

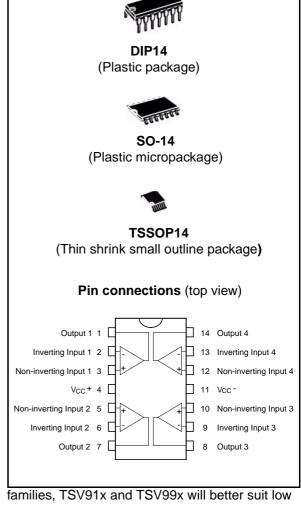
TS274

High performance CMOS quad operational amplifier

Features

- Output voltage can swing to ground
- Excellent phase margin on capacitive loads
- Gain bandwidth product: 3.5 MHz
- Unity gain stable
- Two input offset voltage selections

Description


The TS274 devices are low cost, quad operational amplifiers designed to operate with single or dual supplies. These operational amplifiers use the ST silicon gate CMOS process giving an excellent consumption-speed ratio. These series are ideally suited for low consumption applications.

Three power consumptions are available thus offering the best consumption-speed ratio for your application:

- I_{CC} = 10 µA/amp: TS27L4 (very low power)
- I_{CC} = 150 µA/amp: TS27M4 (low power)
- I_{CC} = 1 mA/amp: TS274 (standard)

These CMOS amplifiers offer very high input impedance and extremely low input currents. The major advantage versus JFET devices is the very low input currents drift with temperature (see Figure 5 on page 6).

For enhanced features of TS274, in particular railto-rail capability and low offset voltage, two new

voltage applications.

Table 1.	Enhanced	related	families
----------	----------	---------	----------

Part number	V _{CC} range (V)	Rail-to- rail I/O	V _{io} max (mV)	l _{ib} max (pA)	A _{vd} min (dB)	I _{CC} max (mA)	GBP typ (MHz)	SR typ (V/μs)	Packages
TSV914	2.5 - 5.5	I/O	1.5/4.5	10	80	1.1	8	4.5	SO-14, TSSOP14
TSV994	2.5 - 5.5	I/O	1.5/4.5	10	80	1.1	20 (G ≥3)	10	SO-14, TSSOP14

February 2008

www.st.com

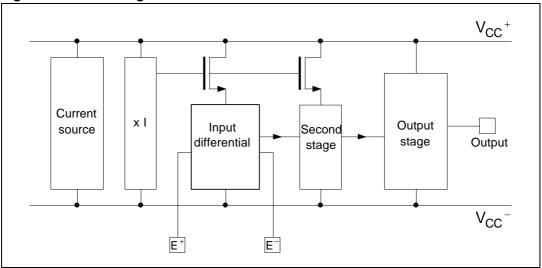
1

Absolute maximum ratings and operating conditions

Table 2.	Absolute maximum ratings (AMR)			
Symbol	Parameter	TS274C/AC	TS274I/AI	Unit
V _{CC} +	Supply voltage ⁽¹⁾	18	8	V
V _{id}	Differential input voltage (2)	±1	8	V
V _{in}	Input voltage ⁽³⁾	-0.3 t	o 18	V
Ι _ο	Output current for $V_{CC}^+ \ge 15V$	±3	80	mA
l _{in}	Input current	±	5	mA
T _{oper}	Operating free-air temperature range	0 to +70	-40 to +125	°C
T _{stg}	Storage temperature range	-65 to	+150	°C
R _{thja}	Thermal resistance junction to ambient ⁽⁴⁾ SO-14 TSSOP14 DIP14	10 10 80	0	°C/W
R _{thjc}	Thermal resistance junction to case SO-14 TSSOP14 DIP14	31 32 33		°C/W
	HBM: human body model ⁽⁵⁾	50	0	V
ESD	MM: machine model ⁽⁶⁾	100		V
	CDM: charged device model ⁽⁷⁾	80	0	V

Table 2. Absolute maximum ratings (AMR)

1. All values, except differential voltage are with respect to network ground terminal.


- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage.
- 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins.

Symbol	Parameter	Value	Unit
V _{CC} ⁺	Supply voltage	3 to 16	V
V _{icm}	Common mode input voltage range	0 to V _{CC} ⁺ - 1.5	V
T _{oper}	Operating free-air temperature range TS274C TS274I	0 to 70 -40 to 125	°C

Table 3. Operating conditions

2 Block diagram and circuit schematics

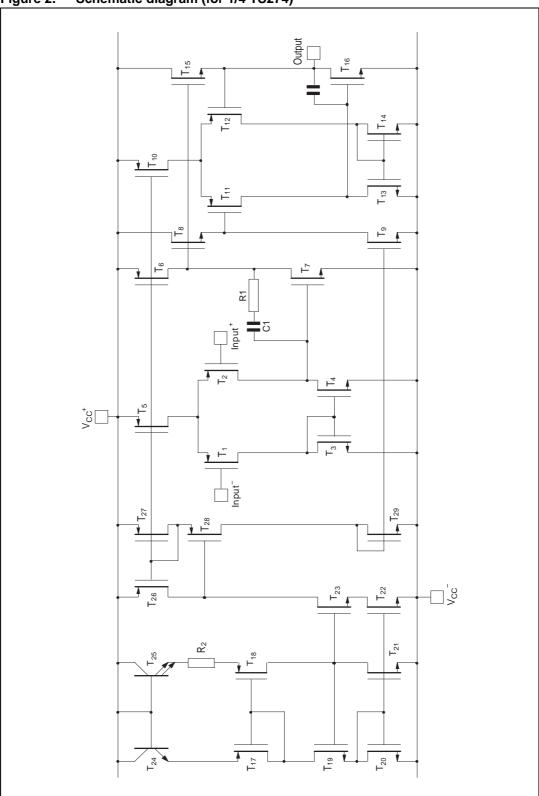
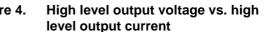


Figure 2. Schematic diagram (for 1/4 TS274)

57

3 Electrical characteristics


Table 4. V_{CC}^+ = +10V, V_{CC}^- = 0V, T_{amb} = +25°C (unless otherwise specified)

Cumhal	Deveneeter	Conditions	т	TS274C/AC			TS274I/AI		
Symbol	Parameter	Conditions		Тур	Max	Min	Тур	Max	Unit
V _{io}	Input offset voltage	V _o = 1.4V, V _{ic} = 0V TS274C/I TS274AC/AI		1.1 0.9	10 5		1.1 0.9	10 5	mV
v io	input onset voltage	T _{min} ≤T _{amb} ≤T _{max} TS274C/I TS274AC/AI			12 6.5			12 6.5	mV
DV_{io}	Input offset voltage drift			2			2		µV/°C
I _{io}	Input offset current (1)	$V_{ic} = 5V, V_o = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1	100		1	200	pА
l _{ib}	Input bias current ⁽¹⁾	$V_{ic} = 5V, V_o = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1	150		1	300	pА
V _{OH}	High level output voltage	V_{id} = 100mV, R _L = 10k Ω T _{min} \leq T _{amb} \leq T _{max}	8.2 8.1	8.4		8.2 8	8.4		V
V _{OL}	Low level output voltage	V _{id} = -100mV			50			50	mV
A _{vd}	Large signal voltage gain	$V_{iC} = 5V, R_L = 10k\Omega,$ $V_o = 1V \text{ to } 6V$ $T_{min} \le T_{amb} \le T_{max}$	10 7	15		10 6	15		V/mV
GBP	Gain bandwidth product	$A_v = 40$ dB, $R_L = 10k\Omega$, $C_L = 100$ pF, $f_{in} = 100$ kHz		3.5		0	3.5		MHz
CMR	Common mode rejection ratio	$V_{ic} = 1V$ to 7.4V, $V_o = 1.4V$	65	80		65	80		dB
SVR	Supply voltage rejection ratio	$V_{CC}^{+} = 5V \text{ to } 10V, V_{o} = 1.4V$	60	70		60	70		dB
I _{CC}	Supply current (per amplifier)	$A_v = 1$, no load, $V_o = 5V$ $T_{min} \le T_{amb} \le T_{max}$		1000	1500 1600		1000	1500 1700	μΑ
۱ ₀	Output short circuit current	$V_{o} = 0V, V_{id} = 100mV$		60			60		mA
I _{sink}	Output sink current	$V_o = V_{CC}, V_{id} = -100 mV$		45			45		mA
SR	Slew rate at unity gain	$R_L = 10$ kΩ, $C_L = 100$ pF, V _{in} = 3 to 7V		5.5			5.5		V/µs
φm	Phase margin at unity gain	$A_v = 40$ dB, $R_L = 10$ k Ω $C_L = 100$ pF		40			40		Degrees
K _{OV}	Overshoot factor			30			30		%
e _n	Equivalent input noise voltage	f = 1kHz, R _s = 100Ω		30			30		nV/√Hz
V _{o1} /V _{o2}	Channel separation			120			120		dB

1. Maximum values including unavoidable inaccuracies of the industrial test.

57

Figure 3. Supply current (each amplifier) vs. Figure 4. supply voltage

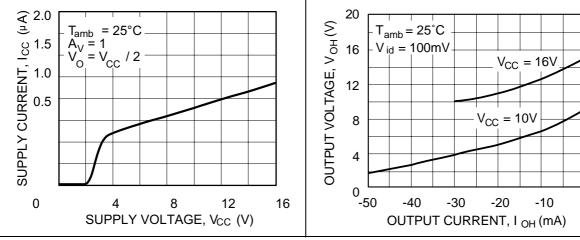


Figure 5. Input bias current vs. free-air temperature

 $V_{CC} = 10V$

50

 $V_{ic} = 5V$

100

10

1 25

INPUT BIAS CURRENT, I _{IB} (pA)

level output current

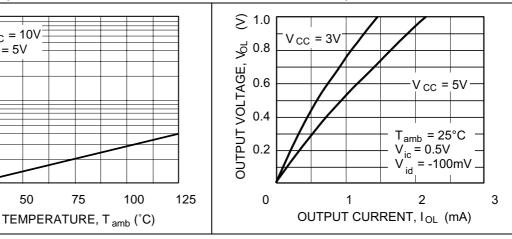
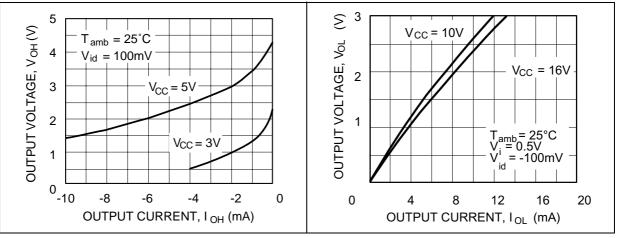
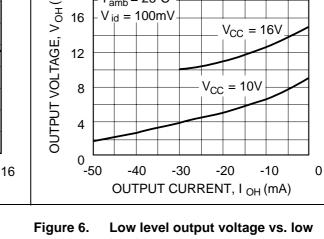




Figure 7. High level output voltage vs. high Figure 8. level output current

Low level output voltage vs. low level output current

57

Figure 9. Open loop frequency response and Figure 10. Phase margin vs. capacitive load phase shift

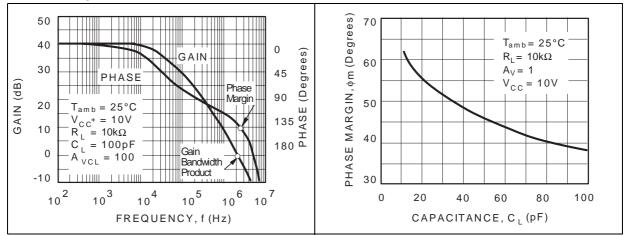
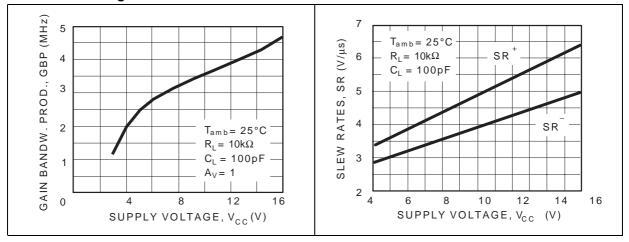



Figure 11. Gain bandwidth product vs. supply Figure 12. Slew rate vs. supply voltage voltage

57

7/14

4 Macromodel

4.1 Important note concerning this macromodel

Please consider the following remarks before using this macromodel.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product.

Data derived from macromodels used outside of the specified conditions (V_{CC} , temperature, for example) or even worse, outside of the device operating conditions (V_{CC} , V_{icm} , for example), is not reliable in any way.

4.2 Macromodel code

```
.SUBCKT TS27X 1 2 3 4 5
*** INP- = 1, INP+ =2, OUT = 3 VDD=4 VSS = 5
*** TYPE = TS271/TS272/TS274
.MODEL MDTH D IS=1E-8 KF=2.664E-16 CJO=10F
***INPUT STAGE
CIP 2 5 1E-12
CIN 1 5 1E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 8
RIN 15 16 8
RIS 11 15 223.84
CPS 11 15 1E-9
DIP 11 120 MDTH 400E-12
DIN 15 140 MDTH 400E-12
RDEG1 12 120 4400
RDEG2 14 140 4400
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 38E-6
***ICC
DICC1 4 31 MDTH 400E-12
DICC2 31 32 MDTH 400E-12
DICC3 32 33 MDTH 400E-12
DICC4 33 34 MDTH 400E-12
RICC 34 5 20E3
ICC 4 5 600E-6
***COMMON MODE INPUT LIMITATION
DINN 17 13 MDTH 400E-12
VIN 17 5 DC -0.1
```

```
DINR 15 18 MDTH 400E-12
VIP 4 18 DC 2.2
***GM1 STAGE
FGM1P 119 5 VOFP 1
FGM1N 119 5 VOFN 1
RAP 119 4 1E6
RAN 119 5 1E6
***GM2 STAGE
G2P 19 5 119 5 4E-4
G2N 19 5 119 4 4E-4
R2P 19 4 450E3
R2N 19 5 450E3
***COMPENSATION
CC 19 119 7p
***BUFFER
EBUF 20 5 19 5 1
***SHORT-CIRCUIT LIMITATIONS( ISINK, ISOURCE)
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 910
VIPM 28 4 DC 50
HONM 21 27 VOUT 1222
VINM 5 27 DC 50
VOUT 3 23 DC 0
***VOH, VOL DEFINITIONS
DOP 19 25 MDTH 400E-12
VOP 4 25 2.5
DON 24 19 MDTH 400E-12
VON 24 5 0.92
***OUTPUT RESISTOR
ROUT 23 20 10
.ENDS
```


5 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

5.1 DIP14 package information

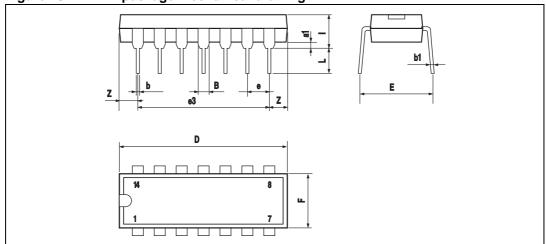
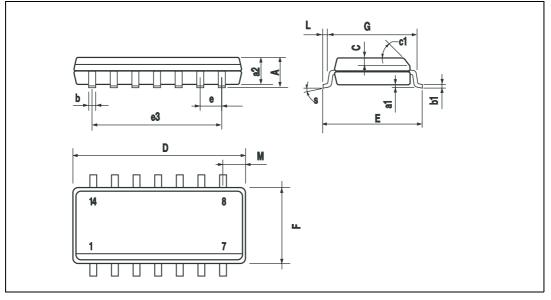


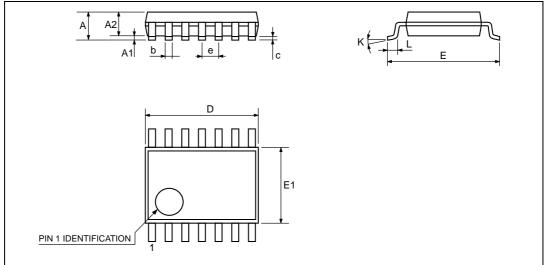
Figure 15. DIP14 package mechanical drawing


Table 5.	DIP14 package mechanical data
----------	-------------------------------

		ige meename				
Ref.	Millimeters			Inches		
Kei.	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

5.2 SO-14 package information

Figure 16. SO-14 package mechanical drawing


Table 6. SO-14 package mechar	nical data
-------------------------------	------------

	Dimensions							
Ref.		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	8.55		8.75	0.336		0.344		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		7.62			0.300			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.68			0.026		
S			8° (r	max.)				

5.3 TSSOP14 package information

Figure 18. TSSOP14 package mechanical data

		Dimensions								
Ref.		Millimeters		Inches						
	Min.	Тур.	Max.	Min.	Тур.	Max.				
А			1.2			0.047				
A1	0.05		0.15	0.002	0.004	0.006				
A2	0.8	1	1.05	0.031	0.039	0.041				
b	0.19		0.30	0.007		0.012				
С	0.09		0.20	0.004		0.0089				
D	4.9	5	5.1	0.193	0.197	0.201				
Е	6.2	6.4	6.6	0.244	0.252	0.260				
E1	4.3	4.4	4.48	0.169	0.173	0.176				
е		0.65 BSC			0.0256 BSC					
К	0°		8°	0°		8°				
L1	0.45	0.60	0.75	0.018	0.024	0.030				

6 Ordering information

|--|

Order code	Temperature range	Package	Packing	Marking
TS274CD TS274CDT		SO-14	Tube or	274C
TS274ACD TS274ACDT		30-14	Tape & reel	274AC
TS274CN	0°C, +70°C	DIP14	Tube	TS274CN
TS274ACN		DIF 14	Tube	TS274ACN
TS274CPT		TSSOP14 Tape & ree	Tape & reel	274C
TS274ACPT		1330F14	Tape & Teel	274AC
TS274ID TS274IDT			Tube or	2741
TS274AID TS274AIDT		SO-14	Tape & reel	274AI
TS274IN	-40°C, +125°C	-40°C, +125°C		TS274IN
TS274AIN		DIP14	Tube	TS274AIN
TS274IPT	* 	TSSOP14		2741
TS274AIPT		1330F14	Tape & reel	274AI

7 Revision history

Table 8. Document revision history

Date	Revision	Changes
19-Nov-2001	1	Initial release.
07-Apr-2006	2	ESD protection inserted in <i>Table 2. on page 2.</i> Thermal resistance junction to case information added see <i>Table 2.</i> <i>on page 2.</i> Macromodel insertion in <i>Section 4 on page 8.</i>
01-Feb-2008	3	Added information on enhanced related families of devices on cover page. Removed TS274B version in AMR table and in order codes table.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14

