	0	Not allowed. $\overline{\text { PD }}$ is set on POR

TABLE 14-5: RESET CONDITION FOR SPECIAL REGISTERS (Note 2)

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	0001 1xxx	---- -u0-
$\overline{\mathrm{MCLR}}$ Reset during normal operation	0000h	000u uuuu	---- -uu-
$\overline{\mathrm{MCLR}}$ Reset during Sleep	0000h	0001 Ouuu	---- -uu-
WDT Reset	0000h	0000 uuuu	---- -uu-
WDT Wake-up from Sleep	PC + 1	uuu0 Ouuu	---- -uu-
Interrupt Wake-up from Sleep	$\mathrm{PC}+1^{(1)}$	uuu1 Ouuu	---- -uu-

Legend: $u=$ unchanged, $x=$ unknown, - = unimplemented bit, reads as ' 0 '.
Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC +1 .
2: If a Status bit is not implemented, that bit will be read as ' 0 '.

MCP19110/11

14.8 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset ($\overline{\mathrm{POR}}$)
- Overtemperature ($\overline{\mathrm{OT}})$

The PCON register bits are shown in Register 14-1.
REGISTER 14-1: PCON - POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
-	-	-	-	-	$\overline{O T}$	$\overline{\text { POR }}$	-
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7-3 Unimplemented: Read as ' 0 '
bit $2 \quad \overline{\mathrm{OT}}$: Overtemperature Reset Status bit
1 = No Overtemperature Reset occurred
$0=$ An Overtemperature Reset occurred (must be set in software after an Overtemperature occurs)
bit 1
POR: Power-on Reset Status bit
1 = No Power-on Reset occurred
$0=$ A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit $0 \quad$ Unimplemented: Read as ' 0 '

TABLE 0-1: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PCON	-	-	-	-	-	$\overline{\mathrm{OT}}$	$\overline{\mathrm{POR}}$	-	92
STATUS	IPR	RP 1	RP 0	$\overline{\mathrm{TO}}$	$\overline{\mathrm{PD}}$	Z	DC	C	71

Legend: - = unimplemented bit, reads as ' 0 ’. Shaded cells are not used by Resets.
Note 1: Other (non Power-up) Resets include $\overline{M C L R}$ Reset and Watchdog Timer Reset during normal operation.

15.0 INTERRUPTS

The MCP19110/11 has multiple sources of interrupt:

- External Interrupt (INT pin)
- Interrupt-On-Change (IOC) Interrupts
- Timer0 Overflow Interrupt
- Timer1 Overflow Interrupt
- Timer2 Match Interrupt
- ADC Interrupt
- System Overvoltage Error
- System Undervoltage Error
- System Overcurrent Error
- SSP
- BCL
- System Input Undervoltage Error

The Interrupt Control register (INTCON) and Peripheral Interrupt Request Registers (PIRx) record individual interrupt requests in flag bits. The INTCON register also has individual and global interrupt enable bits.

The Global Interrupt Enable bit, GIE of the INTCON register, enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in the INTCON register and PIEx registers. GIE is cleared on Reset.

When an interrupt is serviced, the following actions occur automatically:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR, to avoid repeated interrupts. Because the GEI bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

Note 1: Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit or the GIE bit.
2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The interrupts, which were ignored, are still pending to be serviced when the GIE bit is set again.

The RETFIE instruction exists the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.
For additional information on a specific Interrupt's operation, refer to its Peripheral chapter.

15.1 Interrupt Latency

For external interrupt events, such as the INT pin or PORTGPx change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends upon when the interrupt event occurs (see Figure 15-2). The latency is the same for one or two-cycle instructions.

15.2 GPA2/INT Interrupt

The external interrupt on the GPA2/INT pin is edge-triggered; either on the rising edge, if the INTEDG bit of the OPTION register is set, or the falling edge, if the INTEDG bit is cleared. When a valid edge appears on the GPA2/INT pin, the INTF bit of the INTCON register is set. This interrupt can be disabled by clearing the INTE control bit of the INTCON register. The INTF bit must be cleared by software in the Interrupt Service Routine before re-enabling this interrupt. The GPA2/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. See Section 16.0 "Power-Down Mode (Sleep)" for details on Sleep, and Section 16.1 "Wake-up from Sleep" for timing of wake-up from Sleep through GPA2/INT interrupt.

Note: The ANSEL register must be initialized to configure an analog channel as a digital input. Pins configured as analog inputs will read ' 0 ' and cannot generate an interrupt.

FIGURE 15-1: INTERRUPT LOGIC

FIGURE 15-2: INT PIN INTERRUPT TIMING

15.3 Interrupt Control Registers

15.3.1 INTCON REGISTER

The INTCON register is a readable and writable register, that contains the various enable and flag bits for the TMR0 register overflow, interrupt-on-change and external INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 15-1: INTCON - INTERRUPT CONTROL REGISTER

R/W-0	R/W-x						
GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF
bit 7							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	0 ' $=$ Bit is cleared

bit $7 \quad$ GIE: Global Interrupt Enable bit
1 = Enables all unmasked interrupts
0 = Disables all interrupts
bit 6 PEIE: Peripheral Interrupt Enable bit
1 = Enables all unmasked peripheral interrupts
$0=$ Disables all peripheral interrupts
bit $5 \quad$ TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO interrupt
$0=$ Disables the TMR0 interrupt
bit 4 INTE: INT External Interrupt Enable bit
1 = Enables the INT external interrupt
$0=$ Disables the INT external interrupt
bit 3 IOCE: Interrupt-on-Change Enable bit ${ }^{(1)}$
1 = Enables the interrupt-on-change
$0=$ Disables the interrupt-on-change
bit 2 TOIF: TMRO Overflow Interrupt Flag bit ${ }^{(2)}$
1 = TMR0 register has overflowed (must be cleared in software)
$0=$ TMR0 register did not overflow
bit 1 INTF: External Interrupt Flag bit
1 = The external interrupt occurred (must be cleared in software)
$0=$ The external interrupt did not occur
bit $0 \quad$ IOCF: Interrupt-on-Change Interrupt Flag bit
$1=$ When at least one of the interrupt-on-change pins changed state
$0=$ None of the interrupt-on-change pins have changed state
Note 1: IOC register must also be enabled.
2: TOIF bit is set when TMRO rolls over. TMR0 is unchanged on Reset and should be initialized before clearing TOIF bit.

15.3.1.1 PIE1 Register

The PIE1 register contains the Peripheral Interrupt Enable bits, as shown in Register 15-2.

Note 1: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 15-2: PIE1 - PERIPHERAL INTERRUPT ENABLE REGISTER 1

| U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | ADIE | BCLIE | SSPIE | - | - | TMR2IE | TMR1IE |
| bit 7 | | | | | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7 UNIMPLEMENTED: Read as ' 0 '
bit 6-0 ADIE: ADC Interrupt Enable bit
1 = Enables the ADC interrupt
0 = Disables the ADC interrupt
bit 6-0 BCLIE: MSSP Bus Collision Interrupt Enable bit
1 = Enables the MSSP Bus Collision Interrupt
0 = Disables the MSSP Bus Collision Interrupt
bit 6-0 SSPIE: Synchronous Serial Port (MSSP) Interrupt Enable bit
1 = Enables the MSSP interrupt
0 = Disables the MSSP interrupt
bit 6-0 UNIMPLEMENTED: Read as 0
bit 6-0 TMR2IE: Timer2 Interrupt Enable
1 = Enables the Timer2 interrupt
$0=$ Disables the Timer2 interrupt
bit 6-0 TMR1IE: Timer1 Interrupt Enable
1 = Enables the Timer1 interrupt
$0=$ Disables the Timer1 interrupt

15.3.1.2 PIE2 Register

The PIE2 register contains the Peripheral Interrupt Enable bits, as shown in Register 15-3.

Note 1: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 15-3: PIE2 - PERIPHERAL INTERRUPT ENABLE REGISTER 2

| U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | U-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UVIE | - | OCIE | OVIE | - | - | VINIE | - |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplemente	as '0'
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$x=B$

15.3.1.3 PIR1 Register

The PIR1 register contains the Peripheral Interrupt Flag bits, as shown in Register 15-4.

Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 15-4: PIR1 - PERIPHERAL INTERRUPT FLAG REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF
bit 7							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 7 UNIMPLEMENTED: Read as ' 0 '
bit 6 ADIF: ADC Interrupt Flag bit
1 = ADC conversion complete
$0=$ ADC conversion has not completed or has not been started
bit $5 \quad$ BCLIF: MSSP Bus Collision Interrupt Flag bit
1 = Interrupt is pending
$0=$ Interrupt is not pending
bit 4 SSPIF: Synchronous Serial Port (MSSP) Interrupt Flag bit
1 = Interrupt is pending
$0=$ Interrupt is not pending
bit 3-2 UNIMPLEMENTED: Read as ' 0 '
bit 1 TMR2IF: Timer2 to PR2 Match Interrupt Flag
1 = Timer2 to PR2 match occurred (must be cleared in software)
$0=$ Timer2 to PR2 match did not occur
bit $0 \quad$ TMR1IF: Timer1 Interrupt Flag
1 = Timer1 rolled over (must be cleared in software)
$0=$ Timer1 has not rolled over

15.3.1.4 PIR2 Register

The PIR2 register contains the Peripheral Interrupt Flag bits, as shown in Register 15-5.

Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 15-5: PIR2 - PERIPHERAL INTERRUPT FLAG REGISTER 2

R/W-0							
UVIF	U-0	R/W-0	U-0	U-0	R/W-0	U-0	
U	-	OCIF	OVIF	-	-	VINIF	-
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit $7 \quad$ UVIF: Output Undervoltage Error Interrupt Flag bit
1 = Output undervoltage error has occurred
$0=$ Output undervoltage error has not occurred
bit 6 UNIMPLEMENTED: Read as '0'
bit $5 \quad$ OCIF: Output Overcurrent Error Interrupt Flag bit
1 = Output overcurrent error has occurred
0 = Output overcurrent error has not occurred
bit 4 OVIF: Output Overvoltage Error Interrupt Flag bit
1 = Output overvoltage error has occurred
$0=$ Output overvoltage error has not occurred
bit 3-2 UNIMPLEMENTED: Read as ' 0 '
bit 1
VINIF: $\mathrm{V}_{\text {IN }}$ Status bit
$1=\mathrm{V}_{\text {IN }}$ is below acceptable level
$0=V_{I N}$ is at acceptable level
bit $0 \quad$ UNIMPLEMENTED: Read as ' 0 '
TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF	95
OPTION_REG	$\overline{\text { RAPU }}$	INTEDG	TOCE	TOSE	PSA	PS2	PS1	PS0	77
PIE1	-	ADIE	BCLIE	SSPIE	-	-	TMR2IE	TMR1IE	96
PIE2	UVIE	-	OCIE	OVIE	-	-	VINIE	-	97
PIR1	-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF	98
PIR2	UVIF	-	OCIF	OVIF	-	-	VINIF	-	99

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by Interrupts.

MCP19110/11

15.4 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Temporary holding registers W_TEMP and STATUS_TEMP should be placed in the last 16 bytes of GPR (see Figure 11-2). These 16 locations are common to all banks and do not require banking. This makes context save and restore operations simpler. The code shown in Example 15-1 can be used to:

- Store the W register
- Store the STATUS register
- Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- Restore the W register

Note: The MCP19110/11 device does not require saving the PCLATH. However, if computed GOTOs are used in both the ISR and the main code, the PCLATH must be saved and restored in the ISR.

EXAMPLE 15-1: SAVING STATUS AND W REGISTERS IN RAM

```
MOVWF W_TEMP ;Copy W to TEMP register
SWAPF STATUS,W ;Swap status to be saved into W
;Swaps are used because they do not affect the status bits
MOVWF STATUS_TEMP
    ;Save status to bank zero STATUS_TEMP register
    :
    :(ISR)
    :
    SWAPF STATUS_TEMP,W ;Swap STATUS_TEMP register into W
    ;(sets bank to original state)
    MOVWF STATUS
    SWAPF W_TEMP,F ;Swap W_TEMP
    SWAPF W_TEMP,W ;Swap W_TEMP into W
    ; Insert user code here
    ;Move W into STATUS register
```


16.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a SLEEP instruction.
Upon entering Sleep mode, the following conditions exist:

1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
2. $\overline{\mathrm{PD}}$ bit of the STATUS register is cleared.
3. $\overline{\mathrm{TO}}$ bit of the STATUS register is set.
4. CPU clock is not disabled.
5. Timer1 oscillator is unaffected, and peripherals that operate from it may continue operation in Sleep.
6. ADC is unaffected.
7. I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
8. Resets other than WDT are not affected by Sleep mode.
9. Analog circuitry is unaffected by execution of SLEEP instruction.

Refer to individual chapters for more details on peripheral operation during Sleep.
To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using Timer1 oscillator

I/O pins that are high-impedance inputs should be pulled to V_{DD} or GND externally to avoid switching currents caused by floating inputs.
The SLEEP instruction does not affect the analog circuitry. The enable state of the analog circuitry does not change with the execution of the SLEEP instruction.
Examples of internal circuitry that might be sourcing current include modules, such as the DAC. See Section 22.0 "Analog-to-Digital Converter (ADC) Module" for more information on this module.

16.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

1. External Reset input on $\overline{M C L R}$ pin, if enabled
2. POR Reset
3. Watchdog Timer, if enabled
4. Any external interrupt
5. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)
The first two events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or Wake-up event occurred, refer to Section 14.7 "Determining the Cause of a Reset".
The following peripheral interrupts can wake the device from Sleep:
6. Timer1 interrupt. Timer1 must be operating as an asynchronous counter
7. A / D conversion
8. Interrupt-on-change
9. External Interrupt from INT pin

When the SLEEP instruction is being executed, the next instruction $(P C+1)$ is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.
The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

16.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction:
- SLEEP instruction will execute as an NOP
- WDT and WDT prescaler will not be cleared
- $\overline{\mathrm{TO}}$ bit of the STATUS register will not be set
- $\overline{P D}$ bit of the STATUS register will not be cleared
- If the interrupt occurs during or after the execution of a SLEEP instruction:
- SLEEP instruction will be completely executed
- Device will immediately wake-up from Sleep
- WDT and WDT prescaler will be cleared
- $\overline{T O}$ bit of the STATUS register will be set
- $\overline{P D}$ bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the $\overline{P D}$ bit. If the $\overline{P D}$ bit is set, the SLEEP instruction was executed as an Nop.

FIGURE 16-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: $\mathrm{GIE}=1$ assumed. In this case, after wake-up, the processor calls the ISR at 0004 h . If $\mathrm{GIE}=0$, execution will continue in-line.

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF	95
IOCA	IOCA7	IOCA6	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	122
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	-	IOCB2	IOCB1	IOCB0	122
PIE1	-	ADIE	BCLIE	SSPIE	-	-	TMR2IE	TMR1IE	96
PIE2	UVIE	-	OCIE	OVIE	-	-	VINIE	-	97
PIR1	-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF	98
PIR2	UVIF	-	OCIF	OVIF	-	-	VINIF	-	99
STATUS	IRP	RP1	RP0	$\overline{\text { TO }}$	$\overline{\text { PD }}$	Z	DC	C	71

Legend: - = unimplemented, read as ' 0 '. Shaded cells are not used in Power-down mode.

17.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a free-running timer. The WDT is enabled by setting the WDTE bit of the Configuration Word (default setting).
During normal operation, a WDT time-out generates a device Reset. If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation.
The WDT can be permanently disabled by clearing the WDTE bit of the Configuration word. See Section 12.1 "Configuration Word" for more information.

17.1 Watchdog Timer (WDT) Operation

During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation; this is known as a WDT wakeup. The WDT can be permanently disabled by clearing the WDTE configuration bit.
The postscaler assignment is fully under software control and can be changed during program execution.

17.2 WDT Period

The WDT has a nominal time-out period of 18 ms (with no prescaler). The time-out periods vary with temperature, V_{DD} and process variations from part to part (see Table 5-4). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.
The CLRWDT and SLEEP instructions clear the WDT and the prescaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset.
The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

17.3 WDT Programming Considerations

Under worst-case conditions (i.e., $\mathrm{V}_{\mathrm{DD}}=$ Minimum, Temperature $=$ Maximum, Maximum WDT prescaler), it may take several seconds before a WDT time-out occurs.

FIGURE 17-1: WATCHDOG TIMER WITH SHARED PRESCALER BLOCK DIAGRAM

Note 1: TOSE, TOCS, PSA, PS<2:0> are bits in the OPTION_REG register.
2: WDTE bit is in the Configuration Word register.

TABLE 17-1: WDT STATUS

Conditions	WDT
WDTE $=0$	Cleared
CLRWDT Command	
Exit Sleep	

TABLE 17-2: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OPTION_REG	$\overline{\text { RAPU }}$	INTEDG	TOCS	TOSE	PSA	PS<2:0>		77	

Legend: Shaded cells are not used by the Watchdog Timer.

TABLE 17-3: \quad SUMMARY OF CONFIGURATION WORD ASSOCIATED WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG	$13: 8$	-	-	$\overline{\text { DBGEN }}$	-	WRT1	WRT0	-	-	81
	$7: 0$	-	$\overline{\mathrm{CP}}$	MCLRE	$\overline{\text { PWRTE }}$	WDTE	-	-	-	

Legend: - = unimplemented location, read as ' 1 '. Shaded cells are not used by Watchdog Timer.

18.0 FLASH PROGRAM MEMORY CONTROL

The Flash program memory is readable and writable during normal operation (full V_{IN} range). This memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (SFR) (see Registers 18-1 to 185). There are six SFRs used to read and write this memory:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When interfacing the program memory block, the PMDATL and PMDATH registers form a two-byte word, which holds the 14-bit data for read/write, and the PMADRL and PMADRH registers form a two-byte word, which holds the 13-bit address of the FLASH location being accessed. These devices have 4K words of program Flash with an address range from 0000h to 0FFFh.
The program memory allows single word read and a four-word write. A four-word write automatically erases the row of the location and writes the new data (erase before write).
The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.
When the device is code protected, the CPU may continue to read and write the Flash program memory.
Depending on the settings of the Flash Program Memory Enable (WRT<1:0>) bits, the device may or may not be able to write certain blocks of the program memory, however, reads of the program memory are allowed.
When the Flash Program Memory Code Protection $(\overline{\mathrm{CP}})$ bit is enabled, the program memory is code protected, and the device programmer (ICSP) cannot access data or program memory.

18.1 PMADRH and PMADRL Registers

The PMADRH and PMADRL registers can address up to a maximum of 4 K words of program memory.
When selecting a program address value, the Most Significant Byte (MSB) of the address is written to the PMADRH register and the Least Significant Byte (LSB) is written to the PMADRL register.

18.2 PMCON1 and PMCON2 Registers

PMCON1 is the control register for the data program memory accesses.
Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear.
The CALSEL bit allows the user to read locations in test memory in case there are calibration bits stored in the calibration word locations that need to be transferred to SFR trim registers. The CALSEL bit is only for reads, and if a write operation is attempted with CALSEL = 1, no write will occur.
PMCON2 is not a physical register. Reading PMCON2 will read all ' 0 's. The PMCON2 register is used exclusively in the flash memory write sequence.

18.3 Flash Program Memory Control Registers

REGISTER 18-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | PMDATL<7:0> | | | | | |
| bit 7 | | | | | | bit 0 | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 7-0 PMDATL<7:0>: 8 Least Significant Data bits Read from Program Memory

REGISTER 18-2: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | PMADRL<7:0> | | | | | |
| bit 7 | | | | | | bit 0 | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 7-0 PMADRL<7:0>: 8 Least Significant Address bits for Program Memory Read/Write Operation
REGISTER 18-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0								U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-		PMDATH<5:0>											
bit 7					bit 0									

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 7-6 Unimplemented: Read as ' 0 '
bit 5-0 PMDATH<5:0>: 6 Most Significant Data bits Read from Program Memory

REGISTER 18-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	-	-		PMADRH<3:0>		
bit 7				bit 0			

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 PMADRH<3:0>: Specifies the 4 Most Significant Address bits or High bits for Program Memory Reads.

REGISTER 18-5: PMCON1: PROGRAM MEMORY CONTROL REGISTER 1

U-1	R/W-0	U-0	U-0	U-0	R/W-0	R/S-0	R/S-0
-	CALSEL	-	-	-	WREN	WR	RD
bit 7				bit 0			

18.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must write two bytes of the address to the PMADRL and PMADRH registers, and then set control bit RD (PMCON1<0>). Once the read control bit is set, the program memory Flash controller will use the second instruction cycle after to read the data. This causes the second instruction immediately following the "BSF PMCON1,RD" instruction to be ignored. The data is available, in the very next cycle, in the PMDATL and PMDATH registers; it can be read as two bytes in the following instructions. PMDATL and PMDATH registers will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 18-1: FLASH PROGRAM READ

```
BANKSELPM_ADR; Change STATUS bits RP1:0 to select bank with PMADR
MOVLWMS_P\overline{ROG_PM_ADDR;}
MOVWFPMADDRH; MS Byte of Program Address to read
MOVLWLS_PROG_PM_ADDR;
MOVWFPMADRL; LS Byte of Program Address to read
BANKSELPMCON1; Bank to containing PMCON1
BSF PMCON1, RD; EE Read
NOP ; First instruction after BSF PMCON1,RD executes normally
NOP ; Any instructions here are ignored as program
    ; memory is read in second cycle after BSF PMCON1,RD
    ;
BANKSELPMDATL; Bank to containing PMADRL
MOVFPMDATL, W; W = LS Byte of Program PMDATL
MOVFPMDATH, W; W = MS Byte of Program PMDATL
```

FIGURE 18-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION - NORMAL MODE

18.3.2 WRITING TO THE FLASH PROGRAM MEMORY

A word of the Flash program memory may only be written to if the word is in an unprotected segment of memory, as defined in Section 12.1 "Configuration Word" (bits WRT1:WRT0).

Note: The write protect bits are used to protect the users' program from modification by the user's code. They have no effect when programming is performed by ICSP. The code-protect bits, when programmed for code protection, will prevent the program memory from being written via the ICSP interface.

Flash program memory must be written in four-word blocks. See Figures 18-2 and 18-3 for more details. A block consists of four words with sequential addresses, with a lower boundary defined by an address, where PMADRL<1:0> $=00$. All block writes to program memory are done as 16 -word erase by four-word write operations. The write operation is edge-aligned and cannot occur across boundaries.
To write program data, the WREN bit must be set and the data must first be loaded into the buffer registers (see Figure 18-2). This is accomplished by first writing the destination address to PMADRL and PMADRH, and then writing the data to PMDATL and PMDATH. After the address and data have been set, then the following sequence of events must be executed:

1. Write 55h, then AAh, to PMCON2 (Flash programming sequence).

2. Set the WR control bit of the PMCON1 register.

All four buffer register locations should be written to with correct data. If less than four words are being written to in the block of four words, then a read from the program memory location(s) not being written to must be performed. This takes the data from the program memory location(s) not being written and loads it into the PMDATL and PMDATH registers. Then the sequence of events to transfer data to the buffer registers must be executed.
To transfer data from the buffer registers to the program memory, the PMADRL and PMADRH must point to the last location in the four-word block (PMADRL<1:0> = 11). Then the following sequence of events must be executed:

1. Write 55h, then AAh, to PMCON2 (Flash programming sequence).
2. Set control bit WR of the PMCON1 register to begin the write operation.

The user must follow the same specific sequence to initiate the write for each word in the program block, writing each program word in sequence (000, 001, 010, 011). When the write is performed on the last word (PMADRL<1:0> = 11), a block of sixteen words is automatically erased and the content of the four-word buffer registers are written into the program memory.
After the "BSF PMCON1,WR" instruction, the processor requires two cycles to set up the erase/write operation. The user must place two NOP instructions after the WR bit is set. Since data is being written to buffer registers, the writing of the first three words of the block appears to occur immediately. The processor will halt internal operations for the typical 4 ms , only during the cycle in which the erase takes place (i.e., the last word of the sixteen-word block erase). This is not Sleep mode, as the clocks and peripherals will continue to run. After the four-word write cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction. The above sequence must be repeated for the higher 12 words.

Note: An erase is only initiated for the write of four words, just after a row boundary; or PMCON1<WR> set with PMADRL<3:0> = xxxx0011.

Refer to Figure 18-2 for a block diagram of the buffer registers and the control signals for test mode.

18.3.3 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the device should not write to the program memory. To protect against spurious writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (72 ms duration) prevents program memory writes.
The write initiate sequence, and the WREN bit, help prevent an accidental write during a power glitch or software malfunction.

18.3.4 OPERATION DURING CODE PROTECT

When the device is code protected, the CPU is able to read and write unscrambled data to the program memory. The test mode access is disabled.

18.3.5 OPERATION DURING WRITE PROTECT

When the program memory is write protected, the CPU can read and execute from the program memory. The portions of program memory that are write protected can not be modified by the CPU using the PMCON registers. The write protection has no effect in ICSP mode.

FIGURE 18-2: BLOCK WRITES TO 4K FLASH PROGRAM MEMORY

FIGURE 18-3: FLASH PROGRAM MEMORY LONG WRITE CYCLE EXECUTION

19.0 I/O PORTS

In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.
Each port has two registers for its operation. These registers are:

- TRISGPx registers (data direction register)
- PORTGPx registers (reads the levels on the pins of the device)
Some ports may have one or more of the following additional registers. These registers are:
- ANSELx (analog select)
- WPUx (weak pull-up)

Ports with analog functions also have an ANSELx register, which can disable the digital input and save power. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 19-1.

FIGURE 19-1: GENERIC I/O PORTGPX OPERATION

EXAMPLE 19-1: INITIALIZING PORTA

```
; This code example illustrates
; initializing the PORTGPA register. The
; other ports are initialized in the same
; manner.
BANKSEL PORTGPA;
CLRF PORTGPA;Init PORTA
BANKSEL ANSELA;
CLRF ANSELA;digital I/O
BANKSEL TRISGPA;
MOVLW B'00011111';Set GPA<4:0> as
    ;inputs
MOVWF TRISGPA; and set GPA<7:6> as
    ;outputs
```


19.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 19-1. For the MCP19111 device, the following function can be moved between different pins:

- Frequency Synchronization Clock Input/Output

REGISTER 19-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER

U-0	R/W-0						
-	-	-	-	-	-	-	CLKSEL
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7-1 Unimplemented: Read as ' 0 '
bit 0
CLKSEL: Pin Selection bit
$1=$ Multi-phase or multiple output clock function is on GPB5
$0=$ Multi-phase or multiple output clock function is on GPA1

This bit has no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

19.2 PORTGPA and TRISGPA Registers

PORTGPA is an 8-bit wide, bidirectional port consisting of five CMOS I/O, two open-drain I/O, and one opendrain input-only pin. The corresponding data direction register is TRISGPA (Register 19-3). Setting a TRISGPA bit (=1) will make the corresponding PORTGPA pin an input (i.e., disable the output driver). Clearing a TRISGPA bit $(=0)$ will make the corresponding PORTGPA pin an output (i.e., enables output driver). The exception is GPA5, which is input only and its TRISGPA bit will always read as ' 1 '. Example 19-1 shows how to initialize an I/O port.
Reading the PORTGPA register (Register 19-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modifywrite operations.
The TRISGPA register (Register 19-3) controls the PORTGPA pin output drivers, even when they are being used as analog inputs. The user must ensure the bits in the TRISGPA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read ' 0 '. If the pin is configured for a digital output (either port or alternate function), the TRISGPA bit must be cleared in order for the pin to drive the signal, and a read will reflect the state of the pin.

19.2.1 INTERRUPT-ON-CHANGE

Each PORTGPA pin is individually configurable as an interrupt-on-change pin. Control bits IOCA<7:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference Section 20.0 "Interrupt-On-Change" for more information.

19.2.2 WEAK PULL-UPS

PORTGPA <3:0> and PORTGPA5 have an internal weak pull-up. PORTGPA<7:6> are special ports for the SSP module and do not have weak pull-ups. Individual control bits can enable or disable the internal weak pull-ups (see Register 19-4). The weak pull-up is automatically turned off when the port pin is configured as an output, an alternative function or on a Power-on Reset setting the $\overline{\text { RAPU }}$ bit of the OPTION register. The weak pull-up on GPA5 is enabled when configured as $\overline{M C L R}$ pin by setting bit 5 of the Configuration word, and disabled when GPA5 is an I/O. There is no software control of the $\overline{M C L R}$ pull-up.

19.2.3 ANSELA REGISTER

The ANSELA register (Register 19-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as ' 0 ' and allows analog functions on the pin to operate correctly.
The state of the ANSELA bits has no effect on the digital output functions. A pin with TRISGPA clear and ANSELA set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSELA bits must be initialized to ' 0 ' by user software.

19.2.4 PORTGPA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTGPA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 19-1. For additional information, refer to the appropriate section in this data sheet.

PORTGPA pins GPA7 and GPA4 are true open-drain pins with no connection back to V_{DD}.
When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELA registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 19-1.

TABLE 19-1: PORTGPA OUTPUT PRIORITY

Pin Name	Function Priority ${ }^{(1)}$
GPA0	GPA0 AN0 ANALOG_TEST
GPA1	GPA1 AN1 CLKPIN
GPA2	GPA2 AN2 T0CKI INT
GPA3	GPA3 AN3
GPA4	GPA4 (open-drain input/output)
GPA5	GPA5 (open-drain data input only)
GPA6	GPA6 ICSPDAT (MCP19110 Only)
GPA7	GPA7 (open-drain output) SCL ICSPCLK (MCP19110 Only)

Note 1: Priority listed from highest to lowest.

REGISTER 19-2: PORTGPA: PORTGPA REGISTER

R/W-x								R/W-x
GPA7	GPA6	GPA5	GPA4	GPA3	GPA2	GPA1	GPA0	
bit 7 7								

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7 GPA7: General Purpose Open-Drain I/O pin.
bit 6 GPA6: General Purpose I/O pin.
$1=$ Port pin is $>\mathrm{V}_{\mathrm{IH}}$
$0=$ Port pin is $<V_{\text {IL }}$
bit 5 GPA5/MCLR: General Purpose Open-Drain I/O pin.
bit 4 GPA4: General Purpose Open-Drain I/O pin.
bit 3-0 GPA<3:0>: General Purpose I/O pin.
$1=$ Port pin is $>V_{I H}$
$0=$ Port pin is $<V_{\text {IL }}$

REGISTER 19-3: TRISGPA: PORTGPA TRI-STATE REGISTER

| R/W-1 | R/W-1 | R-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-6 TRISA<7:6>: PORTGPA Tri-State Control bit
$1=$ PORTGPA pin configured as an input (tri-stated)
$0=$ PORTGPA pin configured as an output
bit $5 \quad$ TRISA5: GPA5 Port Tri-State Control bit This bit is always ' 1 ' as GPA5 is an input only
bit 4-0 TRISA<4:0>: PORTGPA Tri-State Control bit
$1=$ PORTGPA pin configured as an input (tri-stated)
$0=$ PORTGPA pin configured as an output

REGISTER 19-4: WPUGPA: WEAK PULL-UP PORTGPA REGISTER

U-0									U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1
-	-	WPUA5	-	WPUA3	WPUA2	WPUA1	WPUA0								
bit 7															

Legend:

$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplemente	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	$x=$ Bit is unknown

bit 7-6 Unimplemented: Read as '0'
bit 5 WPUA5: Weak Pull-up Register bit
1 = Pull-up enabled.
$0=$ Pull-up disabled.
bit $4 \quad$ Unimplemented: Read as ' 0 '
bit 3-0 WPUA<3:0>: Weak Pull-up Register bit
$1=$ Pull-up enabled.
$0=$ Pull-up disabled.
Note 1: The weak pull-up device is enabled only when the global $\overline{\text { RAPU }}$ bit is enabled, the pin is in input mode (TRISGPA = 1), and the individual WPUA bit is enabled (WPUA = 1), and the pin is not configured as an analog input.
2: GPA5 weak pull-up is also enabled when the pin is configured as $\overline{M C L R}$ in Configuration word.

REGISTER 19-5: ANSELA: ANALOG SELECT PORTGPA REGISTER

| U-0 | U-0 | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | ANSA3 | ANSA2 | ANSA1 | ANSA0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-4 Unimplemented: Read as ' 0 '
bit 3-0 ANSA<3:0>: Analog Select PORTGPA Register bit
$1=$ Analog input. Pin is assigned as analog input. ${ }^{(1)}$
$0=$ Digital I/O. Pin is assigned to port or special function.
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

TABLE 19-2: \quad SUMMARY OF REGISTERS ASSOCIATED WITH PORTGPA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	-	-	-	-	ANSA3	ANSA2	ANSA1	ANSA0	115
APFCON	-	-	-	-	-	-	-	CLKSEL	112
OPTION_REG	$\overline{R A P U}$	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	77
PORTGPA	GPA7	GPA6	GPA5	GPA4	GPA3	GPA2	GPA1	GPA0	113
TRISGPA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114
WPUGPA	-	-	WPUA5	-	WPUA3	WPUA2	WPUA1	WPUA0	114

Legend: - = unimplemented locations read as ' 0 '. Shaded cells are not used by PORTGPA.

19.3 PORTGPB and TRISGPB Registers

PORTGPB is an 8-bit wide, bidirectional port consisting of seven general purpose I/O ports. The corresponding data direction register is TRISGPB (Register 19-7). Setting a TRISGPB bit (= 1) will make the corresponding PORTGPB pin an input (i.e., disable the output driver). Clearing a TRISGPB bit $(=0)$ will make the corresponding PORTGPB pin an output (i.e., enable the output driver). Example 19-1 shows how to initialize an I/O port.
Some pins for PORTGPB are multiplexed with an alternate function for the peripheral, or a clock function. In general, when a peripheral or clock function is enabled, that pin may not be used as a general purpose I/O pin.
Reading the PORTGPB register (Register 19-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations.
The TRISGPB register (Register 19-7) controls the PORTGPB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISGPB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read ' 0 '. If the pin is configured for a digital output (either port or alternate function), the TRISGPB bit must be cleared in order for the pin to drive the signal and a read will reflect the state of the pin.

19.3.1 INTERRUPT-ON-CHANGE

Each PORTGPB pin is individually configurable as an interrupt-on-change pin. Control bits IOCB<7:4> and IOCB<2:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference Section 20.0 "Interrupt-On-Change" for more information.

19.3.2 WEAK PULL-UPS

Each of the PORTGPB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:4> and WPUB<2:1> enable or disable each pull-up (see Register 19-8). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the RAPU bit of the OPTION register.

19.3.3 ANSELB REGISTER

The ANSELB register (Register 19-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as ' 0 ' and allows analog functions on the pin to operate correctly.
The state of the ANSELB bits has no effect on the digital output functions. A pin with TRISGPB clear and ANSELB set will still operate as a digital output, but the

Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSELB bits must be initialized to ' 0 ' by the user's software.

19.3.4 PORTGPB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTGPB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 19-3. For additional information, refer to the appropriate section in this data sheet.
PORTGPB pin GPB0 is a true open-drain pin with no connection back to $V_{D D}$.
When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.
Analog input functions, such as ADC, and some digital input functions are not included in the list below. These inputs are active when the I/O pin is set for Analog mode using the ANSELB registers. Digital output functions may control the pin when it is in Analog mode, with the priority shown in Table 19-3.

TABLE 19-3: PORTGPB OUTPUT PRIORITY

Pin Name	Function Priority ${ }^{(1)}$
GPB0	GPB0 (open-drain input/output) SDA
GPB1	GPB1 AN4 EAPIN
GPB2	GPB2 AN5
GPB4	GPB4 AN6 ICSPDAT/ICDDAT (MCP19111 Only)
GPB5	GPB5 AN7 ICSPCLK/ICDCLK (MCP19111 Only) ALT_CLKPIN (MCP19111 Only)
GPB6	GPB6
GPB7	GPB7

Note 1: Priority listed from highest to lowest.

REGISTER 19-6: PORTGPB: PORTGPB REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	U-x	R/W-x	R/W-x	R/W-x
GPB7 ${ }^{(1)}$	GPB6 ${ }^{(1)}$	GPB5 ${ }^{(1)}$	GPB4 ${ }^{(1)}$	-	GPB2	GPB1	GPB0
bit $7 \times$ bit 0							

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 7-4 GPB<7:4>: General Purpose I/O Pin bit $1=$ Port pin is $>\mathrm{V}_{\mathrm{IH}}$
$0=$ Port pin is $<\mathrm{V}_{\text {IL }}$
bit 3 Unimplemented: Read as ' 0 '
bit 2-0 GPB<2:0>: General Purpose I/O Pin bit
$1=$ Port pin is $>\mathrm{V}_{\mathrm{IH}}$
$0=$ Port pin is $<V_{\text {IL }}$
Note 1: Not implemented on MCP19110.
REGISTER 19-7: TRISGPB: PORTGPB TRI-STATE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-1	R/W-1	R/W-1	R/W-1
TRISB7 ${ }^{(1)}$	TRISB6 $^{(1)}$	TRISB5 $^{(1)}$	TRISB4 ${ }^{(1)}$	-	TRISB2	TRISB1	TRISB0
bit 7				bit 0			

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-4 TRISB<7:4>: PORTGPB Tri-State Control bit
$1=$ PORTGPB pin configured as an input (tri-stated)
$0=$ PORTGPB pin configured as an output
bit $3 \quad$ Unimplemented: Read as ' 1 '
bit 2-0 TRISB<2:0>: PORTGPB Tri-State Control bit
1 = PORTGPB pin configured as an input (tri-stated)
$0=$ PORTGPB pin configured as an output
Note 1: Not implemented on MCP19110.

REGISTER 19-8: WPUGPB: WEAK PULL-UP PORTGPB REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	R/W-1	U-0
WPUB7 $^{(2)}$	WPUB6 $^{(2)}$	WPUB5 $^{(2)}$	WPUB4 $^{(2)}$	-	WPUB2	WPUB1	-
bit 7			bit 0				

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 7-4 WPUB<7:4>: Weak Pull-up Register bit
1 = Pull-up enabled
0 = Pull-up disabled
bit 3 Unimplemented: Read as ' 0 '
bit 2-1 WPUB<2:1>: Weak Pull-up Register bit
1 = Pull-up enabled
$0=$ Pull-up disabled
bit $0 \quad$ Unimplemented: Read as ' 0 '
Note 1: The weak pull-up device is enabled only when the global $\overline{\text { RAPU }}$ bit is enabled, the pin is in Input mode (TRISGPA = 1), the individual WPUB bit is enabled (WPUB = 1), and the pin is not configured as an analog input.
2: Not implemented on MCP19110.

REGISTER 19-9: ANSELB: ANALOG SELECT PORTGPB REGISTER

$\mathrm{U}-0$									U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	U-0
-	-	ANSB5 $^{(2)}$	ANSB4 $^{(\mathbf{2})}$	-	ANSB2	ANSB1	-								
bit 7				bit 0											

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-6 Unimplemented: Read as ' 0 '
bit 5-4 ANSB<5:4>: Analog Select PORTGPB Register bit
$1=$ Analog input. Pin is assigned as analog input ${ }^{(1)}$.
$0=$ Digital I/O. Pin is assigned to port or special function.
bit $3 \quad$ Unimplemented: Read as ' 0 '
bit 2-1 ANSB<2:1>: Analog Select PORTGPB Register bit
$1=$ Analog input. Pin is assigned as analog input ${ }^{(1)}$.
$0=$ Digital I/O. Pin is assigned to port or special function.
bit $0 \quad$ Unimplemented: Read as ' 0 '
Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
2: Not implemented on MCP19110.

TABLE 19-4: \quad SUMMARY OF REGISTERS ASSOCIATED WITH PORTGPB

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	-	-	ANSB5	ANSB4	-	ANSB2	ANSB1	-	118
APFCON	-	-	-	-	-	-	-	CLKSEL	112
OPTION_REG	$\overline{\text { RAPU }}$	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	77
PORTGPB	GPB7	GPB6	GPB5	GPB4	-	GPB2	GPB1	GPB0	117
TRISGPB	TRISB7	TRISB6	TRISB5	TRISB4	-	TRISB2	TRISB1	TRISB0	117
WPUGPB	WPUB7	WPUB6	WPUB5	WPUB4	-	WPUB2	WPUB1	-	118

Legend: - = unimplemented locations read as ' 0 '. Shaded cells are not used by PORTGPB.

MCP19110/11

NOTES:

20.0 INTERRUPT-ON-CHANGE

Each PORTGPA and PORTGPB pin is individually configurable as an interrupt-on-change pin. Control bits IOCA and IOCB enable or disable the interrupt function for each pin. Refer to Register 20-1 and Register 20-2. The interrupt-on-change is disabled on a Power-on Reset.
The interrupt-on-change on GPA5 is disabled when configured as $\overline{\text { MCLR }}$ pin in the Configuration Word.
For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTGPA or PORTGPB. The mismatched outputs of the last read of all the PORTGPA and PORTGPB pins are OR'ed together to set the Interrupt-on-Change Interrupt Flag bit (IOCF) in the INTCON register (Register 15-1).

20.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

20.2 Individual Pin Configuration

To enable a pin to detect an interrupt-on-change, the associated IOCAx or IOCBx bit of the IOCA or IOCB register is set.

20.3 Clearing Interrupt Flags

The user, in the Interrupt Service Routine, clears the interrupt by:
a) Any read of PORTGPA or PORTGPB AND Clear flag bit IOCF. This will end the mismatch condition;
OR
b) Any write of PORTGPA or PORTGPB AND Clear flag bit IOCF will end the mismatch condition;

A mismatch condition will continue to set flag bit IOCF. Reading PORTGPA or PORTGPB will end the mismatch condition and allow flag bit IOCF to be cleared. The latch holding the last read value is not affected by a $\overline{M C L R}$ Reset. After this Reset, the IOCF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when any PORTGPA or PORTGPB operation is being executed, then the IOCF interrupt flag may not get set.

20.4 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCE bit is set.

20.5 Interrupt-On-Change Registers

REGISTER 20-1: IOCA: INTERRUPT-ON-CHANGE PORTGPA REGISTER

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IOCA7 | IOCA6 | IOCA5 | IOCA4 | IOCA3 | IOCA2 | IOCA1 | IOCA0 |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit
$-n=$ Value at POR
$W=$ Writable bit
' 1 ' $=$ Bit is set
$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
' 0 ' = Bit is cleared
$x=$ Bit is unknown
bit 7-6 IOCA<7:6>: Interrupt-on-Change PORTGPA Register bits
1 = Interrupt-on-change enabled on the pin
$0=$ Interrupt-on-change disabled on the pin
bit 5 IOCA<5>: Interrupt-on-Change PORTGPA Register bits ${ }^{(1)}$
1 = Interrupt-on-change enabled on the pin
$0=$ Interrupt-on-change disabled on the pin
bit 4-0 IOCA<4:0>: Interrupt-on-Change PORTGPA Register bits
$1=$ Interrupt-on-change enabled on the pin
$0=$ Interrupt-on-change disabled on the pin
Note 1: The Interrupt-on-change on GPA5 is disabled if GPA5 is configured as $\overline{M C L R}$.
REGISTER 20-2: IOCB: INTERRUPT-ON-CHANGE PORTGPB REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
IOCB7 ${ }^{(1)}$	IOCB6 $^{(1)}$	IOCB5 $^{(1)}$	IOCB4 $^{(1)}$	-	IOCB2	IOCB1	IOCB0
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7-4 IOCB<7:4>: Interrupt-on-Change PORTGPB Register bits
$1=$ Interrupt-on-change enabled on the pin
$0=$ Interrupt-on-change disabled on the pin
bit $3 \quad$ Unimplemented: Read as ' 0 '
bit 2-0 IOCB<2:0>: Interrupt-on-Change PORTGPB Register bits
$1=$ Interrupt-on-change enabled on the pin
$0=$ Interrupt-on-change disabled on the pin
Note 1: Not implemented on MCP19111.
TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	-	-	-	-	ANSA3	ANSA2	ANSA1	ANSA0	115
ANSELB	-	-	ANSB5	ANSB4	-	ANSB2	ANSB1	-	118
INTCON	GIE	PEIE	T0IE	INTE	IOCE	T0IF	INTF	IOCF	96
IOCA	IOCA7	IOCA6	IOCA5	IOCA4	IOCA3	IOCA2	IOCA1	IOCA0	122
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	-	IOCB2	IOCB1	IOCB0	122
TRISGPA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114
TRISGPB	TRISB7	TRISB6	TRISB5	TRISB4	-	TRISB2	TRISB1	TRISB0	117

Legend: - = unimplemented locations read as ' 0 '. Shaded cells are not used by interrupt-on-change.

21.0 INTERNAL TEMPERATURE INDICATOR MODULE

The MCP19110/11 is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of the operating temperature falls between $-40^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

21.1 Circuit Operation

The TMPSEN bit in the ABECON register, Register 6-15, is set to enable the internal temperature measurement circuit. The MCP19110/11 overtemperature shutdown feature is also controlled by this bit.

FIGURE 21-1: TEMPERATURE CIRCUIT DIAGRAM

21.2 Temperature Output

The output of the circuit is measured using the internal analog-to-digital converter. Channel 10 is reserved for the temperature circuit output. Refer to Section 22.0 "Analog-to-Digital Converter (ADC) Module" for detailed information.
The temperature of the silicon die can be calculated by the ADC measurement by using Equation 21-1.

EQUATION 21-1: SILICON DIE TEMPERATURE

$$
T E M P_{-} D I E=\frac{A D C R E A D I N G-1.75}{13.3 m V /{ }^{\circ} \mathrm{C}}
$$

MCP19110/11

NOTES:

22.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the right justified conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 22-1 shows the block diagram of the ADC.

The internal band gap supplies the voltage reference to the ADC.
The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

FIGURE 22-1: ADC BLOCK DIAGRAM

Note 1: When ADON $=0$, all multiplexer inputs are disconnected.
2: See ADCON0 register (Register 22-1) for detailed analog channel selection per device.
3: Not implemented on MCP19110.

22.1 ADC Configuration

When configuring and using the ADC, the following functions must be considered:

- Port configuration
- Channel selection
- ADC conversion clock source
- Interrupt control
- Result formatting

22.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to Section 19.0 "I/O Ports" for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

22.1.2 CHANNEL SELECTION

There are up to 19 channel selections available on the MCP19110 and 21 channel selections available on the MCP19111:

- $\mathrm{AN}<6: 0>$ pins
- VIN_ANA: $1 / 13$ of the input voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$
- VREGREF: V
- OV_REF: reference for OV comparator
- UV_REF: reference for UV comparator
- VBGR: band gap reference
- VOUT: output voltage
- CRT: voltage proportional to the AC inductor current
- VZC: an internal ground, Voltage for Zero Current
- DEMAND: input to slope compensation circuitry
- RELEFF: relative efficient measurement channel
- TMP_ANA: voltage proportional to silicon die temperature
- ANA_IN: for a multi-phase slave, error amplifier signal received from master
- DCI: DC inductor valley current

The CHS<4:0> bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.
When changing channels, a delay is required before starting the next conversion. Refer to Section 22.2 "ADC Operation" for more information.

22.1.3 ADC CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are five possible clock options:

- $\mathrm{F}_{\mathrm{OSC}} / 8$
- $\mathrm{Fosc}_{\mathrm{O}} / 16$
- Fosc/32
- $\mathrm{F}_{\mathrm{OSC}} / 64$
- F_{RC} (clock derived from internal oscillator with a divisor of 16)
The time to complete one bit conversion is defined as T_{AD}. One full 10-bit conversion requires $11 \mathrm{~T}_{\mathrm{AD}}$ periods as shown in Figure 22-2.
For a correct conversion, the appropriate $T_{A D}$ specification must be met. Refer to the A/D conversion requirements in Section 5.0 "Digital Electrical Characteristics" for more information. Table 22-1 gives examples of appropriate ADC clock selections.

Note: Unless using the F_{RC}, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 22-1: ADC CLOCK PERIOD (T_{AD}) vs. DEVICE OPERATING FREQUENCIES

ADC Clock Period (T_{AD})		Device Frequency $\left(\mathrm{F}_{\text {OSC }}\right)$
ADC Clock Source	ADCS<2:0>	$\mathbf{8 ~ M H z}$
$\mathrm{F}_{\mathrm{OSC}} / 8$	001	$1.0 \mu \mathrm{~s}^{(2)}$
$\mathrm{F}_{\mathrm{OSC}} / 16$	101	$2.0 \mu \mathrm{~s}$
$\mathrm{~F}_{\mathrm{OSC}} / 32$	010	$4.0 \mu \mathrm{~s}$
$\mathrm{~F}_{\mathrm{OSC}} / 64$	110	$8.0 \mu \mathrm{~s}^{(3)}$
F_{RC}	x 11	$2.0-6.0 \mu \mathrm{~s}^{(1,4)}$

Legend: Shaded cells are outside of recommended range.
Note 1: The F_{RC} source has a typical T_{AD} time of $4 \mu \mathrm{~s}$ for $\mathrm{V}_{\mathrm{DD}}>3.0 \mathrm{~V}$.
2: These values violate the minimum required $T_{A D}$ time.
3: For faster conversion times, the selection of another clock source is recommended.
4: The F_{RC} clock source is only recommended if the conversion will be preformed during Sleep.

FIGURE 22-2: ANALOG-TO-DIGITAL CONVERSION T TAD CYCLES

Set GO/DONE bit

22.1.4 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
2: The ADC operates during Sleep-only when the F_{RC} oscillator is selected.

This interrupt can be generated while the device is operating, or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

22.1.5 RESULT FORMATTING

The 10-bit A/D conversion result is supplied in right justified format only.

Figure 22-3 shows the output format.

FIGURE 22-3: 10-BIT A/D RESULT FORMAT

22.2 ADC Operation

22.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCONO register must be set to a ' 1 '. Setting the GO/DONE bit of the ADCON0 register to a ' 1 ' will start the Analog-to-Digital conversion.

Note: The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 22.2.5 "A/D Conversion Procedure".

22.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH:ADRESL registers with new conversion result

22.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a two T_{AD} delay is required before another acquisition can be initiated. Following the delay, an input acquisition is automatically started on the selected channel.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.
22.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the $F_{R C}$ option. When the $F_{R C}$ clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.
When the ADC clock source is something other than $F_{R C}$, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

22.2.5 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

1. Configure Port:

- Disable pin output driver (Refer to the TRIS register)
- Configure pin as analog (Refer to the ANSEL register)

2. Configure the ADC module:

- Select ADC conversion clock
- Select ADC input channel
- Turn on ADC module

3. Configure ADC interrupt (optional):

- Clear ADC interrupt flag
- Enable ADC interrupt
- Enable peripheral interrupt
- Enable global interrupt ${ }^{(1)}$

4. Wait the required acquisition time ${ }^{(2)}$.
5. Start conversion by setting the GO/ $\overline{\mathrm{DONE}}$ bit.
6. Wait for ADC conversion to complete by one of the following:

- Polling the GO/DONE bit
- Waiting for the ADC interrupt (interrupts enabled)

7. Read ADC Result.
8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
2: Refer to Section 22.4 "A/D Acquisition Requirements".

EXAMPLE 22-1: A/D CONVERSION

```
;This code block configures the ADC
;for polling, Frc clock and ANO input.
;
;Conversion start & polling for completion ;
are included.
;
BANKSEL ADCON1
MOVLW B'01110000' ;Frc clock
MOVWF
BANKSEL
BSF
BANKSEL
BSF
BANKSEL
MOVLW
MOVWF
CALL SampleTime
BSF ADCON0,1
BTFSC ADCONO,1
GOTO $-1
BANKSEL ADRESH
MOVF
MOVWF
BANKSEL
MOVF
MOVF 
```


22.3 ADC Register Definitions

The following registers are used to control the operation of the ADC:

REGISTER 22-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0						
-	CHS4	CHS3	CHS2	CHS1	CHS0	GO/ $\overline{\text { DONE }}$	ADON
bit 7							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit $7 \quad$ Unimplemented: Read as ' 0 '
bit 6-2 $\quad \mathbf{C H S}<4: 0>$: Analog Channel Select bits
$00000=$ VIN_ANA (analog voltage proportional to $1 / 13$ of $\mathrm{V}_{\text {IN }}$)
00001 = VREGREF (reference voltage for $\mathrm{V}_{\text {REG }}$ output)
$00010=$ OV_REF (reference for overvoltage comparator)
00011 = UV_REF (reference for undervoltage comparator)
$00100=$ VBGR (band gap reference)
$00101=$ INT_VREG (internal version of the $\mathrm{V}_{\text {REG }}$ load voltage)
$00110=$ CRT (voltage proportional to the current in the inductor)
00111 = VZC (an internal ground, Voltage for Zero Current)
$01000=$ DEMAND (input to current loop, output of demand mux)
$01001=$ RELEFF (analog voltage proportional to duty cycle)
01010 = TMP_ANA (analog voltage proportional to temperature)
01011 = ANA_IN (demanded current from the remote master)
$01100=\mathrm{DCI}$ (dc inductor valley current)
01101 = Unimplemented
01110 = Unimplemented
01111 = Unimplemented
10000 = GPA0 (i.e. ADDR1)
10001 = GPA1 (i.e. ADDR0)
$10010=$ GPA2 (i.e. Temperature Sensor Input)
10011 = GPA3 (i.e. Tracking Voltage)
10100 = GPB1
10101 = GPB2
$10110=$ GPB4 ${ }^{(1)}$
$10111=$ GPB5 $^{(1)}$
11000 = Unimplemented
11001 = Unimplemented
11011 = Unimplemented
11100 = Unimplemented
11101 = Unimplemented
$11110=$ Unimplemented
11111 = Unimplemented
bit 1 GO/DONE: A/D Conversion Status bit
$1=A / D$ conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
This bit is automatically cleared by hardware when the A/D conversion has completed.
$0=A / D$ conversion completed/not in progress
bit 0 ADON: ADC Enable bit
1 = ADC is enabled
$0=$ ADC is disabled and consumes no operating current
Note 1: Not implemented on MCP19110.

REGISTER 22-2: ADCON1: A/D CONTROL REGISTER 1

| U-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | U-0 | U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | ADCS2 | ADCS1 | ADCS0 | - | - | - | - |
| bit 7 | | | | | | | |

Legend:

$R=$ Readable bit	$P=$ Programmable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

bit 7	Unimplemented: Read as '0'
bit 6-4	ADCS<2:0>: A/D Conversion Clock Select bits
	$000=$ Reserved
	$001=\mathrm{F}_{\mathrm{OSC}} / 8$
	$010=\mathrm{F}_{\mathrm{OSC}} / 32$
	$\mathrm{x11}=\mathrm{F}_{\mathrm{RC}}$ (clock derived from internal oscillator with a divisor of 16)
$100=\mathrm{Reserved}$	
	$101=\mathrm{F}_{\mathrm{OSC}} / 16$
bit 3-0	$110=\mathrm{F}_{\text {OSC }} / 64$
	Unimplemented: Read as '0'

REGISTER 22-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH)

U-0	U-0	U-0	U-0	U-0	U-0	R-x		R-x
-	-	-	-	-	-	ADRES9	ADRES8	
bit 7					bit 0			

Legend:

$\mathrm{R}=$ Readable bit	W = Writable bit	$\mathrm{U}=$ Unimplemente	as ' 0 '
-n = Value at POR	' 1 ' = Bit is set	' 0 ' = Bit is cleared	

bit 7-2 Unimplemented: Read as ' 0 '
bit 1-0 ADRES<9:8>: Most Significant A/D Results
REGISTER 22-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL)

| R-x |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADRES7 | ADRES6 | ADRES5 | ADRES4 | ADRES3 | ADRES2 | ADRES1 | ADRES0 |
| bit 7 | | | | bit 0 | | | |

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared

bit 7-0 ADRES<7:0>: Least Significant A/D results

22.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor ($\mathrm{C}_{\mathrm{HOLD}}$) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 22-4. The source impedance $\left(R_{S}\right)$ and the internal sampling switch ($R_{S S}$) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (R_{SS}) impedance varies over the device voltage (V_{DD}), refer to Figure 22-4.

The maximum recommended impedance for analog sources is $10 \mathbf{k} \Omega$. As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A / D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 22-1 may be used. This equation assumes that $1 / 2 \mathrm{LSb}$ error is used $(1,024$ steps for the ADC). The $1 / 2 \mathrm{LSb}$ error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 22-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature $=+50^{\circ} \mathrm{C}$ and external impedance of $10 \mathrm{k} \Omega 5.0 \mathrm{~V} V_{D D}$

$$
\begin{aligned}
T_{A C Q} & =\text { Amplifier Settling Time }+ \text { Hold Capacitor Charging Time }+ \text { Temperature Coefficient } \\
& =T_{A M P}+T_{C}+T_{\text {COFF }} \\
& =2 \mu s+T_{C}+\left[\left(\text { Temperature }-25^{\circ} \mathrm{C}\right)\left(0.05 \mu s /{ }^{\circ} \mathrm{C}\right)\right]
\end{aligned}
$$

The value for T_{C} can be approximated with the following equations:

$$
\begin{array}{ll}
V_{A P P L I E D}\left(1-\frac{1}{\left(2^{n+1}\right)-1}\right)=V_{C H O L D} & ;[1] V_{C H O L D} \text { charged to within } 1 / 2 \text { lsb } \\
V_{A P P L I E D}\left(1-e^{\frac{-T}{R C}}\right)=V_{C H O L D} & ;[2] V_{C H O L D} \text { charge response to } V_{A P P L} \\
V_{\text {APPLIED }}\left(1-e^{\frac{-T}{R C}}\right)=V_{\text {APPLIED }}\left(1-\frac{1}{\left(2^{n+1}\right)-1}\right) & \text {;combining [1] and [2] }
\end{array}
$$

Note: Where $n=$ number of bits of the $A D C$.

Solving for T_{C} :

$$
\begin{aligned}
T_{C} & =-C_{H O L D}\left(R_{I C}+R_{S S}+R_{S}\right) \ln (1 / 2047) \\
& =-10 \mathrm{pF}(1 \mathrm{k} \Omega+7 \mathrm{k} \Omega+10 \mathrm{k} \Omega) \ln (0.0004885) \\
& =1.37 \mu \mathrm{~s}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
T_{A C Q} & =2 \mu s+1.37 \mu s+\left[\left(50{ }^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\left(0.05 \mu \mathrm{~s} /{ }^{\circ} \mathrm{C}\right)\right] \\
& =4.67 \mu \mathrm{~s}
\end{aligned}
$$

Note 1: The charge holding capacitor ($\mathrm{C}_{\mathrm{HOLD}}$) is not discharged after each conversion.
2: The maximum recommended impedance for analog sources is $10 \mathrm{k} \Omega$. This is required to meet the pin leakage specification.

FIGURE 22-4: ANALOG INPUT MODEL

Legend:

$\mathrm{C}_{\text {HOLD }}=$ Sample/Hold Capacitance
C PIN $=$ Input Capacitance
Leakage $^{\text {LE }}$ Leakage current at the pin due to various junctions
$R_{I C}=$ Interconnect Resistance
$R_{S S}=$ Resistance of Sampling Switch
SS = Sampling Switch

$\mathrm{V}_{\mathrm{T}}=$ Threshold Voltage
Note 1: Refer to Section 5.0 "Digital Electrical Characteristics".

FIGURE 22-5: ADC TRANSFER FUNCTION

TABLE 22-2: \quad SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	-	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	129
ADCON1	-	ADCS2	ADCS1	ADCS0	-	-	-	-	130
ADRESH	-	-	-	-	-	-	ADRES9	ADRES8	130
ADRESL	ADRES7	ADRES6	ADRES5	ADRES4	ADRES3	ADRES2	ADRES1	ADRES0	130
ANSELA	-	-	-	-	ANSA3	ANSA2	ANSA1	ANSA0	115
ANSELB	-	-	ANSB5	ANSB4	-	ANSB2	ANSB1	-	118
INTCON	GIE	PEIE	T0IE	INTE	IOCE	T0IF	INTF	IOCF	95
PIE1	-	ADIE	BCLIE	SSPIE	-	-	TMR2IE	TMR1IE	96
PIR1	-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF	98
TRISGPA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114
TRISGPB	TRISB7	TRISB6	TRISB5	TRISB4	-	TRISB2	TRISB1	TRISB0	117

Legend: - = unimplemented read as ' 0 '. Shaded cells are not used for ADC module.

MCP19110/11

NOTES:

23.0 TIMERO MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMRO)
- 8-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow

Figure 23-1 is a block diagram of the Timer0 module.
FIGURE 23-1: BLOCK DIAGRAM OF THE TIMERO

23.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

23.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-Bit Timer mode is selected by clearing the TOCS bit of the OPTION_REG register.
When TMRO is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMRO register can be adjusted, in order to account for the two-instruction cycle delay when TMRO is written.

23.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the TOCKI pin. The incrementing edge is determined by the TOSE bit of the OPTION_REG register.
8-Bit Counter mode using the TOCKI pin is selected by setting the TOCS bit in the OPTION_REG register to ' 1 '.

23.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A single software programmable prescaler is available for use with either Timer0 or the Watchdog Timer (WDT), but not both simultaneously. The prescaler assignment is controlled by the PSA bit of the OPTION_REG register. To assign the prescaler to Timer0, the PSA bit must be cleared to ' 0 '.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.
The prescaler is not readable or writable. When assigned to the Timer0 module, all instructions writing to the TMR0 register will clear the prescaler.

23.1.4 SWITCHING PRESCALER BETWEEN TIMERO AND WDT MODULES

As a result of having the prescaler assigned to either Timer0 or the WDT, it is possible to generate an unintended device Reset when switching prescaler values. When changing the prescaler assignment from Timer0 to the WDT module, the instruction sequence shown in Example 23-1 must be executed.

EXAMPLE 23-1: CHANGING PRESCALER (TIMERO \rightarrow WDT)

BANKSEL	TMR0	;
CLRWDT		; Clear WDT
CLRF	TMR0	; Clear TMR0 and
		; prescaler
BANKSEL	OPTION_REG	;
BSF	OPTION_REG, PSA	; Select WDT
CLRWDT		;
		;
MOVLW	$\mathrm{b}^{\prime} 11111000^{\prime}$; Mask prescaler
ANDWF	OPTION_REG,W	; bits
IORLW	$\mathrm{b}^{\prime} 00000101^{\prime}$; Set WDT prescaler
MOVWF	OPTION_REG	; to 1:32

When changing the prescaler assignment from the WDT to the Timer0 module, the following instruction sequence must be executed (see Example 23-2).

EXAMPLE 23-2: CHANGING PRESCALER (WDT \rightarrow TIMERO)

CLRWDT		; Clear WDT and
	;prescaler	
BANKSEL OPTION_REG	;	
MOVLW b' $^{\prime} 1110000^{\prime}$;Mask TMRO select and	
ANDWF	OPTION_REG,W	;prescaler bits
IORLW	$b^{\prime} O 000001^{\prime}$; Set prescale to $1: 16$
MOVWF	OPTION_REG	;

23.1.5 TIMERO INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TOIF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TOIF bit can only be cleared in software. The Timer0 interrupt enable is the TOIE bit of the INTCON register.

Note: The Timer0 interrupt cannot wake the processor from Sleep, since the timer is frozen during Sleep.

23.1.6 USING TIMERO WITH AN EXTERNAL CLOCK

When TimerO is in Counter mode, the synchronization of the TOCKI input and the Timer0 register is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, the high and low periods of the external clock source must meet the timing requirements as shown in Section 5.0 "Digital Electrical Characteristics".

23.1.7 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMRO register will remain unchanged while the processor is in Sleep mode.

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMERO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	IOCIE	TOIF	INTF	IOCIF	96
OPTION_REG	$\overline{\text { RAPU }}$	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	77
TMR0	Timer0 Module Register								
TRISGPA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114

Legend: - = Unimplemented locations, read as ' 0 '. Shaded cells are not used by the Timer0 module.

* Page provides register information.

24.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer with the following features:

- 16-bit timer register pair (TMR1H:TMR1L)
- Readable and Writable (both registers)
- Selectable internal clock source
- 2-bit prescaler
- Interrupt on overflow

Figure $24-1$ is a block diagram of the Timer1 module.
FIGURE 24-1: TIMER1 BLOCK DIAGRAM

24.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing timer which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter. The timer is incremented on every instruction cycle.
Timer1 is enabled by configuring the TMR1ON bit in the T1CON register. Table 24-1 displays the Timer1 enable selections.

24.2 Clock Source Selection

The TMR1CS bit of the T1CON register is used to select the clock source for Timer1. Table 24-1 displays the clock source selections.

24.2.1 INTERNAL CLOCK SOURCE

The TMR1H:TMR1L register pair will increment on multiples of $\mathrm{F}_{\mathrm{OSC}}$ or $\mathrm{F}_{\mathrm{OSC}} / 4$ as determined by the Timer1 prescaler.
As an example, when the $\mathrm{F}_{\text {OSC }}$ internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle.

TABLE 24-1: CLOCK SOURCE SELECTIONS

TMR1CS	Clock Source
1	8 MHz system Clock $\left(\mathrm{F}_{\mathrm{OSC}}\right)$
0	2 MHz instruction clock $\left(\mathrm{F}_{\mathrm{OSC}} / 4\right)$

24.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

24.4 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000 h . When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note:	The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

24.5 Timer1 in Sleep

Unlike other standard mid-range Timer1 modules, the MCP19110/11 Timer1 module only clocks from an internal system clock, and thus does not run during Sleep mode, nor can it be used to wake the device from this mode.

24.6 Timer1 Control Register

The Timer1 Control register (T1CON), shown in Register 24-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 24-1: T1CON: TIMER1 CONTROL REGISTER

| U-0 | U-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | T1CKPS1 | T1CKPS0 | - | - | TMR1CS | TMR1ON |
| bit 7 | | | | | bit 0 | | |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 7-6 Unimplemented: Read as ' 0 '
bit 5-4 T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits
$11=1: 8$ Prescale value
$10=1: 4$ Prescale value
$01=1: 2$ Prescale value
$00=1: 1$ Prescale value
bit 3-2 Unimplemented: Read as ' 0 '
bit 1 TMR1CS: Timer1 Clock Source Control bit
$1=8 \mathrm{MHz}$ system clock ($\mathrm{F}_{\mathrm{OSC}}$)
$0=2 \mathrm{MHz}$ instruction clock (Fosc)
bit 0
TMR1ON: Timer1 On bit
1 = Enables Timer1
$0=$ Stops Timer1, Clears Timer1 gate flip-flop

TABLE 24-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF	95
PIE1	-	ADIE	BCLIE	SSPIE	-	-	TMR2IE	TMR1IE	96
PIR1	-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF	98
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						137^{*}		
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register						137^{*}		
T1CON	-	-	T1CKPS1	T1CKPS0	-	-	TMR1CS	TMR1ON	138

Legend: - = unimplemented, read as ' 0 '. Shaded cells are not used by the Timer1 module.

* Page provides register information.

25.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)

See Figure 25-1 for a block diagram of Timer2.

25.1 Timer2 Operation

The clock input to the Timer2 module is the system clock ($\mathrm{F}_{\mathrm{OSC}}$). The clock is fed into the Timer2 prescaler, which has prescale options of $1: 1,1: 4$ or $1: 16$. The output of the prescaler is then used to increment the TMR2 register.
The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, TMR2 is reset to 00 h on the next increment cycle.

The match output of the Timer2/PR2 comparator is used to set the TMR2IF interrupt flag bit in the PIR1 register.
The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.
Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a ' 1 '. Timer2 is turned off by clearing the TMR2ON bit to a ' 0 '.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The prescaler counter is cleared when:

- A write to TMR2 occurs
- A write to T2CON occurs
- Any device Reset occurs (Power-on Reset, $\overline{\mathrm{MCLR}}$ Reset, Watchdog Timer Reset, or Brown-out Reset)

Note: TMR2 is not cleared when T2CON is written.

FIGURE 25-1: TIMER2 BLOCK DIAGRAM

25.2 Timer2 Control Register

REGISTER 25-1: T2CON: TIMER2 CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
-	-	-	-	-	TMR2ON	T2CKPS1	T2CKPS0
bit 7							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

bit 7-3 Unimplemented: Read as ' 0 '
bit 2 TMR2ON: Timer2 On bit
$1=$ Timer2 is on
$0=$ Timer2 is off
bit 1-0 T2CKPS<1:0>: Timer2 Clock Prescale Select bits
$00=$ Prescaler is 1
$01=$ Prescaler is 4
$10=$ Prescaler is 8
11 =Prescaler is 16
TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF	95
PIE1	-	ADIE	BCLIE	SSPIE	-	-	TMR2IE	TMR1IE	96
PIR1	-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF	98
PR2	Timer2 Module Period Register								140*
T2CON	-	-	-	-	-	TMR2ON	T2CKPS1	T2CKPS0	141
TMR2	Holding Register for the 8-bit TMR2 Time Base								140*

Legend: - = unimplemented read as ' 0 '. Shaded cells are not used for Timer2 module.

* Page provides register information.

MCP19110/11

NOTES:

26.0 PWM MODULE

The CCP module implemented on the MCP19110/11 is a modified version of the CCP module found in standard mid-range microcontrollers. In the MCP19110/11, the PWM module is used to generate the system clock or system oscillator. This system clock will control the MCP19110/11 switching frequency, as well as set the maximum allowable duty cycle. The PWM module does not continuously adjust the duty cycle to control the output voltage. This is accomplished by the analog control loop and associated circuitry.

26.1 Standard Pulse-Width Modulation (PWM) Mode

The PWM module output signal is used to set the operating switching frequency and maximum allowable duty cycle of the MCP19110/11. The actual duty cycle on the HDRV and LDRV is controlled by the analog PWM control loop. However, this duty cycle cannot be greater than the value in the PWMRL register.

There are two modes of operation that concern the system clock PWM signal. These modes are stand-alone (non-frequency synchronization) and frequency synchronization.

26.1.1 STAND-ALONE (NON-FREQUENCY SYNCHRONIZATION) MODE

When the MCP19110/11 is running stand-alone, the PWM signal functions as the system clock. It is operating at the programmed switching frequency with a programmed maximum duty cycle ($\mathrm{D}_{\mathrm{CLOCK}}$). The programmed maximum duty cycle is not adjusted on a cycle-by-cycle basis to control the MCP19110/11 system output. The required duty cycle ($\mathrm{D}_{\text {BUCK }}$) to control the output is adjusted by the MCP19110/11 analog control loop and associated circuitry. $\mathrm{D}_{\text {CLOCK }}$ does, however, set the maximum allowable $D_{\text {BUCK }}$.

EQUATION 26-1:

$$
D_{B U C K}<1-D_{C L O C K}
$$

FIGURE 26-1: SIMPLIFIED PWM BLOCK DIAGRAM

Note 1: TIMER 2 should be clocked by $\mathrm{F}_{\mathrm{OSC}}(8 \mathrm{MHz})$.

A PWM output (Figure 26-2) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 26-2: PWM OUTPUT

26.1.3 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation:

EQUATION 26-3:

PWM PERIOD $=[($ PR2 $)+1] x T_{\text {OSC }} x(T 2$ PRESCALE VALUE $)$

When TMR2 is equal to PR2, the following two events occur on the next increment cycle:

- TMR2 is cleared
- The PWM duty cycle is latched from PWMRL into PWMRH

26.1.4 PWM DUTY CYCLE ($\mathrm{D}_{\text {CLOCK }}$)

The PWM duty cycle ($\mathrm{D}_{\text {CLOCK }}$) is specified by writing to the PWMRL register. Up to 8-bit resolution is available. The following equation is used to calculate the PWM duty cycle ($\mathrm{D}_{\text {CLOCK }}$):

EQUATION 26-4:
PWM DUTY CYCLE $=$ PWMRL $x T_{\text {OSC }} x$ (T2 PRESCALE VALUE)
The PWMRL bits can be written to at any time, but the duty cycle value is not latched into PWMRH until after a match between PR2 and TMR2 occurs.

26.2 Operation During Sleep

When the device is placed in Sleep, the allocated timer will not increment and the state of the module will not change. If the CLKPIN pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state.

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH PWM MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	-	-	-	-	-	-	-	CLKSEL	112
T2CON	-	-	-	-	-	TMR2ON	T2CKPS1	T2CKPS0	141
PR2	Timer2 Module Period Register								140^{*}
PWMRL	PWM Register Low Byte								143^{*}
PWMPHL	SLAVE Phase Shift Byte								
BUFFCON	MLTPH2	MLTPH1	MLTPH0	ASEL4	ASEL3	ASEL2	ASEL1	ASEL0	58

Legend: - = Unimplemented locations, read as ' 0 '. Shaded cells are not used by Capture mode.

* Page provides register information.

MCP19110/11

NOTES:

27.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

27.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module only operates in Inter-Integrated Circuit (${ }^{2} \mathrm{C}$) mode.

The $I^{2} \mathrm{C}$ interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- Limited Multi-Master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- Bus collision detection
- General call address matching
- Dual Address masking
- Address Hold and Data Hold modes
- Selectable SDA hold times

Figure $27-1$ is a block diagram of the $1^{2} \mathrm{C}$ interface module in Master mode. Figure 27-2 is a diagram of the $I^{2} \mathrm{C}$ interface module in Slave mode.

FIGURE 27-1: MSSP BLOCK DIAGRAM (${ }^{2} \mathrm{C}$ MASTER MODE)

FIGURE 27-2: MSSP BLOCK DIAGRAM ($I^{2} C$ SLAVE MODE)

$27.2 \quad 1^{2} \mathrm{C}$ MODE OVERVIEW

The Inter-Integrated Circuit Bus $\left(I^{2} \mathrm{C}\right)$ is a multi-master serial data communication bus. Devices communicate in a master/slave environment, where the master devices initiate the communication. A Slave device is controlled through addressing.
The MSSP module has eight registers for $I^{2} C$ operation. They are the:

- MSSP Status Register (SSPSTAT)
- MSSP Control Register1 (SSPCON1)
- MSSP Control Register2 (SSPCON2)
- MSSP Control Register3 (SSPCON3)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) - Not directly accessible
- MSSP Address Register (SSPADD)
- MSSP Address Register2 (SSPADD2)
- MSSP Address Mask Register1 (SSPMSK)
- MSSP Address Mask Register2 (SSPMSK2)

The SSPCON1 register is used to define the $\mathrm{I}^{2} \mathrm{C}$ mode. Four selection bits (SSPCON1<3:0>) allow one of the following $I^{2} \mathrm{C}$ modes to be selected:

- $1^{2} C$ Slave mode (7-bit address)
- $\mathrm{I}^{2} \mathrm{C}$ Slave mode (10-bit address)
- $I^{2} \mathrm{C}$ Master mode, clock = OSC/4 (SSPADD +1)
- $I^{2} \mathrm{C}$ firmware controlled Master mode (Slave idle)

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START or STOP bit, specifies if the data received byte was data or address, if the next byte is completion of the 10-bit address, and if this will be a read or write data transfer.
The SSPBUF is the register in which transfer data is written to or read from. The SSPSR register shifts the data in or out of the device. In receive operation, the SSPBUF and SSPSR create a double buffer receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received before the SSPBUF register is read, a receiver overflow has occurred and the SSPOV bit (SSPCON1<6>) is set and the byte in the SSPSR is lost.

The $\mathrm{I}^{2} \mathrm{C}$ bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero; letting the line float is considered a logical one.
Before selecting any $I^{2} \mathrm{C}$ mode, the SCL and SDA pins must be programmed to inputs by setting the appropriate TRIS bits. Selecting $I^{2} \mathrm{C}$ mode, by setting the SSPEN bit, enables the SCL and SDA pins to be used as clock and data lines in $\mathrm{I}^{2} \mathrm{C}$ mode.
Figure 27-3 shows a typical connection between two devices configured as master and slave.

FIGURE 27-3: $\quad \mathrm{I}^{2} \mathrm{C}$ MASTER/SLAVE CONNECTION

The $I^{2} \mathrm{C}$ bus can operate with one or more master devices and one or more slave devices.
There are four potential modes of operation for a given device:

- Master Transmit mode
(master is transmitting data to a slave)
- Master Receive mode
(master is receiving data from a slave)
- Slave Transmit mode
(slave is transmitting data to a master)
- Slave Receive mode
(slave is receiving data from the master)
To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.
If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.
The Acknowledge bit ($\overline{\mathrm{ACK}}$) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.
The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.
If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an $\overline{\text { ACK }}$ bit. In this example, the master device is in Master Transmit mode, and the slave is in Slave Receive mode.

If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an $\overline{\mathrm{ACK}}$ bit. In this example, the master device is in Master Receive mode, and the slave is Slave Transmit mode.
On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last $\overline{\mathrm{ACK}}$ bit. A Stop bit is indicated by a low-to-high transition of the SDA line, while the SCL line is held high.
In some cases, the master may want to maintain control of the bus and reinitiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.
The $I^{2} \mathrm{C}$ bus specifies three message protocols:

- Single message where a master writes data to a slave
- Single message where a master reads data from a slave
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

27.2.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of Clock Stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.
Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

27.2.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels don't match, loses arbitration, and must stop transmitting on the SDA line.
For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.
Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.
Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

$27.3 \quad I^{2} \mathrm{C}$ MODE OPERATION

All MSSP $1^{2} \mathrm{C}$ communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC microcontroller and user software. Two pins, SDA and SCL , are exercised by the module to communicate with other external ${ }^{2} \mathrm{C}$ devices.

27.3.1 BYTE FORMAT

All communication in $I^{2} \mathrm{C}$ is done in 9-bit segments. A byte is sent from a Master to a Slave or vice-versa, followed by an Acknowledge bit sent back. After the $8^{\text {th }}$ falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.
The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

27.3.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of $I^{2} \mathrm{C}$ communication that have definitions specific to $I^{2} C$. That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips $1^{2} \mathrm{C}$ specification.

27.3.3 SDA AND SCL PINS

On the MCP19110/11, the SCL and SDA pins are always open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is tied to output zero when an $\mathrm{I}^{2} \mathrm{C}$ mode is enabled.

27.3.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 27-1: $\quad I^{2} C$ BUS TERMS

TERM	
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.
Slave	The device addressed by the master.
Multi-Master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPADDx.
Write Request	Slave receives a matching address with R/ \bar{W} bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus holds SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is outputting and expected high state.

27.3.5 START CONDITION

The $I^{2} \mathrm{C}$ specification defines a Start condition as a transition of SDA from a high to a low state, while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 27-4 shows the wave forms for Start and Stop conditions.
A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the $I^{2} \mathrm{C}$ Specification, that states no bus collision can occur on a Start.

27.3.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note: At least one SCL low time must appear before a Stop is valid, therefore, if the SDA line goes low then high again while the SCL line stays high, only the Start condition is detected.

27.3.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave.

In 10-bit Addressing Slave mode, a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the $\mathrm{R} / \overline{\mathrm{W}}$ bit set. The slave logic will then hold the clock and prepare to clock out data.
After a full match with $\mathrm{R} / \overline{\mathrm{W}}$ clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/W clear or a high address match fails.

27.3.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. These bits will have no effect on slave modes where interrupt on Start and Stop detect are already enabled.
FIGURE 27-4: $\quad I^{2} \mathrm{C}$ START AND STOP CONDITIONS

FIGURE 27-5: $\quad I^{2} \mathrm{C}$ RESTART CONDITION

27.3.9 ACKNOWLEDGE SEQUENCE

The $9^{\text {th }}$ SCL pulse for any transferred byte in $I^{2} \mathrm{C}$ is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge ($\overline{\mathrm{ACK}}$) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.
The result of an $\overline{\mathrm{ACK}}$ is placed in the ACKSTAT bit of the SSPCON2 register.
Slave software, when the AHEN and DHEN bits are set, allow the user to set the $\overline{\mathrm{ACK}}$ value sent back to the transmitter. The ACKDT bit of the SSPCON2 register is set/cleared to determine the response.

Slave hardware will generate an $\overline{\mathrm{ACK}}$ response if the AHEN and DHEN bits of the SSPCON3 register are clear.

There are certain conditions where an $\overline{\mathrm{ACK}}$ will not be sent by the slave. If the BF bit of the SSPSTAT register or the SSPOV bit of the SSPCON1 register are set when a byte is received, an $\overline{\text { ACK }}$ will not be sent.
When the module is addressed, after the $8^{\text {th }}$ falling edge of SCL on the bus, the ACKTIM bit of the SSPCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

$27.4 \quad I^{2} \mathrm{C}$ SLAVE MODE OPERATION

The MSSP Slave mode operates in one of the four modes selected in the SSPM bits of SSPCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing mode operates the same as 7 -bit, with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes. The exception is the SSPIF bit getting set upon detection of a Start, Restart or Stop condition.

27.4.1 SLAVE MODE ADDRESSES, SSPADD

The SSPADD register (Register 27-7) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.
The SSPMSK register (Register 27-6) affects the address matching process. See Section 27.4.10 "SSPMSKx Register" for more information.

27.4.2 SECOND SLAVE MODE ADDRESS, SSPADD2

The SSPADD2 register (Register 27-9) contains a second Slave mode address. To enable the use of this second Slave mode address, bit 0 must be set. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPBUF register and an interrupt is generated. If the value does not match, the module goes Idle and no indication is given to the software that anything happened.

The SSPMSK2 register, Register 27-8, affects the address matching process. See Section 27.4.10 "SSPMSKx Register" for more information.

27.4.2.1 $\quad \mathrm{I}^{2} \mathrm{C}$ Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

27.4.2.2 $\quad \mathrm{I}^{2} \mathrm{C}$ Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of ' 11110 A9 A8 0 '. A9 and A8 are the two MSb of the 10-bit address and stored in bits 2 and 1 of the SSPADDx register.
After the acknowledge of the high byte, the UA bit is set, and SCL is held low until the user updates SSPADDx with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPADDx. Even if there is no address match, SSPIF and UA are set, and SCL is held low until SSPADDx is updated to receive a high byte again. When SSPADDx is updated, the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.
A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/ \bar{W} bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

27.4.3 SLAVE RECEPTION

When the R / \bar{W} bit of a matching received address byte is clear, the R / \bar{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged.
When an overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information, see Register 27-5.
An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPIF, must be cleared by software.
When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode.

27.4.3.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an $I^{2} \mathrm{C}$ Slave in 7 -bit Addressing mode, all decisions made by hardware or software and their effect on reception. Figure 27-6 and Figure 27-7 are used as a visual reference for this description.
This is a step-by-step process of what typically must be done to accomplish $\mathrm{I}^{2} \mathrm{C}$ communication.

1. Start bit detected.
2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
3. Matching address with R / \bar{W} bit clear is received.
4. The slave pulls SDA low sending an $\overline{\mathrm{ACK}}$ to the master, and sets SSPIF bit.
5. Software clears the SSPIF bit.
6. Software reads received address from SSPBUF clearing the BF flag.
7. If $\operatorname{SEN}=1$, Slave software sets CKP bit to release the SCL line.
8. The master clocks out a data byte.
9. Slave drives SDA low, sending an $\overline{\mathrm{ACK}}$ to the master, and sets SSPIF bit.
10. Software clears SSPIF.
11. Software reads the received byte from SSPBUF clearing BF .
12. Steps $8-12$ are repeated for all received bytes from the Master.
13. Master sends Stop condition, setting P bit of SSPSTAT, and the bus goes Idle.

27.4.3.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operates the same as without these options, with extra interrupts and clock stretching added after the $8^{\text {th }}$ falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to $\overline{\mathrm{ACK}}$ the receive address or data byte, rather than the hardware. This functionality adds support for PMBus that was not present on previous versions of this module.
This list describes the steps that need to be taken by slave software to use these options for $I^{2} \mathrm{C}$ communication. Figure 27-8 displays a module using both address and data holding. Figure 27-9 includes the operation with the SEN bit of the SSPCON2 register set.

1. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
2. Matching address with R / \bar{W} bit clear is clocked in. SSPIF is set and CKP cleared after the $8^{\text {th }}$ falling edge of SCL.
3. Slave clears the SSPIF.
4. Slave can look at the ACKTIM bit of the SSPCON3 register to determine if the SSPIF was after or before the $\overline{\text { ACK. }}$
5. Slave reads the address value from SSPBUF, clearing the BF flag.
6. Slave sets $\overline{\mathrm{ACK}}$ value clocked out to the master by setting ACKDT.
7. Slave releases the clock by setting CKP.
8. SSPxIF is set after an $\overline{A C K}$, not after a NACK.
9. If $\mathrm{SEN}=1$ the slave hardware will stretch the clock after the ACK.
10. Slave clears SSPIF.

Note: SSPIF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSPIF not set.
11. SSPIF set and CKP cleared after 8th falling edge of SCL for a received data byte.
12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
13. Slave reads the received data from SSPBUF clearing BF.
14. Steps $7-14$ are the same for each received data byte.
15. Communication is ended by either the slave sending an $\overline{\mathrm{ACK}}=1$, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.
I^{2} C SLAVE, 7 -BIT ADDRESS, RECEPTION (SEN $=0$, AHEN $=0$, DHEN $=0$)

I^{2} C SLAVE, 7 -BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0 , DHEN $=0$)

FIGURE 27-8: $\quad I^{2}$ C SLAVE, 7 -BIT ADDRESS, RECEPTION (SEN $=0$, AHEN $=1$, DHEN = 1)

27.4.4 SLAVE TRANSMISSION

When the R / \bar{W} bit of the incoming address byte is set and an address match occurs, the R / \bar{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the slave on the ninth bit.
Following the $\overline{\mathrm{ACK}}$, slave hardware clears the CKP bit and the SCL pin is held low (see Section 27.4.7 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.
The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.
The $\overline{\text { ACK }}$ pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This $\overline{\mathrm{ACK}}$ value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not $\overline{\mathrm{ACK}}$), then the data transfer is complete. In this case, when the not $\overline{\mathrm{ACK}}$ is latched by the slave, the slave goes Idle and waits for another occurrence of the Start bit. If the SDA line was low ($\overline{\mathrm{ACK}}$), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP.
An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

27.4.4.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

27.4.4.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 27-10 can be used as a reference to this list.

1. Master sends a Start condition on SDA and SCL.
2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
3. Matching address with R / \bar{W} bit set is received by the Slave setting SSPIF bit.
4. Slave hardware generates an $\overline{\mathrm{ACK}}$ and sets SSPIF.
5. SSPIF bit is cleared by user.
6. Software reads the received address from SSPBUF, clearing BF.
7. R / \bar{W} is set so CKP was automatically cleared after the $\overline{\text { ACK }}$.
8. The slave software loads the transmit data into SSPBUF.
9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
10. SSPIF is set after the $\overline{\mathrm{ACK}}$ response from the master is loaded into the ACKSTAT register.
11. SSPIF bit is cleared.
12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1:If the master $\overline{\mathrm{ACK}}$ s the clock will be stretched.
2: ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
13. Steps 9-13 are repeated for each transmitted byte.
14. If the master sends a not $\overline{\mathrm{ACK}}$; the clock is not held, but SSPIF is still set.
15. The master sends a Restart condition or a Stop.
16. The slave is no longer addressed.
FIGURE 27-10: $\quad I^{2} C$ SLAVE, $7-$ BIT ADDRESS, TRANSMISSION (AHEN $=0$)

27.4.4.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPCON3 register enables additional clock stretching and interrupt generation after the $8^{\text {th }}$ falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPIF interrupt is set.
Figure 27-11 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

1. Bus starts Idle.
2. Master sends Start condition; the S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
3. Master sends matching address with $\mathrm{R} / \overline{\mathrm{W}}$ bit set. After the $8^{\text {th }}$ falling edge of the SCL line, the CKP bit is cleared and SSPIF interrupt is generated.
4. Slave software clears SSPIF.
5. Slave software reads ACKTIM bit of SSPCON3 register, and R / \bar{W} and D/A of the SSPSTAT register to determine the source of the interrupt.
6. Slave reads the address value from the SSPBUF register clearing the BF bit.
7. Slave software decides from this information if it wishes to $\overline{\mathrm{ACK}}$ or not $\overline{\mathrm{ACK}}$ and sets ACKDT bit of the SSPCON2 register accordingly.
8. Slave sets the CKP bit releasing SCL.
9. Master clocks in the $\overline{\mathrm{ACK}}$ value from the slave.
10. Slave hardware automatically clears the CKP bit and sets SSPIF after the $\overline{A C K}$ if the R/W bit is set.
11. Slave software clears SSPIF.
12. Slave loads value to transmit to the master into SSPBUF setting the BF bit.

Note: SSPBUF cannot be loaded until after the ACK.
13. Slave sets CKP bit releasing the clock.
14. Master clocks out the data from the slave and sends an $\overline{A C K}$ value on the $9^{\text {th }}$ SCL pulse.
15. Slave hardware copies the $\overline{\mathrm{ACK}}$ value into the ACKSTAT bit of the SSPCON2 register.
16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
17. If the master sends a not $\overline{\mathrm{ACK}}$, the slave releases the bus, allowing the master to send a Stop and end the communication.

Note: Master must send a not $\overline{\text { ACK }}$ on the last byte to ensure that the slave releases the SCL line to receive a Stop.
FIGURE 27-11: $\quad I^{2}$ C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)

27.4.5 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an $I^{2} \mathrm{C}$ Slave in 10-bit Addressing mode.

Figure $27-12$ is used as a visual reference for this description.

This is a step-by-step process of what must be done by slave software to accomplish $I^{2} \mathrm{C}$ communication.

1. Bus starts Idle.
2. Master sends Start condition; S bit of SSPSTAT is set; SSPIF is set, if interrupt on Start detect is enabled.
3. Master sends matching high address with R / \bar{W} bit clear; UA bit of the SSPSTAT register is set.
4. Slave sends $\overline{\mathrm{ACK}}$ and SSPIF is set.
5. Software clears the SSPIF bit.
6. Software reads received address from SSPBUF clearing the BF flag.
7. Slave loads low address into SSPADDx, releasing SCL.
8. Master sends matching low-address byte to the Slave; UA bit is set.

Note: Updates to the SSPADDx register are not allowed until after the $\overline{A C K}$ sequence.
9. Slave sends $\overline{\mathrm{ACK}}$ and SSPIF is set.

Note: If the low address does not match, SSPIF and UA are still set so that the slave software can set SSPADDx back to the high address. BF is not set because there is no match. CKP is unaffected.
10. Slave clears SSPIF.
11. Slave reads the received matching address from SSPBUF clearing BF.
12. Slave loads high address into SSPADD.
13. Master clocks a data byte to the slave and clocks out the slave's $\overline{\text { ACK }}$ on the 9th SCL pulse; SSPIF is set.
14. If SEN bit of SSPCON2 is set, CKP is cleared by hardware and the clock is stretched.
15. Slave clears SSPIF.
16. Slave reads the received byte from SSPBUF clearing $B F$.
17. If SEN is set, the slave sets CKP to release the SCL.
18. Steps 13-17 repeat for each received byte.
19. Master sends Stop to end the transmission.

27.4.6 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPADDx register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low, are the same. Figure 27-13 can be used as a reference of a slave in 10-bit addressing with AHEN set.
Figure 27-14 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.
FIGURE 27-12: $\quad I^{2}$ C SLAVE, 10 -BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

FIGURE 27-13: $\quad I^{2} C$ SLAVE, $10-$ BIT ADDRESS, RECEPTION (SEN $=0$, AHEN $=1$, DHEN = 0)

FIGURE 27-14: $\quad I^{2}$ C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)

27.4.7 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching, as anytime it is active on the bus and not transferring data, it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.
The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

27.4.7.1 Normal Clock Stretching

Following an $\overline{\text { ACK, }}$, if the R / \bar{W} bit of the SSPSTAT is set, causing a read request, the slave hardware will clear CKP. This allows the slave time to update SSPBUF with data to transfer to the master. If the SEN bit of SSPCON2 is set, the slave hardware will always stretch the clock after the $\overline{\mathrm{ACK}}$ sequence. Once the slave is ready; CKP is set by software and communication resumes.

Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock or clear CKP, if SSPBUF was read before the $9^{\text {th }}$ falling edge of SCL.
2: Previous versions of the module did not stretch the clock for a transmission if SSPBUF was loaded before the $9^{\text {th }}$ falling edge of SCL. It is now always cleared for read requests.

27.4.7.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADDx.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.

27.4.7.3 Byte NACKing

When AHEN bit of SSPCON3 is set; CKP is cleared by the hardware after the $8^{\text {th }}$ falling edge of SCL for a received matching address byte. When DHEN bit of SSPCON3 is set; CKP is cleared after the $8^{\text {th }}$ falling edge of SCL for received data.
Stretching after the $8^{\text {th }}$ falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

27.4.8 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external $I^{2} \mathrm{C}$ master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the $1^{2} \mathrm{C}$ bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 27-15).

FIGURE 27-15: CLOCK SYNCHRONIZATION TIMING

27.4.9 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the $\mathrm{I}^{2} \mathrm{C}$ bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge.
The general call address is a reserved address in the $I^{2} \mathrm{C}$ protocol, defined as address 0×00. When the GCEN bit of the SSPCON2 register is set, the slave module will automatically $\overline{\mathrm{ACK}}$ the reception of this address, regardless of the value stored in SSPADDx. After the slave clocks in an address of all zeros with the $\mathrm{R} / \overline{\mathrm{W}}$ bit clear, an interrupt is generated and slave software can read SSPBUF and respond. Figure 27-16 shows a general call reception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in the 7-bit mode.

If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the $8^{\text {th }}$ falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

FIGURE 27-16: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE

27.4.10 SSPMSKX REGISTER

An SSP Mask (SSPMSKx) register (Register 27-6 and Register 27-8) is available in $I^{2} C$ Slave mode as a mask for the value held in the SSPSRx register during an address comparison operation. A zero ('0') bit in the SSPMSKx register has the effect of making the corresponding bit of the received address a "don't care".

This register is reset to all ' 1 's upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value.
The SSP Mask register is active during:

- 7-bit Address mode: address compare of $A<7: 1>$.
- 10-bit Address mode: address compare of $\mathrm{A}<7: 0>$ only. The SSP mask has no effect during the reception of the first (high) byte of the address.

$27.5 \quad I^{2} \mathrm{C}$ Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary, to drive the pins low.
Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the $I^{2} \mathrm{C}$ bus may be taken when the P bit is set, or the bus is Idle.
In Firmware Controlled Master mode, user code conducts all $I^{2} C$ bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt, if enabled):

- Start condition detected
- Stop condition detected
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated

Note 1: The MSSP module, when configured in $I^{2} \mathrm{C}$ Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.
2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

27.5.1 $\quad \mathrm{I}^{2} \mathrm{C}$ MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the $\mathrm{I}^{2} \mathrm{C}$ bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R / \bar{W}) bit. In this case, the R / \bar{W} bit will be logic ' 0 '. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.
In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic ' 1 '. Thus, the first byte transmitted is a 7 -bit slave address followed by a ' 1 ' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and the end of transmission.
A Baud Rate Generator is used to set the clock frequency output on SCL. See Section 27.6 "Baud Rate Generator" for more detail.

27.5.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 27-17).

FIGURE 27-17: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

27.5.3 WCOL STATUS FLAG

If the user writes the SSPBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set, it indicates that an action on SSPBUF was attempted while the module was not Idle.

Note: Because queuing of events is not allowed, writing to the lower five bits of SSPCON2 is disabled until the Start condition is complete.

27.5.4 $\quad{ }^{2} \mathrm{C}$ MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN bit of the SSPCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out ($\mathrm{T}_{\mathrm{BRG}}$), the SDA pin is driven low. The action
of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSPSTAT register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<7:0> and resumes its count. When the Baud Rate Generator times out ($\mathrm{T}_{\mathrm{BRG}}$), the SEN bit of the SSPCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the $I^{2} \mathrm{C}$ module is reset into its Idle state.
2: The Philips $I^{2} \mathrm{C}$ Specification states that a bus collision cannot occur on a Start.

FIGURE 27-18: FIRST START BIT TIMING

27.5.5 ${ }^{2}$ ² MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the Master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count ($T_{\text {BRG }}$). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one $\mathrm{T}_{\text {BRG }}$. This action is then followed by the assertion of the SDA pin ($\mathrm{SDA}=0$) for one $\mathrm{T}_{\mathrm{BRG}}$ while $S C L$ is high. SCL is asserted low. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
2: A bus collision during the Repeated Start condition occurs if:
-SDA is sampled low when SCL goes from low-to-high.
-SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data ' 1 '.

FIGURE 27-19: REPEAT START CONDITION WAVEFORM

27.5.6 $\quad I^{2} \mathrm{C}$ MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF, and will allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count ($\mathrm{T}_{\mathrm{BRG}}$). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for $T_{\text {BRG }}$. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the $8^{\text {th }}$ bit is shifted out (the falling edge of the $8^{\text {th }}$ clock), the BF flag is cleared and the master releases the SDA. This allows the slave device being addressed to respond with an $\overline{\text { ACK }}$ bit during the $9^{\text {th }}$ bit time if an address match occurred, or if data was received properly. The status of $\overline{\mathrm{ACK}}$ is written into the ACKSTAT bit on the rising edge of the $9^{\text {th }}$ clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the $9^{\text {th }}$ clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 27-20).
After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the $8^{\text {th }}$ clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the $9^{\text {th }}$ clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the $\overline{\mathrm{ACK}}$ bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the $9^{\text {th }}$ clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

27.5.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF, and is cleared when all eight bits are shifted out.

27.5.6.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).
WCOL must be cleared by software before the next transmission.

27.5.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge ($\overline{\mathrm{ACK}}=0$) and is set when the slave does not Acknowledge ($\overline{\mathrm{ACK}}=1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

27.5.6.4 Typical transmit sequence

1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
2. SSPIF is set by hardware on completion of the Start.
3. SSPIF is cleared by software.
4. The MSSP module will wait the required start time before any other operation takes place.
5. The user loads the SSPBUF with the slave address to transmit.
6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to.
7. The MSSP module shifts in the $\overline{\mathrm{ACK}}$ bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
8. The MSSP module generates an interrupt at the end of the $9^{\text {th }}$ clock cycle by setting the SSPIF bit.
9. The user loads the SSPBUF with eight bits of data.
10. Data is shifted out the SDA pin until all eight bits are transmitted.
11. The MSSP module shifts in the $\overline{\mathrm{ACK}}$ bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
12. Steps 8 -11 are repeated for all transmitted data bytes.
13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

27.5.7 $\quad \mathrm{I}^{2} \mathrm{C}$ MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit, of the SSPCON2 register.

> | Note: | The MSSP module must be in an Idle |
| :--- | :--- |
| state before the RCEN bit is set, or the | |
| RCEN bit will be disregarded. | |

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit, of the SSPCON2 register.

27.5.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

27.5.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

27.5.7.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

27.5.7.4 Typical Receive Sequence:

1. The user generates a Start condition by setting the SEN bit of the SSPCON2 register.
2. SSPIF is set by hardware on completion of the Start.
3. SSPIF is cleared by software.
4. The user writes SSPBUF with the slave address to transmit and the R/W bit set.
5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to.
6. The MSSP module shifts in the $\overline{A C K}$ bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register.
7. The MSSP module generates an interrupt at the end of the $9^{\text {th }}$ clock cycle by setting the SSPIF bit.
8. User sets the RCEN bit of the SSPCON2 register and the Master clocks in a byte from the slave.
9. After the $8^{\text {th }}$ falling edge of SCL, SSPIF and BF are set.
10. Master clears SSPIF and reads the received byte from SSPBUF, clears BF.
11. Master sets $\overline{A C K}$ value sent to slave in ACKDT bit of the SSPCON2 register and initiates the $\overline{A C K}$ by setting the ACKEN bit.
12. Masters $\overline{\mathrm{ACK}}$ is clocked out to the Slave and SSPIF is set.
13. The user clears SSPIF.
14. Steps $8-13$ are repeated for each received byte from the slave.
15. Master sends a not $\overline{\mathrm{ACK}}$ or Stop to end communication.
FIGURE 27-21: $\quad I^{2} \mathrm{C}$ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)

27.5.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit, of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period ($\mathrm{T}_{\mathrm{BRG}}$) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for $T_{B R G}$. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 27-22).

27.5.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

27.5.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the $9^{\text {th }}$ clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to ' 0 '. When the Baud Rate Generator times out, the SCL pin will be brought high and one $\mathrm{T}_{\mathrm{BRG}}$ (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A $T_{B R G}$ later, the PEN bit is cleared and the SSPIF bit is set (Figure 27-23).

27.5.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 27-22: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 27-23: STOP CONDITION RECEIVE OR TRANSMIT MODE

27.5.10 SLEEP OPERATION

While in Sleep mode, the $I^{2} \mathrm{C}$ slave module can receive addresses or data, and when an address match or complete byte transfer occurs, wakes the processor from Sleep (if the MSSP interrupt is enabled).

27.5.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

27.5.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the $I^{2} \mathrm{C}$ bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.
In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLIF bit.
The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

27.5.13 MULTI-MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a ' 1 ' on SDA, by letting SDA float high and another master asserts a ' 0 '. When the SCL pin floats high, data should be stable. If the expected data on SDA is a ' 1 ' and the data sampled on the SDA pin is ' 0 ', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the $I^{2} \mathrm{C}$ port to its Idle state (Figure 27-24).
If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the $I^{2} \mathrm{C}$ bus is free, the user can resume communication by asserting a Start condition.
If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the $I^{2} C$ bus is free, the user can resume communication by asserting a Start condition.
The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.
A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.
In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the $\mathrm{I}^{2} \mathrm{C}$ bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 27-24: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

27.5.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:
a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 27-25).
b) SCL is sampled low before SDA is asserted low (Figure 27-26).
During a Start condition, both the SDA and the SCL pins are monitored.
If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted
- the BCLIF flag is set
- the MSSP module is reset to its Idle state (Figure 27-25).
The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data ' 1 ' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 27-27). If, however, a ' 1 ' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as ' 0 ' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 27-25: BUS COLLISION DURING START CONDITION (SDA ONLY)

FIGURE 27-26: BUS COLLISION DURING START CONDITION (SCL = 0)

FIGURE 27-27: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

27.5.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:
a) A low level is sampled on SDA when SCL goes from low level to high level.
b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data ' 1 '.
When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data ' 0 ', Figure 27-28). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.
If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data ' 1 ' during the Repeated Start condition (see Figure 27-29.)
If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 27-28: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 27-29: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

27.5.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:
a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to 0 . After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data ' 0 ' (Figure 27-30). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data ' 0 ' (Figure 27-31).

FIGURE 27-30: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 27-31: BUS COLLISION DURING A STOP CONDITION (CASE 2)

TABLE 27-1: SUMMARY OF REGISTERS ASSOCIATED WITH I²C OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE	PEIE	TOIE	INTE	IOCE	TOIF	INTF	IOCF	95
PIE1	-	ADIE	BCLIE	SSPIE	-	-	TMR2IE	TMR1IE	96
PIR1	-	ADIF	BCLIF	SSPIF	-	-	TMR2IF	TMR1IF	98
TRISGPA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	114
TRISGPB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	117
SSPADD	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0	188
SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register								148*
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	185
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	186
SSPCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	187
SSPMSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	188
SSPSTAT	SMP	CKE	D/ \bar{A}	P	S	R/W	UA	BF	184
SSPMSK2	MSK27	MSK26	MSK25	MSK24	MSK23	MSK22	MSK21	MSK20	189
SSPADD2	ADD27	ADD26	ADD25	ADD24	ADD23	ADD22	ADD21	ADD20	189

Legend: - = unimplemented, read as ' 0 '. Shaded cells are not used by the MSSP module in $I^{2} \mathrm{C}$ mode.

* Page provides register information.

27.6 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in $I^{2} \mathrm{C}$ Master mode. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 27-7). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 27-32 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.
Table 27-2 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 27-1:

$$
F_{C L O C K}=\frac{F_{O S C}}{(S S P A D D+1)(4)}
$$

FIGURE 27-32: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of $0 \times 00,0 \times 01$ and 0×02 are not valid for SSPADD when used as a Baud Rate Generator for $I^{2} \mathrm{C}$. This is an implementation limitation.

TABLE 27-2: MSSP CLOCK RATE W/BRG

Fosc	F $_{\text {CY }}$	BRG Value	FCLOcK (2 Rollovers of BRG)
8 MHz	2 MHz	04 h	$400 \mathrm{kHz}{ }^{(\mathbf{1})}$
8 MHz	2 MHz	0 Bh	166 kHz
8 MHz	2 MHz	13 h	100 kHz

Note 1: The $I^{2} \mathrm{C}$ interface does not conform to the $400 \mathrm{kHz} \mathrm{I}^{2} \mathrm{C}$ specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

REGISTER 27-2: SSPSTAT: SSP STATUS REGISTER

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/ \bar{A}	P	S	R/ \bar{W}	UA	BF
bit 7							

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0$ ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit 7	SMP: Data Input Sample bit 1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for high speed mode (400 kHz)
bit 6	CKE: Clock Edge Select bit 1 = Enable input logic so that thresholds are compliant with SMBus specification $0=$ Disable SMBus specific inputs
bit 5	D/A $:$ Data/Address bit 1 = Indicates that the last byte received or transmitted was data $0=$ Indicates that the last byte received or transmitted was address
bit 4	P: Stop bit (This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is ' 0 ' on Reset) 0 = Stop bit was not detected last
bit 3	S: Start bit (This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Start bit has been detected last (this bit is ' 0 ' on Reset) $0=$ Start bit was not detected last
bit 2	R/W: Read/Vrite bit information
	This bit holds the R / \bar{W} bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit, or not $\overline{\text { ACK }}$ bit. In I^{2} C Slave mode:
	$\begin{aligned} & 1=\text { Read } \\ & 0=\text { Write } \end{aligned}$
	$\left.\underline{I n}\right\|^{2} \mathrm{C}$ Master mode:
	1 = Transmit is in progress
	$0=$ Transmit is not in progress OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode.

bit $1 \quad$ UA: Update Address bit (10-bit ${ }^{2} \mathrm{C}$ mode only)
$1=$ Indicates that the user needs to update the address in the SSPADD register
$0=$ Address does not need to be updated
bit $0 \quad$ BF: Buffer Full Status bit
Receive:
1 = Receive complete, SSPBUF is full
$0=$ Receive not complete, SSPBUF is empty

Transmit:

1 = Data transmit in progress (does not include the $\overline{\text { ACK }}$ and Stop bits), SSPBUF is full
$0=$ Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty

REGISTER 27-3: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0	R/C/HS-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP		SSPM<3:0>		
bit 7			bit 0				

Legend:

$\mathrm{R}=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared
$H S=$ Bit is set by hardware	$C=$ User cleared	

bit $7 \quad$ WCOL: Write Collision Detect bit
Master mode:
$1=A$ write to the SSPBUF register was attempted while the $I^{2} \mathrm{C}$ conditions were not valid for a transmission to be started
$0=$ No collision
Slave mode:
1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
$0=$ No collision
bit 6 SSPOV: Receive Overflow Indicator bit ${ }^{(1)}$
1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in Transmit mode (must be cleared in software).
$0=$ No overflow
bit 5 SSPEN: Synchronous Serial Port Enable bit
In both modes, when enabled, these pins must be properly configured as input or output
$1=$ Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins ${ }^{(2)}$
$0=$ Disables serial port and configures these pins as I/O port pins
bit 4 CKP: Clock Polarity Select bit
In ${ }^{2} \mathrm{C}$ Slave mode:
SCL release control
1 = Enable clock
$0=$ Holds clock low (clock stretch). (Used to ensure data setup time.)
In ${ }^{2} \mathrm{C}$ Master mode:
Unused in this mode
bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits
$0000=$ Reserved
0001 = Reserved
$0010=$ Reserved
$0011=$ Reserved
$0100=$ Reserved
0101 = Reserved
$0110=1^{2} \mathrm{C}$ Slave mode, 7-bit address
$0111=1^{2} \mathrm{C}$ Slave mode, 10 -bit address
$1000=1^{2} \mathrm{C}$ Master mode, clock $=\mathrm{F}_{\text {OSC }} /(4 \times(\text { SSPADD }+1))^{(3)}$
1001 = Reserved
1010 = Reserved
$1011=\left.\right|^{2}$ C firmware controlled Master mode (Slave idle)
$1100=$ Reserved
1101 = Reserved
$1110=I^{2} \mathrm{C}$ Slave mode, 7-bit address with Start and Stop bit interrupts enabled
$1111=1^{2} \mathrm{C}$ Slave mode, 10 -bit address with Start and Stop bit interrupts enabled
Note 1: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
2: When enabled, the SDA and SCL pins must be configured as inputs.
3: SSPADD values of 0,1 or 2 are not supported for $I^{2} C$ Mode.

REGISTER 27-4: SSPCON2: SSP CONTROL REGISTER 2

| R/W-0/0 | R-0/0 | R/W-0/0 | R/S/HS-0/0 | R/S/HS-0/0 | R/S/HS-0/0 | R/S/HS-0/0 | R/W/HS-0/0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GCEN | ACKSTAT | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN |
| bit 7 | | | | bit 0 | | | |

Legend:

R = Readable bit	W = Writable bit	$U=$ Unimplemented bit, read as ' 0 '
' 1 ' = Bit is set	0 ' = Bit is cleared	$x=$ Bit is unknown
H = Bit is set by hardware	$S=$ User set	$-n / n=$ Value at POR/Value at all other resets

bit $7 \quad$ GCEN: General Call Enable bit (in $I^{2} \mathrm{C}$ Slave mode only)
1 = Enable interrupt when a general call address (0×00 or 00 h) is received in the SSPSR
$0=$ General call address disabled
bit 6 ACKSTAT: Acknowledge Status bit
1 = Acknowledge was not received
$0=$ Acknowledge was received
bit 5 ACKDT: Acknowledge Data bit
In Receive mode:
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive
1 = Not Acknowledge
0 = Acknowledge
bit 4 ACKEN: Acknowledge Sequence Enable bit (in $I^{2} \mathrm{C}$ Master mode only)
In Master Receive mode:
1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware.
$0=$ Acknowledge sequence Idle
bit 3 RCEN: Receive Enable bit (in $I^{2} \mathrm{C}$ Master mode only)
1 = Enables Receive mode for ${ }^{2} \mathrm{C}$
$0=$ Receive Idle
bit 2 PEN: Stop Condition Enable bit (in $I^{2} \mathrm{C}$ Master mode only)
SCK Release Control:
1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.
0 = Stop condition Idle
bit 1 RSEN: Repeated Start Condition Enabled bit (in $I^{2} \mathrm{C}$ Master mode only)
$1=$ Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.
$0=$ Repeated Start condition Idle
bit $0 \quad$ SEN: Start Condition Enabled bit (in I ${ }^{2}$ C Master mode only)
In Master mode:
1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.
$0=$ Start condition Idle
In Slave mode:
1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)
$0=$ Clock stretching is disabled
Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the $I^{2} \mathrm{C}$ module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

REGISTER 27-5: SSPCON3: SSP CONTROL REGISTER 3

R-0/0	R/W-0/0						
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7				bit 0			

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n / n=$ Value at POR/Value at	$\prime 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared
all other resets		$x=$ Bit is unknown

bit $7 \quad$ ACKTIM: Acknowledge Time Status bit ${ }^{(2)}$
$1=$ Indicates the $I^{2} \mathrm{C}$ bus is in an Acknowledge sequence, set on the $8^{\text {th }}$ falling edge of SCL clock
$0=$ Not an Acknowledge sequence, cleared on the $9^{\text {th }}$ rising edge of SCL clock
bit $6 \quad$ PCIE: Stop Condition Interrupt Enable bit
1 = Enable interrupt on detection of Stop condition
$0=$ Stop detection interrupts are disabled ${ }^{(1)}$
bit $5 \quad$ SCIE: Start Condition Interrupt Enable bit
1 = Enable interrupt on detection of Start or Restart conditions
$0=$ Start detection interrupts are disabled ${ }^{(1)}$
bit 4 BOEN: Buffer Overwrite Enable bit
In $\underline{I}^{2} \underline{C}$ Master mode:
This bit is ignored.
In $\underline{I}^{\underline{2}} \underline{C}$ Slave mode:
1 = SSPBUF is updated and $\overline{\mathrm{ACK}}$ is generated for a received address/data byte, ignoring the state of the SSPOV bit only if the BF bit $=0$.
$0=$ SSPBUF is only updated when SSPOV is clear
bit 3 SDAHT: SDA Hold Time Selection bit
1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
$0=$ Minimum of 100 ns hold time on SDA after the falling edge of SCL
bit 2 SBCDE: Slave Mode Bus Collision Detect Enable bit ($I^{2} \mathrm{C}$ Slave mode only)
If on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCLIF bit of the PIR2 register is set, and bus goes Idle

1 = Enable slave bus collision interrupts
$0=$ Slave bus collision interrupts are disabled
AHEN: Address Hold Enable bit (${ }^{2}$ C Slave mode only)
$1=$ Following the $8^{\text {th }}$ falling edge of SCL for a matching received address byte; CKP bit of the SSPCON1 register will be cleared and the SCL will be held low.
$0=$ Address holding is disabled
bit $0 \quad$ DHEN: Data Hold Enable bit (${ }^{2}$ C Slave mode only)
1 = Following the $8^{\text {th }}$ falling edge of SCL for a received data byte; slave hardware clears the CKP bit of the SSPCON1 register and SCL is held low.
$0=$ Data holding is disabled
Note 1: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
2: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

REGISTER 27-6: SSPMSK: SSP MASK REGISTER 1

| $R / W-1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $M S K<7: 0>$ | | | | | | |
| bit 7 | | | | | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7-1 MSK<7:1>: Mask bits
$1=$ The received address bit n is compared to SSPADD<n> to detect $I^{2} C$ address match
$0=$ The received address bit n is not used to detect $\mathrm{I}^{2} \mathrm{C}$ address match
bit $0 \quad$ MSK<0>: Mask bit for $\mathrm{I}^{2} \mathrm{C}$ Slave mode, 10-bit Address
$I^{2} \mathrm{C}$ Slave mode, 10 -bit address (SSPM<3:0> = 0111 or 1111):
$1=$ The received address bit 0 is compared to SSPADD $<0>$ to detect $I^{2} \mathrm{C}$ address match
$0=$ The received address bit 0 is not used to detect $I^{2} \mathrm{C}$ address match
$I^{2} \mathrm{C}$ Slave mode, 7 -bit address, the bit is ignored

REGISTER 27-7: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER 1

$R / W-0$	R/W-0						
		$A D D<7: 0>$					
bit 7						bit 0	

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period $=((\operatorname{ADD}<7: 0>+1) \times 4) / F_{\text {OSC }}$

10-Bit Slave mode - Most Significant Address byte:

bit 7-3 Not used: Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by $I^{2} \mathrm{C}$ specification and must be equal to ' 11110 '. However, those bits are compared by hardware and are not affected by the value in this register.
bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
bit $0 \quad$ Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode - Least Significant Address byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address
bit 0	Not used: Unused in this mode. Bit state is a "don't care".

REGISTER 27-8: SSPMSK2: SSP MASK REGISTER 2

| R/W-1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | MSK2<7:0> | | | | | |
| bit 7 | | | | | bit 0 | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared

bit 7-1 MSK2<7:1>: Mask bits
$1=$ The received address bit n is compared to SSPADD2<n> to detect $I^{2} \mathrm{C}$ address match
$0=$ The received address bit n is not used to detect $\mathrm{I}^{2} \mathrm{C}$ address match
bit $0 \quad$ MSK2<0>: Mask bit for $\mathrm{I}^{2} \mathrm{C}$ Slave mode, 10-bit Address
$\mathrm{I}^{2} \mathrm{C}$ Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):
$1=$ The received address bit 0 is compared to SSPADD2<0> to detect $I^{2} \mathrm{C}$ address match
$0=$ The received address bit 0 is not used to detect $I^{2} \mathrm{C}$ address match
$I^{2} \mathrm{C}$ Slave mode, 7 -bit address, the bit is ignored

REGISTER 27-9: SSPADD2: MSSP ADDRESS 2

| R/W-0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | ADD2<7:0> | | | | | |
| bit 7 | | | | | | bit 0 | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' $=$ Bit is cleared

Master mode:

bit 7-0 ADD2<7:0>: Baud Rate Clock Divider bits
SCL pin clock period $=(($ ADD $<7: 0>+1) * 4) /$ Fosc
10-Bit Slave mode - Most Significant Address byte:
bit 7-3 Not used: Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by $\mathrm{I}^{2} \mathrm{C}$ specification and must be equal to ' 11110 '. However, those bits are compared by hardware and are not affected by the value in this register.
bit 2-1 ADD2<2:1>: Two Most Significant bits of 10-bit address
bit $0 \quad$ ADD2<0>: SSPADD2 Enable bit.
1 = Enable address matching with SSPADD2
$0=$ Disable address matching with SSPADD2
10-Bit Slave mode - Least Significant Address byte:
bit 7-0 ADD2<7:0>: Eight Least Significant bits of 10-bit address
7-Bit Slave mode:
bit 7-1 ADD2<7:1>: 7-bit address
bit $0 \quad$ ADD2<0>: SSPADD2 Enable bit.
1 = Enable address matching with SSPADD2
$0=$ Disable address matching with SSPADD2

MCP19110/11

NOTES:

28.0 IN-CIRCUIT SERIAL PROGRAMMING ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$)

ICSP programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP programming:

- ICSPCLK
- ICSPDAT
- $\overline{\mathrm{MCLR}}$
- $V_{D D}$
- V_{SS}

In Program/Verify mode, the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. The device is placed into a Program/Verify mode by holding the ICSPDAT and ICSPCLK pins low, while raising the $\overline{M C L R}$ pin from $V_{\text {IL }}$ to $\mathrm{V}_{\mathrm{IHH}}$.

28.1 Common Programming Interfaces

Connection to a target device is typically done through an ICSP header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6 pin, 6 connector) configuration. See Figure 28-1.

FIGURE 28-1:
ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit ${ }^{\text {TM }}$ programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-2.

FIGURE 28-2: PICkit ${ }^{\text {TM }}$ PROGRAMMER-STYLE CONNECTOR INTERFACE

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.
It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices, such as resistors, diodes, or even jumpers. See Figure 28-3 for more information.

FIGURE 28-3: TYPICAL CONNECTION FOR ICSP PROGRAMMING

28.2 In-Circuit Debugger

In-circuit debugging requires access to the ICDCLK, ICDDATA, and MCLR pins. These pins are only available on the MCP19111 device.

29.0 INSTRUCTION SET SUMMARY

The MCP19110/11 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each instruction is a 14-bit word divided into an opcode, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 29-1, while the various opcode fields are summarized in Table 29-1.
Table 29-2 lists the instructions recognized by the MPASM ${ }^{\text {TM }}$ assembler.
For byte-oriented instructions, ' f ' represents a file register designator and ' d ' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.
The destination designator specifies where the result of the operation is to be placed. If ' d ' is zero, the result is placed in the W register. If ' d ' is one, the result is placed in the file register specified in the instruction.

For bit-oriented instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while ' f ' represents the address of the file in which the bit is located.
For literal and control operations, ' k ' represents an 8 -bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz , this gives a normal instruction execution time of $1 \mu \mathrm{~s}$. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as an NOP.
All instruction examples use the format ' $0 x h h$ ' to represent a hexadecimal number, where ' h ' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (RMW) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator ' d '. A read operation is performed on a register even if the instruction writes to that register.
For example, a CLRF PORTA instruction will read PORTGPA, clear all the data bits, then write the result back to PORTGPA. This example would have the unintended consequence of clearing the condition that set the IOCF flag.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $\mathrm{x}=0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d=0$: store result in W, d = 1: store result in file register f. Default is $\mathrm{d}=1$.
PC	Program Counter
$\overline{\text { TO }}$	Time-Out bit
C	Carry bit
DC	Digit carry bit
Z	Zero bit
$\overline{\text { PD }}$	Power-Down bit

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

TABLE 29-2: MCP19110/11 INSTRUCTION SET

Mnemonic, Operands		Description	Cycles	14-Bit Opcode			Status Affecte d	Notes	
		MSb			LSb				
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d		Add W and f	1	00	0111	dfff ffff	C, DC, Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff ffff	Z	1, 2	
CLRF	f	Clear f	1	00	0001	lfff ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0 xxx xxxx	Z		
COMF	f, d	Complement f	1	00	1001	dfff ffff	Z	1, 2	
DECF	f, d	Decrement f	1	00	0011	dfff ffff	Z	1, 2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff ffff		1,2, 3	
INCF	f, d	Increment f	1	00	1010	dfff ffff	Z	1, 2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff ffff		1, 2, 3	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff ffff	Z	1, 2	
MOVF	f, d	Move f	1	00	1000	dfff ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff ffff			
NOP	-	No Operation	1	00	0000	0xx0 0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff ffff	C	1, 2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff ffff	C	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff ffff	$C, D C, Z$	1, 2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff ffff		1, 2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff ffff	Z	1, 2	
BIT-ORIENTED FILE REGISTER OPERATIONS									
BCF	f, b	Bit Clear f	1	01	00.bb	bfff ffff		1, 2	
BSF	f, b	Bit Set f	1	01	01bb	bfff ffff		1,2	
BTFSC	f, b	Bit Test f , Skip if Clear	1 (2)	01	10bb	bfff ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11.bb	bfff ffff		3	
LITERAL AND CONTROL OPERATIONS									
ADDLW	k	Add literal and W	1	11	111x	kkkk kkkk	C, DC, Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk kkkk	Z		
CALL	k	Call Subroutine	2	10	0 kkk	kkkk kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	01100100	$\overline{T O}, \overline{P D}$		
GOTO	k	Go to address	2	10	1 kkk	kkkk kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk kkkk			
RETFIE	-	Return from interrupt	2	00	0000	00001001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk kkkk			
RETURN	-	Return from Subroutine	2	00	0000	00001000			
SLEEP	-	Go into Standby mode	1	00	0000	01100011	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk kkkk	C, DC, Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk kkkk	Z		

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is ' 1 ' for a pin configured as input and is driven low by an external device, the data will be written back with a ' 0 '.
2: If this instruction is executed on the TMRO register (and where applicable, $d=1$), the prescaler will be cleared if assigned to the Timer0 module.
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as an NOP.

29.2 Instruction Descriptions

ADDLW	Add literal and W
Syntax:	$[$ label] ADDLW k
Operands:	$0 \leq \mathrm{k} \leq 255$
Operation:	$(\mathrm{W})+\mathrm{k} \rightarrow(\mathrm{W})$
Status Affected:	$\mathrm{C}, \mathrm{DC}, \mathrm{Z}$
Description:	The contents of the W register are added to the eight-bit literal ' k ' and the result is placed in the
	W register.

ADDWF	Add W and \mathbf{f}
Syntax:	$[$ label] ADDWF $\quad \mathrm{f}, \mathrm{d}$
Operands:	$0 \leq \mathrm{f} \leq 127$ $\mathrm{~d} \in[0,1]$
Operation:	$(\mathrm{W})+(\mathrm{f}) \rightarrow$ (destination)
Status Affected:	$\mathrm{C}, \mathrm{DC}, \mathrm{Z}$
Description:	Add the contents of the W register with register 'f'. If ' d ' is ' 0 ', the result is stored in the W register. If ' d ' is ' 1 ', the result is stored back in register ' f '.

BCF	Bit Clear f
Syntax:	$[$ label $]$ BCF $\quad \mathrm{f}, \mathrm{b}$
Operands:	$0 \leq \mathrm{f} \leq 127$
	$0 \leq \mathrm{b} \leq 7$
Operation:	$0 \rightarrow(\mathrm{f}<\mathrm{b}>)$
Status Affected:	None
Description:	Bit ' b ' in register ' f ' is cleared.

BSF	Bit Set \mathbf{f}
Syntax:	$[$ label $]$ BSF $\quad \mathrm{f}, \mathrm{b}$
Operands:	$0 \leq \mathrm{f} \leq 127$
	$0 \leq \mathrm{b} \leq 7$
Operation:	$1 \rightarrow(\mathrm{f}<\mathrm{b}>)$
Status Affected:	None
Description:	Bit ' b ' in register ' f ' is set.

ANDLW	AND literal with W
Syntax:	$[$ label] ANDLW k
Operands:	$0 \leq \mathrm{k} \leq 255$
Operation:	(W). AND. $(\mathrm{k}) \rightarrow(\mathrm{W})$
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal register.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register ' f '. If ' d ' is ' 0 ', the result is stored in the W register. If ' d ' is ' 1 ', the result is stored back in register ' f '.

BTFSC	Bit Test f, Skip if Clear
Syntax:	$[$ label] BTFSC f,b
Operands:	$0 \leq f \leq 127$ $0 \leq b \leq 7$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit ' b ' in register ' f ' is ' 1 ', the next instruction is executed. If bit ' b ' in register ' f ' is ' 0 ', the next instruction is discarded, and an NOP is executed instead, making this a two-cycle instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	$[$ label] BTFSS f,b
Operands:	$0 \leq f \leq 127$ $0 \leq b<7$
Operation:	skip if (f) = 1
Status Affected:	None
Description	If bit ' b ' in register ' f ' is ' 0 ', the next instruction is executed.
	If bit ' b ' is ' 1 ', then the next instruction is discarded and an
	NOP is executed instead, making this a two-cycle instruction.

CALL	Call Subroutine
Syntax:	$[$ label] CALL k
Operands:	$0 \leq \mathrm{k} \leq 2047$
Operation:	$(\mathrm{PC})+1 \rightarrow \mathrm{TOS}$, $\mathrm{k} \rightarrow \mathrm{PC}<10: 0>$ $(\mathrm{PCLATH}<4: 3>) \rightarrow \mathrm{PC}<12: 11>$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits $<10: 0>$. The upper bits of CALL is a two-cycle instruction.

CLRF	Clear f
Syntax:	$[$ label $]$ CLRF f
Operands:	$0 \leq \mathrm{f} \leq 127$
Operation:	$00 \mathrm{~h} \rightarrow$ (f) $1 \rightarrow \mathrm{Z}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRWDT	Clear Watchdog Timer
Syntax:	$[$ label] CLRWDT
Operands:	None
Operation:	$00 \mathrm{~h} \rightarrow$ WDT
	$0 \rightarrow \overline{\text { WDT prescaler, }}$
	$1 \rightarrow \overline{\mathrm{TO}}$
Status Affected:	$1 \rightarrow \overline{\mathrm{PD}}$
Description:	$\overline{\mathrm{PD}}$
	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT.

COMF	Complement f
Syntax:	$[$ label] COMF f, d
Operands:	$0 \leq \mathrm{f} \leq 127$ $\mathrm{~d} \in[0,1]$
Operation:	$(\bar{f}) \rightarrow$ (destination)
Status Affected:	Z
Description:	The contents of register ' f ' are complemented. If ' d ' is ' 0 ', the result is stored in W. If ' d ' is ' 1 ',, the result is stored back in
	register ' f '.

DECF	Decrement f
Syntax:	$[$ label] DECF f, d
Operands:	$0 \leq \mathrm{f} \leq 127$ $\mathrm{~d} \in[0,1]$
Operation:	(f) $-1 \rightarrow$ (destination) Status Affected:
Z	
Description:	Decrement register ' f '. If ' d ' is ' 0 ', the result is stored in the W register. If ' d ' is ' 1 ', the result is stored back in register ' f '.

CLRW	Clear W
Syntax:	$[$ label] CLRW
Operands:	None
Operation:	$00 \mathrm{~h} \rightarrow \mathrm{~W})$ Status Affected:
Z Z	
Description:	W register is cleared. Zero bit (Z) is set.

DECFSZ	Decrement \mathbf{f}, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	(f) - $1 \rightarrow$ (destination); skip if result $=0$
Status Affected:	None
Description:	The contents of register ' f ' are decremented. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed back in register ' f '. If the result is ' 1 ', the next instruction is executed. If the result is ' 0 ', then an nop is executed instead, making it a two-cycle instruction.
GOTO	Unconditional Branch
Syntax:	[label] GOTO k
Operands:	$0 \leq \mathrm{k} \leq 2047$
Operation:	$\begin{aligned} & \mathrm{k} \rightarrow \mathrm{PC}<10: 0> \\ & \mathrm{PCLATH}<4: 3>\rightarrow \mathrm{PC}<12: 11> \end{aligned}$
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH $<4: 3>$. GOTO is a two-cycle instruction.
INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	(f) $+1 \rightarrow$ (destination)
Status Affected:	Z
Description:	The contents of register ' f ' are incremented. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed back in register ' f '.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	$\begin{aligned} & \text { (f) }+1 \rightarrow \text { (destination), } \\ & \text { skip if result }=0 \end{aligned}$
Status Affected:	None
Description:	The contents of register ' f ' are incremented. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed back in register ' f '. If the result is ' 1 ', the next instruction is executed. If the result is ' 0 ', an NOP is executed instead, making it a two-cycle instruction.

IORLW Inclusive OR literal with W

Syntax:	[label] IORLW k
Operands:	$0 \leq \mathrm{k} \leq 255$
Operation:	(W) .OR. $\mathrm{k} \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal ' k '. The result is placed in the W register.

IORWF	Inclusive OR W with f
Syntax:	$[$ label] IORWF f,d
Operands:	$0 \leq f \leq 127$ $d \in[0,1]$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with register ' f '. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed back in register ' f '.

MOVF	Move f
Syntax:	$[$ label $]$ MOVF f,d
Operands:	$0 \leq f \leq 127$ $d \in[0,1]$
Operation:	(f) \rightarrow (dest)
Status Affected:	Z
Description:	The contents of register ' f ' is moved to a destination dependent upon the status of ' d '. If $d=0$, destination is W register. If $d=1$, the destination is file register ' f ' itself. $d=1$ is useful to test a file
	register since Status flag Z is affected.
	1

After Instruction

```
W = value in
FSR register
Z = 1
```

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

MOVWF	Move W to f
Syntax:	$[$ label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(\mathrm{W}) \rightarrow$ (f)
Status Affected:	None
Description:	Move data from W register to register ' f '. Words:
Cycles:	1
Example:	1
	MOVW OPTION
	F

Before Instruction

OPTION	$=0 \times F F$
W	$=0 \times 4 \mathrm{~F}$
After Instruction	
OPTION	$=0 \times 4 \mathrm{~F}$
W	$=0 \times 4 \mathrm{~F}$

After Instruction

$$
\begin{aligned}
\text { OPTION } & =0 \times 4 \mathrm{~F} \\
\mathrm{~W} & =0 \times 4 \mathrm{~F}
\end{aligned}
$$

Words: $\quad 1$
Cycles: 1
Example: MOVLW $0 \times 5 \mathrm{~A}$
After Instruction

$$
\mathrm{W}=0 \times 5 \mathrm{~A}
$$

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{aligned} & \mathrm{TOS} \rightarrow \mathrm{PC}, \\ & 1 \rightarrow \mathrm{GIE} \end{aligned}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INT$\mathrm{CON}<7>$). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example:	Retfie
	After Interrupt
	$\mathrm{PC}=\mathrm{TOS}$
	GIE $=1$

RETLW	Return with literal in W
Syntax:	[label] RETLW k
Operands:	$0 \leq \mathrm{k} \leq 255$
Operation:	$\begin{aligned} & \mathrm{k} \rightarrow(\mathrm{~W}) ; \\ & \mathrm{TOS} \rightarrow \mathrm{PC} \end{aligned}$
Status Affected:	None
Description:	The W register is loaded with the eight-bit literal ' k '. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example:	CALL TABLE; W contains ;table offset ; value
	GOTO DONE
TABLE	-
	-
	ADDWF PC ;W = offset RETLW k1 ; Begin table
	RETLW k2 ;
	-
	-
	RETLW kn ;End of table
DONE	
	Before Instruction
	After Instruction
	$\mathrm{W}=$ value of k 8
RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	TOS \rightarrow PC
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RLF	Rotate Left f through Carry
Syntax:	[label] RLF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	See description below
Status Affected:	C
Description:	The contents of register ' f ' are rotated one bit to the left through the Carry flag. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is stored back in register ' f '.
Words:	1
Cycles:	1
Example:	RLF REG1,0
	Before Instruction
	REG1 = 1110
	0110
	After Instruction
	$\begin{aligned} & \text { REG1 }=1110 \\ & 0110 \end{aligned}$
	$\mathrm{W}=1100$
	1100
	$\mathrm{C}=1$
RRF	Rotate Right fthrough Carry
Syntax:	[label] RRF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	See description below
Status Affected:	C
Description:	The contents of register ' f ' are rotated one bit to the right through the Carry flag. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed back in register ' f '.
	$\longrightarrow \mathrm{C} \rightarrow \text { Register } \mathrm{f} \rightarrow$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{aligned} & 00 \mathrm{~h} \rightarrow \text { WDT, } \\ & 0 \rightarrow \text { WDT prescaler, } \\ & 1 \rightarrow \overline{\mathrm{TO}}, \\ & 0 \rightarrow \overline{\mathrm{PD}} \end{aligned}$
Status Affected:	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$
Description:	The power-down Status bit, $\overline{\mathrm{PD}}$ is cleared. Time-out Status bit, $\overline{\mathrm{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBLW	Subtract W from literal
Syntax:	$[$ label $]$ SUBLW k

Operands: $0 \leq k \leq 255$
Operation: $\quad k-(W) \rightarrow(W)$
Status Affected: C, DC, Z
Description: The W register is subtracted (two's complement method) from the eight-bit literal ' k '. The result is placed in the W register.

Result	Condition
$C=0$	$W>k$
$C=1$	$W \leq k$
$D C=0$	$W<3: 0 \gg k<3: 0>$
$D C=1$	$W<3: 0>\leq k<3: 0>$

SUBWF	Subtract W from f	
Syntax:	[label] SUBWF f,d	
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$	
Operation:	(f) - (W) \rightarrow (destination)	
Status Affected:	C, DC, Z	
Description:	Subtract (two's complement method) W register from register ' f '. If ' d ' is ' 0 ', the result is stored in the W register. If ' d ' is ' 1 ', the result is stored back in register ' f '.	
	$C=0$	$W>f$
	C = 1	$W \leq f$
	DC = 0	$W<3: 0 \gg f<3: 0>$
	DC = 1	$W<3: 0>\leq f<3: 0>$

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	$\begin{aligned} & (f<3: 0>) \rightarrow(\text { destination }<7: 4>), \\ & (\mathrm{f}<7: 4>) \rightarrow(\text { destination }<3: 0>) \end{aligned}$
Status Affected:	None
Description:	The upper and lower nibbles of register ' f ' are exchanged. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed in register ' f '.
XORLW	Exclusive OR literal with W
Syntax:	[label] XORLW k
Operands:	$0 \leq \mathrm{k} \leq 255$
Operation:	(W). $\mathrm{XOR} . \mathrm{k} \rightarrow(\mathrm{W}$)
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal ' k '. The result is placed in the W register.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	$\begin{aligned} & (f<3: 0>) \rightarrow(\text { destination }<7: 4>), \\ & (\mathrm{f}<7: 4>) \rightarrow(\text { destination }<3: 0>) \end{aligned}$
Status Affected:	None
Description:	The upper and lower nibbles of register ' f ' are exchanged. If ' d ' is ' 0 ', the result is placed in the W register. If ' d ' is ' 1 ', the result is placed in register ' f '.
XORLW	Exclusive OR literal with W
Syntax:	[label] XORLW k
Operands:	$0 \leq \mathrm{k} \leq 255$
Operation:	(W). $\mathrm{XOR} . \mathrm{k} \rightarrow(\mathrm{W}$)
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal ' k '. The result is placed in the W register.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register ' f '. If ' d ' is ' 0 ', the result is stored in the W register. If ' d ' is ' 1 ', the result is stored back in register ' f '.

MCP19110/11

NOTES:

30.0 DEVELOPMENT SUPPORT

The PIC^{\circledR} microcontrollers (MCU) and dsPIC ${ }^{\circledR}$ digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB ${ }^{\circledR}$ XIDE Software
- Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASM ${ }^{\text {TM }}$ Assembler
- MPLINK ${ }^{\text {TM }}$ Object Linker/ MPLIB ${ }^{\text {M }}$ Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
- MPLAB X SIM Software Simulator
- Emulators
- MPLAB REAL ICE ${ }^{\text {TM }}$ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
- MPLAB ICD 3
- PICkit ${ }^{\text {TM }} 3$
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party Development Tools

30.1 MPLAB X Integrated Development Environment Software

The MPLAB \times IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows ${ }^{\circledR}$, Linux and Mac OS ${ }^{\circledR} \mathrm{X}$. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.
Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions

File History and Bug Tracking:

- Local file history feature
- Built-in support for Bugzilla issue tracker

30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.
For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.
The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.
MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel ${ }^{\circledR}$ standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.
The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.
The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.
The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming ${ }^{\text {TM }}$ (ICSP ${ }^{\text {TM }}$).

30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128×64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.
In addition to the PICDEM $^{\text {™ }}$ and dsPICDEM ${ }^{\text {™ }}$ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ ${ }^{\circledR}$ security ICs, CAN, IrDA ${ }^{\circledR}$, PowerSmart battery management, SEEVAL ${ }^{\circledR}$ evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent ${ }^{\circledR}$ and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika ${ }^{\circledR}$

31.0 PACKAGING INFORMATION

31.1 Package Marking Information

24-Lead QFN ($4 \times 4 \times 0.9 \mathrm{~mm}$) (MCP19110 only)

28-Lead QFN ($5 \times 5 \times 0.9 \mathrm{~mm}$)(MCP19111 only)

Example

Example

Legend:	XX...X Y $Y Y$ WW NNN e3	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code RoHS Compliant JEDEC designator for Matte Tin (Sn) This package is RoHS Compliant. The RoHS Compliant JEDEC designator (e3) can be found on the outer packaging for this package.
Note:		he full Microchip part number cannot be marked on one line over to the next line, thus limiting the number of ava customer-specific information.

24-Lead Plastic Quad Flat, No Lead Package (MJ) - 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	24		
Pitch	e	0.50 BSC		
Overall Height	A	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.40	2.50	2.60
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.40	2.50	2.60
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-143A

24-Lead Plastic Quad Flat, No Lead Package (MJ) - 4x4 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN		NOM
	E	0.50 BSC		
Contact Pitch	W2			2.60
Optional Center Pad Width	T2			2.60
Optional Center Pad Length	C1		3.90	
Contact Pad Spacing	C2		3.90	
Contact Pad Spacing	X1			0.30
Contact Pad Width	Y1			0.85
Contact Pad Length				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing No. C04-2143B

28-Lead Plastic Quad Flat, No Lead Package (MQ) - $5 \times 5 \times 0.9 \mathrm{~mm}$ Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-140C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MQ) - 5x5x0.9 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units									
Dimension Limits						MIN			NOM	MAX
	N	28								
Number of Pins	e	0.50 BSC								
Pitch	A	0.80	0.90	1.00						
Overall Height	A1	0.00	0.02	0.05						
Standoff	A3	0.20 REF								
Contact Thickness	E	5.00 BSC								
Overall Width	E2	3.15	3.25	3.35						
Exposed Pad Width	D	5.00 BSC								
Overall Length	D2	3.15	3.25	3.35						
Exposed Pad Length	b	0.18	0.25	0.30						
Contact Width	L	0.35	0.40	0.45						
Contact Length	K	0.20	-	-						
Contact-to-Exposed Pad										

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated.
3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-140C Sheet 2 of 2

28-Lead Plastic Quad Flat, No Lead Package (MQ) - 5×5 mm Body [QFN] Land Pattern With 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension Limits		MIN		NOM
	E	0.50 BSC		
Contact Pitch	W2			3.35
Optional Center Pad Width	T2			3.35
Optional Center Pad Length	C1		4.90	
Contact Pad Spacing	C2		4.90	
Contact Pad Spacing	X1			0.30
Contact Pad Width (X28)	Y1			0.85
Contact Pad Length (X28)				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2140A

APPENDIX A: REVISION HISTORY

Revision D (July 2016)

The following is the list of modifications:

1. Updated Register 6-15.
2. Updated information in Section 3.8.5, Overtemperature and Section 21.1, Circuit Operation.

Revision C (March 2015)

The following is the list of modifications:

1. Updated Figure 1-2.
2. Updated Register 6-10, Register 6-11, Register 6-12 and Register 6-13.
3. Updated Section 9.2 "Calibration Word 2".
4. Updated Section 9.3 "Calibration Word 3".
5. Updated Equation 10-1.
6. Updated information in the first sentence of Section 11.4 "PCL and PCLATH".
7. Removed Section 11.1.1.2 "Indirect Read with Files Select Register (FSR)".
8. Updated the first sentence in Section 12.0 "Device Configuration".
9. Removed Section " 12.5 Device ID and Revision ID".
10. Updated information in Section 18.3.2 "Writing to the Flash Program Memory".
11. Updated information in Section 22.1.2 "Channel Selection".
12. Updated information for bit 6-2 in Register 22-1.

Revision B (June 2013)

The following is the list of modifications:

1. Added new device MCP19110 to the family and the related information across the document.
2. Updated information in Features section.
3. Added pinout diagram and pin summary table for the MCP19110 device.
4. Updated Figure 1-1.
5. Updated Section 2.0 "Pin Description".
6. Updated Section 4.3 "Thermal Specifications".
7. Added new Section 28.2 "In-Circuit Debugger".
8. Updated Section 31.1 "Package Marking Information".
9. Updated Product Identification System.
10. Fixed minor typographical errors.

Revision A (January 2013)

- Original Release of this Document.

MCP19110/11

NOTES:

INDEX

A
A/D
Specifications 3, 5, 33
A/D Conversion 127
Requirements 34
Timing 34, 35
Absolute Maximum Ratings 23
AC Characteristics 30
ACKSTAT 172
ACKSTAT Status Flag 172
ADC 125
Acquisition Requirements 131
Associated Registers 133
Block Diagram 125
Calculating Acquisition Time 131
Channel Selection 126
Configuration 126
Configuring Interrupt 128
Conversion Clock 126
Conversion Procedure 128
Internal Sampling Switch (Rss) IMPEDANCE 131
Interrupts 127
Operation 128
Operation During Sleep 128
Port Configuration 126
Register Definitions 129
Source Impedance 131
Special Event Trigger 128
ADCONO Register 129
ADCON1 Register. 130
ADRESH Register (ADFM $=0$) 130
ADRESL Register (ADFM = 0). 130
Alternate Pin Function. 112
Analog Blocks Enable Control 51
Analog Peripheral Control 49
Analog-to-Digital Converter. See ADC
ANSELA Register 115
ANSELB Register 118
APFCON Register 112
Assembler
MPASM Assembler 204
B
Bench Testing
Analog Bench Test Control 57
System 57
BF 172, 174
BF Status Flag 172, 174
Block Diagrams
ADC 125
ADC Transfer Function 132
Analog Input Model. 132
Generic I/O Port 111
Interrupt Logic 94
$\overline{M C L R}$ Circuit. 86
MCP19110/11 Synchronous Buck Block Diagram 10
MSSP ($I^{2} \mathrm{C}$ Master Mode) 147
MSSP (${ }^{2}$ C Slave Mode) 148
On-Chip Reset Circuit 85
Simplified PWM 144
Timer0 135
Timer1 137
Timer2. 140
Watchdog Timer 103
C
C Compilers
MPLAB C18 204
Calibration Word
Associated Registers 84
Capture/Compare/PWM 143, 145
Clock Switching 84
Code Examples
A/D Conversion 128
Assigning Prescaler to Timer0 136
Assigning Prescaler to WDT. 136
Initializing PORTA 111
Saving Status and W Registers in RAM 100
Compensation 18
Compensation Setting 43
Computed Function Calls 78
Computed GOTO 78
Current
Measurement Control 51
Current Sense 18, 40, 41
Customer Change Notification Service 221
Customer Support 221
D
Data Memory 70
Data Memory Map 72
DC and AC Characteristics 53
Graphs and Tables 53
DC Characteristics 30
Development Support 203
Device
Configuration 37, 81
Code Protection 82
Configuration Word 81
ID Locations 82
Write Protection 82
Device Calibration 59
Calibration Word 1 59
Calibration Word 2 60
Calibration Word 3 61
Calibration Word 4 62
Calibration Word 5 63
Calibration Word 6 64
Calibration Word 7 65
Device Overview
Digital Electrical Characteristics 29
Diode Emulation Mode 49
E
ECCP/CCP. See Enhanced Capture/Compare/PWM
Electrical Characteristics 23, 24
Errata 7
External Clock. 30
F
Features
Miscellaneous 21
Protection 20
Synchronous Buck 1
Firmware Instructions 193
Flash Program Memory Control. 105
Operation During Code Protect 109
Operation during write Protect 109
Protecting 109
Reading 108
Writing to 109
Flash Program Memory Control Registers 106
H
High-Side Drive Strength 49
I
I/O
Ports 111
$\mathrm{I}^{2} \mathrm{C}$ Mode (MSSPx) 152
Acknowledge Sequence Timing 176
Associated Registers 182
Bus Collision
During a Repeated Start Condition 180
During a Start Condition 178
During a Stop Condition. 181
Effects of a Reset 177
1^{2} C Clock Rate w/BRG 183
Master Mode 169
Clock Arbitration 169
Operation 169
Reception 174
Start Condition Timing 170, 171
Transmission 172
Multi-Master Communication, Bus Collision and Arbitra-tion177
Multi-Master Mode 177
Operation 150
Overview 148
Read/Write Bit Information (R/W Bit) 153
Slave Mode
10-bit Address Reception 163
Bus Collision 159
Clock Synchronization 167
General Call Address Support 168
Operation 153
SSPMSKx Register 168
Transmission 159
Sleep Operation 177
Stop Condition Timing 176
In-Circuit Serial Programming (ICSP) 191
Common Programming Interfaces 191
In-Circuit Debugger 192
Indirect Addressing 78
Input 24
Type 12
Under Voltage Lockout 20, 37
Instruction Format 193
Instruction Set 193
ADDLW 195
ADDWF 195
ANDLW 195
ANDWF 195
BCF 195
BSF 195
BTFSC 195
BTFSS 196
CALL 196
CLRF 196
CLRW 196
CLRWDT 196
COMF 196
DECF 196
DECFSZ 197
GOTO 197
INCF 197
INCFSZ 197
IORLW 197
IORWF 197
MOVF 198
MOVLW 198
MOVWF 198
NOP 198
RETFIE 199
RETLW 199
RETURN 199
RLF 200
RRF 200
SLEEP 200
SUBLW 200
SUBWF 201
SWAPF 201
XORLW 201
XORWF 201
Summary Table 194
Internal Sampling Switch (Rss) Impedance 131
Internal Synchronous Driver 17
Internal Temperature Indicator Module 123
Circuit Operation 123
Temperature Output 123
Internal Temperature Measurement Control 51
Internet Address 221
Interrupt-on-Change 121
Associated Registers 122
Clearing Interrupt Flags 121
Enabling the Module 121
Operation in Sleep 121
Pin Configuration 121
Registers 122
Interrupts
ADC 128
Associated Registers 99
Context Saving 100
Control Registers 95
RA2/INT 93
TMR1 138
L
Linear Regulators 17
M
MASTER Error Signal Gain 45
Master Synchronous Serial Port. See MSSPx MCLR. 86
Internal. 86
Memory Organization 69
Data 70
Program 69
Microchip Internet Web Site 221
MOSFET $15,16,17,38,46,49,57,67$
Driver Dead Time. 17
MOSFET Driver
Dead Time 49
Programmable Dead Time 46
MPLAB ASM30 Assembler, Linker, Librarian 204
MPLAB Integrated Development Environment Software 203
MPLAB PM3 Device Programmer 205
MPLAB REAL ICE In-Circuit Emulator System 205
MPLINK Object Linker/MPLIB Object Librarian 204
MSSPx 147
Arbitration 150
Baud Rate Generator 183
Clock Stretching 150
$1^{2} \mathrm{C}$ Bus Terms 151
${ }^{2} \mathrm{C}$ Master Mode 169
$\mathrm{I}^{2} \mathrm{C}$ Mode 148
${ }^{2} \mathrm{C}$ Mode Operation 150
1^{2} C Slave Mode Operation 153
Module Overview 147
Multi-Phase System 22
0
OPCODE Field Descriptions 193
Oscillator 83
Associated Registers 84
Calibration 83
Delay Upon Power-up. 84
Frequency Tuning 83
Internal Oscillator 83
Oscillator Module 84
Output 49
Multiple System 22
Overcurrent 20, 38, 39
Overvoltage 20, 25, 48
Overvoltage Enable 51
Power Good 22
Type 12
Under Voltage 20, 25, 48
Under Voltage Accelerator 49
Under Voltage Enable 51
Voltage. 18
Soft-Start 22
Tracking 22
Voltage Configuration 47
Voltage Sense Pull-up/Pull-down 49
Overcurrent 39
Overvoltage Accelerator 49
P
Packaging 207
Marking 207
Specifications 208
PCL 78
Modifying 78
PCLATH 78
PCON Register 87, 92
Pin Diagram
24-Pin QFN 2
28-Pin QFN 4
Pinout Description
Summary 3, 5
Pinout Description Table 12
PIR1 Register 98
PIR2 Register 99
PMADRH Register 105
PMADRL Register 105, 106
PMCON1 Register 105, 107
PMCON2 Register 105
PMDATH Register 106
PMDATL Register 106
PMDRH Register 107
PORTB
Additional Pin FunctionsWeak Pull-up117
Pin Descriptions and Diagrams 119
PORTGPA 112, 121
ANSELA Register. 113
Associated Registers 115
Functions and Output Priorities 113
Interrupt-on-Change 112
Weak Pull-Ups 112
PORTGPA Register 112
PORTGPB 116, 121
ANSELB Register 116
Associated Registers 119
Functions and Output Priorities 116
Interrupt-on-Change 116
P1B/P1C/P1D.Capture/Compare/PWM 116
Weak Pull-Ups 116
PORTGPB Register 116, 117
Power-Down Mode (Sleep) 101
Associated Registers 102
Power-on Reset (POR). 86
Power-up Timer (PWRT). 87
Prescaler, Timer1
Select (T1CKPS1:T1CKPS0 Bits) 46
Product Identification System 223
Program Memory 69
Map and Stack (MCP19111) 69
Program Memory Protection. 82
Programming, Device Instructions 193
Pulse-Width Modulation 33
Associated Registers 145
Duty Cycle 145
Module 143
Operating during Sleep. 145
Period 144
Stand-alone Mode 143
Standard Mode 143
Switching Frequency Synchronization Mode 143
R
Reader Response 222
Read-Modify-Write Operations 193
Register
OVFCON (Output Voltage Set Point Fine Control). 47
Registers
ABECON (Analog Block Enable Control) 52
ADCONO (ADC Control 0) 129
ADCON1 (ADC Control 1) 130
ADRESH (ADC Result High) with ADFM = 0) 130
ADRESL (ADC Result Low) with ADFM $=0$). 130
ANSELA (Analog Select GPA) 115
ANSELB (Analog Select GPB) 118
APFCON (Alternate Pin Function Control) 112
ATSTCON (Analog Bench Test Control) 57
BUFFCON (Unity Gain Buffer Control). 58
CALWD1 (Calibration Word 1) 59
CALWD2 (Calibration Word 2) 60
CALWD3 (Calibration Word 3) 61
CALWD4 (Calibration Word 4) 62
CALWD5 (Calibration Word 5) 63
CALWD6 (Calibration Word 6) 64
CALWD7 (Calibration Word 7) 65
CMPZCON (Compensation Setting Control) 43
CONFIG (Configuration Word) 81
CSDGCON (Voltage For Zero Current Control) 41
CSGSCON (Current Sense AC Gain Control). 40
DEADCON (Driver Dead Time Control) 46
INTCON (Interrupt Control) 95
IOCA (Interrupt-on-Change PORTGPA) 122
IOCB (Interrupt-on-Change PORTGPB) 122
LPCRCON (Slope Compensation Ramp Control). 44
OCCON (Output Overcurrent Control) 39
OOVCON (Output Overvoltage Detect Level Control) 48OPTION_REG (Option)77
OSCTUNE (Oscillator Tuning) 83
OUVCON (Output Under Voltage Detect Level Control)48
OVCCON (Output Voltage Set Point Coarse Control) 47
PCON (Power Control) 87, 92
PE1(Analog Peripheral Enable 1 Control) 50
PIE1 (Peripheral Interrupt Enable) 96
PIR1 (Peripheral Interrupt Flag) 98
PIR2 (Peripheral Interrupt Flag) 99
PMADRL (Program Memory Address) 106
PMCON1 (Program Memory Control) 107
PMDATH (Program Memory Data) 106
PMDATL (Program Memory Data) 106
PMDRH (Program Memory Address) 107
PORTGPA 113
PORTGPB 117
RELEFF (Relative Efficiency Measurement) 67
Reset Values 89
SLVGNCON (MASTER Error Signal Input Gain Control)45
Special Registers Summary $73,74,75,76$
SSPCON1(SSP Control) 185
SSPSTAT (SSP Status) 184
SSPxADD (MSSPx Address and Baud Rate, $I^{2} \mathrm{C}$ Mode) 188, 189
SSPxCON1 (MSSPx Control 1) 185
SSPxCON2 (SSPx Control 2) 186
SSPxCON3 (SSPx Control 3) 187
SSPxMSK (SSPx Mask) 188, 189
SSPxSTAT (SSPx Status) 184
STATUS 71
T1CON (Timer1 Control). 138
TRISA (Tri-State PORTA) 114
TRISGPB (PORTGPB Tri-State) 117
TXCON 141
VINLVL (Input Under Voltage Lockout Control) 37
VZCCON (Voltage for Zero Current Control) 42
WPUB (Weak Pull-up PORTB) 114
WPUGPA
Weak Pull-up PORTGPA 114
WPUGPB (Weak Pull-up PORTGPB) 118
Relative Efficiency Circuity Control 51
Relative Efficiency Measurement 67
Procedure 67
Relative Efficiency Measurement Control 51
Reset. 85
Determining Causes 91
Resets 85
Associated Registers 92
Revision History 213
S
Signal Chain Control 51
Sleep
Wake-up from 101
Wake-up Using Interrupts 102
Slope Compensation 18, 44
Slope Compensation Control 51
Software Simulator (MPLAB SIM) 205
Special Event Trigger 128
Special Function Registers 71
Special Registers Summary
Bank 0 73
Bank 1 74
Bank 2 75
Bank 3 76
SSPxADD Register 188, 189
SSPxCON1 Register 185
SSPxCON2 Register 186
SSPxCON3 Register 187
SSPxMSK Register. 188, 189
SSPxOV. 174
SSPxOV Status Flag 174
SSPxSTAT Register 184
R/W Bit 153
Stack 78
Start-up Sequence 87
STATUS Register 71
Switching Frequency 18
System Bench Testing 22, 57
T
T1CON Register 138
T1CKPS1:T1CKPS0 Bits 46
Temperature Indicator Module 123
Thermal Specifications 28
Timer Requirements
RESET, Watchdog Timer, Oscillator Start-up Timer and
Power-up 32
Timer0. 135, 141
8-Bit Counter Mode. 135
8-bit Timer Mode 135
Associated Registers 136
External Clock 136
Operation 135
Operation During Sleep 136
TOCKI 136
Timer0 Module 135
Timer1. 137
Associated Registers 139
Associated registers 139
Clock Source Selection. 137
Control Register. 138
Interrupt 138
Operation 137
Operation During Sleep 138
Prescaler 138
Sleep 138
TMR1H Register 137
TMR1L Register. 137
Timer1 Module 137
Timer2
Associated registers 141
Control Register 141
Operation 140
Timer2 Module 140
Timer2/4/6
Associated Registers 141
Timers
Timer1
T1CON 138
Timer2/4/6
TXCON 141
Timing Diagrams
Acknowledge Sequence 176
Baud Rate Generator with Clock Arbitration 170
BRG Reset Due to SDA Arbitration During Start Condi-tion.179
Bus Collision During a Repeated Start Condition (Case1)..180
Bus Collision During a Repeated Start Condition (Case
2). 180
Bus Collision During a Start Condition (SCL = 0) 179
Bus Collision During a Stop Condition (Case 1) 181
Bus Collision During a Stop Condition (Case 2) 181
Bus Collision During Start Condition (SDA only) 178
Bus Collision for Transmit and Acknowledge 177
Capture/Compare/PWM 33
Clock Synchronization 167
First Start Bit Timing 170
I^{2} C Master Mode (7 or 10-Bit Transmission) 173
$1^{2} \mathrm{C}$ Master Mode (7-Bit Reception) 175
I^{2} C Stop Condition Receive or Transmit Mode 176
INT Pin Interrupt 94
Power-up Timer 31
Repeat Start Condition 171
Reset. 31
Start-up Timer 31
Time-out Sequence
Case 1 87
Case 2 88
Case 3 88
Timer0 32
Timer1 32
Wake-up from Interrupt 102
Watchdog Timer 31
Timing Parameter Symbology 29
Timing Requirements
CLKOUT and I/O 31
External Clock 30
TRISA Register 114
TRISGPA 112
TRISGPA Register 112
TRISGPB Register 116, 117
TXCON (Timer2/4/6) Register 141
Typical Application Circuit 9
Typical Performance Curves 53
UUnder Voltage LockoutInput37
Unity Gain Buffer 58
V
Voltage For Zero Current 42
W
Watchdog Timer (WDT) 87, 103
Associated Registers 104
Configuration Word w/ Watchdog Timer 104
Operation 103
Period. 103
Programming Considerations 103
WCOL 176
WCOL Status Flag 170, 172, 174, 176
WPUB Register 114
WPUGPB Register 118
WWW Address 221
WWW, On-Line Support 7

MCP19110/11

THE MICROCHIP WEB SITE

Microchip provides online support via our website at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

MCP19110/11

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

NOTICE TO CUSTOMERS

This product is subject to a license from Power-One ${ }^{\circledR}$, Inc. related to digital power technology (DPT) patents owned by Power-One, Inc. This license does not extend to stand-alone power supply products.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC ${ }^{\circledR}$ MCUs and dsPIC ${ }^{\circledR}$ DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2013-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0773-7

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office

 2355 West Chandler Blvd.Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/ support
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China-Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

