

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

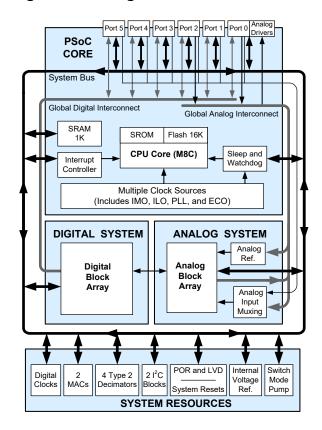
Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com


Programmable System-on-Chip

Features

- Varied resource options within one PSoC[®] (Programmable System-on-Chip) device group
- Powerful Harvard-architecture processor
 - M8C processor speeds up to 24 MHz
 - □ 8 × 8 Multiply, 32-bit accumulate
 - □ Low power at high speed
 - □ Operating voltage: 3.0 V to 5.25 V
 - Operating voltages down to 1.5 V Using on-chip switched mode pump (SMP)
 - □ Industrial temperature range: –40 °C to +85 °C
- Advanced reconfigurable peripherals (PSoC Blocks)
 - □ Up to 12 rail-to-rail analog PSoC blocks provide:
 - Up to 14-bit ADCs
 - Up to 9-bit DACs
 - · Programmable gain amplifiers
 - · Programmable filters and comparators
 - · Multiple ADC configurations
 - · Dedicated SAR ADC, up to 142 ksps with sample and hold
 - Up to 4 synchronized or independent delta-sigma ADCs for advanced applications
 - □ Up to four limited type E analog blocks provide:
 - · Dual channel capacitive sensing capability
 - · Comparators with programmable DAC reference
 - · Up to 10-bit single-slope ADCs
 - □ Up to 12 digital PSoC blocks provide:
 - 8- to 32-bit timers and counters, 8- and 16-bit pulse-width modulators (PWMs)
 - Shift register, CRC, and PRS modules
 - Up to 3 full-duplex UARTs
 - · Up to 6 half-duplex UARTs
 - Multiple variable data length SPI™ masters or slaves
 - · Connectable to all GPIOs
 - Complex peripherals by combining blocks
- Precision, programmable clocking
 - □ Internal ±2.5% 24/48 MHz main oscillator
 - □ Optional 32.768 kHz crystal for precise on-chip clocks
 - □ Optional external oscillator, up to 24 MHz
 - □ Internal low speed, low power oscillator for watchdog and sleep functionality
- Flexible on-chip memory
 - □ 16 KB flash program storage 50,000 erase/write cycles
 - □ 1-KB SRAM data storage
 - □ In-system serial programming (ISSP™)
 - □ Partial flash updates
 - □ Flexible protection modes
 - □ EEPROM emulation in flash
- Programmable pin configurations

- □ 25 mA sink, 10 mA drive on all GPIOs
- □ Pull-up, pull-down, high Z, strong, or open-drain drive modes on all GPIOs
- ☐ Analog input on all GPIOs
- □ 30 mA analog outputs on GPIOs
- □ Configurable interrupt on all GPIOs
- Additional system resources
 - □ Up to two hardware I²C resources
 - Each resource implements slave, master, or multi-master modes
 - · Operation between 0 and 400 kHz
 - ☐ Watchdog and Sleep timers
 - □ User-configurable low voltage detection
 - □ Flexible internal voltage references
 - □ Integrated supervisory circuit
 - □ On-chip precision voltage reference
- Complete development tools
 - □ Free development software (PSoC DesignerTM)
 - □ Full featured in-circuit emulator, and programmer
 - □ Full speed emulation
 - □ Flexible and functional breakpoint structure
 - □ 128 KB trace memory

Logic Block Diagram

Errata: For information on silicon errata, see "Errata" on page 82. Details include trigger conditions, devices affected, and proposed workaround.

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article "How to Design with PSoC® 1, PowerPSoC®, and PLC – KBA88292". Following is an abbreviated list for PSoC 1:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP
- In addition, PSoC Designer includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 1 are:
 - ☐ Getting Started with PSoC® 1 AN75320
 - □ PSoC® 1 Getting Started with GPIO AN2094
 - □ PSoC[®] 1 Analog Structure and Configuration AN74170
 - □ PSoC® 1 Switched Capacitor Analog Blocks AN2041
 - □ Selecting Analog Ground and Reference AN2219

Note: For CY8C28xxx devices related application note please click here.

- Development Kits:
 - □ CY3210-PSoCEval1 supports all PSoC 1 Mixed-Signal Array families, including automotive, except CY8C25/26xxx devices. The kit includes an LCD module, potentiometer, LEDs, and breadboarding space.
 - □ CY3214-PSoCEvalUSB features a development board for the CY8C24x94 PSoC device. Special features of the board include USB and CapSense development and debugging support.

Note: For CY8C28xxx devices related Development Kits please click here.

The MiniProg1 and MiniProg3 devices provide interfaces for flash programming and debug.

PSoC Designer

PSoC Designer is a free Windows-based Integrated Design Environment (IDE). Develop your applications using a library of pre-characterized analog and digital peripherals in a drag-and-drop design environment. Then, customize your design leveraging the dynamically generated API libraries of code. Figure 1 shows PSoC Designer windows. **Note:** This is not the default view.

- Global Resources all device hardware settings.
- Parameters the parameters of the currently selected User Modules.
- 3. Pinout information related to device pins.
- 4. **Chip-Level Editor –** a diagram of the resources available on the selected chip.
- 5. Datasheet the datasheet for the currently selected UM
- User Modules all available User Modules for the selected device.
- Device Resource Meter device resource usage for the current project configuration.
- 8. **Workspace** a tree level diagram of files associated with the project.
- 9. **Output –** output from project build and debug operations.

Note: For detailed information on PSoC Designer, go to PSoC® Designer > Help > Documentation > Designer Specific Documents > IDE User Guide.

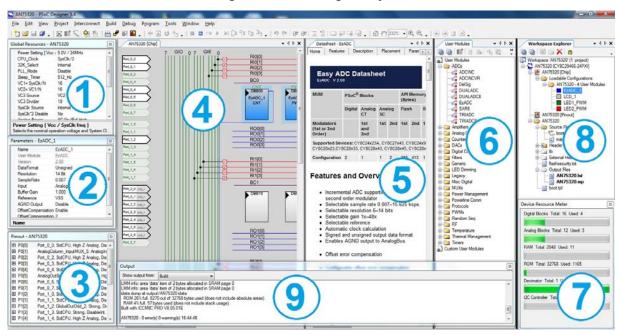


Figure 1. PSoC Designer Layout

Contents

PSoC Functional Overview	4
The PSoC Core	4
The Digital System	4
The Analog System	
System Resources	8
PSoC Device Characteristics	8
Development Tools	10
PSoC Designer Software Subsystems	10
Designing with PSoC Designer	11
Select User Modules	11
Configure User Modules	11
Organize and Connect	
Generate, Verify, and Debug	11
Pinouts	
20-pin Part Pinout	12
28-pin Part Pinout	
44-pin Part Pinout	14
48-pin Part Pinout	
56-pin Part Pinout	16
Register Reference	18
Register Conventions	18
Register Mapping Tables	18
Electrical Specifications	33
Absolute Maximum Ratings	
Operating Temperature	34
DC Electrical Characteristics	
AC Electrical Characteristics	55
Packaging Information	68
Packaging Dimensions	
Thermal Impedances	72
Capacitance on Crystal Pins	
Solder Reflow Specifications	72

Development Tool Selection	73
Software	73
Development Kits	
Evaluation Tools	
Device Programmers	74
Accessories (Emulation and Programming)	
Ordering Information	
Ordering Code Definitions	
Acronyms	
Acronyms Used	
Reference Documents	76
Document Conventions	77
Units of Measure	77
Numeric Conventions	77
Glossary	77
Errata	82
Part Numbers Affected	82
Qualification Status	82
Errata Summary	82
Document History Page	84
Sales, Solutions, and Legal Information	86
Worldwide Sales and Design Support	86
Products	
PSoC [®] Solutions	86
Cypress Developer Community	86
Tachnical Support	06

PSoC Functional Overview

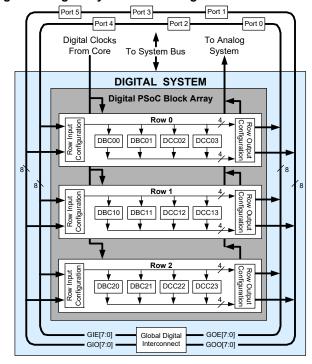
The PSoC family consists of many devices with On-Chip Controllers. These devices are designed to replace multiple traditional MCU based system components with one low cost single chip programmable component. A PSoC device includes configurable analog blocks, digital blocks, and interconnections. This architecture enables the user to create customized peripheral configurations to match the requirements of each individual application. In addition, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

The CY8C28xxx group of PSoC devices described in this datasheet have multiple resource configuration options available. Therefore, not every resource mentioned in this datasheet is available for each CY8C28xxx subgroup. The CY8C28x45 subgroup has a full feature set of all resources described. There are six more segmented subgroups that allow designers to use a device with only the resources and functionality necessary for a specific application. See Table 2 on page 9 to determine the resources available for each CY8C28xxx subgroup. The same information is also presented in more detail in the Ordering Information section.

The architecture for this specific PSoC device family, as shown in the Logic Block Diagram on page 1, consists of four main areas: PSoC Core, Digital System, Analog System, and System Resources. The configurable global bus system allows all the device resources to be combined into a complete custom system. PSoC CY8C28xxx family devices have up to six I/O ports that connect to the global digital and analog interconnects, providing access to up to 12 digital blocks and up to 16 analog blocks.

The PSoC Core

The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable general Purpose I/O (GPIO). The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microcontroller.


Memory encompasses 16K bytes of Flash for program storage, 1K bytes of SRAM for data storage. The PSoC device incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 2.5% over temperature and voltage. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and watch dog timer (WDT). The 32.768 kHz external crystal oscillator (ECO) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL.

PSoC GPIOs provide connections to the CPU, and digital and analog resources. Each pin's drive mode may be selected from 8 options, which allows great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The Digital System is composed of up to 12 configurable digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to create 8, 16, 24, and 32-bit peripherals, which are called user modules. The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin.

Figure 2. Digital System Block Diagram^[1]

Digital peripheral configurations include:

- PWMs (8- and 16-bit, One-shot and Multi-shot capability)
- PWMs with Dead band/Kill (8- and 16-bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- Full-duplex 8-bit UARTs (up to 3) with selectable parity
- Half-duplex 8-bit UARTs (up to 6) with selectable parity
- Variable length SPI slave and master

 ☐ Up to 6 total slaves and masters (8-bit)

 ☐ Supports 8 to 16 bit operation
- □ Supports o to 16 bit operation
- I²C slave, master, or multi-master (up to 2 available as System Resources)
- IrDA (up to 3)
- Pseudo Random Sequence Generators (8 to 32 bit)
- Cyclical Redundancy Checker/Generator (16 bit)
- Shift Register (2 to 32 bit)

Note

1. CY8C28x52 devices do not have digital block row 2. They have two digital rows with eight total digital blocks.

The Analog System

The Analog System is composed of up to 16 configurable analog blocks, each containing an opamp circuit that allows the creation of complex analog signal flows. Some devices in this PSoC family have an analog multiplex bus that can connect to every GPIO pin. This bus can also connect to the analog system for analysis with comparators and analog-to-digital converters. It can be split into two sections for simultaneous dual-channel processing.

Some of the more common PSoC analog functions (most available as user modules) are:

- Analog-to-digital converters (6 to 14-bit resolution, up to 4, selectable as Incremental or Delta-Sigma)
- Dedicated 10-bit SAR ADC with sample rates up to 142 ksps
- Synchronized, simultaneous Delta-Sigma ADCs (up to 4)
- Filters (2 to 8 pole band-pass, low pass, and notch)
- Amplifiers (up to 4, with selectable gain to 48x)
- Instrumentation amplifiers (up to 2, with selectable gain to 93x)
- Comparators (up to 6, with 16 selectable thresholds)
- DACs (up to 4, with 6 to 9-bit resolution)
- Multiplying DACs (up to 4, with 6 to 9-bit resolution)
- High current output drivers (up to 4 with 30 mA drive)
- 1.3-V reference (as a System Resource)
- DTMF Dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Figure 3. Analog System Block Diagram for CY8C28x45 and CY8C28x52 Devices

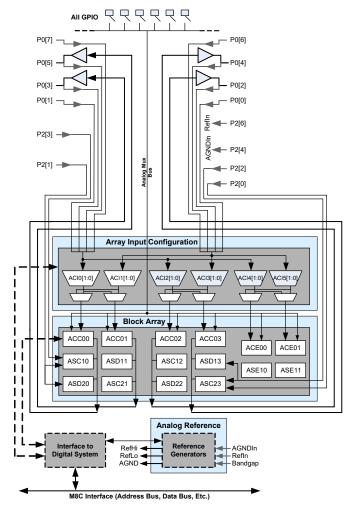


Figure 4. Analog System Block Diagram for CY8C28x43 Devices

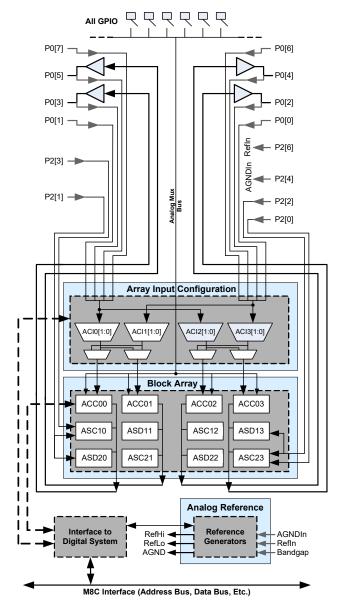


Figure 5. Analog System Block Diagram for CY8C28x33 Devices

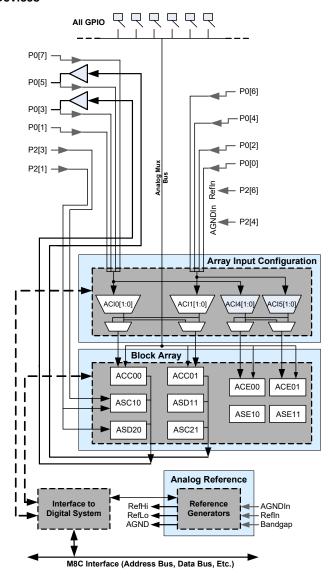


Figure 6. Analog System Block Diagram for CY8C28x23 Devices

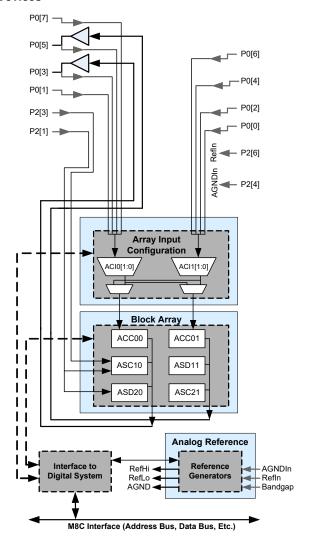
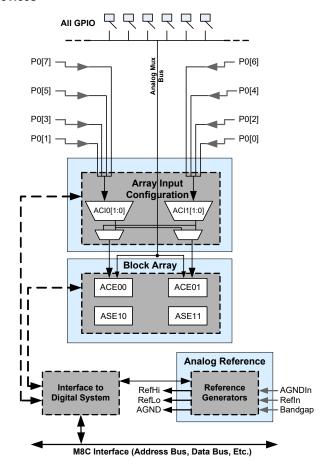



Figure 7. Analog System Block Diagram for CY8C28x13 Devices

System Resources

System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a multiplier, multiple decimators, switch mode pump, low voltage detection, and power on reset. Statements describing the merits of each system resource follow:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters.
- Up to four decimators provide custom hardware filters for digital signal processing applications such as Delta-Sigma ADCs and CapSense capacitive sensor measurement.

- Up to two I²C resources provide 0 to 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported. I²C resources have hardware address detection capability.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.5 V battery cell, providing a low cost boost converter.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in this table.

Table 1. PSoC Device Characteristics

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[2]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[2]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[2]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[2]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[2]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[2,3]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[2,3]	up to 2 K	up to 32 K

Notes

- Limited analog functionality.
 Two analog blocks and one CapSense[®].

The devices covered by this datasheet all have the same architecture, specifications, and ratings. However, the amount of some hardware resources varies from device to device within the group. The following table lists resources available for the specific device subgroups covered by this datasheet.

Table 2. CY8C28xxx Device Characteristics

PSoC Part Number	CapSense	Digital Blocks	Regular Analog Blocks	Limited Analog Blocks	HW I ² C	Decimators	Digital I/O	Analog Inputs	Analog Outputs	Analog Mux Buses
CY8C28x03	N	12	0	0	2	0	up to 24	up to 8	0	0
CY8C28x13	Υ	12	0	4	1	2	up to 40	up to 40	0	2
CY8C28x23	N	12	6	0	2	2	up to 44	up to 10	2	0
CY8C28x33	Υ	12	6	4	1	4	up to 40	up to 40	2	2
CY8C28x43	N	12	12	0	2	4	up to 44	up to 44	4	2
CY8C28x45	Υ	12	12	4	2	4	up to 44	up to 44	4	2
CY8C28x52	Υ	8	12	4	1	4	up to 24	up to 24	4	2

Document Number: 001-48111 Rev. *Q Page 9 of 86

Development Tools

PSoC Designer is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
 - ☐ Hardware and software I²C slaves and masters
 - □ Full-speed USB 2.0
 - □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

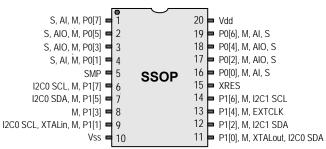
A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Document Number: 001-48111 Rev. *Q Page 11 of 86

Pinouts

This section describes, lists, and illustrates the CY8C28xxx PSoC device pins and pinout configurations.


The CY8C28xxx PSoC devices are available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of Digital I/O. However, V_{SS}, V_{DD}, SMP, and XRES are not capable of Digital I/O.

20-pin Part Pinout

Table 3. 20-pin Part Pinout (SSOP)

Pin	T	уре	Pin	.			
No.	Digital	Analog	Name	Description			
1	I/O	I, M, S	P0[7]	Analog column mux and SAR ADC input. ^[5]			
2	1/0	I/O, M, S	P0[5]	Analog column mux and SAR ADC input. Analog column output. ^[5, 6]			
3	I/O	I/O, M, S	P0[3]	Analog column mux and SAR ADC input. Analog column output. ^[5, 6]			
4	I/O	I, M, S	P0[1]	Analog column mux and SAR ADC input. ^[5]			
5	Ot	ıtput	SMP	Switch Mode Pump (SMP) connection to external components.			
6	I/O	М	P1[7]	I2C0 Serial Clock (SCL).			
7	I/O	М	P1[5]	I2C0 Serial Data (SDA).			
8	I/O	М	P1[3]				
9	I/O	M	P1[1]	Crystal Input (XTALin), I2C0 Serial Clo (SCL), ISSP-SCLK ^[4] .			
10	Po	ower	V _{SS}	Ground connection.			
11	I/O	M	P1[0]	Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA ^[4] .			
12	I/O	M	P1[2]	I2C1 Serial Data (SDA). ^[7]			
13	I/O	М	P1[4]	Optional External Clock Input (EXTCLK).			
14	I/O	М	P1[6]	I2C1 Serial Clock (SCL). ^[7]			
15	Ir	put	XRES	Active high external reset with internal pull-down.			
16	I/O	I, M, S	P0[0]	Analog column mux and SAR ADC input. ^[5]			
17	I/O	I/O, M, S	P0[2]	Analog column mux and SAR ADC input. Analog column output. ^[5, 8]			
18	I/O	I/O, M, S	P0[4]	Analog column mux and SAR ADC input. Analog column output. ^[5, 8]			
19	I/O	I, M, S	P0[6]	Analog column mux and SAR ADC input. ^[5]			
20	Po	ower	V_{DD}	Supply voltage.			

CY8C28243 20-pin PSoC Device

LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.

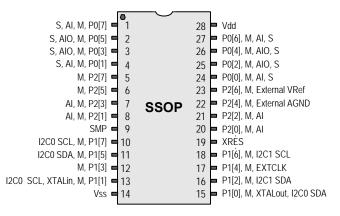
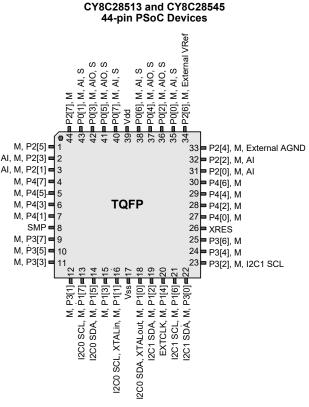

- 4. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Technical Reference Manual for CY8C28xxx PSoC devices for details.
- CY8C28x52 and CY8C28x23 devices do not have a SAR ADC. Therefore, this pin does not function as a SAR ADC input for these devices.
- CY8C28x13 and CY8C28x03 devices do not have any analog output buffers. Therefore, this pin does not function as an analog column output for these devices.
- CY8C28x52, CY8C28x13, and CY8C28x33 devices only have one I2C block. Therefore, this GPIO does not function as an I2C pin for these devices.
- CY8C28x33, CY8C28x23, CY8C28x13, and CY8C28x03 devices do not have an analog output buffer for this pin. Therefore, this pin does not function as an analog column output for these devices.

Table 4. 28-pin Part Pinout (SSOP)

Pin	Tv	ре	Dire						
No.	Digital	Analog	Pin Name	Description					
1	I/O	I, M, S	P0[7]	Analog column mux and SAR ADC input. ^[5]					
2	I/O	I/O, M, S	P0[5]	Analog column mux and SARADC input. Analog column output. ^[5, 6]					
3	I/O	I/O, M, S	P0[3]	Analog column mux and SARADC input. Analog column output. ^[5, 6]					
4	I/O	I, M, S	P0[1]	Analog column mux and SAR ADC input. ^[5]					
5	I/O	М	P2[7]						
6	I/O	М	P2[5]						
7	I/O	I, M	P2[3]	Direct switched capacitor block input. ^[9]					
8	I/O	I, M	P2[1]	Direct switched capacitor block input. ^[9]					
9	Ou	tput	SMP	Switch Mode Pump (SMP) connection to external components.					
10	I/O	М	P1[7]	I2C0 Serial Clock (SCL).					
11	I/O	М	P1[5]	I2C0 Serial Data (SDA).					
12	I/O	М	P1[3]						
13	I/O	М	P1[1]	Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK ^[4] .					
14	Po	wer	V _{SS}	Ground connection.					
15	I/O	М	P1[0]	Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA ^[4] .					
16	I/O	М	P1[2]	I2C1 Serial Data (SDA).[7]					
17	I/O	М	P1[4]	Optional External Clock Input (EXTCLK).					
18	I/O	М	P1[6]	I2C1 Serial Clock (SCL).[7]					
19	In	put	XRES	Active high external reset with internal pull-down.					
20	I/O	I, M	P2[0]	Direct switched capacitor block input.[10]					
21	I/O	I, M	P2[2]	Direct switched capacitor block input.[10]					
22	I/O	М	P2[4]	External Analog Ground (AGND).					
23	I/O	М	P2[6]	External Voltage Reference (VRef).					
24	I/O	I, M, S	P0[0]	Analog column mux and SAR ADC input. ^[5]					
25	I/O	I/O, M, S	P0[2]	Analog column mux and SAR ADC input. Analog column output. ^[5, 8]					
26	I/O	I/O, M, S	P0[4]	Analog column mux and SARADC input. Analog column output. ^[5, 8]					
27	I/O	I, M, S	P0[6]	Analog column mux and SAR ADC input. ^[5]					
28	Po	wer	V_{DD}	Supply voltage.					

CY8C28403, CY8C28413, CY8C28433, CY8C28445, and CY8C28452 28-pin PSoC Devices

LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input


^{9.} This pin is not a direct switched capacitor block analog input for CY8C28x03 and CY8C28x13 devices.

10. This pin is not a direct switched capacitor block analog input for CY8C28x03, CY8C28x13, CY8C28x23, and CY8C28x33 devices.

Table 5. 44-pin Part Pinout (TQFP)

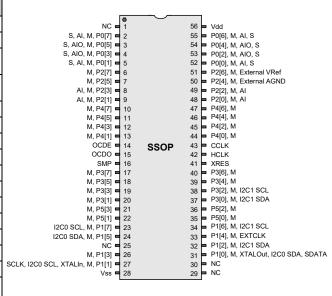
	Type Pin								
Pin No.	Digital	Analog	Pin Name	Description					
1	I/O	M							
2			P2[5]	Direct switched capacitor block input. ^[9]					
	1/0	I, M	P2[3]	Direct switched capacitor block input. ^[9]					
3	1/0	I, M	P2[1]	Direct switched capacitor block input.193					
4	1/0	M	P4[7]						
5	I/O	M	P4[5]						
6	I/O	M	P4[3]						
7	I/O	М	P4[1]						
8		tput	SMP	Switch Mode Pump (SMP) connection to external components.					
9	I/O	М	P3[7]						
10	I/O	М	P3[5]						
11	I/O	М	P3[3]						
12	I/O	М	P3[1]						
13	I/O	М	P1[7]	I2C0 Serial Clock (SCL).					
14	I/O	М	P1[5]	I2C0 Serial Data (SDA).					
15	I/O	М	P1[3]						
16	I/O	М	P1[1]	Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK ^[4] .					
17	Pov	wer	V _{SS}	Ground connection.					
18	I/O	М	P1[0]	Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA ^[4] .					
19	I/O	М	P1[2]	I2C1 Serial Data (SDA).[7]					
20	I/O	М	P1[4]	Optional External Clock Input (EXTCLK).					
21	I/O	М	P1[6]	I2C1 Serial Clock (SCL).[7]					
22	I/O	М	P3[0]	I2C1 Serial Data (SDA). ^[7]					
23	I/O	М	P3[2]	I2C1 Serial Clock (SCL).[7]					
24	I/O	М	P3[4]	(
25	I/O	M	P3[6]						
26		out	XRES	Active high external reset with internal pull-down.					
27	I/O	М	P4[0]						
28	I/O	М	P4[2]						
29	I/O	М	P4[4]						
30	I/O	М	P4[6]						
31	I/O	I, M	P2[0]	Direct switched capacitor block input. ^[10]					
32	I/O	I, M	P2[2]	Direct switched capacitor block input. ^[10]					
33	I/O	M	P2[4]	External Analog Ground (AGND).					
34	I/O	M	P2[6]	External Voltage Reference (VRef).					
35	I/O	I, M, S	P0[0]	Analog column mux and SAR ADC input. ^[5]					
36	I/O	I/O, M S	P0[2]	Analog column mux and SAR ADC input. Analog column output. ^[5, 8]					
37	I/O	I/O, M, S	P0[4]	Analog column mux and SAR ADC input.					
00	1/2		Daras	Analog column output. ^[5, 8]					
38	I/O	I, M, S	P0[6]	Analog column mux and SAR ADC input. ^[5]					
39		wer	V _{DD}	Supply voltage.					
40	I/O	I, M, S	P0[7]	Analog column mux and SAR ADC input. ^[5]					
41	I/O	I/O, M, S	P0[5]	Analog column mux and SAR ADC input. Analog column output. ^[5, 6]					
42	I/O	I/O, M, S	P0[3]	Analog column mux and SAR ADC input. Analog column output. ^[5, 6]					
43	I/O	I, M, S	P0[1]	Analog column mux and SAR ADC input. ^[5]					
44	I/O		P2[7]						

LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input.

Table 6. 48-pin Part Pinout (QFN^[11])

Pin	T ₁	Type Pin Basedadian		CY8C28623, CY8C28643, and CY8C28645							
No.	_	Analog	Pin Name	Description		48-pin PSoC Devices					
1	I/O	I, M	P2[3]	Direct switched capacitor block input. ^[9]					/Ref		
2	I/O	I, M	P2[1]	Direct switched capacitor block input. ^[9]			S S'(S	Al, S Alo, S Alo, S Al, S External VRef		
3	I/O	М	P4[7]				AI, S AIO, S	AIO, S AI, S	, M, Al, S , M, AlO, S , M, AlO, S , M, Externa , M, Externa		
4	I/O	М	P4[5]				ちちぢぢ	ΣΞ	รี รี รี รี รี		
5	I/O	М	P4[3]				P2[5], r P2[7], r P0[1], r P0[3], r	0[5] (dd	P0[6], r P0[4], r P0[2], r P2[6], r		
6	I/O	М	P4[1]			(0000				
7	Ou	itput	SMP	Switch Mode Pump (SMP) connection to external components.	AI, M	, P2[3] ■1 , P2[1] ■2	48 47 46 45	4 4 4	74 9 8 8 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17		
8	I/O	М	P3[7]			, P4[7] = 3			34 ■ P2[0], M, AI		
9	I/O	М	P3[5]		M	, P4[5] • 4			33 = P4[6], M		
10	I/O	М	P3[3]		IVI M	, P4[3] ■ 5 , P4[1] ■ 6		QFN	32 = P4[4], M 31 = P4[2], M		
11	I/O	М	P3[1]		IVI	SMP 5 7		Top Vie			
12	I/O	М	P5[3]		М	, P3[7] - 8	,	TOP VIE	29 = XRES		
13	I/O	M	P5[1]			, P3[5] 9			28 = P3[6], M		
14	I/O	M	P1[7]	I2C0 Serial Clock (SCL).	М	, P3[3] = 10			27 = P3[4], M		
15	I/O	M	P1[5]	I2C0 Serial Data (SDA).	M	, P3[1] = 11			26 = P3[2], M, I2C1 SCL		
16	I/O	M	P1[3]	1200 Seriai Data (SDA).	М	, P5[3] = 12	13 15 16	18 19	원 등 전 전 전 전 P3[0], M, I2C1 SDA		
17	1/0	M	P1[1]	Crystal Input (XTALin), I2C0 Serial Clock	-			_ s _			
17				(SCL), ISSP-SCLK ^[4] .			M, P5[1] M, P1[7] M, P1[5] M, P1[3]	M, P1[1] Vss M, P1[0]	M, P1(2) M, P1(4) M, P5(0) M, P5(2) M, P5(2)		
18		wer	V_{SS}	Ground connection.			CL, DA,	Lin, out,	LK, ich,		
19	I/O	M	P1[0]	Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA ^[4] .			M, P 12C0 SCL, M, P 12C0 SDA, M, P M, P	SL, XTA A, XTAL	I2C1 SDA, M. P EXTCLK, M. P I2C1 SCL, M. P M. P M. P		
20	I/O	М	P1[2]	I2C1 Serial Data (SDA). ^[7]				20 S(
21	I/O	М	P1[4]	Optional External Clock Input (EXTCLK).				120			
22	I/O	М	P1[6]	I2C1 Serial Clock (SCL). ^[7]							
23	I/O	М	P5[0]								
24	I/O	М	P5[2]								
25	I/O	М	P3[0]	I2C1 Serial Data (SDA).[7]							
26	I/O	М	P3[2]	I2C1 Serial Clock (SCL). ^[7]							
27	I/O	М	P3[4]								
28	I/O	М	P3[6]								
29	In	put	XRES	Active high external reset with internal pull-down.							
30	I/O	М	P4[0]								
31	I/O	М	P4[2]		Pin	Ty	/ре	Pin	Description		
32	I/O	М	P4[4]		No.	Digital	Analog	Name	Description		
33	I/O	М	P4[6]		41	I/O	I, M, S	P0[6]	Analog column mux and SAR ADC input. ^[5]		
34	I/O	I, M	P2[0]	Direct switched capacitor block input.[10]	42	Po	wer	V_{DD}	Supply voltage.		
35	I/O	I, M	P2[2]	Direct switched capacitor block input. ^[10]	43	I/O	I, M, S	P0[7]	Analog column mux and SAR ADC input. ^[5]		
36	I/O	М	P2[4]	External Analog Ground (AGND).	44	I/O	I/O, M, S	P0[5]	Analog column mux and SAR ADC input. Analog column output. ^[5, 6]		
37	I/O	М	P2[6]	External Voltage Reference (VRef).		I/O	I/O, M,	P0[3]	Analog column mux and SAR ADC input. Analog column output. ^[5, 6]		
38	I/O	I, M, S	P0[0]	Analog column mux and SAR ADC input. ^[5]		I/O	I, M, S	P0[1]	Analog column mux and SAR ADC input. ^[5]		
39	I/O	I/O, M,	P0[2]	Analog column mux and SAR ADC input. Analog column output. ^[5, 8]	47	I/O	М	P2[7]			
40	I/O	I/O, M,	P0[4]	Analog column mux and SAR ADC input.	48	I/O	М	P2[5]			
		S		Analog column output. ^[5, 8] , O = Output, S = SAR ADC Input, and M = A							

Document Number: 001-48111 Rev. *Q Page 15 of 86


The 56-pin SSOP part is for the CY8C28000 On-Chip Debug (OCD) PSoC device.

Note This part is only used for in-circuit debugging. It is NOT available for production.

Table 7. 56-pin Part Pinout (SSOP)

Pin	Ty	/ре	Pin	Description				
No.	Digital	Analog	Name	Description				
1			NC	No connection.				
2	I/O	I, M, S	P0[7]	Analog column mux and SAR ADC input.				
3	I/O	I/O, M, S	P0[5]	Analog column mux and SAR ADC input. Analog column output.				
4	I/O	I/O, M, S	P0[3]	Analog column mux and SAR ADC input. Analog column output.				
5	I/O	I, M, S	P0[1]	Analog column mux and SAR ADC input.				
6	I/O	М	P2[7]					
7	I/O	М	P2[5]					
8	I/O	I	P2[3]	Direct switched capacitor block input.				
9	I/O	I	P2[1]	Direct switched capacitor block input.				
10	I/O	M	P4[7]					
11	I/O	M	P4[5]					
12	I/O	I, M	P4[3]					
13	I/O	I, M	P4[1]					
14	OCD	M	OCDE	OCD even data I/O.				
15	OCD	М	OCDO	OCD odd data output.				
16	Ou	tput	SMP	Switch Mode Pump (SMP) connection required external components.				
17	I/O	М	P3[7]					
18	I/O	М	P3[5]					
19	I/O	М	P3[3]					
20	I/O	М	P3[1]					
21	I/O	М	P5[3]					
22	I/O	М	P5[1]					
23	I/O	М	P1[7]	I2C0 Serial Clock (SCL).				
24	I/O	М	P1[5]	I2C0 Serial Data (SDA).				
25			NC	No connection.				
26	I/O	М	P1[3]					
27	I/O	М	P1[1]	Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK ^[4] .				
28	Po	wer	V _{SS}	Ground connection.				
29			NC	No connection.				
30			NC	No connection.				
31	I/O	М	P1[0]	Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA ^[4] .				
32	I/O	М	P1[2]	I2C1 Serial Data (SDA).				
33	I/O	М	P1[4]	Optional External Clock Input (EXTCLK).				
34	I/O	М	P1[6]	I2C1 Serial Clock (SCL).				
35	I/O	M	P5[0]	,				
36	I/O	M	P5[2]					
37	1/0	M	P3[0]	I2C1 Serial Data (SDA).				
				,				
38	I/O	M	P3[2]	I2C1 Serial Clock (SCL).				

CY8C28000 56-pin PSoC Device

Not for Production

Note

11. The QFN package has a center pad that must be connected to ground $(\ensuremath{V_{SS}})$

Table 7. 56-pin Part Pinout (SSOP) (continued)

Pin	Ту	pe .	Pin	Description
No.	Digital	Analog	Name	Description
39	I/O	М	P3[4]	
40	I/O	М	P3[6]	
41	In	put	XRES	Active high external reset with internal pull-down.
42	OCD	М	HCLK	OCD high speed clock output.
43	OCD	М	CCLK	OCD CPU clock output.
44	I/O	М	P4[0]	
45	I/O	М	P4[2]	
46	I/O	М	P4[4]	
47	I/O	М	P4[6]	
48	I/O	I, M	P2[0]	Direct switched capacitor block input.
49	I/O	I, M	P2[2]	Direct switched capacitor block input.
50	I/O	М	P2[4]	External Analog Ground (AGND).
51	I/O	М	P2[6]	External Voltage Reference (VRef).
52	I/O	I, M, S	P0[0]	Analog column mux and SAR ADC input.
53	I/O	I/O, M, S	P0[2]	Analog column mux and SAR ADC input. Analog column output.
54	I/O	I/O, M, S	P0[4]	Analog column mux and SAR ADC input. Analog column output.
55	I/O	I, M, S	P0[6]	Analog column mux and SAR ADC input.
56	Po	wer	V_{DD}	Supply voltage.

LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, M = Analog Mux Bus Input, and OCD = On-Chip Debug.

Document Number: 001-48111 Rev. *Q Page 17 of 86

Register Reference

This section lists the registers of the CY8C28xxx PSoC devices. For detailed register information, reference the PSoC Technical Reference Manual for CY8C28xxx PSoC devices.

Register Conventions

The register conventions specific to this section are listed in the following table.

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

CY8C28xxx PSoC devices have a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank of registers CPU instructions access. When the XIO bit is set the registers in Bank 1 are accessed by CPU instructions. When the XIO bit is cleared the registers in Bank 0 are accessed by CPU instructions.

Note In the following register mapping tables, blank fields are reserved and should not be accessed.

Document Number: 001-48111 Rev. *Q Page 18 of 86

Table 8. CY8C28x03 Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)		Map Bank 0 T	Addr (0,Hex)	Access	Nome	Addr (0 Hov)	A 00000	Nama	Addr (0,Hex)	A 00000
PRT0DR	00	RW	DBC20DR0	40	#	Name	Addr (0,Hex) 80	Access	Name RDI2RI	C0	Access RW
PRT0IE	01	RW	DBC20DR1	41	W		81		RDI2SYN	C1	RW
PRT0GS	02	RW	DBC20DR2	42	RW		82		RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#		83		RDI2LT0	C3	RW
PRT1DR	04	RW	DBC21DR0	44	#		84		RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W		85		RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW		86		RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#		87		RDI2DSM	C7	RW
PRT2DR	08	RW	DCC22DR0	48	#		88			C8	
PRT2IE	09	RW	DCC22DR1	49	W		89			C9	
PRT2GS	0A	RW	DCC22DR2	4A	RW		8A			CA	
PRT2DM2	0B	RW	DCC22CR0	4B	#		8B			СВ	
PRT3DR	0C	RW	DCC23DR0	4C	#		8C			CC	
PRT3IE	0D	RW	DCC23DR1	4D	W		8D			CD	
PRT3GS	0E	RW	DCC23DR2	4E	RW		8E			CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#		8F			CF	
			DCC23CR0		#				OUD DD		D)A/
PRT4DR	10	RW		50			90		CUR_PP	D0	RW
PRT4IE	11	RW		51			91		STK_PP	D1	RW
PRT4GS	12	RW		52			92			D2	
PRT4DM2	13	RW		53			93		IDX_PP	D3	RW
PRT5DR	14	RW		54			94		MVR_PP	D4	RW
PRT5IE	15	RW		55			95		MVW_PP	D5	RW
PRT5GS	16	RW		56			96		I2C0_CFG	D6	RW
PRT5DM2	17	RW		57			97		I2C0 SCR	D7	#
	18			58			98		I2C0 DR	D8	RW
	19			59			99		I2C0 MSCR	D9	#
	1A			5A			9A		INT CLR0	DA	RW
	1B			5B			9B		INT CLR1	DB	RW
	1C			5C			9C		INT CLR2	DC	RW
	1D			5D					INT CLR3	DD	RW
							9D				
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F		INT_MSK2	DF	RW
DBC00DR0	20	#		60			A0		INT_MSK0	E0	RW
DBC00DR1	21	W		61			A1		INT_MSK1	E1	RW
DBC00DR2	22	RW		62			A2		INT_VC	E2	RC
DBC00CR0	23	#		63			A3		RES_WDT	E3	W
DBC01DR0	24	#		64			A4		I2C1_SCR	E4	#
DBC01DR1	25	W		65			A5		I2C1_MSCR	E5	#
DBC01DR2	26	RW		66			A6			E6	
DBC01CR0	27	#	I2C1 DR	67	RW		A7			E7	
DCC02DR0	28	#		68		MUL1 X	A8	W	MUL0 X	E8	W
DCC02DR1	29	W		69		MUL1 Y	A9	W	MUL0 Y	E9	W
DCC02DR2	2A	RW	SADC DH	6A	RW	MUL1 DH	AA	R	MUL0 DH	EA	R
DCC02DR2	2B	#	SADC_DIT		RW	MUL1 DL	AB	R	MULO DL	EB	R
			_	6B		_			_		
DCC03DR0	2C	#	TMP_DR0	6C	RW	ACC1_DR1	AC	RW	ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW	ACC1_DR0	AD	RW	ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR2	AF	RW	ACC0_DR2	EF	RW
DBC10DR0	30	#		70		RDI0RI	B0	RW		F0	
DBC10DR1	31	W		71		RDI0SYN	B1	RW		F1	
DBC10DR2	32	RW		72		RDI0IS	B2	RW		F2	
DBC10CR0	33	#		73		RDI0LT0	B3	RW		F3	
DBC11DR0	34	#		74		RDI0LT1	B4	RW		F4	
DBC11DR1	35	W		75		RDI0RO0	B5	RW		F5	<u> </u>
DBC11DR2	36	RW		76		RDI0RO1	B6	RW		F6	
DBC11CR0	37	#		77		RDIODSM	B7	RW	CPU F	F7	RL
DCC12DR0	38	#		78		RDI1RI	B8	RW	S. 0_1	F8	IXL
		W W								F9	├──
DCC12DR1	39			79		RDI1SYN	B9	RW			
DCC12DR2	3A	RW		7A		RDI1IS	BA	RW		FA	
DCC12CR0	3B	#		7B		RDI1LT0	BB	RW		FB	
DCC13DR0	3C	#		7C		RDI1LT1	BC	RW		FC	
DCC13DR1	3D	W		7D		RDI1RO0	BD	RW		FD	
DCC13DR2	3E	RW		7E		RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR0	3F	#		7F		RDI1DSM	BF	RW	CPU_SCR0	FF	#
	1		cessed.	# Access is bit	1		I purpose, see "N		_		

Table 9. CY8	C28x03 Re	gister	Map Bank 1 T	able: Conf	iguratio	on Space					
Name	Addr (1,Hex)		Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	DBC20FN	40	RW		80		RDI2RI	C0	RW
PRT0DM1	01	RW	DBC20IN	41	RW	SADC_TSCMPL	81	RW	RDI2SYN	C1	RW
PRT0IC0	02	RW	DBC20OU	42	RW	SADC_TSCMPH	82	RW	RDI2IS	C2	RW
PRT0IC1	03	RW	DBC20CR1	43	RW		83		RDI2LT0	C3	RW
PRT1DM0	04	RW	DBC21FN	44	RW		84		RDI2LT1	C4	RW
PRT1DM1	05	RW	DBC21IN	45	RW		85		RDI2RO0	C5	RW
PRT1IC0	06	RW	DBC21OU	46	RW		86		RDI2RO1	C6	RW
PRT1IC1	07	RW	DBC21CR1	47	RW		87		RDI2DSM	C7	RW
PRT2DM0	08	RW	DCC22FN	48	RW		88			C8	
PRT2DM1	09	RW	DCC22IN	49	RW		89			C9	
PRT2IC0	0A	RW	DCC22OU	4A	RW		8A			CA	
PRT2IC1	0B	RW	DCC22CR1	4B	RW		8B			СВ	
PRT3DM0	0C	RW	DCC23FN	4C	RW		8C			CC	
PRT3DM1	0D	RW	DCC23IN	4D	RW		8D			CD	
PRT3IC0	0E	RW	DCC23OU	4E	RW		8E			CE	
PRT3IC1	0F	RW	DCC23CR1	4F	RW		8F			CF	
PRT4DM0	10	RW	DCC23CICT	50	1744		90		GDI O IN	D0	RW
PRT4ICO	11	RW		51			91		GDI_E_IN	D1	RW
PRT4IC0	12	RW		52			92		GDI_O_OU	D2	RW
PRT4IC1	13	RW		53			93		GDI_E_OU	D3	RW
PRT5DM0	14	RW		54			94			D4	<u> </u>
PRT5DM1	15	RW		55			95			D5	<u> </u>
PRT5IC0	16	RW		56			96			D6	<u> </u>
PRT5IC1	17	RW		57			97			D7	<u> </u>
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBC00FN	20	RW		60		GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00IN	21	RW		61		GDI_E_IN_CR	A1	RW	OSC_CR1	E1	RW
DBC00OU	22	RW		62		GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC00CR1	23	RW		63		GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC01FN	24	RW		64		RTC H	A4	RW	VLT CMP	E4	RW
DBC01IN	25	RW		65		RTC M	A5	RW	_	E5	
DBC01OU	26	RW		66		RTC S	A6	RW		E6	
DBC01CR1	27	RW		67		RTC CR	A7	RW		E7	
DCC02FN	28	RW		68		SADC CR0	A8	RW	IMO_TR	E8	RW
DCC02IN	29	RW		69		SADC_CR1	A9	RW	ILO TR	E9	RW
DCC02OU	2A	RW		6A		SADC CR2	AA	RW	BDG TR	EA	RW
DCC02CR1	2B	RW	I2C1 CFG	6B	RW	SADC CR3	AB	RW	ECO TR	EB	RW
DCC03FN	2C	RW	TMP DR0	6C	RW	SADC CR4	AC	RW		EC	
DCC03IN	2D	RW	TMP DR1	6D	RW	I2C0 ADDR	AD	RW		ED	
DCC03OU	2E	RW	TMP DR2	6E	RW	I2C1 ADDR	AE	RW		EE	
DCC03CR1	2F	RW	TMP DR3	6F	RW	AMUX CLK	AF	RW		EF	
DBC10FN	30	RW	TWF_DIG	70	1744	RDIORI	B0	RW		F0	
DBC10FN DBC10IN	31	RW	SADC TSCR0	71	RW	RDIOSYN	B1	RW		F1	
DBC10IN DBC10OU											
DBC10C0	32 33	RW RW	SADC_TSCR1	72 73	RW	RDI0IS RDI0LT0	B2 B3	RW RW		F2 F3	
											-
DBC11FN	34	RW		74		RDI0LT1	B4	RW		F4	
DBC11IN	35	RW		75		RDI0RO0	B5	RW		F5	
DBC11OU	36	RW		76		RDI0R01	B6	RW	ODU. F	F6	
DBC11CR1	37	RW		77		RDIODSM	B7	RW	CPU_F	F7	RL
DCC12FN	38	RW		78		RDI1RI	B8	RW		F8	<u> </u>
DCC12IN	39	RW		79		RDI1SYN	B9	RW		F9	
	3A	RW		7A		RDI1IS	BA	RW	FLS_PR1	FA	RW
DCC12OU				7B		RDI1LT0	BB	RW		FB	<u> </u>
DCC12OU DCC12CR1	3B	RW									
DCC12OU DCC12CR1 DCC13FN	3B 3C	RW		7C		RDI1LT1	BC	RW		FC	
DCC12OU DCC12CR1 DCC13FN DCC13IN	3B 3C 3D	RW RW		7D		RDI1RO0	BD	RW		FD	
DCC12OU DCC12CR1 DCC13FN DCC13IN DCC13OU	3B 3C 3D 3E	RW RW RW		7D 7E		RDI1RO0 RDI1RO1	BD BE	RW RW	CPU_SCR1	FD FE	#
DCC12OU DCC12CR1 DCC13FN DCC13IN	3B 3C 3D 3E 3F	RW RW RW		7D		RDI1RO0	BD	RW	CPU_SCR1 CPU_SCR0	FD	#

Table 10. CY8C28x13 Register Map Bank 0 Table: User Space

Table 10. CY						9					
Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW	DBC20DR0	40	#		80		RDI2RI	C0	RW
PRT0IE	01	RW	DBC20DR1	41	W		81		RDI2SYN	C1	RW
PRT0GS	02	RW	DBC20DR2	42	RW		82		RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#		83		RDI2LT0	C3	RW
PRT1DR	04	RW	DBC21DR0	44	#		84		RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W		85		RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW		86		RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#		87		RDI2DSM	C7	RW
PRT2DR	08	RW	DCC22DR0	48	#		88			C8	
PRT2IE	09	RW	DCC22DR1	49	W		89			C9	
PRT2GS	0A	RW	DCC22DR2	4A	RW		8A			CA	
PRT2DM2	0B	RW	DCC22CR0	4B	#		8B			СВ	
PRT3DR	0C	RW	DCC23DR0	4C	#		8C			CC	
PRT3IE	0D	RW	DCC23DR1	4D	W		8D			CD	\vdash
PRT3GS	0E	RW	DCC23DR2	4E	RW		8E			CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#		8F			CF	
			DCC23CR0		#				OUD DD		D)A/
PRT4DR	10	RW		50			90		CUR_PP	D0	RW
PRT4IE	11	RW		51			91		STK_PP	D1	RW
PRT4GS	12	RW		52			92			D2	
PRT4DM2	13	RW		53			93		IDX_PP	D3	RW
PRT5DR	14	RW		54			94		MVR_PP	D4	RW
PRT5IE	15	RW		55			95		MVW_PP	D5	RW
PRT5GS	16	RW		56			96		I2C0_CFG	D6	RW
PRT5DM2	17	RW		57			97		I2C0_SCR	D7	#
	18			58			98		I2C0_DR	D8	RW
	19			59			99		I2C0_MSCR	D9	#
	1A			5A			9A		INT CLR0	DA	RW
	1B			5B			9B		INT CLR1	DB	RW
	1C			5C			9C		INT CLR2	DC	RW
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT MSK3	DE	RW
	1F			5F			9F		INT_MSK2	DF	RW
DBC00DR0	20	#		60		DEC0 DH	A0	RC	INT MSK0	E0	RW
DBC00DR1	21	W W	AMUX CFG	61	RW	DEC0_DI1	A1	RC	INT MSK1	E1	RW
	22	RW	AWUX_CFG	62	KVV	_	A1 A2	RC	INT VC	E2	
DBC00DR2						DEC1_DH			_		RC
DBC00CR0	23	#		63		DEC1_DL	A3	RC	RES_WDT	E3	W
DBC01DR0	24	#		64			A4			E4	
DBC01DR1	25	W		65			A5			E5	
DBC01DR2	26	RW		66			A6		DEC_CR0*	E6	RW
DBC01CR0	27	#		67			A7		DEC_CR1*	E7	RW
DCC02DR0	28	#		68		MUL1_X	A8	W	MUL0_X	E8	W
DCC02DR1	29	W		69		MUL1_Y	A9	W	MUL0_Y	E9	W
DCC02DR2	2A	RW	SADC_DH	6A	RW	MUL1_DH	AA	R	MUL0_DH	EA	R
DCC02CR0	2B	#	SADC_DL	6B	RW	MUL1_DL	AB	R	MUL0_DL	EB	R
DCC03DR0	2C	#	TMP_DR0	6C	RW	ACC1_DR1	AC	RW	ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW	ACC1_DR0	AD	RW	ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP DR3	6F	RW	ACC1 DR2	AF	RW	ACC0 DR2	EF	RW
DBC10DR0	30	#		70		RDI0RI	B0	RW		F0	
DBC10DR1	31	W		71		RDI0SYN	B1	RW		F1	
DBC10DR2	32	RW		72		RDI0IS	B2	RW		F2	
DBC10CR0	33	#		73		RDIOLTO	B3	RW		F3	
DBC11DR0	34	#	1	74		RDIOLT1	B4	RW		F4	$\vdash \vdash$
DBC11DR1	35	W		75		RDI0RO0	B5	RW		F5	
		RW		76			B6				
DBC11DR2 DBC11CR0	36					RDIORO1		RW	CDLLE	F6	DI
	37	#		77		RDI0DSM	B7	RW	CPU_F	F7	RL
DCC12DR0	38	#		78		RDI1RI	B8	RW		F8	
DCC12DR1	39	W		79		RDI1SYN	B9	RW		F9	
DCC12DR2	3A	RW		7A		RDI1IS	BA	RW		FA	
DCC12CR0	3B	#		7B		RDI1LT0	BB	RW		FB	
DCC13DR0	3C	#		7C		RDI1LT1	BC	RW	DAC1_D	FC	RW
DCC13DR1	3D	W		7D		RDI1RO0	BD	RW	DAC0_D	FD	RW
DCC13DR2	3E	RW		7E		RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR0	3F	#		7F		RDI1DSM	BF	RW	CPU_SCR0	FF	#
Blank fields are Res	erved and should	d not be ac	cessed.	# Access is bit	specific.	*Address has a dua	l purpose, see "N	Mapping Ex	ceptions" on page 25	1	
							. , ,	3 =/	3-20		

Table 11. CY8C28x13 Register Map Bank 1 Table: Configuration Space

Table 11. C	Y8C28x13 R	egister	Map Bank 1	Гable: Con	figurat	ion Space					
Name	Addr (1,Hex)		Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	DBC20FN	40	RW		80		RDI2RI	C0	RW
PRT0DM1	01	RW	DBC20IN	41	RW	SADC_TSCMPL	81	RW	RDI2SYN	C1	RW
PRT0IC0	02	RW	DBC20OU	42	RW	SADC_TSCMPH	82	RW	RDI2IS	C2	RW
PRT0IC1	03	RW	DBC20CR1	43	RW	ACE_AMD_CR1	83	RW	RDI2LT0	C3	RW
PRT1DM0	04	RW	DBC21FN	44	RW		84		RDI2LT1	C4	RW
PRT1DM1	05	RW	DBC21IN	45	RW	ACE_PWM_CR	85	RW	RDI2RO0	C5	RW
PRT1IC0	06	RW	DBC21OU	46	RW	ACE_ADC0_CR	86	RW	RDI2RO1	C6	RW
PRT1IC1	07	RW	DBC21CR1	47	RW	ACE_ADC1_CR	87	RW	RDI2DSM	C7	RW
PRT2DM0	08	RW	DCC22FN	48	RW		88			C8	
PRT2DM1	09	RW	DCC22IN	49	RW	ACE_CLK_CR0	89	RW		C9	—
PRT2IC0	A0	RW	DCC22OU	4A	RW	ACE_CLK_CR1	8A	RW		CA	—
PRT2IC1	0B	RW	DCC22CR1	4B	RW	ACE_CLK_CR3	8B	RW		СВ	—
PRT3DM0	0C	RW	DCC23FN	4C	RW	10501051	8C	RW		CC	—
PRT3DM1	0D	RW	DCC23IN	4D	RW	ACE01CR1	8D	RW		CD	—
PRT3IC0	0E	RW	DCC23OU	4E	RW	ACE01CR2	8E	RW		CE	—
PRT3IC1	0F	RW	DCC23CR1	4F	RW	ASE11CR0	8F	RW	ODL O IN	CF	DW
PRT4DM0	10	RW		50		DE00 0D0	90	DIA	GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		DEC0_CR0	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		DEC_CR3	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53			93		GDI_E_OU	D3	RW
PRT5DM0	14	RW		54		DE04 050	94	D'44	DECO_CR	D4	RW
PRT5DM1	15	RW		55		DEC1_CR0	95	RW	DEC1_CR	D5	RW
PRT5IC0	16	RW		56			96			D6	
PRT5IC1	17	RW		57			97			D7	
	18			58			98		MUX_CR0	D8	RW
	19			59		DEC 005	99	DIA	MUX_CR1	D9	RW
	1A			5A		DEC_CR5	9A	RW	MUX_CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
	1C			5C			9C		IDAC_CR1	DC	RW
	1D			5D			9D 9E		OSC_GO_EN OSC_CR4	DD	RW
	1E			5E					_	DE	RW
DDCOOFN	1F	DW		5F		CDL O IN CD	9F	DW	OSC_CR3	DF	RW
DBC00FN	20	RW		60		GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00IN DBC00OU	21	RW RW		61 62		GDI_E_IN_CR	A1 A2	RW RW	OSC_CR1	E1 E2	RW RW
						GDI_O_OU_CR			OSC_CR2		
DBC00CR1	23 24	RW		63		GDI_E_OU_CR	A3	RW RW	VLT_CR	E3 E4	RW
DBC01FN DBC01IN	25	RW RW		64		RTC_H	A4 A5	RW	VLT_CMP ADC0 TR	E4 E5	RW RW
DBC010U	26			65		RTC_M RTC S		RW	ADC0_TR ADC1 TR	E6	RW
DBC01CR1	27	RW RW		66 67		RTC_S	A6 A7	RW	IDAC CR2	E7	RW
DCC02FN	28	RW				_	A7 A8	RW	_	E8	
	29	RW		68 69		SADC_CR0 SADC_CR1	A6 A9	RW	IMO_TR ILO TR	E9	RW RW
DCC02IN DCC02OU	29 2A	RW	AMUX CFG1	6A	RW	SADC_CR1	A9 AA	RW	BDG TR	E9 EA	RW
DCC02CR1	2B	RW	ANIOX_CFG1	6B	TVV	SADC_CR2	AB	RW	ECO TR	EB	RW
DCC03FN	2B 2C	RW	TMP DR0	6C	RW	SADC_CR3	AC	RW	MUX CR4	EC	RW
DCC03FN	2D	RW	TMP_DR0 TMP DR1	6D	RW	I2C0 ADDR	AD	RW	MUX_CR4	ED	RW
DCC03OU	2E	RW	_	6E	RW	IZCU_ADDK	AE	ICAA	MOX_CR3	EE	KVV
DCC03CR1	2E 2F	RW	TMP_DR2 TMP_DR3	6F	RW	AMUX CLK	AE AF	RW		EF	—
DBC10FN	30	RW	TML_DI/9	70	1744	RDIORI	B0	RW		F0	-
DBC10IN	31	RW	SADC TSCR0	71	RW	RDIOSYN	B1	RW		F1	
DBC100U	32	RW	SADC_TSCR0	71	RW	RDIOSTN	B2	RW		F1	
DBC10CR1	33	RW	ACE AMD CR0	73	RW	RDI0LT0	B3	RW		F3	
DBC11FN	34	RW	7.5E_71111B_0110	74	RW	RDI0LT1	B4	RW		F4	
DBC11IN	35	RW	ACE AMX IN	75	RW	RDI0RO0	B5	RW		F5	
DBC110U	36	RW	ACE_CMP_CR0	76	RW	RDI0RO1	B6	RW		F6	
DBC11CR1	37	RW	ACE_CMP_CR1	77	RW	RDIODSM	B7	RW	CPU F	F7	RL
DCC12FN	38	RW		78	1377	RDI1RI	B8	RW	J. U_1	F8	
DCC12IN	39	RW	ACE_CMP_GI_EN	79	RW	RDI1SYN	B9	RW		F9	——
DCC12IN	39 3A	RW	ACE_CWF_GI_EN	79 7A	RW	RDI1IS	BA	RW	FLS PR1	FA	RW
DCC12CR1	3B	RW	ACE_ALI_CR0 ACE ABF CR0	7B	RW	RDI1LT0	BB	RW	. 20_1 KI	FB	1744
DCC13FN	3C	RW	7.02_7.07_010	7C	1444	RDI1LT1	BC	RW		FC	
DCC13FN DCC13IN	3D	RW	ACE0 CR1	7D	RW	RDI1RO0	BD	RW	IDAC CR0	FD	RW
DCC130U	3E	RW	ACE0_CR1	7E	RW	RDI1RO1	BE	RW	CPU SCR1	FE	#
DCC13CR1	3F	RW	ACE0_CR2	7E 7F	RW	RDI1DSM	BF	RW	CPU_SCR1	FF	#
	eserved and shoul		_	# Access is bit					ceptions" on page 25		#
Dialik lielus ale K	Coci veu and Snoul	in that he go	ocoocu.	# AUCESS IS DIT	apecilic.	Audiess lias a dua	ıı puipose, see "N	napping EX	ocpuons on page 25	1	

Table 12. CY8C28x23 Register Map Bank 0 Table: User Space

Table 12. C			Map Bank 0			9					
Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW	DBC20DR0	40	#	ASC10CR0	80	RW	RDI2RI	C0	RW
PRT0IE	01	RW	DBC20DR1	41	W	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0GS	02	RW	DBC20DR2	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#	ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DR	04	RW	DBC21DR0	44	#	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#	ASD11CR3	87	RW	RDI2DSM	C7	RW
PRT2DR	08	RW	DCC22DR0	48	#		88			C8	
PRT2IE	09	RW	DCC22DR1	49	W		89			C9	
PRT2GS	0A	RW	DCC22DR2	4A	RW		8A			CA	
PRT2DM2	0B	RW	DCC22CR0	4B	#		8B			CB	
PRT3DR	0C	RW	DCC23DR0	4C	#		8C			CC	
PRT3IE	0D	RW	DCC23DR1	4D	W		8D			CD	
PRT3GS	0E	RW	DCC23DR2	4E	RW		8E			CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#		8F			CF	
PRT4DR	10	RW		50		ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW		51		ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW		52		ASD20CR2	92	RW		D2	
PRT4DM2	13	RW		53		ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW		54		ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW		55		ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C0_CFG	D6	RW
PRT5DM2	17	RW		57		ASC21CR3	97	RW	I2C0_SCR	D7	#
	18			58			98		I2C0_DR	D8	RW
	19			59			99		I2C0_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C		INT_CLR2	DC	RW
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F		INT_MSK2	DF	RW
DBC00DR0	20	#	AMX_IN	60	RW	DEC0_DH	A0	RC	INT_MSK0	E0	RW
DBC00DR1	21	W	AMUX_CFG	61	RW	DEC0_DL	A1	RC	INT_MSK1	E1	RW
DBC00DR2	22	RW	CLK_CR3	62	RW	DEC1_DH	A2	RC	INT_VC	E2	RC
DBC00CR0	23	#	ARF_CR	63	RW	DEC1_DL	A3	RC	RES_WDT	E3	W
DBC01DR0	24	#	CMP_CR0	64	#		A4		I2C1_SCR	E4	#
DBC01DR1	25	W	ASY_CR	65	#		A5		I2C1_MSCR	E5	#
DBC01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0*	E6	RW
DBC01CR0	27	#	I2C1_DR	67	RW		A7		DEC_CR1*	E7	RW
DCC02DR0	28	#		68		MUL1_X	A8	W	MUL0_X	E8	W
DCC02DR1	29	W		69		MUL1_Y	A9	W	MUL0_Y	E9	W
DCC02DR2	2A	RW		6A		MUL1_DH	AA	R	MUL0_DH	EA	R
DCC02CR0	2B	#		6B		MUL1_DL	AB	R	MUL0_DL	EB	R
DCC03DR0	2C	#	TMP_DR0	6C	RW	ACC1_DR1	AC	RW	ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW	ACC1_DR0	AD	RW	ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR2	AF	RW	ACC0_DR2	EF	RW
DBC10DR0	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
DBC10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBC10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
DBC10CR0	33	#	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBC11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBC11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBC11DR2	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
DBC11CR0	37	#	ACB01CR2	77	RW	RDI0DSM	B7	RW	CPU_F	F7	RL
DCC12DR0	38	#		78		RDI1RI	B8	RW		F8	
DCC12DR1	39	W		79		RDI1SYN	B9	RW		F9	
DCC12DR2	3A	RW		7A		RDI1IS	BA	RW		FA	
DCC12CR0	3B	#		7B		RDI1LT0	BB	RW		FB	
DCC13DR0	3C	#		7C		RDI1LT1	ВС	RW		FC	
DCC13DR1	3D	W		7D		RDI1RO0	BD	RW		FD	
DCC13DR2	3E	RW		7E		RDI1RO1	BE	RW	CPU_SCR1	FE	#
DOGIODINZ	1								_		
DCC13CR0	3F	#		7F		RDI1DSM	BF	RW	CPU SCR0	FF	#

Table 13. CY8C28x23 Register Map Bank 1 Table: Configuration Space

			Map Bank 1								
Name	Addr (1,Hex)		Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	
PRT0DM0	00	RW	DBC20FN	40	RW		80		RDI2RI	C0	RW
PRT0DM1	01	RW	DBC20IN	41	RW		81		RDI2SYN	C1	RW
PRT0IC0	02	RW	DBC20OU	42	RW		82		RDI2IS	C2	RW
PRT0IC1	03	RW	DBC20CR1	43	RW		83		RDI2LT0	C3	RW
PRT1DM0	04	RW	DBC21FN	44	RW		84		RDI2LT1	C4	RW
PRT1DM1	05	RW	DBC21IN	45	RW		85		RDI2RO0	C5	RW
PRT1IC0	06	RW	DBC21OU	46	RW		86		RDI2RO1	C6	RW
PRT1IC1	07	RW	DBC21CR1	47	RW		87		RDI2DSM	C7	RW
PRT2DM0	08	RW	DCC22FN	48	RW		88			C8	ļ
PRT2DM1	09	RW	DCC22IN	49	RW		89			C9	ļ
PRT2IC0	0A	RW	DCC22OU	4A	RW		8A			CA	
PRT2IC1	0B	RW	DCC22CR1	4B	RW		8B			СВ	
PRT3DM0	0C	RW	DCC23FN	4C	RW		8C			CC	
PRT3DM1	0D	RW	DCC23IN	4D	RW		8D			CD	
PRT3IC0	0E	RW	DCC23OU	4E	RW		8E			CE	
PRT3IC1	0F	RW	DCC23CR1	4F	RW		8F			CF	
PRT4DM0	10	RW		50			90		GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		DEC0_CR0	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		DEC_CR3	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53			93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW		54			94	RW	DEC0_CR	D4	RW
PRT5DM1	15	RW		55		DEC1_CR0	95	RW	DEC1_CR	D5	RW
PRT5IC0	16	RW		56			96			D6	
PRT5IC1	17	RW		57			97			D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A		DEC_CR5	9A	RW		DA	
	1B			5B			9B			DB	
	1C			5C			9C			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBC00FN	20	RW	CLK_CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00IN	21	RW	CLK_CR1	61	RW	GDI_E_IN_CR	A1	RW	OSC_CR1	E1	RW
DBC00OU	22	RW	ABF_CR0	62	RW	GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC00CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC01FN	24	RW	CMP_GO_EN	64	RW	RTC_H	A4	RW	VLT_CMP	E4	RW
DBC01IN	25	RW		65		RTC_M	A5	RW		E5	
DBC01OU	26	RW	AMD_CR1	66	RW	RTC_S	A6	RW		E6	
DBC01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW		E7	
DCC02FN	28	RW		68			A8		IMO_TR	E8	RW
DCC02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	RW
DCC02OU	2A	RW		6A			AA		BDG_TR	EA	RW
DCC02CR1	2B	RW	I2C1_CFG	6B	RW		AB		ECO_TR	EB	RW
DCC03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCC03IN	2D	RW	TMP_DR1	6D	RW	I2C0_ADDR	AD	RW		ED	
DCC03OU	2E	RW	TMP_DR2	6E	RW	I2C1_ADDR	AE	RW		EE	
DCC03CR1	2F	RW	TMP_DR3	6F	RW	AMUX_CLK	AF	RW		EF	
DBC10FN	30	RW		70		RDI0RI	В0	RW		F0	
DBC10IN	31	RW		71		RDI0SYN	B1	RW		F1	
DBC10OU	32	RW		72		RDI0IS	B2	RW		F2	
DBC10CR1	33	RW		73		RDI0LT0	B3	RW		F3	
DBC11FN	34	RW		74		RDI0LT1	B4	RW		F4	
DBC11IN	35	RW		75		RDI0RO0	B5	RW		F5	
DBC11OU	36	RW		76		RDI0RO1	B6	RW		F6	
DBC11CR1	37	RW		77		RDIODSM	B7	RW	CPU_F	F7	RL
DCC12FN	38	RW		78		RDI1RI	B8	RW		F8	
DCC12IN	39	RW		79		RDI1SYN	B9	RW		F9	
DCC12OU	3A	RW		7A		RDI1IS	BA	RW	FLS_PR1	FA	RW
DCC12CR1	3B	RW		7B		RDI1LT0	BB	RW		FB	1
DCC13FN	3C	RW		7C		RDI1LT1	BC	RW		FC	†
	3D	RW		7D		RDI1RO0	BD	RW		FD	+
DCC13IN					l						#
	3E	RW		7E		RDI1RO1	BE	RW	CPU SCR1	I FE	
DCC13IN DCC13OU DCC13CR1	3E 3F	RW RW		7E 7F		RDI1RO1 RDI1DSM	BE BF	RW	CPU_SCR1 CPU SCR0	FE FF	#

Table 14. CY8C28x33 Register Map Bank 0 Table: User Space

Table 14. CY						9					
Name	Addr (0,Hex)		Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW	DBC20DR0	40	#	ASC10CR0	80	RW	RDI2RI	C0	RW
PRT0IE	01	RW	DBC20DR1	41	W	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0GS	02	RW	DBC20DR2	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#	ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DR	04	RW	DBC21DR0	44	#	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#	ASD11CR3	87	RW	RDI2DSM	C7	RW
PRT2DR	08	RW	DCC22DR0	48	#		88			C8	
PRT2IE	09	RW	DCC22DR1	49	W		89			C9	
PRT2GS	0A	RW	DCC22DR2	4A	RW		8A			CA	
PRT2DM2	0B	RW	DCC22CR0	4B	#		8B			СВ	
PRT3DR	0C	RW	DCC23DR0	4C	#		8C			CC	
PRT3IE	0D	RW	DCC23DR1	4D	W		8D			CD	
PRT3GS	0E	RW	DCC23DR2	4E	RW		8E			CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#		8F			CF	
PRT4DR	10	RW	D00200110	50	"	ASD20CR0	90	RW	CUR PP	D0	RW
PRT4IE	11	RW		51		ASD20CR1	91	RW	STK PP	D1	RW
PRT4GS	12	RW		52		ASD20CR1	92	RW	SIK_FF	D2	IXVV
									IDV DD		DW
PRT4DM2	13	RW		53		ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW		54		ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW		55		ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C0_CFG	D6	RW
PRT5DM2	17	RW		57		ASC21CR3	97	RW	I2C0_SCR	D7	#
	18			58			98		I2C0_DR	D8	RW
	19			59			99		I2C0_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C		INT_CLR2	DC	RW
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F		INT_MSK2	DF	RW
DBC00DR0	20	#	AMX_IN	60	RW	DEC0_DH	A0	RC	INT_MSK0	E0	RW
DBC00DR1	21	W	AMUX_CFG	61	RW	DEC0_DL	A1	RC	INT_MSK1	E1	RW
DBC00DR2	22	RW	CLK_CR3	62	RW	DEC1_DH	A2	RC	INT_VC	E2	RC
DBC00CR0	23	#	ARF CR	63	RW	DEC1 DL	A3	RC	RES WDT	E3	W
DBC01DR0	24	#	CMP CR0	64	#	DEC2 DH	A4	RC		E4	
DBC01DR1	25	W	ASY CR	65	#	DEC2 DL	A5	RC		E5	
DBC01DR2	26	RW	CMP CR1	66	RW	DEC3 DH	A6	RC	DEC CR0*	E6	RW
DBC01CR0	27	#		67		DEC3 DL	A7	RC	DEC CR1*	E7	RW
DCC02DR0	28	#		68		MUL1 X	A8	W	MUL0 X	E8	W
DCC02DR1	29	W		69		MUL1 Y	A9	W	MUL0 Y	E9	W
DCC02DR2	2A	RW	SADC DH	6A	RW	MUL1 DH	AA	R	MUL0 DH	EA	R
DCC02CR0	2B	#	SADC DL	6B	RW	MUL1 DL	AB	R	MUL0 DL	EB	R
DCC03DR0	2C	#	TMP DR0	6C	RW	ACC1 DR1	AC	RW	ACC0 DR1	EC	RW
DCC03DR1	2D	W W	TMP_DR1	6D	RW	ACC1_DR0	AD	RW	ACC0_DR0	ED	RW
DCC03DR2		RW	TMP_DR2	1		ACC1_DR3	_	RW	ACC0_DR3	EE	RW
DCC03CR0	2E 2F	#	TMP_DR2 TMP DR3	6E 6F	RW RW	ACC1_DR3	AE AF	RW	ACC0_DR3	EF	RW
	30		_			_	B0		ACCU_DR2		FVV
DBC10DR0		#	ACB00CR3	70	RW	RDIORI		RW		F0	
DBC10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	—
DBC10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
DBC10CR0	33	#	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBC11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBC11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBC11DR2	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
DBC11CR0	37	#	ACB01CR2	77	RW	RDI0DSM	B7	RW	CPU_F	F7	RL
DCC12DR0	38	#		78		RDI1RI	B8	RW		F8	
DCC12DR1	39	W		79		RDI1SYN	B9	RW		F9	
DCC12DR2	3A	RW		7A		RDI1IS	BA	RW		FA	
DCC12CR0	3B	#	L	7B		RDI1LT0	BB	RW		FB	
DCC13DR0	3C	#		7C		RDI1LT1	BC	RW	DAC1_D	FC	RW
DCC13DR1	3D	W		7D		RDI1RO0	BD	RW	DAC0_D	FD	RW
DCC13DR2	3E	RW		7E		RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR0	3F	#		7F		RDI1DSM	BF	RW	CPU_SCR0	FF	#
Blank fields are Res	erved and shoul	d not be ac	cessed.	# Access is bit	specific.				ceptions" on page 25	1	
					-			· · · · ·			

Table 15. CY8C28x33 Register Map Bank 1 Table: Configuration Space

FRETORION 00 RW DECOSIFN 40 RW SADC_TSCAMPL 83 RW RDSRN C1	le 15. CY	8C28x33 R	egister	Map Bank 1	Гable: Con	figurat	ion Space					
PRTISION 01 RW DBCZDIN 41 RW SADC_TSCMPL 81 RW RDDSYN CT		Addr (1,Hex)	Access		Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access		Addr (1,Hex)	Access
PRTOICE D3												RW
PRTECION 04												RW
PRITIONAL 04							-					RW
PRT TICK							ACE_AMD_CR1		RW			RW
PRT 11												RW
PRTIZEND OF RW DECZERN 47												RW
PRTZDMM												RW
PRITIZION							ACE_ADC1_CR			RDI2DSM		RW
PRTSIDIO												
PRITAIDH												
PRTSIDMI												
PRISIDID							ACE_CLK_CR3		RW			
PRTSICC OF												
PRTSICH												
PRYTADM												
PRTAILON				DCC23CR1		RW	ASE11CR0		RW			
PRTRICID												RW
PRTISION							_					RW
PRTSDM0							DEC_CR3		RW			RW
PRTSION												RW
PRTSICO										_		RW
PRTSICI	5DM1	15	RW		55		_	95	RW	_	D5	RW
18	5IC0	16	RW		56		DEC_CR4	96	RW	DEC2_CR	D6	RW
19	5IC1	17	RW		57			97		_	D7	RW
1A		18			58			98		MUX_CR0	D8	RW
18							_	99		_	D9	RW
1C		1A			5A		DEC_CR5	9A	RW	_	DA	RW
1D										_		RW
1E		1C			5C			9C		IDAC_CR1	DC	RW
1F		1D			5D		DEC3_CR0		RW	OSC_GO_EN	DD	RW
DBC00FN 20		1E			5E			9E		OSC_CR4	DE	RW
DBC00IN		1F			5F			9F		OSC_CR3	DF	RW
DBC000U 22	COOFN	20	RW	CLK_CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00CR1	COOIN	21	RW	CLK_CR1	61	RW	GDI_E_IN_CR	A1	RW	OSC_CR1	E1	RW
DBC01FN	COOOU	22	RW	ABF_CR0	62	RW	GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC01IN 25	000CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC010U 26	01FN	24	RW	CMP_GO_EN	64	RW	RTC_H	A4	RW	VLT_CMP	E4	RW
DBC01CR1	01IN	25	RW		65		RTC_M	A5	RW	ADC0_TR	E5	RW
DCC02FN 28	01OU	26	RW	AMD_CR1	66	RW	RTC_S	A6	RW	ADC1_TR	E6	RW
DCC02IN 29	01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW	IDAC_CR2	E7	RW
DCC020U	02FN	28	RW		68		SADC_CR0	A8	RW	IMO_TR	E8	RW
DCC02CR1 2B RW 6B SADC_CR3 AB RW ECO_TR EB DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC DCC030IN 2D RW TMP_DR1 6D RW IZC0_ADDR AD RW MUX_CR5 ED DCC030U 2E RW TMP_DR2 6E RW AE EE DCC033CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EE DBC10FN 30 RW TMP_DR3 6F RW AMUX_CLK AF RW EE DBC10FN 30 RW SADC_TSCR0 71 RW RDIORI B0 RW F0 DBC10EN 31 RW SADC_TSCR1 72 RW RDIOSYN B1 RW F1 DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDIOLTS	02IN	29	RW	CLK_CR2	69	RW		A9	RW	ILO_TR	E9	RW
DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED DCC03OU 2E RW TMP_DR2 6E RW AE EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EE DBC10FN 30 RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW SADC_TSCR0 71 RW RDIORI B0 RW F0 DBC10FN 31 RW SADC_TSCR0 71 RW RDIORI B0 RW F1 DBC10CR1 32 RW SADC_TSCR1 72 RW RDIORS B2 RW F2 DBC11CR1 33 RW ACE_AMD_CR0 73 RW <t< td=""><td>02OU</td><td>2A</td><td>RW</td><td>AMUX_CFG1</td><td>6A</td><td>RW</td><td>SADC_CR2</td><td>AA</td><td>RW</td><td>BDG_TR</td><td>EA</td><td>RW</td></t<>	02OU	2A	RW	AMUX_CFG1	6A	RW	SADC_CR2	AA	RW	BDG_TR	EA	RW
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED DCC03OU 2E RW TMP_DR2 6E RW AE EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RDIORI BO RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDIOIT0 B3 RW F3 DBC11FN 34 RW 74 RDIOIT1 B4 RW F4 DBC11GN 35 RW ACE_AMN_IN 75 RW RDIOR00 B5 RW F5 DBC11GN <td>02CR1</td> <td>2B</td> <td>RW</td> <td></td> <td>6B</td> <td></td> <td>SADC_CR3</td> <td>AB</td> <td>RW</td> <td>ECO_TR</td> <td>EB</td> <td>RW</td>	02CR1	2B	RW		6B		SADC_CR3	AB	RW	ECO_TR	EB	RW
DCC03OU 2E RW TMP_DR2 6E RW AE EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RDIORI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDIORI B0 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC11CR1 33 RW ACE_AMD_CR0 73 RW RDIOLT0 B3 RW F2 DBC11FN 34 RW ACE_AMD_CR0 73 RW RDIOLT0 B3 RW F3 DBC11IN 35 RW ACE_AMD_CR0 73 RW RDIORO0 B5 RW F6 DBC11IN 36 RW ACE_CMP_CR0 76 RW RDIORO0 B6 RW CPU_F F	CO3FN	2C	RW	TMP_DR0	6C	RW	SADC_CR4	AC	RW	MUX_CR4	EC	RW
DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RDIORI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC11CR1 33 RW ACE_AMD_CR0 73 RW RDIOLT0 B3 RW F3 DBC11FN 34 RW ACE_AMD_CR0 73 RW RDIOLT1 B4 RW F4 DBC11FN 34 RW ACE_AMM_IN 74 RDIORO0 B5 RW F5 DBC11FN 35 RW ACE_AMM_IN 75 RW RDIORO0 B5 RW F5 DBC11FN 36 RW ACE_CMP_CR0 76 RW RDIORO0 B5 RW	03IN	2D	RW	TMP_DR1	6D	RW	I2C0_ADDR	AD	RW	MUX_CR5	ED	RW
DBC10FN 30 RW 70 RDIORI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDIOLT0 B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDIORO0 B5 RW F5 DBC11UU 36 RW ACE_CMP_CR0 76 RW RDIORO1 B6 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIORO1 B6 RW CPU_F F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIORO1 B6 RW <	03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
DBC10IN 31 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDIOLTO B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDIOROO B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDIOROO B5 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIOROO B6 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIOROO B6 RW CPU_F F7 DCC12FN 38 RW ACE_CMP_CR1 77 RW RDIODSM	C03CR1	2F	RW	TMP_DR3	6F	RW	AMUX_CLK	AF	RW		EF	
DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDIOLT0 B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDIORO0 B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDIORO0 B5 RW F5 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIORO0 B6 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIORO0 B6 RW CPU_F F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW ACE_CMP_GI_EN 79 RW <td>10FN</td> <td>30</td> <td>RW</td> <td></td> <td>70</td> <td></td> <td>RDI0RI</td> <td>В0</td> <td>RW</td> <td></td> <td>F0</td> <td></td>	10FN	30	RW		70		RDI0RI	В0	RW		F0	
DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDIOLTO B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDIOROO B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDIORO1 B6 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9 DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB	C10IN	31	RW	SADC_TSCR0	71	RW	RDI0SYN	B1	RW		F1	
DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDIOROO B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDIORO1 B6 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9 DCC12OU 3A RW ACE_ALT_CRO 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CRO 7B RW RDI1LTO BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC	C10OU	32	RW	SADC_TSCR1	72	RW	RDI0IS	B2	RW		F2	
DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDI0DSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9 DCC12OU 3A RW ACE_ALT_CRO 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CRO 7B RW RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACEO_CR1 7D RW RDI1RO1 BE	C10CR1	33	RW	ACE_AMD_CR0	73	RW	RDI0LT0	B3	RW		F3	
DBC11OU 36 RW ACE_CMP_CR0 76 RW RDIORO1 B6 RW F6 DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9 DCC12OU 3A RW ACE_ALT_CRO 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CRO 7B RW RDI1LTO BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACEO_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD DCC13OU 3E RW ACEO_CR3 7F RW RDI1DSM	C11FN	34	RW		74		RDI0LT1	B4	RW		F4	
DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9 DCC12OU 3A RW ACE_ALT_CRO 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CRO 7B RW RDI1LTO BB RW FB DCC13FN 3C RW ACE_O_CR1 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACEO_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD DCC13OU 3E RW ACEO_CR2 7E RW RDI1RO1 BE RW CPU_SCR0 FF	C11IN	35	RW	ACE_AMX_IN	75	RW	RDI0RO0	B5	RW		F5	
DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9 DCC12OU 3A RW ACE_ALT_CRO 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CRO 7B RW RDI1LTO BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO BD RW IDAC_CR0 FD DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF	C110U	36	RW	ACE_CMP_CR0	76	RW	RDI0RO1	B6	RW		F6	
DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW F9 DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FIS_PR1 FA DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB DCC13FN 3C RW ACE_O_CR1 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACEO_CR1 7D RW RDI1R00 BD RW IDAC_CR0 FD DCC13OU 3E RW ACEO_CR2 7E RW RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACEO_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF	C11CR1	37	RW	ACE_CMP_CR1	77	RW	RDIODSM	B7	RW	CPU_F	F7	RL
DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACE0_CR1 7D RW RDI1R00 BD RW IDAC_CR0 FD DCC13OU 3E RW ACE0_CR2 7E RW RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF	C12FN	38	RW		78		RDI1RI	B8	RW		F8	
DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACE0_CR1 7D RW RDI1R00 BD RW IDAC_CR0 FD DCC13OU 3E RW ACE0_CR2 7E RW RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF	C12IN	39	RW	ACE_CMP_GI_EN	79	RW	RDI1SYN	B9	RW		F9	
DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACE0_CR1 7D RW RDI1R00 BD RW IDAC_CR0 FD DCC130U 3E RW ACE0_CR2 7E RW RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF	C12OU	3A	RW		7A	RW	RDI1IS	BA	RW	FLS_PR1	FA	RW
DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW ACE0_CR1 7D RW RDI1R00 BD RW IDAC_CR0 FD DCC130U 3E RW ACE0_CR2 7E RW RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF	C12CR1		RW			RW	RDI1LT0	BB	RW		FB	
DCC13IN 3D RW ACE0_CR1 7D RW RDI1R00 BD RW IDAC_CR0 FD DCC13OU 3E RW ACE0_CR2 7E RW RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF	C13FN											
DCC13OU 3E RW ACE0_CR2 7E RW RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF				ACE0_CR1		RW				IDAC_CR0		RW
DCC13CR1 3F RW ACEO_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF												#
				_						_		#
Blank fields are Reserved and should not be accessed. #Access is bit specific. *Address has a dual purpose, see "Mapping Exceptions" on page 251				_						_		

Table 16. CY8C28x43 Register Map Bank 0 Table: User Space

			Map Bank 0				1 4 11 (911)			1	
Name PRT0DR	Addr (0,Hex)	Access RW	Name DBC20DR0	Addr (0,Hex)	Access #	Name ASC10CR0	Addr (0,Hex) 80	Access RW	Name RDI2RI	C0	Access RW
PRT0IE	00	RW	DBC20DR0	41	W W	ASC10CR0 ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0GS	02	RW	DBC20DR1	42	RW	ASC10CR1	82	RW	RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#	ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DR	04	RW	DBC21DR0	44	#	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#	ASD11CR3	87	RW	RDI2DSM	C7	RW
PRT2DR	08	RW	DCC22DR0	48	#	ASC12CR0	88	RW		C8	
PRT2IE	09	RW	DCC22DR1	49	W	ASC12CR1	89	RW		C9	<u> </u>
PRT2GS	0A	RW	DCC22DR2	4A	RW	ASC12CR2	8A	RW		CA	
PRT2DM2	0B	RW	DCC22CR0	4B	#	ASC12CR3	8B	RW		СВ	
PRT3DR	0C	RW	DCC23DR0	4C	#	ASD13CR0	8C	RW		CC	
PRT3IE	0D	RW	DCC23DR1	4D	W	ASD13CR1	8D	RW		CD	
PRT3GS	0E	RW	DCC23DR2	4E	RW	ASD13CR2	8E	RW		CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#	ASD13CR3	8F	RW		CF	
PRT4DR	10	RW		50		ASD20CR0	90	RW	CUR PP	D0	RW
PRT4IE	11	RW		51		ASD20CR1	91	RW	STK PP	D1	RW
PRT4GS	12	RW		52		ASD20CR2	92	RW	_	D2	
PRT4DM2	13	RW		53		ASD20CR3	93	RW	IDX PP	D3	RW
PRT5DR	14	RW		54		ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW		55		ASC21CR1	95	RW	MVW PP	D5	RW
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C0 CFG	D6	RW
PRT5DM2	17	RW		57		ASC21CR3	97	RW	I2C0 SCR	D7	#
	18			58		ASD22CR0	98	RW	12C0 DR	D8	RW
	19			59		ASD22CR1	99	RW	I2C0 MSCR	D9	#
	1A			5A		ASD22CR2	9A	RW	INT_CLR0	DA	RW
	1B			5B		ASD22CR3	9B	RW	INT_CLR1	DB	RW
	1C			5C		ASC23CR0	9C	RW	INT_CLR2	DC	RW
	1D			5D		ASC23CR1	9D	RW	INT_CLR3	DD	RW
	1E			5E		ASC23CR2	9E	RW	INT_MSK3	DE	RW
	1F			5F		ASC23CR3	9F	RW	INT_MSK2	DF	RW
DBC00DR0	20	#	AMX_IN	60	RW	DEC0_DH	A0	RC	INT_MSK0	E0	RW
DBC00DR1	21	W	AMUX_CFG	61	RW	DEC0_DL	A1	RC	INT_MSK1	E1	RW
DBC00DR2	22	RW	CLK_CR3	62	RW	DEC1_DH	A2	RC	INT_VC	E2	RC
DBC00CR0	23	#	ARF_CR	63	RW	DEC1_DL	A3	RC	RES_WDT	E3	W
DBC01DR0	24	#	CMP_CR0	64	#	DEC2_DH	A4	RC	I2C1_SCR	E4	#
DBC01DR1	25	W	ASY_CR	65	#	DEC2_DL	A5	RC	I2C1_MSCR	E5	#
DBC01DR2	26	RW	CMP_CR1	66	RW	DEC3_DH	A6	RC	DEC_CR0*	E6	RW
DBC01CR0	27	#	I2C1_DR	67	RW	DEC3_DL	A7	RC	DEC_CR1*	E7	RW
DCC02DR0	28	#		68		MUL1_X	A8	W	MUL0_X	E8	W
DCC02DR1	29	W		69		MUL1_Y	A9	W	MUL0_Y	E9	W
DCC02DR2	2A	RW	SADC_DH	6A	RW	MUL1_DH	AA	R	MUL0_DH	EA	R
DCC02CR0	2B	#	SADC_DL	6B	RW	MUL1_DL	AB	R	MUL0_DL	EB	R
DCC03DR0	2C	#	TMP_DR0	6C	RW	ACC1_DR1	AC	RW	ACC0_DR1	EC	RW
DCC03DR1	2D	W	TMP_DR1	6D	RW	ACC1_DR0	AD	RW	ACC0_DR0	ED	RW
DCC03DR2	2E	RW	TMP_DR2	6E	RW	ACC1_DR3	AE	RW	ACC0_DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR2	AF	RW	ACC0_DR2	EF	RW
DBC10DR0	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW		F0	<u> </u>
DBC10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBC10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	1
DBC10CR0	33	#	ACB00CR2	73	RW	RDIOLTO	B3	RW		F3	
DBC11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBC11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBC11DR2	36	RW "	ACB01CR1	76	RW	RDI0RO1	B6	RW	ODIL 5	F6	
DBC11CR0	37	#	ACB01CR2	77	RW	RDI0DSM	B7	RW	CPU_F	F7	RL
DCC12DR0	38	#	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	<u> </u>
DCC12DR1	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCC12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
DCC12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	
DCC13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	
DCC13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW	CDU COD4	FD	
DCC13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR0	3F	#	ACB03CR2	7F	RW	RDI1DSM	BF	RW	CPU_SCR0	FF	#
Blank fields are Res	ervea and should	u not be ac	vessea.	# Access is bit	specific.	Address has a dua	ı purpose, see "N	iapping Ex	ceptions" on page 25	l	

Table 17. CY8C28x43 Register Map Bank 1 Table: Configuration Space

PRETOZION	Table 17. C	Y8C28x43 R	egister	Map Bank 1	Table: Con	figurat	ion Space					
PRTODUC 02		Addr (1,Hex)	Access		Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access		Addr (1,Hex)	Access
PRITOCIC 02												RW
PRTIDIO 0.9							_					RW
PRITIONS 04							SADC_TSCMPH		RW			RW
PRT												RW
PRT INCO												RW
PRT1001												RW
FRITZIDNO												RW
PRITATION										RDI2DSM		RW
PRTAIDCO												
PRITSION OC. PRI												
PRTSIDMO												
PRTSICC OE												
PRTSICO												
PRTSICH												
PRYTADM												
PRTHAIDM				DCC23CR1		RW						
PRTAICO												RW
PRTISION		11	RW		51		_	91			D1	RW
PRTSDM					52		DEC_CR3		RW			RW
PRTSICO	PRT4IC1	13	RW		53			93			D3	RW
PRTSICO										_		RW
PRTSICI	PRT5DM1	15	RW		55		DEC1_CR0	95	RW	DEC1_CR	D5	RW
18	PRT5IC0	16	RW		56		DEC_CR4	96	RW	DEC2_CR	D6	RW
19	PRT5IC1	17	RW		57			97		DEC3_CR	D7	RW
1A		18			58			98		MUX_CR0	D8	RW
18							_			_	D9	RW
1C		1A			5A		DEC_CR5	9A	RW	_	DA	RW
1D										MUX_CR3		RW
1E		1C			5C			9C			DC	
DECOJEN 1F		1D			5D		DEC3_CR0		RW		DD	RW
DBCOOPN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 DBCOON 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 I0 DBCOOOU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 I1 DBCOOCR1 E3 RW AMP_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 I1 DBCOOFN CMP_GO_EN 64 RW RTC_H A4 RW VLT_CRM E4 I1 RM CMP_GO_EN 65 RW RTC_H A4 RW VLT_CMM E4 I1 RM CMP_GO_EN 66 RW RTC_M A5 RW CLK_CR2 E6 RW AMD_CR1 66 RW RTC_S A6 RW E6 CMP_GO_EN E6 CMP_GO_EN		1E			5E			9E		OSC_CR4	DE	RW
DBC000N		1F			5F			9F		OSC_CR3	DF	RW
DBC000U 22	DBC00FN	20	RW	CLK_CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00CR1				_						_		RW
DBC01FN	DBC00OU	22	RW	ABF_CR0	62	RW	GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC01IN 25	DBC00CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC010U 26	DBC01FN	24	RW	CMP_GO_EN	64	RW	RTC_H	A4	RW	VLT_CMP	E4	RW
DBC01CR1	DBC01IN	25	RW	CMP_GO_EN1	65	RW	RTC_M	A5	RW		E5	
DCC02FN 28	DBC01OU	26	RW	AMD_CR1	66	RW	RTC_S	A6	RW		E6	
DCC02IN 29	DBC01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW		E7	
DCC020U	DCC02FN	28	RW	ALT_CR1	68	RW	SADC_CR0	A8	RW	IMO_TR	E8	RW
DCC02CR1	DCC02IN	29	RW	CLK_CR2	69	RW	SADC_CR1	A9	RW	ILO_TR	E9	RW
DCC03FN 2C	DCC02OU	2A	RW	AMUX_CFG1	6A	RW	SADC_CR2	AA	RW	BDG_TR	EA	RW
DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED I0C03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE I0C03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF I0C03CR1 30 RW 70 RDIORI BO RW FO I0C03CR1 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 I0C03CR1 RW SADC_TSCR1 72 RW RDIOSYN B1 RW F2 I0C03CR1 RW F3 I0C03CR1 RW F4 I0C03CR1 RW F4 I0C03CR1 RW F5 I0C03CR1 F5 I0C03CR1 RW I0C03CR1 RW I0C03CR1 RW I0C03CR1 RW I0C03CR1 F5 I0C03CR1 F5 I0C03CR1 F5 I0C03CR1 F5 I0C03CR1 F5 I0C03CR1 RW I0C03CR1 F5 I0C03CR1 I0C03CR1 I0C03CR1 I0C03CR1	DCC02CR1	2B	RW	I2C1_CFG	6B	RW	SADC_CR3	AB	RW	ECO_TR	EB	RW
DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RD0RI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RD10SYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RD10IS B2 RW F2 DBC11CR1 33 RW 73 RD10LT0 B3 RW F3 DBC11FN 34 RW 74 RD10LT1 B4 RW F4 DBC11IN 35 RW 75 RD10RO0 B5 RW F5 DBC11CR1 37 RW 76 RD10RO1 B6 RW F6 DBC11SRN 38 RW 78 RD11RIN B8 RW	DCC03FN	2C	RW	TMP_DR0	6C	RW	SADC_CR4	AC	RW	MUX_CR4	EC	RW
DCC03CR1 2F RW TMP_DR3 6F RW AMUZ_CLK AF RW EF DBC10FN 30 RW 70 RDIORI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 DBC10CV 32 RW SADC_TSCR1 72 RW RDIOLTO B3 RW F2 DBC11CV 33 RW 73 RDIOLTO B3 RW F3 DBC11FN 34 RW 74 RDIOLTO B3 RW F4 DBC11FN 34 RW 74 RDIOROO B5 RW F4 DBC11FN 35 RW 76 RDIOROO B5 RW F5 DBC11OU 36 RW 76 RDIOROO B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 <td>DCC03IN</td> <td>2D</td> <td>RW</td> <td>TMP_DR1</td> <td>6D</td> <td>RW</td> <td>I2C0_ADDR</td> <td>AD</td> <td>RW</td> <td>MUX_CR5</td> <td>ED</td> <td>RW</td>	DCC03IN	2D	RW	TMP_DR1	6D	RW	I2C0_ADDR	AD	RW	MUX_CR5	ED	RW
DBC10FN 30 RW 70 RDIORI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC10CR1 33 RW 73 RDIOLTO B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW 75 RDIOROO B5 RW F5 DBC11OU 36 RW 76 RDIOROO B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12OU 3A RW 7A RDI1SYN B9 RW F9 DCC13FN	DCC03OU	2E	RW	TMP_DR2	6E	RW	I2C1_ADDR	AE	RW		EE	
DBC10IN 31 RW SADC_TSCR0 71 RW RDIOSYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC10CR1 33 RW 73 RDIOLTO B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW 75 RDIOROO B5 RW F5 DBC11OU 36 RW 76 RDIOROO B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW 79 RDI1SYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FB DCC13FN	DCC03CR1	2F	RW	TMP_DR3	6F	RW	AMUX_CLK	AF	RW		EF	
DBC10OU 32 RW SADC_TSCR1 72 RW RDIOIS B2 RW F2 DBC10CR1 33 RW 73 RDIOLTO B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW 75 RDIORO0 B5 RW F5 DBC11OU 36 RW 76 RDIORO1 B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW 79 RDI1SYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FB DCC13FN 3C RW 7B RDI1LT0 BB RW FB DCC13IN 3D RW <t< td=""><td>DBC10FN</td><td>30</td><td>RW</td><td></td><td>70</td><td></td><td>RDI0RI</td><td>В0</td><td>RW</td><td></td><td>F0</td><td></td></t<>	DBC10FN	30	RW		70		RDI0RI	В0	RW		F0	
DBC10CR1 33 RW 73 RDIOLTO B3 RW F3 DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW 75 RDIORO0 B5 RW F5 DBC11OU 36 RW 76 RDIORO1 B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW 79 RDI1SYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA DCC13CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1RO0 BD RW FC DCC13IN 3D RW 7D <td< td=""><td>DBC10IN</td><td>31</td><td>RW</td><td>SADC_TSCR0</td><td>71</td><td>RW</td><td>RDI0SYN</td><td>B1</td><td>RW</td><td></td><td>F1</td><td></td></td<>	DBC10IN	31	RW	SADC_TSCR0	71	RW	RDI0SYN	B1	RW		F1	
DBC11FN 34 RW 74 RDIOLT1 B4 RW F4 DBC11IN 35 RW 75 RDIOROO B5 RW F5 DBC11OU 36 RW 76 RDIORO1 B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW 79 RDI1SYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW 7B RDI1LTO BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW CPU_SCR1 FE DCC13CR1 3F RW	DBC10OU	32	RW	SADC_TSCR1	72	RW	RDI0IS	B2	RW		F2	
DBC11IN 35 RW 75 RDIOROO B5 RW F5 DBC11OU 36 RW 76 RDIORO1 B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW 79 RDI1SYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW 7B RDI1LTO BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW FD DCC13QU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW	DBC10CR1	33	RW		73		RDI0LT0	B3	RW		F3	
DBC11OU 36 RW 76 RDIORO1 B6 RW F6 DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW 79 RDI1SYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW 7B RDI1LTO BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW FD DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF	DBC11FN	34	RW		74		RDI0LT1	B4	RW		F4	
DBC11CR1 37 RW 77 RDIODSM B7 RW CPU_F F7 DCC12FN 38 RW 78 RDI1RI B8 RW F8 DCC12IN 39 RW 79 RDI1SYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW 7B RDI1LTO BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW FD DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF	DBC11IN	35	RW		75		RDI0RO0	B5	RW		F5	
DCC12FN 38 RW 78 RD1RI B8 RW F8 DCC12IN 39 RW 79 RD1SYN B9 RW F9 DCC12OU 3A RW 7A RD11S BA RW FLS_PR1 FA DCC12CR1 3B RW 7B RD11LT0 BB RW FB DCC13FN 3C RW 7C RD11LT1 BC RW FC DCC13IN 3D RW 7D RD11RO0 BD RW FD DCC13OU 3E RW 7E RD11RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RD1DSM BF RW CPU_SCR0 FF	DBC11OU	36	RW		76		RDI0RO1	B6	RW		F6	
DCC12IN 39 RW 79 RDISYN B9 RW F9 DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA DCC12CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW FD DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF	DBC11CR1	37	RW		77		RDIODSM	B7	RW	CPU_F	F7	RL
DCC12OU 3A RW 7A RDI1IS BA RW FLS_PR1 FA IDC12CR1 BB RW FB RDI1LT0 BB RW FB RW FB RW FC RW FC RW FC RW FC RW FC RW FC RW FD RW FE RW CPU_SCR1 FE RW CPU_SCR0 FF RW CPU_SCR0	DCC12FN	38	RW		78		RDI1RI	B8	RW		F8	
DCC12CR1 3B RW 7B RDILTO BB RW FB DCC13FN 3C RW 7C RDILT1 BC RW FC DCC13IN 3D RW 7D RDI1R00 BD RW FD DCC13OU 3E RW 7E RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF	DCC12IN	39	RW		79		RDI1SYN	B9	RW		F9	
DCC12CR1 3B RW 7B RDILTO BB RW FB DCC13FN 3C RW 7C RDILT1 BC RW FC DCC13IN 3D RW 7D RDI1R00 BD RW FD DCC13OU 3E RW 7E RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF	DCC12OU	3A	RW		7A		RDI1IS	BA	RW	FLS_PR1	FA	RW
DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1R00 BD RW FD DCC130U 3E RW 7E RDI1R01 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF	DCC12CR1		RW		7B		RDI1LT0	ВВ	RW		FB	
DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF		3C	RW		7C		RDI1LT1	BC	RW		FC	
DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF												
DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF										CPU_SCR1		#
										_		#
Dianik notes are resourced and should not be accessed. π ποσείε is bit specific. ■ πudicos has a qual butbood, δου iyiabbiitu ∟λουμίστο στη batte 201				cessed.		specific.		1		_		1

Table 18. CY8C28x45 Register Map Bank 0 Table: User Space

			Map Bank 0		r Space	9					
Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW	DBC20DR0	40	#	ASC10CR0	80	RW	RDI2RI	C0	RW
PRT0IE	01	RW	DBC20DR1	41	W	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0GS	02	RW	DBC20DR2	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0DM2	03	RW	DBC20CR0	43	#	ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DR	04	RW	DBC21DR0	44	#	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1IE	05	RW	DBC21DR1	45	W	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1GS	06	RW	DBC21DR2	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1DM2	07	RW	DBC21CR0	47	#	ASD11CR3	87	RW	RDI2DSM	C7	RW
PRT2DR	80	RW	DCC22DR0	48	#	ASC12CR0	88	RW		C8	
PRT2IE	09	RW	DCC22DR1	49	W	ASC12CR1	89	RW		C9	
PRT2GS	0A	RW	DCC22DR2	4A	RW	ASC12CR2	8A	RW		CA	
PRT2DM2	0B	RW	DCC22CR0	4B	#	ASC12CR3	8B	RW		СВ	
PRT3DR	0C	RW	DCC23DR0	4C	#	ASD13CR0	8C	RW		CC	
PRT3IE	0D	RW	DCC23DR1	4D	W	ASD13CR1	8D	RW		CD	
PRT3GS	0E	RW	DCC23DR2	4E	RW	ASD13CR2	8E	RW		CE	
PRT3DM2	0F	RW	DCC23CR0	4F	#	ASD13CR3	8F	RW		CF	
PRT4DR	10	RW		50		ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW		51		ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW		52		ASD20CR2	92	RW		D2	
PRT4DM2	13	RW		53		ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW		54		ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW		55		ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C0_CFG	D6	RW
PRT5DM2	17	RW		57		ASC21CR3	97	RW	I2C0_SCR	D7	#
	18			58		ASD22CR0	98	RW	I2C0_DR	D8	RW
	19			59		ASD22CR1	99	RW	I2C0_MSCR	D9	#
	1A			5A		ASD22CR2	9A	RW	INT_CLR0	DA	RW
	1B			5B		ASD22CR3	9B	RW	INT_CLR1	DB	RW
	1C			5C		ASC23CR0	9C	RW	INT_CLR2	DC	RW
	1D			5D		ASC23CR1	9D	RW	INT_CLR3	DD	RW
	1E			5E		ASC23CR2	9E	RW	INT_MSK3	DE	RW
	1F			5F		ASC23CR3	9F	RW	INT_MSK2	DF	RW
DBC00DR0	20	#	AMX_IN	60	RW	DEC0_DH	A0	RC	INT_MSK0	E0	RW
DBC00DR1	21	W	AMUX_CFG	61	RW	DEC0_DL	A1	RC	INT_MSK1	E1	RW
DBC00DR2	22	RW	CLK CR3	62	RW	DEC1 DH	A2	RC	INT VC	E2	RC
DBC00CR0	23	#	ARF CR	63	RW	DEC1 DL	A3	RC	RES WDT	E3	W
DBC01DR0	24	#	CMP CR0	64	#	DEC2 DH	A4	RC	I2C1 SCR	E4	#
DBC01DR1	25	W	ASY CR	65	#	DEC2 DL	A5	RC	I2C1 MSCR	E5	#
DBC01DR2	26	RW	CMP CR1	66	RW	DEC3 DH	A6	RC	DEC CR0*	E6	RW
DBC01CR0	27	#	I2C1 DR	67	RW	DEC3 DL	A7	RC	DEC CR1*	E7	RW
DCC02DR0	28	#		68		MUL1 X	A8	W	MUL0 X	E8	W
DCC02DR1	29	W		69		MUL1 Y	A9	W	MUL0 Y	E9	W
DCC02DR2	2A	RW	SADC DH	6A	RW	MUL1 DH	AA	R	MUL0 DH	EA	R
DCC02CR0	2B	#	SADC DL	6B	RW	MUL1 DL	AB	R	MUL0 DL	EB	R
DCC03DR0	2C	#	TMP DR0	6C	RW	ACC1 DR1	AC	RW	ACC0 DR1	EC	RW
DCC03DR1	2D	W	TMP DR1	6D	RW	ACC1 DR0	AD	RW	ACC0 DR0	ED	RW
DCC03DR2	2E	RW	TMP DR2	6E	RW	ACC1 DR3	AE	RW	ACC0 DR3	EE	RW
DCC03CR0	2F	#	TMP DR3	6F	RW	ACC1 DR2	AF	RW	ACC0 DR2	EF	RW
DBC10DR0	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW	71000_B112	F0	
DBC10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBC10DR2	32	RW	ACB00CR1	72	RW	RDIOIS	B2	RW		F2	
DBC10CR0	33	#	ACB00CR2	73	RW	RDIOLTO	B3	RW		F3	
DBC11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBC11DR1	35	W W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBC11DR1	36	RW	ACB01CR0	76	RW	RDI0RO1	B6	RW		F6	
DBC11CR0	37	#	ACB01CR1	77	RW	RDI0DSM	B7	RW	CPU F	F7	RL
DCC12DR0	38	#	ACB01CR2 ACB02CR3	78	RW	RDI1RI	B8	RW	J, 0_1	F8	INL
DCC12DR0 DCC12DR1	38	# W	ACB02CR3 ACB02CR0	78	RW	RDI1SYN	B8 B9	RW		F8 F9	
DCC12DR2	3A	RW #	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA FB	
DCC12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW	DAC1 D		DVA
DCC13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW	DAC1_D	FC	RW
DCC13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW	DAC0_D	FD	RW
DCC13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR0	3F	#	ACB03CR2	7F	RW	RDI1DSM	BF "	RW	CPU_SCR0	FF	#
Blank fields are Res	served and shoul	d not be ac	cessed.	# Access is bit	specific.	^Address has a dua	ı purpose, see "N	napping Ex	ceptions" on page 25	1	

Table 19. CY8C28x45 Register Map Bank 1 Table: Configuration Space

Table 19. CY	8C28X45 R	egister	Map Bank 1	Table: Con	ifigurat	ion Space					
Name	Addr (1,Hex)		Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW	DBC20FN	40	RW		80	RW	RDI2RI	C0	RW
PRT0DM1	01	RW	DBC20IN	41	RW	SADC_TSCMPL	81	RW	RDI2SYN	C1	RW
PRT0IC0	02	RW	DBC20OU	42	RW	SADC_TSCMPH	82	RW	RDI2IS	C2	RW
PRT0IC1	03	RW	DBC20CR1	43	RW	ACE_AMD_CR1	83	RW	RDI2LT0	C3	RW
PRT1DM0	04	RW	DBC21FN	44	RW		84	RW	RDI2LT1	C4	RW
PRT1DM1	05	RW	DBC21IN	45	RW	ACE_PWM_CR	85	RW	RDI2RO0	C5	RW
PRT1IC0	06	RW	DBC21OU	46	RW	ACE_ADC0_CR	86	RW	RDI2RO1	C6	RW
PRT1IC1	07	RW	DBC21CR1	47	RW	ACE_ADC1_CR	87	RW	RDI2DSM	C7	RW
PRT2DM0	08	RW	DCC22FN	48	RW		88	RW		C8	
PRT2DM1	09	RW	DCC22IN	49	RW	ACE_CLK_CR0	89	RW		C9	
PRT2IC0	0A	RW	DCC22OU	4A	RW	ACE CLK CR1	8A	RW		CA	
PRT2IC1	0B	RW	DCC22CR1	4B	RW	ACE_CLK_CR3	8B	RW		СВ	
PRT3DM0	0C	RW	DCC23FN	4C	RW		8C	RW		CC	
PRT3DM1	0D	RW	DCC23IN	4D	RW	ACE01CR1	8D	RW		CD	
PRT3IC0	0E	RW	DCC23OU	4E	RW	ACE01CR2	8E	RW		CE	
PRT3IC1	0F	RW	DCC23CR1	4F	RW	ASE11CR0	8F	RW		CF	
PRT4DM0	10	RW		50			90		GDI O IN	D0	RW
PRT4DM1	11	RW		51		DEC0 CR0	91	RW	GDI E IN	D1	RW
PRT4IC0	12	RW		52		DEC CR3	92	RW	GDI O OU	D2	RW
PRT4IC1	13	RW		53		DEC_CINS	93	IXVV	GDI_O_OU	D3	RW
PRT5DM0	14	RW		54		DEC4 CD2	94	DVA	DEC0_CR DEC1_CR	D4	RW
PRT5DM1	15	RW		55		DEC1_CR0	95	RW	_	D5	RW
PRT5IC0	16	RW		56		DEC_CR4	96	RW	DEC2_CR	D6	RW
PRT5IC1	17	RW		57			97		DEC3_CR	D7	RW
	18			58			98		MUX_CR0	D8	RW
	19			59		DEC2_CR0	99	RW	MUX_CR1	D9	RW
	1A			5A		DEC_CR5	9A	RW	MUX_CR2	DA	RW
	1B			5B			9B		MUX_CR3	DB	RW
	1C			5C			9C		IDAC_CR1	DC	RW
	1D			5D		DEC3_CR0	9D	RW	OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1F			5F			9F		OSC_CR3	DF	RW
DBC00FN	20	RW	CLK_CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC_CR0	E0	RW
DBC00IN	21	RW	CLK_CR1	61	RW	GDI_E_IN_CR	A1	RW	OSC_CR1	E1	RW
DBC00OU	22	RW	ABF_CR0	62	RW	GDI_O_OU_CR	A2	RW	OSC_CR2	E2	RW
DBC00CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC01FN	24	RW	CMP_GO_EN	64	RW	RTC_H	A4	RW	VLT_CMP	E4	RW
DBC01IN	25	RW	CMP_GO_EN1	65	RW	RTC_M	A5	RW	ADC0_TR	E5	RW
DBC01OU	26	RW	AMD_CR1	66	RW	RTC_S	A6	RW	ADC1_TR	E6	RW
DBC01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW	IDAC_CR2	E7	RW
DCC02FN	28	RW	ALT_CR1	68	RW	SADC_CR0	A8	RW	IMO_TR	E8	RW
DCC02IN	29	RW	CLK_CR2	69	RW	SADC_CR1	A9	RW	ILO_TR	E9	RW
DCC02OU	2A	RW	AMUX CFG1	6A	RW	SADC CR2	AA	RW	BDG TR	EA	RW
DCC02CR1	2B	RW	I2C1 CFG	6B	RW	SADC CR3	AB	RW	ECO TR	EB	RW
DCC03FN	2C	RW	TMP DR0	6C	RW	SADC CR4	AC	RW	MUX CR4	EC	RW
DCC03IN	2D	RW	TMP DR1	6D	RW	I2C0 ADDR	AD	RW	MUX CR5	ED	RW
DCC03OU	2E	RW	TMP DR2	6E	RW	I2C1 ADDR	AE	RW		EE	
DCC03CR1	2F	RW	TMP DR3	6F	RW	AMUX CLK	AF	RW		EF	
DBC10FN	30	RW	51.0	70		RDI0RI	B0	RW		F0	
DBC10IN	31	RW	SADC TSCR0	71	RW	RDI0SYN	B1	RW		F1	
DBC100U	32	RW	SADC_TSCR1	72	RW	RDIOIS	B2	RW		F2	
DBC10CR1	33	RW	ACE AMD CR0	73	RW	RDIOLTO	B3	RW		F3	
DBC11FN	34	RW	ACL_AMD_ON	74	1744	RDI0LT1	B4	RW		F4	
DBC11IN	35	RW	ACE AMX IN	75	RW	RDI0RO0	B5	RW		F5	
DBC11IN	36	RW		76	RW	RDI0RO1	B6	RW		F6	
DBC11CR1	37	RW	ACE_CMP_CR0 ACE CMP CR1	77	RW	RDIOROT	B7	RW	CPU F	F7	RL
			ACE_CIVIP_CRT		FKVV				OFU_F		KL
DCC12FN	38	RW	ACE CMP OF EN	78	DVA	RDI1RI	B8	RW		F8	
DCC12IN	39	RW	ACE_CMP_GI_EN	79	RW	RDI1SYN	B9	RW	FI 0 PD :	F9	B
DCC12OU	3A	RW	ACE_ALT_CR0	7A	RW	RDI1IS	BA	RW	FLS_PR1	FA	RW
DCC12CR1	3B	RW	ACE_ABF_CR0	7B	RW	RDI1LT0	BB	RW		FB	
DCC13FN	3C	RW		7C		RDI1LT1	BC	RW		FC	
		RW	ACE0 CR1	7D	RW	RDI1RO0	BD	RW	IDAC_CR0	FD	RW
DCC13IN	3D										
DCC13IN DCC13OU	3E	RW	ACE0_CR2	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13IN	3E 3F	RW RW	ACE0_CR2 ACE0_CR3		RW RW	RDI1RO1 RDI1DSM	BF	RW		FE FF	#

Table 20. CY8C28x52 Register Map Bank 0 Table: User Space

Table 20. CY	8C28X52 R	egister	Map Bank 0		r Space	9					
Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48		ASC12CR0	88	RW		C8	
PRT2IE	09	RW		49		ASC12CR1	89	RW		C9	
PRT2GS	0A	RW		4A		ASC12CR2	8A	RW		CA	
PRT2DM2	0B	RW		4B		ASC12CR3	8B	RW		СВ	
PRT3DR	0C	RW		4C		ASD13CR0	8C	RW		CC	
PRT3IE	0D	RW		4D		ASD13CR1	8D	RW		CD	
PRT3GS	0E	RW		4E		ASD13CR2	8E	RW		CE	
PRT3DM2	0F	RW		4F		ASD13CR3	8F	RW		CF	
PRT4DR	10	RW		50		ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW		51		ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW		52		ASD20CR2	92	RW		D2	
PRT4DM2	13	RW		53		ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW		54		ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW		55		ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW		56		ASC21CR2	96	RW	I2C0_CFG	D6	RW
PRT5DM2	17	RW		57		ASC21CR3	97	RW	I2C0_SCR	D7	#
	18			58		ASD22CR0	98	RW	I2C0_DR	D8	RW
	19			59		ASD22CR1	99	RW	I2C0 MSCR	D9	#
	1A			5A		ASD22CR2	9A	RW	INT_CLR0	DA	RW
	1B			5B		ASD22CR3	9B	RW	INT_CLR1	DB	RW
	1C			5C		ASC23CR0	9C	RW	INT_CLR2	DC	RW
	1D			5D		ASC23CR1	9D	RW	INT_CLR3	DD	RW
	1E			5E		ASC23CR2	9E	RW	INT MSK3	DE	RW
	1F			5F		ASC23CR3	9F	RW	INT_MSK2	DF	RW
DBC00DR0	20	#	AMX IN	60	RW	DEC0 DH	A0	RC	INT MSK0	E0	RW
DBC00DR1	21	W	AMUX CFG	61	RW	DEC0 DL	A1	RC	INT MSK1	E1	RW
DBC00DR2	22	RW	CLK CR3	62	RW	DEC1 DH	A2	RC	INT VC	E2	RC
DBC00CR0	23	#	ARF CR	63	RW	DEC1 DL	A3	RC	RES WDT	E3	W
DBC01DR0	24	#	CMP CR0	64	#	DEC2 DH	A4	RC	_	E4	
DBC01DR1	25	W	ASY CR	65	#	DEC2 DL	A5	RC		E5	
DBC01DR2	26	RW	CMP CR1	66	RW	DEC3 DH	A6	RC	DEC CR0*	E6	RW
DBC01CR0	27	#		67		DEC3 DL	A7	RC	DEC CR1*	E7	RW
DCC02DR0	28	#		68		MUL1 X	A8	W	MUL0_X	E8	W
DCC02DR1	29	W		69		MUL1 Y	A9	W	MUL0 Y	E9	W
DCC02DR2	2A	RW		6A		MUL1 DH	AA	R	MUL0 DH	EA	R
DCC02CR0	2B	#		6B		MUL1 DL	AB	R	MUL0 DL	EB	R
DCC03DR0	2C	#	TMP DR0	6C	RW	ACC1 DR1	AC	RW	ACC0 DR1	EC	RW
DCC03DR1	2D	W	TMP DR1	6D	RW	ACC1 DR0	AD	RW	ACC0 DR0	ED	RW
DCC03DR2	2E	RW	TMP DR2	6E	RW	ACC1 DR3	AE	RW	ACC0 DR3	EE	RW
DCC03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR3	AF	RW	ACC0_DR3	EF	RW
DBC10DR0	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW	ACCC_DITZ	F0	1200
DBC10DR1	31	W	ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	
DBC10DR1	32	RW	ACB00CR0	72	RW	RDIOIS	B2	RW		F2	
DBC10DR2	33	#	ACB00CR1	73	RW	RDI0LT0	B3	RW		F3	
DBC11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBC11DR0	35	W W	ACB01CR3	75	RW	RDI0RO0	B5	RW		F5	
DBC11DR1	36	RW	ACB01CR0	76	RW	RDI0RO0	B6	RW		F6	
DBC11DR2	36	#	ACB01CR1	76	RW	RDI0RO1 RDI0DSM	B6 B7	RW	CPU F	F6 F7	RL
	38	#			RW	RDI1RI	B8	RW	OFU_F	F7 F8	RL
DCC12DR0 DCC12DR1			ACB02CR3	78							
	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCC12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
DCC12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW	DAG4 5	FB	514
DCC13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW	DAC1_D	FC	RW
DCC13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW	DAC0_D	FD	RW
DCC13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR0	3F	#	ACB03CR2	7F	RW	RDI1DSM	BF	RW	CPU_SCR0	FF	#
Blank fields are Res	served and should	d not be ac	cessed.	# Access is bit	specific.	*Address has a dua	I purpose, see "N	lapping Ex	ceptions" on page 25	1	

Table 21. CY8C28x52 Register Map Bank 1 Table: Configuration Space

Name	00 01 02 03 04 05 06 06	RW RW RW	Name	40 41	Access	Name	Addr (1,Hex) 80	Access	Name	Addr (1,Hex)	Access
PRT0DM1 PRT0IC0 PRT0IC1 PRT1DM0 PRT1DM1 PRT1IC0 PRT1IC1 PRT2DM0 PRT2DM1 PRT2DM1 PRT2DM1	01 02 03 04 05 06	RW RW RW									<u> </u>
PRTOICO PRTOIC1 PRT1DM0 PRT1DM1 PRT1IC0 PRT1IC1 PRT2DM0 PRT2DM0 PRT2DM1 PRT2IC0	02 03 04 05 06	RW RW		41							
PRTOIC1 PRT1DM0 PRT1DM1 PRT1IC0 PRT1IC1 PRT2DM0 PRT2DM1 PRT2DM1	03 04 05 06	RW					81			C1	
PRT1DM0 PRT1DM1 PRT1IC0 PRT1IC1 PRT2DM0 PRT2DM1 PRT2IC0	04 05 06			42			82			C2	
PRT1DM1 PRT1IC0 PRT1IC1 PRT2DM0 PRT2DM1 PRT2IC0	05 06			43		ACE_AMD_CR1	83	RW		C3	
PRT1IC0 PRT1IC1 PRT2DM0 PRT2DM1 PRT2IC0	06	RW		44		105 01444 00	84	D)4/		C4	-
PRT1IC1 PRT2DM0 PRT2DM1 PRT2IC0		RW		45		ACE_PWM_CR	85	RW		C5	-
PRT2DM0 PRT2DM1 PRT2IC0		RW		46		ACE_ADC0_CR	86	RW		C6	-
PRT2DM1 PRT2IC0	07	RW		47		ACE_ADC1_CR	87	RW		C7	-
PRT2IC0	08	RW		48		AOE OUK ODO	88	DW		C8	-
	09	RW		49		ACE_CLK_CR0	89	RW RW		C9	-
	0A 0B	RW RW		4A 4B		ACE_CLK_CR1 ACE_CLK_CR3	8A 8B	RW		CA CB	-
PRT3DM0	0B	RW		4B 4C		ACE_CLK_CR3	8C	ΓVV		CC	-
PRT3DM0	0D	RW		4C 4D		ACE01CR1	8D	RW		CD	-
PRT3IC0	0B 0E	RW		4D 4E		ACE01CR1	8E	RW		CE	-
PRT3IC1	0E 0F	RW		4E 4F		ASE11CR0	8F	RW		CF	
PRT4DM0	10	RW		50		ASETICKU	90	ΓVV	GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		DEC0 CR0	91	RW	GDI_O_IN	D1	RW
PRT4IC0	12	RW		52		DEC CR3	92	RW	GDI O OU	D2	RW
PRT4IC1	13	RW		53		DLO_CINS	93	IXVV	GDI_O_OO	D3	RW
PRT5DM0	14	RW		54			94		DEC0 CR	D3	RW
PRT5DM1	15	RW		55		DEC1 CR0	95	RW	DEC1_CR	D5	RW
PRT5IC0	16	RW		56		DEC CR4	96	RW	DEC2 CR	D6	RW
PRT5IC1	17	RW		57		DLO_OR4	97	1377	DEC3 CR	D7	RW
11(13)01	18	1377		58			98		MUX CR0	D8	RW
	19			59		DEC2 CR0	99	RW	MUX CR1	D9	RW
	1A			5A		DEC CR5	9A	RW	MUX CR2	DA	RW
	1B			5B		220_0.10	9B		MUX CR3	DB	RW
	1C			5C			9C		IDAC CR1	DC	RW
	1D			5D		DEC3 CR0	9D	RW	OSC_GO_EN	DD	RW
	1E			5E			9E		OSC CR4	DE	RW
	1F			5F			9F		OSC CR3	DF	RW
DBC00FN	20	RW	CLK CR0	60	RW	GDI_O_IN_CR	A0	RW	OSC CR0	E0	RW
DBC00IN	21	RW	CLK CR1	61	RW	GDI_E_IN_CR	A1	RW	OSC CR1	E1	RW
DBC00OU	22	RW	ABF CR0	62	RW	GDI O OU CR	A2	RW	OSC CR2	E2	RW
DBC00CR1	23	RW	AMD_CR0	63	RW	GDI_E_OU_CR	A3	RW	VLT_CR	E3	RW
DBC01FN	24	RW	CMP GO EN	64	RW	RTC H	A4	RW	VLT_CMP	E4	RW
DBC01IN	25	RW	CMP_GO_EN1	65	RW	RTC_M	A5	RW	ADC0_TR	E5	RW
DBC01OU	26	RW	AMD_CR1	66	RW	RTC_S	A6	RW	ADC1_TR	E6	RW
DBC01CR1	27	RW	ALT_CR0	67	RW	RTC_CR	A7	RW	IDAC_CR2	E7	RW
DCC02FN	28	RW	ALT_CR1	68	RW		A8		IMO_TR	E8	RW
DCC02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	RW
DCC02OU	2A	RW	AMUX_CFG1	6A	RW		AA		BDG_TR	EA	RW
DCC02CR1	2B	RW		6B			AB		ECO_TR	EB	RW
DCC03FN	2C	RW	TMP_DR0	6C	RW		AC		MUX_CR4	EC	RW
DCC03IN	2D	RW	TMP_DR1	6D	RW	I2C0_ADDR	AD	RW	MUX_CR5	ED	RW
DCC03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCC03CR1	2F	RW	TMP_DR3	6F	RW	AMUX_CLK	AF	RW		EF	
DBC10FN	30	RW		70		RDI0RI	B0	RW		F0	
DBC10IN	31	RW		71		RDI0SYN	B1	RW		F1	
DBC10OU	32	RW		72		RDI0IS	B2	RW		F2	
DBC10CR1	33	RW	ACE_AMD_CR0	73	RW	RDI0LT0	B3	RW		F3	
DBC11FN	34	RW		74		RDI0LT1	B4	RW		F4	<u> </u>
DBC11IN	35	RW	ACE_AMX_IN	75	RW	RDI0RO0	B5	RW		F5	<u> </u>
DBC11OU	36	RW	ACE_CMP_CR0	76	RW	RDI0RO1	B6	RW		F6	
DBC11CR1	37	RW	ACE_CMP_CR1	77	RW	RDIODSM	B7	RW	CPU_F	F7	RL
DCC12FN	38	RW		78		RDI1RI	B8	RW		F8	
DCC12IN	39	RW	ACE_CMP_GI_EN	79	RW	RDI1SYN	B9	RW		F9	
DCC12OU	3A	RW	ACE_ALT_CR0	7A	RW	RDI1IS	BA	RW	FLS_PR1	FA	RW
DCC12CR1	3B	RW	ACE_ABF_CR0	7B	RW	RDI1LT0	BB	RW		FB	
DCC13FN	3C	RW		7C		RDI1LT1	BC	RW		FC	
DCC13IN	3D	RW	ACE0_CR1	7D	RW	RDI1RO0	BD	RW	IDAC_CR0	FD	RW
DCC13OU	3E	RW	ACE0_CR2	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCC13CR1	3F	RW	ACE0_CR3	7F	RW	RDI1DSM	BF	RW	CPU_SCR0	FF	#
Blank fields are R	eserved and shoul	d not be ac	cessed.	# Access is bit	specific.	*Address has a dua	I purpose, see "N	1apping Ex	ceptions" on page 25	1	

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C28xxx PSoC devices. For the most up to date electrical specifications, confirm that you have the most recent datasheet by going to the web at www.cypress.com.

Specifications are valid for –40 $^{\circ}C \leq T_{A} \leq 85 \ ^{\circ}C$ and $T_{J} \leq 100 \ ^{\circ}C,$ except where noted.

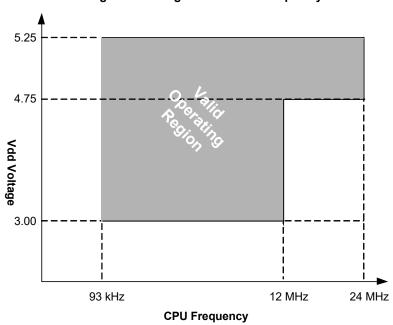


Figure 8. Voltage versus CPU Frequency

Document Number: 001-48111 Rev. *Q Page 33 of 86

Absolute Maximum Ratings

Table 22. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	- 55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	1	125	See Package label	°C	
t _{BAKETIME}	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	_	+85	°C	
V_{DD}	Supply voltage on V _{DD} relative to V _{SS}	-0.5	_	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
V_{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	_	$V_{DD} + 0.5$	V	
I _{MIO}	Maximum current into any port pin	-25	_	+50	mA	
I _{MAIO}	Maximum current into any port pin configured as analog driver	-50	_	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	-	V	Human Body Model ESD.
LU	Latch-up current	_	-	200	mA	

Operating Temperature

Table 23. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	_	+85	°C	
TJ	Junction temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedances on page 72. The user must limit the power consumption to comply with this requirement.

Document Number: 001-48111 Rev. *Q Page 34 of 86

DC Electrical Characteristics

DC Chip Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 24. DC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V_{DD}	Supply voltage	3.00	_	5.25	V	
I _{DD}	Supply current	-	8	14	mA	Conditions are V_{DD} = 5.0 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{DD3}	Supply current	_	5	9	mA	Conditions are V_{DD} = 3.3 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{DDP}	Supply current when IMO = 6 MHz using SLIMO mode=1	_	2	3	mA	Conditions are V_{DD} = 3.3 V, T_A = 25 °C, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz.
I _{SB}	Sleep (Mode) current with POR, LVD, sleep timer, and WDT. ^[12]	_	3	10	μΑ	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, – 40 °C ≤ T_A ≤ 55 °C.
I _{SBH}	Sleep (Mode) current with POR, LVD, sleep timer, and WDT at high temperature. ^[12]	_	4	25	μΑ	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, 55 °C < $T_A \le 85$ °C.
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, sleep timer, WDT, and external crystal. ^[12]	_	4	13	μΑ	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, -40 °C \leq T _A \leq 55 °C.
I _{SBXTLH}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and external crystal at high temperature. ^[12]	_	5	26	μΑ	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C.
I _{SBRTC}	Current consumed by RTC during sleep	_	0.5	1	μA	Extra current consumed by the RTC during sleep. This number is typical at 25 °C and 5 V.
V _{REF}	Reference voltage (Bandgap)	1.280	1.300	1.320	V	Trimmed for appropriate V _{DD} .
I _{SXRES}	Supply current with XRES asserted 5 V	-	0.65	3	mA	Max is peak current after XRES;
	Supply current with XRES asserted 3.3 V	-	0.4	1.5	mA	Typical value is the steady state current value. T _A = 25 °C.

Document Number: 001-48111 Rev. *Q Page 35 of 86

^{12.} Standby (sleep) current includes all functions (POR, LVD, WDT, Sleep Timer) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

DC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 25. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} – 1.0	-	-	V	I _{OH} = 10 mA, V _{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined I _{OH} budget.
V _{OL}	Low output level		-	0.75	V	I _{OL} = 25 mA, V _{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined I _{OL} budget.
I _{OH}	High level source current	10	_	_	mA	V _{OH} = V _{DD} – 1.0 V, see the limitations of the total current in the note for V _{OH} .
I _{OL}	Low level sink current	25	_	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the note for V_{OL}
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25.
V _{IH}	Input high level	2.1	_	_	V	V _{DD} = 3.0 to 5.25.
V_{H}	Input hysteresis	_	60	_	mV	
I _{IL}	Input leakage (absolute value)	-	1	_	nA	Gross tested to 1 μA.
C _{IN}	Capacitive load on pins as input	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C.

Document Number: 001-48111 Rev. *Q Page 36 of 86

DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block.

Table 26. 5 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOACT}	Input Offset Voltage CT Block (absolute value) Power = Low, Opamp bias = High Power = Medium, Opamp bias = High Power = High, Opamp bias = High	- - -	1.6 1.3 1.2	8 8 8	mV mV mV	
V _{OSOA}	Input Offset Voltage SC and AGND Opamps (absolute value)	-	1	6	mV	Applies to High and Low Opamp bias.
TCV _{OSOA}	Average Input Offset Voltage Drift	_	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	_	200	-	pА	Gross tested to 1 μA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common Mode Voltage Range Common Mode Voltage Range (high power or high Opamp bias)	0.0 0.5	-	V _{DD} – 0.5	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common Mode Rejection Ratio Power = Low Power = Medium Power = High	60 60 60	- - -	- - -	dB dB dB	
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High	60 60 80	- - -	- - -	dB dB dB	
V _{OHIGHOA}	High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5	- - -	- - -	V V	
V _{OLOWOA}	Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High	- - -	- - -	0.2 0.2 0.5	V V	
Isoa	Supply Current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - - -	200 400 700 1400 2400 4600	300 600 1100 2000 3600 7700	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	60	_	_	dB	$V_{SS} \le V_{IN} \le (V_{DD} - 2.25)$ or $(V_{DD} - 1.25 \text{ V}) \le V_{IN} \le V_{DD}$.

Document Number: 001-48111 Rev. *Q Page 37 of 86

Table 27. 3.3 V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOACT}	Input Offset Voltage CT Blocks (absolute value) Power = Low, Opamp bias = High Power = Medium, Opamp bias = High Power = High, Opamp bias = High	- - -	1.65 1.32	8 8 -	mV mV mV	
V _{OSOA}	Input Offset Voltage SC and AGND (absolute value)	_	1	6	mV	Applies to High and Low Opamp bias.
TCV _{OSOA}	Average Input Offset Voltage Drift	-	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	_	200	-	pА	Gross tested to 1 μA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common Mode Voltage Range	0.2	_	V _{DD} – 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common Mode Rejection Ratio Power = Low Power = Medium Power = High	50 50 50	- - -	- - -	dB dB dB	
G _{OLOA}	Open Loop Gain Power = Low Power = Medium Power = High	60 60 80	_ _ _	_ _ _	dB dB dB	
V _{OHIGHOA}	High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High is 5 V only	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.2	- - -	- - -	V V	
V _{OLOWOA}	Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High	_ _ _		0.2 0.2 0.2	V V V	
Isoa	Supply Current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - -	200 400 700 1400 2400 4600	300 600 1000 2000 3600 7500	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	50	80	-	dB	$V_{SS} \le V_{IN} \le (V_{DD} - 2.25 \text{ V}) \text{ or } (V_{DD} - 1.25 \text{ V}) \le V_{IN} \le V_{DD}.$

Document Number: 001-48111 Rev. *Q Page 38 of 86

DC Type-E Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \,^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85 \,^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40 \,^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85 \,^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at $25 \,^{\circ}\text{C}$ and are for design guidance only. The Operational Amplifiers covered by these specifications are components of the Limited Type E Analog PSoC blocks.

Table 28. 5 V DC Type-E Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15		For 0.2 V < V _{IN} < V _{DD} – 1.2 V.
		_	2.5	20	mV	For V _{IN} = 0 to 0.2 V and V _{IN} > V _{DD} - 1.2 V.
TCV _{OSOA}	Average input offset voltage drift	_	10	_	μV/°C	
I _{EBOA} ^[13]	Input leakage current (Port 0 Analog Pins)	_	200	_	nA	Gross tested to 1 μA.
C _{INOA}	Input capacitance (Port 0 Analog Pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V_{CMOA}	Common mode voltage range	0.0	_	V_{DD}	V	
I _{SOA}	Amplifier supply current	_	10	30	μΑ	

Table 29. 3.3 V DC Type-E Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15		For 0.2 V < V _{IN} < V _{DD} – 1.2 V.
		_	2.5	20	mV	For V _{IN} = 0 to 0.2 V and
						$V_{IN} > V_{DD} - 1.2 \text{ V}.$
TCV _{OSOA}	Average input offset voltage drift	1	10	_	μV/°C	
I _{EBOA} ^[13]	Input leakage current (Port 0 Analog Pins)	_	200	_	nA	Gross tested to 1 μA.
C _{INOA}	Input capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V_{CMOA}	Common mode voltage range	0	_	V_{DD}	V	
I _{SOA}	Amplifier supply current	1	10	30	μΑ	

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 2.4 V to 3.0 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 30. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} – 1	V	
V _{OSLPC}	LPC voltage offset	_	2.5	30	mV	
I _{SLPC}	LPC supply current	_	10	40	μА	

Note

Document Number: 001-48111 Rev. *Q Page 39 of 86

^{13.} Atypical behavior: I_{EBOA} of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.

DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 31. 5 V DC Analog Output Buffer Specifications

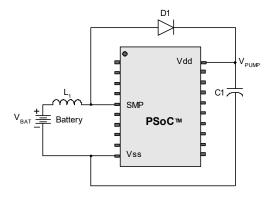
Symbol	Description	Min	Тур	Max	Units	Notes
C _L	Load capacitance	-	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (Absolute Value)	_	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	_	+6	20	μV/°C	
V_{CMOB}	Common-mode input voltage range	0.5	_	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = Low Power = High	-	1		ΩΩ	
V _{OHIGHOB}	High output voltage swing (Load = 32 Ω to $V_{DD}/2$) Power = Low Power = High	0.5 × V _{DD} + 1.3 0.5 × V _{DD} + 1.3	<u>-</u>	- -	V V	
V _{OLOWOB}	Low output voltage swing (Load = 32 Ω to $V_{DD}/2$) Power = Low Power = High	_ _ _	_ _	0.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V	
I _{SOB}	Supply current including bias cell (No Load) Power = Low Power = High	_ _	1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	53	64	-	dB	$(0.5 \times V_{DD} - 1.0) \le V_{OUT}$ $\le (0.5 \times V_{DD} + 0.9).$

Document Number: 001-48111 Rev. *Q Page 40 of 86

Table 32. 3.3 V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
C _L	Load Capacitance	-	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input Offset Voltage (Absolute Value)	_	3	12	mV	
TCV _{OSOB}	Average Input Offset Voltage Drift	_	+6	20	μV/°C	
V _{CMOB}	Common-Mode Input Voltage Range	0.5	_	V _{DD} – 1.0	V	
R _{OUTOB}	Output Resistance Power = Low Power = High		1 1		Ω Ω	
V _{OHIGHOB}	High Output Voltage Swing (Load = 1 $k\Omega$ to $V_{DD}/2$) Power = Low Power = High	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0	<u>-</u>	_ _	V V	
V _{OLOWOB}	Low Output Voltage Swing (Load = 1 $k\Omega$ to $V_{DD}/2$) Power = Low Power = High	_ _	_ _	0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0	V V	
I _{SOB}	Supply current including bias cell (No Load) Power = Low Power = High	_ _	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	47	64	-	dB	$(0.5 \times V_{DD} - 1.0) \le V_{OUT} \le (0.5 \times V_{DD} + 0.9).$

Document Number: 001-48111 Rev. *Q Page 41 of 86


DC Switch Mode Pump Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 33. DC Switch Mode Pump (SMP) Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP} 5 V	5 V output voltage	4.75	5.0	5.25	V	Configuration of footnote. [14] Average, neglecting ripple. SMP trip voltage is set to 5.0 V.
V _{PUMP} 3 V	3 V output voltage	3.00	3.25	3.60	V	Configuration of footnote. [14] Average, neglecting ripple. SMP trip voltage is set to 3.25 V.
I _{PUMP}	Available output current V _{BAT} = 1.5 V, V _{PUMP} = 3.25 V V _{BAT} = 1.8 V, V _{PUMP} = 5.0 V	8 5	_ _	1 1	mA mA	Configuration of footnote. [14] SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 5.0 V.
V _{BAT} 5 V	Input voltage range from battery	1.8	_	5.0	٧	Configuration of footnote. [14] SMP trip voltage is set to 5.0 V.
V _{BAT} 3 V	Input voltage range from battery	1.5	_	3.3	V	Configuration of footnote. [14] SMP trip voltage is set to 3.25 V.
V _{BATSTART}	Minimum input voltage from battery to start pump	2.6	_	-	V	Configuration of footnote. [14]
ΔV_{PUMP_Line}	Line regulation (over V _{BAT} range)	_	5	_	%V _O	Configuration of footnote. [14] V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 52.
ΔV_{PUMP_Load}	Load regulation	-	5	-	%V _O	Configuration of footnote. [14] V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 52.
ΔV_{PUMP_Ripple}	Output voltage ripple (depends on capacitor/load)	_	100	-	mVpp	Configuration of footnote. ^[14] Load is 5mA.
E ₃	Efficiency	35	50	_	%	Configuration of footnote. [14] Load is 5 mA. SMP trip voltage is set to 3.25 V.
F _{PUMP}	Switching frequency	1	1.3	_	MHz	
DC _{PUMP}	Switching duty cycle	-	50	_	%	

Figure 9. Basic Switch Mode Pump Circuit

Note

14. L_1 = 2 μ H inductor, C_1 = 10 μ F capacitor, D_1 = Schottky diode. See Figure 9.

Document Number: 001-48111 Rev. *Q

DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

The guaranteed specifications for RefHI and RefLo are measured through the Analog Continuous Time PSoC blocks. The power levels for RefHi and RefLo refer to the Analog Reference Control register. AGND is measured at P2[4] in AGND bypass mode. Each Analog Continuous Time PSoC block adds a maximum of 10mV additional offset error to guaranteed AGND specifications from the local AGND buffer. Reference control power can be set to medium or high unless otherwise noted.

Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling of the digital signal may appear on the AGND.

Table 34. 5-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b000	RefPower = High Opamp bias = High	V _{REFHI}	Ref high	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.214	V _{DD} /2 + 1.279	V _{DD} /2 + 1.341	V
		V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.018	V _{DD} /2 – 0.004	V _{DD} /2 + 0.01	V
		V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.328	V _{DD} /2 – 1.301	V _{DD} /2 – 1.273	V
	RefPower = High Opamp bias = Low	V _{REFHI}	Ref high	V _{DD} /2 + Bandgap	V _{DD} /2 + 0.228	V _{DD} /2 + 1.284	V _{DD} /2 + 1.344	V
		V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.015	V _{DD} /2 – 0.002	V _{DD} /2 + 0.011	V
		V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.329	V _{DD} /2 – 1.303	V _{DD} /2 – 1.275	V
	RefPower = Medium Opamp bias = High	V _{REFHI}	Ref high	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.224	V _{DD} /2 + 1.287	V _{DD} /2 + 1.345	V
		V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.014	V _{DD} /2 – 0.001	V _{DD} /2 + 0.012	V
		V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.328	V _{DD} /2 – 1.304	V _{DD} /2 – 1.275	V
	RefPower = Medium	V _{REFHI}	Ref high	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.226	V _{DD} /2 + 1.288	V _{DD} /2 + 1.346	V
	Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.014	V _{DD} /2 – 0.001	V _{DD} /2 + 0.012	V
		V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.328	V _{DD} /2 – 1.304	V _{DD} /2 – 1.276	V

Note

^{15.} AGND tolerance includes the offsets of the local buffer in the PSoC block.

Table 34. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b001	RefPower = High Opamp bias = High	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)		P2[4] + P2[6] - 0.019	P2[4] + P2[6] + 0.019 P2[4] - P2[6] + 0.035 P2[4] - P2[6] + 0.021 P2[4] - P2[6] + 0.021 P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.022 P2[4] P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.030 P2[4] - P2[6] + 0.030 VDD	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.030	P2[4] – P2[6] + 0.005		V
	RefPower = High Opamp bias = Low	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.05	P2[4] + P2[6] - 0.015		V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.033	P2[4] – P2[6] + 0.001		V
	RefPower = Medium	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.048	P2[4] + P2[6] - 0.013		V
	Opamp bias = High	V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.034	P2[4] – P2[6] – 0.001		V
	RefPower = Medium Opamp bias = Low	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.047	P2[4] + P2[6] - 0.012		V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.036	P2[4] – P2[6] – 0.002	P2[4] P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.022 P2[4] P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.033 P2[4] - P2[6] + 0.023 P2[4] P2[4] - P2[6] + 0.030 P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.023 P2[4] - P2[6] + 0.023 P2[4] - P2[6] + 0.031 P2[4] - P2[6] + 0.030 P2[4] - P2[6] + 0.031 P2[4	V
0b010	RefPower = High	V_{REFHI}	Ref high	V_{DD}	V _{DD} – 0.028	V _{DD} – 0.010	V_{DD}	V
	Opamp bias = High	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.014	V _{DD} /2 – 0.002	2[6] P2[4] + P2[6] + 0.019 P2[4] 2[6] P2[4] - P2[6] + 0.035 2[6] P2[4] + P2[6] + 0.021 P2[4] 2[6] P2[4] - P2[6] + 0.031 2[6] P2[4] + P2[6] + 0.022 P2[4] 2[6] P2[4] - P2[6] + 0.031 2[6] P2[4] - P2[6] + 0.031 2[6] P2[4] - P2[6] + 0.033 P2[4] 2[6] P2[4] - P2[6] + 0.030 P2[4] P2[4] - P2[6] + 0.031 P2[4] P2[4] P2[6] + 0.031 P2[4] P2[4] P2[6] + 0.031 P2[4] P2[6] + 0.03	V
		V _{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.004		V
	RefPower = High	V_{REFHI}	Ref high	V_{DD}	V _{DD} – 0.021	V _{DD} – 0.007		V
	Opamp bias = Low	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.014	V _{DD} /2 – 0.001	V _{DD} /2 + 0.012	V
		V _{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.005	V
	RefPower =	V_{REFHI}	Ref high	V_{DD}	V _{DD} – 0.019	V _{DD} – 0.006		V
	Medium Opamp bias = High	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.014	V _{DD} /2 – 0.001		V
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	$V_{SS} + 0.002$		V
	RefPower =	V_{REFHI}	Ref high	V_{DD}	V _{DD} – 0.017	$V_{DD} - 0.005$		V
	Medium Opamp bias = Low	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.014	V _{DD} /2 – 0.001		V
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	V _{SS} + 0.001	$V_{SS} + 0.003$	V

Document Number: 001-48111 Rev. *Q Page 44 of 86

Table 34. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b011	RefPower = High	V _{REFHI}	Ref high	3 × Bandgap	3.736	3.887	4.030	V
	Opamp bias = High	V _{AGND}	AGND	2 × Bandgap	2.525	2.598	2.667	V
		V _{REFLO}	Ref low	Bandgap	1.265	1.302	1.335	V
	RefPower = High	V_{REFHI}	Ref high	3 × Bandgap	3.747	3.894	4.034	V
	Opamp bias = Low	V _{AGND}	AGND	2 × Bandgap	2.528	2.601	2.668	V
		V _{REFLO}	Ref low	Bandgap	1.264	1.302	1.335	V
	RefPower =	V _{REFHI}	Ref high	3 × Bandgap	3.749	3.897	4.035	V
	Medium Opamp bias = High	V _{AGND}	AGND	2 × Bandgap	2.529	2.602	2.668	V
	Opamp blas – riigii	V _{REFLO}	Ref low	Bandgap	1.264	1.302	1.335	V
	RefPower =	V _{REFHI}	Ref high	3 × Bandgap	3.751	3.899	4.037	V
	Medium Opamp bias = Low	V _{AGND}	AGND	2 × Bandgap	2.530	2.603	2.669	V
	Opamp blas – Low	V _{REFLO}	Ref low	Bandgap	1.264	1.302	1.335	V
0b100	RefPower = High Opamp bias = High	V _{REFHI}	Ref high	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.483 - P2[6]	2.578 – P2[6]	2.669 - P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.525	2.598	2.666	V
		V _{REFLO}	Ref low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.512 – P2[6]	2.602 - P2[6]	2.684 - P2[6]	V
	RefPower = High Opamp bias = Low	V _{REFHI}	Ref high	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.495 - P2[6]	2.586 - P2[6]	2.673 – P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.528	2.601	2.668	V
		V _{REFLO}	Ref low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.510 - P2[6]	2.602 - P2[6]	2.685 - P2[6]	V
	RefPower = Medium	V _{REFHI}	Ref high	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.498 - P2[6]	2.589 - P2[6]	2.674 - P2[6]	V
	Opamp bias = High	V _{AGND}	AGND	2 × Bandgap	2.529	2.601	2.668	V
		V _{REFLO}	Ref low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.509 - P2[6]	2.601 – P2[6]	2.685 - P2[6]	V
	RefPower = Medium	V _{REFHI}	Ref high	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.500 - P2[6]	2.591 – P2[6]	2.675 – P2[6]	V
	Opamp bias = Low	V_{AGND}	AGND	2 × Bandgap	2.530	2.603	2.669	V
		V _{REFLO}	Ref low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.508 - P2[6]	2.601 – P2[6]	2.686 - P2[6]	V

Document Number: 001-48111 Rev. *Q Page 45 of 86

Table 34. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b101	RefPower = High Opamp bias = High	V_{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.218	P2[4] + 1.283	P2[4] + 1.344	V
			AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.329	P2[4] - 1.297	P2[4] - 1.265	V
	RefPower = High Opamp bias = Low	V_{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.225	P2[4] + 1.287	P2[4] + 1.346	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.330	P2[4] - 1.301	P2[4] – 1.271	V
	RefPower = Medium	V_{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.226	P2[4] + 1.288	P2[4] + 1.346	V
	Opamp bias = High	V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.330	P2[4] - 1.302	P2[4] – 1.272	V
	RefPower = Medium	V _{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.227	P2[4] + 1.289	P2[4] + 1.347	V
	Opamp bias = Low	V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.331	P2[4] - 1.303	P2[4] – 1.273	V
0b110	RefPower = High	V_{REFHI}	Ref high	2 × Bandgap	2.506	2.597	2.674	V
	Opamp bias = High	V_{AGND}	AGND	Bandgap	1.263	1.302	1.336	V
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	$V_{SS} + 0.006$	$V_{SS} + 0.014$	V
	RefPower = High	V_{REFHI}	Ref high	2 × Bandgap	2.508	2.595	2.675	V
	Opamp bias = Low	V_{AGND}	AGND	Bandgap	1.263	1.302	1.336	V
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	$V_{SS} + 0.003$	$V_{SS} + 0.008$	V
	RefPower =	V_{REFHI}	Ref high	2 × Bandgap	2.508	2.595	2.676	V
	Medium Opamp bias = High	V_{AGND}	AGND	Bandgap	1.263	1.302	1.336	V
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	$V_{SS} + 0.002$	$V_{SS} + 0.005$	V
	RefPower =	V_{REFHI}	Ref high	2 × Bandgap	2.508	2.596	2.677	V
	Medium Opamp bias = Low	V_{AGND}	AGND	Bandgap	1.263	1.302	1.336	V
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	$V_{SS} + 0.001$	$V_{SS} + 0.003$	V

Document Number: 001-48111 Rev. *Q Page 46 of 86

Table 34. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b111	RefPower = High	V_{REFHI}	Ref high	3.2 × Bandgap	4.056	4.155	4.222	V
	Opamp bias = High	V_{AGND}	AGND	1.6 × Bandgap	2.012	2.083	2.168	V
		V_{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.01	V _{SS} + 0.035	V
	RefPower = High	V_{REFHI}	Ref high	3.2 × Bandgap	4.061	4.153	4.223	V
	Opamp bias = Low	V _{AGND}	AGND	1.6 × Bandgap	2.023	2.082	2.145	V
		V _{REFLO}	Ref low	V _{SS}	V _{SS}	$V_{SS} + 0.006$	V _{SS} + 0.022	V
	RefPower =	V_{REFHI}	Ref high	3.2 × Bandgap	4.063	4.154	4.224	V
	Medium Opamp bias = High	V _{AGND}	AGND	1.6 × Bandgap	2.020	2.083	2.152	V
	Opamp blas – riigii	V _{REFLO}	Ref low	V _{SS}	V _{SS}	$V_{SS} + 0.006$	V _{SS} + 0.024	V
	RefPower =	V_{REFHI}	Ref high	3.2 × Bandgap	4.061	4.154	4.225	V
	Medium Opamp bias = Low	V _{AGND}	AGND	1.6 × Bandgap	2.026	2.081	2.140	V
	Opamp blas – Low	V _{REFLO}	Ref low	V _{SS}	V_{SS}	V _{SS} + 0.004	V _{SS} + 0.017	V

Table 35. 3.3-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b000	RefPower = High	V_{REFHI}	Ref high	V _{DD} /2 + Bandgap	$V_{DD}/2 + 1.223$	$V_{DD}/2 + 1.283$	V _{DD} /2 + 1.343	V
	Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.013$	$V_{DD}/2 - 0.003$	$V_{DD}/2 + 0.005$	V
		V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.322	V _{DD} /2 – 1.297	V _{DD} /2 – 1.270	V
	RefPower = High	V_{REFHI}	Ref high	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.228	V _{DD} /2 + 1.288	V _{DD} /2 + 1.345	V
	Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.008$	$V_{DD}/2 - 0.002$	$V_{DD}/2 + 0.005$	V
		V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.322	V _{DD} /2 – 1.298	V _{DD} /2 – 1.271	V
	RefPower =	V_{REFHI}	Ref high	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.232	V _{DD} /2 + 1.290	V _{DD} /2 + 1.346	V
	Medium Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.008$	V _{DD} /2 – 0.001	$V_{DD}/2 + 0.006$	V
		V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.322	V _{DD} /2 – 1.299	V _{DD} /2 – 1.272	V
	RefPower =	V_{REFHI}	Ref high	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.233	V _{DD} /2 + 1.291	V _{DD} /2 + 1.347	V
	Medium Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.006$	V _{DD} /2	$V_{DD}/2 + 0.006$	V
	, ,	V _{REFLO}	Ref low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.322	V _{DD} /2 – 1.299	V _{DD} /2 – 1.272	V

Document Number: 001-48111 Rev. *Q Page 47 of 86

Table 35. 3.3-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b001	RefPower = High Opamp bias = High	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] – 0.045	P2[4] + P2[6] – 0.017	P2[4] + P2[6] + 0.016	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.019	P2[4] – P2[6] + 0.004	P2[4] – P2[6] + 0.023	V
	RefPower = High Opamp bias = Low	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.036	P2[4] + P2[6] – 0.012	P2[4] + P2[6] + 0.013	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.021	P2[4] – P2[6] – 0.001	P2[4] – P2[6] + 0.021	V
	RefPower = Medium	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] – 0.034	P2[4] + P2[6] – 0.011	P2[4] + P2[6] + 0.013	V
	Opamp bias = High	V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.023	P2[4] – P2[6] – 0.002	P2[4] – P2[6] + 0.016	V
	RefPower = Medium	V _{REFHI}	Ref high	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.033	P2[4] + P2[6] – 0.009	P2[4] + P2[6] + 0.014	V
	Opamp bias = Low	V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.024	P2[4] – P2[6] – 0.003	P2[4]-P2[6]+ 0.020	V
0b010	RefPower = High	V_{REFHI}	Ref high	V_{DD}	V _{DD} – 0.042	$V_{DD} - 0.008$	V_{DD}	V
	Opamp bias = High	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.035$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.031$	V
		V _{REFLO}	Ref low	V _{SS}	V_{SS}	V _{SS} + 0.003	V _{SS} + 0.0165 V	V
	RefPower = High	V_{REFHI}	Ref high	V_{DD}	V _{DD} – 0.035	V _{DD} – 0.005	V_{DD}	V
	Opamp bias = Low	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.031$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.028$	٧
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	$V_{SS} + 0.002$	$V_{SS} + 0.012$	V
	RefPower = Medium	V_{REFHI}	Ref high	V_{DD}	$V_{DD} - 0.044$	$V_{DD} - 0.005$	V_{DD}	V
	Opamp bias = High	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.052$	V _{DD} /2	$V_{DD}/2 + 0.046$	V
		V_{REFLO}	Ref low	V_{SS}	V_{SS}	V _{SS} + 0.002	V _{SS} + 0.014	V
	RefPower = Medium	V_{REFHI}	Ref high	V_{DD}	$V_{DD} - 0.036$	$V_{DD} - 0.004$	V_{DD}	V
	Opamp bias = Low	V_{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.032$	V _{DD} /2	$V_{DD}/2 + 0.029$	V
		V_{REFLO}	Ref low	V _{SS}	V_{SS}	V _{SS} + 0.001	V _{SS} + 0.012	V
0b011	All power settings. Not allowed for 3.3 V.	_	_	_	_	_	_	_
0b100	All power settings. Not allowed for 3.3 V.	-	_	_	-	_	_	_

Document Number: 001-48111 Rev. *Q Page 48 of 86

Table 35. 3.3-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b101	RefPower = High Opamp bias = High	V _{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.226	P2[4] + 1.286	P2[4] + 1.343	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.323	P2[4] - 1.293	P2[4] -1.262	V
	RefPower = High Opamp bias = Low	V _{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.232	P2[4] + 1.29	P2[4] + 1.344	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.324	P2[4] - 1.296	P2[4] - 1.267	V
	RefPower = Medium	V _{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.233	P2[4] + 1.291	P2[4] + 1.345	V
	Opamp bias = High	V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.324	P2[4] - 1.298	P2[4] - 1.269	V
	RefPower = Medium	V _{REFHI}	Ref high	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.234	P2[4] + 1.292	P2[4] +1.345	V
	Opamp bias = Low	V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] - 1.324	P2[4] - 1.299	P2[4] - 1.270	V
0b110	RefPower = High	V_{REFHI}	Ref high	2 × Bandgap	2.504	2.595	2.672	V
	Opamp bias = High	V_{AGND}	AGND	Bandgap	1.262	1.301	1.336	V
		V _{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.013	V
	RefPower = High	V_{REFHI}	Ref high	2 × Bandgap	2.506	2.593	2.674	V
	Opamp bias = Low	V_{AGND}	AGND	Bandgap	1.262	1.301	1.336	V
		V_{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.008	V
	RefPower =	V_{REFHI}	Ref high	2 × Bandgap	2.506	2.594	2.675	V
	Medium Opamp bias = High	V_{AGND}	AGND	Bandgap	1.262	1.301	1.335	V
		V_{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.007	V
	RefPower =	V_{REFHI}	Ref high	2 × Bandgap	2.507	2.595	2.675	V
	Medium Opamp bias = Low	V_{AGND}	AGND	Bandgap	1.262	1.301	1.335	V
	•	V_{REFLO}	Ref low	V _{SS}	V _{SS}	V _{SS} + 0.001	V _{SS} + 0.005	V
0b111	All power settings. Not allowed for 3.3 V.	_	_	_	_	_	_	_

Document Number: 001-48111 Rev. *Q Page 49 of 86

DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 36. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor Unit Value (Continuous Time)	_	12.24	_	kΩ	
C _{SC}	Capacitor Unit Value (Switch Cap)	_	80	_	fF	

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 37. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch Resistance to Common Analog Bus	_	_	400	Ω	$V_{DD} \ge 3.0 \text{ V}$
R _{VSS}	Resistance of Initialization Switch to V _{SS}	_	_	800	Ω	

DC SAR10 ADC Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 38. DC SAR10 ADC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
INL _{SAR10}	Integral nonlinearity for VREF ≥ 3 V	-2.5	_	2.5	LSB	10-bit resolution
	Integral nonlinearity for VREF < 3 V	– 5	_	5	LSB	10-bit resolution
DNL _{SAR10}	Differential nonlinearity for VREF ≥ 3 V	-1.5	_	1.5	LSB	10-bit resolution
	Differential nonlinearity for VREF < 3 V	-4	_	4	LSB	10-bit resolution
I _{SAR10}	Active current consumption	0.08	0.5	0.497	mA	
I _{VREFSAR10}	Input current into P2[5] when configured as the SAR10 ADC's VREF input.	-	_	0.5	mA	The internal voltage reference buffer is disabled in this configuration.
V _{VREFSAR10}	Input reference voltage at P2[5] when configured as the SAR10 ADC's external voltage reference.	2.7	1	V _{DD} – 0.3 V	V	When VREF is buffered inside the SAR10 ADC, the voltage level at P2[5] (when configured as the external reference voltage) must always be at least 300 mV less than the chip supply voltage level on the V_{DD} pin. $(V_{VREFSAR10} < (V_{DD} - 300 \text{ mV}))$.
V _{OSSAR10}	Offset voltage	5	7.7	10	mV	
SAR _{IMP}	SAR input impedence	-	1.64	_	MΩ	Frequency dependant = 1/ Fs °C. 142.9 kHz (maximum) and Cin = 4.28 pF (typical)

Document Number: 001-48111 Rev. *Q Page 50 of 86

DC IDAC Specifications

Table 39. DC IDAC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	-5.0	2.0	5.0	LSB	Valid for all 3 current ranges
IDAC_INL	Integral nonlinearity	-5.0	2.0	5.0	LSB	Valid for all 3 current ranges
IDAC_Gain	Gain per bit – Range 1 (91 μA)	283	357	447	nA	Measured at full scale
	Gain per bit – Range 2 (318 μA)	985	1250	1532	nA	
	Gain per bit – Range 3 (637 μA)	1959	2500	3056	nA	
IDACOffset	Offset at Code 0 vs LSB Ideal – Range 1 (91 µA)		2.0%	20%	%	Measured as a % of LSB (Current @ Code 0)/(LSB Ideal Current)
	Offset at Code 0 vs LSB Ideal – Range 2 (318 µA)		1.0%	10%	%	
	Offset at Code 0 vs LSB Ideal – Range 3 (637 μA)		1.0%	10%	%	

Document Number: 001-48111 Rev. *Q Page 51 of 86

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the *PSoC Technical Reference Manual* for CY8C28xxx PSoC devices, for more information on the VLT_CR register.

Table 40. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0R} V _{PPOR1R} V _{PPOR2R}	V _{DD} Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	2.91 4.39 4.55	2.985 4.49 4.65	V V V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog.
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	- - -	2.82 4.39 4.55	2.90 4.49 4.64	V V V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog.
V _{PH0} V _{PH1} V _{PH2}	PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	- - -	92 0 0	- - -	mV mV mV	
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	V _{DD} Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.83 2.93 3.04 3.90 4.38 4.54 4.62 4.71	2.91 3.01 3.12 3.99 4.47 4.63 4.71 4.80	3.00 ^[16] 3.10 3.21 4.09 4.58 4.74 ^[17] 4.83 4.92	V V V V V	
VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7	V _{DD} Value for PUMP Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.93 3.00 3.16 4.09 4.53 4.61 4.70 4.88	3.01 3.08 3.24 4.17 4.62 4.71 4.80 4.98	3.10 3.17 3.33 4.28 4.74 4.82 4.91 5.10	V V V V V	

Notes

^{16.} Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

^{17.} Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 41. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V_{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools.
V _{DDLV}	Low V _{DD} for verify	3	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools.
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools.
V _{DDIWRITE}	Supply Voltage for Flash write operation	3	_	5.25	V	This specification applies to this device when it is executing internal flash writes.
I _{DDP}	Supply Current During Programming or Verify	_	5	25	mA	
V _{ILP}	Input Low Voltage During Programming or Verify	_	-	0.8	V	
V _{IHP}	Input High Voltage During Programming or Verify	2.2	-	_	V	
I _{ILP}	Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify	_	-	0.21	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify	_	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low Voltage During Programming or Verify	_	-	0.75	V	
V _{OHV}	Output High Voltage During Programming or Verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash Endurance (per block)	50,000 ^[18]	-	_	_	Erase/write cycles per block.
Flash _{ENT}	Flash Endurance (total) ^[19]	1,800,000	_	-	_	Erase/write cycles. Must be programmed and read at the same voltage to meet this.
Flash _{DR}	Flash Data Retention	10	-	_	Years	

Notes

^{18.} The 50,000 cycle Flash endurance per block will only be guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V

^{19.} A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 A maximum of 36 ^ 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 30,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles).

For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the AN2015 - PSoC 1 - Getting Started with Flash & E2PROMfor more information.

DC I²C Specifications

Table 42 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and – 40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 42. DC I²C Specifications^[20]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	_	0.3 × V _{DD}	V	$3.0 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$
		_	_	0.25 × V _{DD}	V	$4.75 \text{ V} \le \text{V}_{DD} \le 5.25 \text{ V}$
V _{IHI2C}	Input high level	0.7 × V _{DD}	_	_	V	$3.0 \text{ V} \le \text{V}_{DD} \le 5.25 \text{ V}$
V _{OLI2C}	Output low level	_	_	0.4	V	at sink current of 3 mA
		_	_	0.6	V	at sink current of 6 mA

Note 20. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the above specs.

AC Electrical Characteristics

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 43. AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO}	Internal Main Oscillator Frequency	23.4	24	24.6 ^[21]	MHz	Trimmed. Utilizing factory trim values. SLIMO Mode = 0.
F _{IMO6}	Internal Main Oscillator Frequency for 6 MHz	5.5	6	6.5 ^[21]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. SLIMO Mode = 1.
F _{CPU1}	CPU Frequency (5 V Nominal)	0.091	24	24.6 ^[21]	MHz	Trimmed. Utilizing factory trim values. SLIMO mode = 0.
F _{CPU2}	CPU Frequency (3.3 V Nominal)	0.091	12	12.3 ^[22]	MHz	Trimmed. Utilizing factory trim values. SLIMO mode = 0.
F _{BLK5}	Digital PSoC Block Frequency	0	_	49.2 ^[21, 23]	MHz	4.75 V< V _{DD} <5.25 V
F _{BLK33}	Digital PSoC Block Frequency	0	24	24.6 ^[23]	MHz	3.0 V <v<sub>DD<3.6 V</v<sub>
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	Trimmed. Utilizing factory trim values.
F _{32K2}	External Crystal Oscillator	-	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{32K_U}	Internal Low Speed Oscillator Untrimmed Frequency	5	1	100	kHz	After a reset and before the m8c starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference manual for details on timing this.
F _{PLL}	PLL Frequency	_	23.986	_	MHz	Multiple (x732) of crystal frequency.
t _{PLLSLEW}	PLL Lock Time	0.5	_	10	ms	
t _{PLLSLEWSLO} W	PLL Lock Time for Low Gain Setting	0.5	_	50	ms	
T _{OS}	External Crystal Oscillator Startup to 1%	-	1700	2620	ms	
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	_	2800	3800	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 μW maximum drive level 32.768 kHz crystal. 3.0 V \leq V $_{DD} \leq$ 5.5 V, -40 °C \leq $T_{A} \leq$ 85 °C.

Document Number: 001-48111 Rev. *Q Page 55 of 86

^{21.4.75} V < V_{DD} < 5.25 V.
22. 3.0 V < V_{DD} < 3.6 V. See application note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V.
23. See the individual user module datasheets for information on maximum frequencies for user modules.

Table 43. AC Chip-Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
t _{XRST}	External Reset Pulse Width	10	_	_	μS	
DC24M	24 MHz Duty Cycle	40	50	60	%	
DC _{ILO}	Internal Low Speed Oscillator Duty Cycle	20	50	80	%	
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^[24,25]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum Frequency of Signal on Row Input or Row Output.	-	-	12.3	MHz	
SR _{POWERUP}	Supply Ramp Time	0	_	_	μS	
t _{POWERUP}	Time for POR Release to Code Execution	_	16	100	ms	
t _{jit_IMO} ^[26]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	1300	ps	
7 -	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	1300	ps	N = 32
	24 MHz IMO period jitter (RMS)	-	200	800	ps	
t _{jit_PLL} [26]	24 MHz IMO cycle-to-cycle jitter (RMS)	1	200	1100	ps	
, -	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	400	2800	ps	N = 32
	24 MHz IMO period jitter (RMS)	-	200	1400	ps	

Notes

Document Number: 001-48111 Rev. *Q Page 56 of 86

^{24. 4.75} V < V_{DD} < 5.25 V.
25. 3.0 V < V_{DD} < 3.6 V. See application note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V.
26. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

Figure 10. PLL Lock Timing Diagram

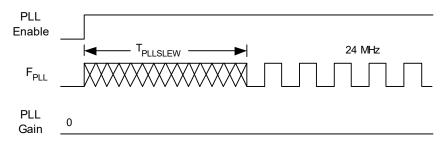


Figure 11. PLL Lock for Low Gain Setting Timing Diagram

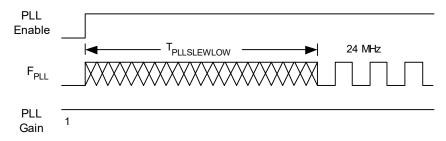
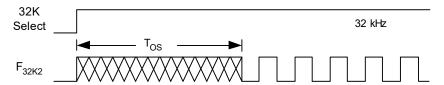



Figure 12. External Crystal Oscillator Startup Timing Diagram

Document Number: 001-48111 Rev. *Q

AC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 44. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO Operating Frequency	0	_	12.3	MHz	Normal Strong Mode
t _{RiseF}	Rise Time, Normal Strong Mode, Cload = 50 pF	3	_	18	ns	V _{DD} = 4.5 to 5.25 V, 10% – 90%
t _{FallF}	Fall Time, Normal Strong Mode, Cload = 50 pF	2	_	18	ns	V _{DD} = 4.5 to 5.25 V, 10% – 90%
t _{RiseS}	Rise Time, Slow Strong Mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% – 90%
t _{FallS}	Fall Time, Slow Strong Mode, Cload = 50 pF	10	22	_	ns	V _{DD} = 3 to 5.25 V, 10% – 90%

90%

GPIO
Pin
Output
Voltage

TRiseF
TRiseS

TFallF
TFallS

Figure 13. GPIO Timing Diagram

Document Number: 001-48111 Rev. *Q Page 58 of 86

AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \leq T_A \leq 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Power = High and Opamp bias = High is not supported at 3.3 V.

Table 45. 5 V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	_	_	3.9	μS	
	Power = Medium, Opamp bias = High	_	_	0.72	μs	
	Power = High, Opamp bias = High	_	_	0.62	μS	
t _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	_	_	5.9	μS	
	Power = Medium, Opamp bias = High	_	_	0.92	μS	
	Power = High, Opamp bias = High	-	-	0.72	μS	
SR _{ROA}	Rising Slew Rate (20% to 80%)(Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	0.15	_	_	V/μs	
	Power = Medium, Opamp bias = High	1.7	_	_	V/μs	
	Power = High, Opamp bias = High	6.5	_	_	V/μs	
SR _{FOA}	Falling Slew Rate (80% to 20%)(Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	0.01	_	_	V/μs	
	Power = Medium, Opamp bias = High	0.5	_	_	V/μs	
	Power = High, Opamp bias = High	4.0	-	_	V/μs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp bias = Low	0.75	_	_	MHz	
	Power = Medium, Opamp bias = High	3.1	_	_	MHz	
	Power = High, Opamp bias = High	5.4	_	_	MHz	
E _{NOA}	Noise at 1 kHz	_	100	_	nV/rt-Hz	
	Power = Medium, Opamp bias = High					

Document Number: 001-48111 Rev. *Q Page 59 of 86

Table 46. 3.3 V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	_	_	3.92	μS	
	Power = Low, Opamp bias = High	_	_	0.72	μS	
t _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	_	_	5.41	μS	
	Power = Medium, Opamp bias = High	_	_	0.72	μS	
SR _{ROA}	Rising Slew Rate (20% to 80%)(Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	0.31	_	_	V/μs	
	Power = Medium, Opamp bias = High	2.7	_	_	V/μs	
SR _{FOA}	Falling Slew Rate (80% to 20%)(Active Probe Loading, Unity Gain)					
	Power = Low, Opamp bias = Low	0.24	_	_	V/μs	
	Power = Medium, Opamp bias = High	1.8	_	_	V/μs	
BW _{OA}	Gain Bandwidth Product					
OA	Power = Low, Opamp bias = Low	0.67	_	_	MHz	
	Power = Medium, Opamp bias = High	2.8	_	_	MHz	
E _{NOA}	Noise at 1 kHz Power = Medium, Opamp bias = High	_	100	_	nV/rt-Hz	

Document Number: 001-48111 Rev. *Q Page 60 of 86

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

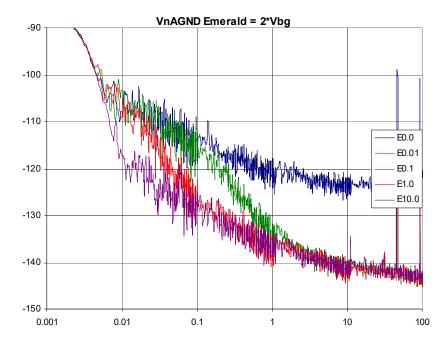


Figure 14. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

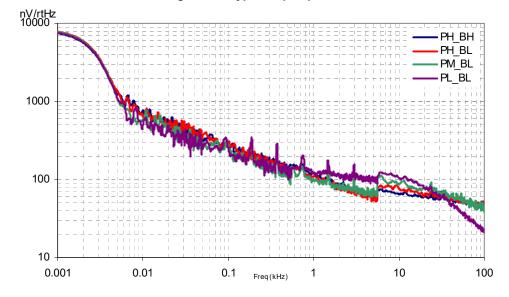


Figure 15. Typical Opamp Noise

Document Number: 001-48111 Rev. *Q

AC Type-E Operational Amplifier Specifications

Table 47 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 ^{\circ}\text{C} \leq \text{T}_{A} \leq 85 ^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40 ^{\circ}\text{C} \leq \text{T}_{A} \leq 85 ^{\circ}\text{C}$, or 2.4 V to 3.0 V and $-40 ^{\circ}\text{C} \leq \text{T}_{A} \leq 85 ^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at $25 ^{\circ}\text{C}$ and are for design guidance only. The Operational Amplifiers covered by these specifications are components of the Limited Type E Analog PSoC blocks.

Table 47. AC Type-E Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{COMP}	Comparator Mode Response Time	_	75	100	ns	50 mV overdrive.

AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 2.4 V to 3.0 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 48. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RLPC}	LPC Response Time	_	ı	50	μS	≥ 50 mV overdrive.

Document Number: 001-48111 Rev. *Q Page 62 of 86

AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 49. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes		
All	Block Input Clock Frequency							
functions	V _{DD} ≥ 4.75 V	_	_	49	MHz	_		
	V _{DD} < 4.75 V	_	_	25	MHz			
Timer	Input Clock Frequency			•				
	No Capture, V _{DD} ≥ 4.75 V	_	_	49	MHz	_		
	No Capture, V _{DD} < 4.75 V	_	_	25	MHz			
	With Capture	_	_	25	MHz			
	Capture Pulse Width	50 ^[27]	_	_	ns			
Counter	Input Clock Frequency			•				
	No Enable Input, V _{DD} ≥ 4.75 V	_	_	49	MHz			
	No Enable Input, V _{DD} < 4.75 V	_	_	25	MHz			
	With Enable Input	_	_	25	MHz			
	Enable Input Pulse Width	50 ^[27]	_	-	ns			
Dead	Kill Pulse Width			•				
Band	Asynchronous Restart Mode	20	_	_	ns			
	Synchronous Restart Mode	50 ^[27]	_	-	ns			
	Disable Mode	50 ^[27]	_	_	ns			
	Input Clock Frequency			•				
	V _{DD} ≥ 4.75 V	_	_	49	MHz			
	V _{DD} < 4.75 V	_	_	25	MHz			
CRCPRS	Input Clock Frequency			•				
(PRS	V _{DD} ≥ 4.75 V	_	_	49	MHz			
Mode)	V _{DD} < 4.75 V	_	_	25	MHz	-		
CRCPRS (CRC Mode)	Input Clock Frequency	_	-	25	MHz			
SPIM	Input Clock Frequency	_	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.		
SPIS	Input Clock (SCLK) Frequency	_	_	4.1	MHz	The input clock is the SPI SCLK in		
	Width of SS_Negated Between Transmissions	50[13]	_	-	ns	SPIS mode.		
Tranmitter	Input Clock Frequency			•		The baud rate is equal to the input		
	V _{DD} ≥ 4.75 V, 2 Stop Bits	_	_	49	MHz	clock frequency divided by 8.		
	V _{DD} ≥ 4.75 V, 1 Stop Bit	_	_	25	MHz	1		
	V _{DD} < 4.75 V	_	_	25	MHz	1		
Receiver	Input Clock Frequency	ų.				The baud rate is equal to the input		
	V _{DD} ≥ 4.75 V, 2 Stop Bits	_	_	49	MHz	clock frequency divided by 8.		
	V _{DD} ≥ 4.75 V, 1 Stop Bit	_	_	25	MHz			
	V _{DD} < 4.75 V	_	_	25	MHz	1		

Note

27.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

Document Number: 001-48111 Rev. *Q Page 63 of 86

AC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 50. 5 V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High	_ _	_ _	2.5 2.9	μs μs	
t _{SOB}	Falling Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High	-	_ _	2.3 2.3	μs μs	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load Power = Low Power = High	0.65 0.65	_ _	_ _	V/μs V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load Power = Low Power = High	0.65 0.65	_ _	_ _	V/μs V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.8 0.8	_ _	_ _	MHz MHz	
BW _{OB}	Large Signal Bandwidth, 1 V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	300 300	_ _	_ _	kHz kHz	

Table 51. 3.3 V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{ROB}	Rising Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High	-	_ _	3.8 3.8	μs μs	
t _{SOB}	Falling Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High	_ _	_ _	3.2 2.9	μs μs	
SR _{ROB}	Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load Power = Low Power = High	0.5 0.5	_ _	_ _	V/μs V/μs	
SR _{FOB}	Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load Power = Low Power = High	0.5 0.5	_ _	_ _	V/μs V/μs	
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.64 0.64	_ _	_ _	MHz MHz	
BW _{OB}	Large Signal Bandwidth, 1 V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	200 200	_ _	_ _	kHz kHz	

Document Number: 001-48111 Rev. *Q Page 64 of 86

AC SAR10 ADC Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 52. AC SAR10 ADC Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{INSAR10}	Input clock frequency for SAR10 ADC	_	-	2.0	MHz	
F _{SSAR10}	Sample rate for SAR10 ADC SAR10 ADC Resolution = 10 bits	-	1	142.9		For 10-bit resolution, the sample rate is the ADC's input clock divided by 14.

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 53. 5 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	_	24.6	MHz	
_	High Period	20.6	_	5300	ns	
_	Low Period	20.6	_	-	ns	
_	Power-up IMO to Switch	150	_	-	μS	

Table 54. 3.3 V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU Clock divide by 1 ^[28]	0.093	_	12.3	MHz	
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater ^[29]	0.186	_	24.6	MHz	
-	High Period with CPU Clock divide by 1	41.7	_	5300	ns	
_	Low Period with CPU Clock divide by 1	41.7	_	-	ns	
_	Power-up IMO to Switch	150	-	-	μS	

Notes

Document Number: 001-48111 Rev. *Q Page 65 of 86

^{28.} Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
29. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 55. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise Time of SCLK	1	_	20	ns	
t _{FSCLK}	Fall Time of SCLK	1	_	20	ns	
t _{SSCLK}	Data Setup Time to Falling Edge of SCLK	40	_	_	ns	
t _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	_	_	ns	
F _{SCLK}	Frequency of SCLK	0	_	8	MHz	
t _{ERASEB}	Flash Erase Time (Block)	_	10	_	ms	
t _{WRITE}	Flash Block Write Time	_	40	_	ms	
t _{DSCLK}	Data Out Delay from Falling Edge of SCLK	_	_	55	ns	V _{DD} > 3.6
t _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	_	_	75	ns	$3.0 \le V_{DD} \le 3.6$
teraseall	Flash Erase Time (Bulk)	_	40	-	ms	Erase all blocks and protection fields at once.
t _{PROGRAM_HOT}	Flash Block Erase + Flash Block Write Time	_	_	100 ^[30]	ms	0 °C ≤ Tj ≤ 100 °C
t _{PROGRAM_COLD}	Flash Block Erase + Flash Block Write Time	_	_	200 ^[30]	ms	-40 °C ≤ Tj ≤ 0 °C

Document Number: 001-48111 Rev. *Q Page 66 of 86

Note
30. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing.

Refer to the AN2015 - PSoC® 1 - Getting Started with Flash & E2PROM Application Notes for more information.

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, or 3.0 V to 3.6 V and $-40 \text{ °C} \le T_A \le 85 \text{ °C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 56. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description	Standard Mode		Fast Mode		Units	Notes
Symbol		Min	Max	Min	Max	Units	Notes
F _{SCLI2C}	SCL clock frequency	0	100	0	400	kHz	
t _{HDSTAI2C}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	1	0.6	_	μS	
t _{LOWI2C}	LOW period of the SCL clock	4.7	_	1.3	_	μs	
t _{HIGHI2C}	HIGH period of the SCL clock	4.0	_	0.6	_	μs	
t _{SUSTAI2C}	Setup time for a repeated START condition	4.7	_	0.6	_	μS	
t _{HDDATI2C}	Data hold time	0	_	0	_	μs	
t _{SUDATI2C}	Data setup time	250	_	100 ^[31]	-	ns	
t _{SUSTOI2C}	Setup time for STOP condition	4.0	_	0.6	_	μS	
t _{BUFI2C}	Bus free time between a STOP and START condition	4.7	_	1.3	_	μS	
t _{SPI2C}	Pulse width of spikes are suppressed by the input filter.	-	I	0	50	ns	

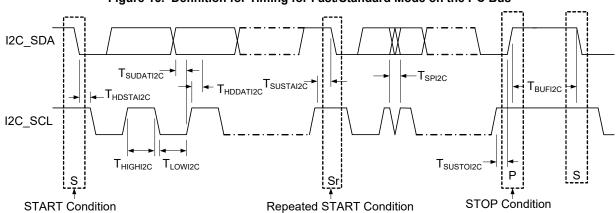
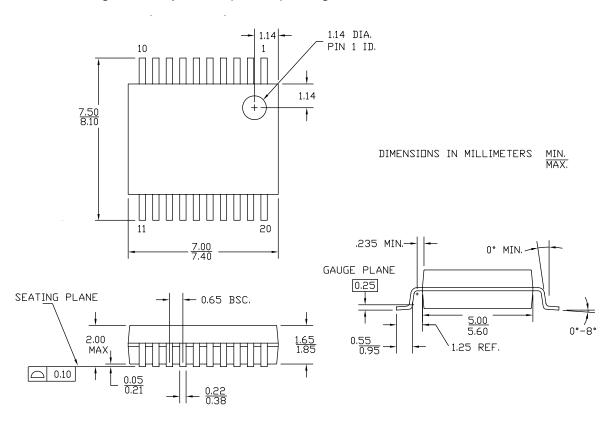


Figure 16. Definition for Timing for Fast/Standard Mode on the I²C Bus

Note

^{31.} A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement T_{SUDATI2C} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + T_{SUDATI2C} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

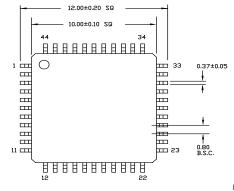

Packaging Information

This section illustrates the packaging specifications for the CY8C28xxx PSoC devices, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the Emulator Pod Dimension drawings at www.cypress.com.

Packaging Dimensions

Figure 17. 20-pin SSOP (210 Mils) Package Outline O20.21, 51-85077


51-85077 *F

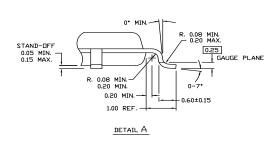

1.14 $\frac{7.50}{8.10}$ DIMENSIONS IN MILLIMETERS 10.00 SEATING PLANE .235 MIN. 0° MIN-- 0.65 BSC. GAUGE PLANE 2.00 0.25 1.65 1.85 0.10 5.00 5.60 1.25 REF-<u>55</u> 95 51-85079 *G

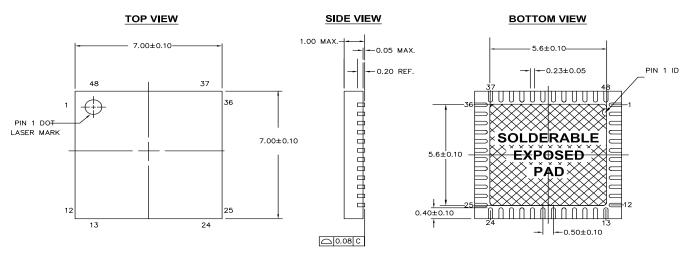
Figure 18. 28-pin SSOP (210 Mils) O28.21 Package Outline, 51-85079

Figure 19. 44-pin TQFP (10 × 10 × 1.4 mm) A44S Package Outline, 51-85064

L SEE DETAILA

SEATING PLANE 1.60 MAX. 1.40±0.05 0.20 MAX.

NDTE:


- 1. JEDEC STD REF MS-026
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
 MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
 BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
- 3. DIMENSIONS IN MILLIMETERS

51-85064 *G

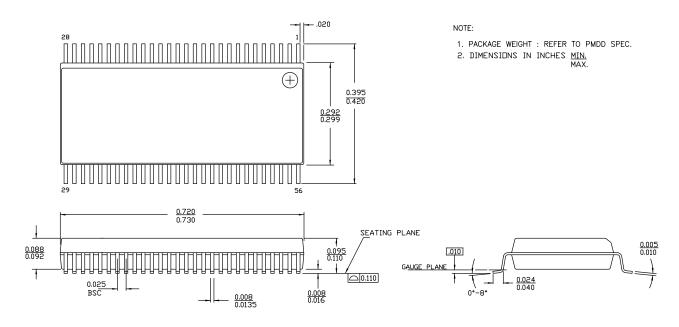
Document Number: 001-48111 Rev. *Q

Figure 20. 48-pin QFN (7 × 7 × 1.0 mm) LT48D 5.6 × 5.6 E-Pad (Sawn Type) Package Outline, 001-45616

NOTES:

- 1. MATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220
- 3. PACKAGE WEIGHT: REFER TO PMDD SPEC.
- 4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
- 5. PACKAGE CODE

PART #	DESCRIPTION
LT48D	LEAD FREE


001-45616 *F

Important Note For information on the preferred dimensions for mounting QFN packages, see the following application note, AN72845 - Design Guidelines For Cypress Quad Flat No-Lead (QFN) Packaged Devices.

Document Number: 001-48111 Rev. *Q

Figure 21. 56-pin SSOP (300 Mils) O563 Package Outline, 51-85062

51-85062 *F

Thermal Impedances

Table 57. Thermal Impedances per Package

Package	Typical θ _{JA} ^[32]
20-pin SSOP	80.8 °C/W
28-pin SSOP	45.4 °C/W
44-pin TQFP	24.0 °C/W
48-pin QFN ^[33]	16.7 °C/W
56-pin SSOP	67.5 °C/W

Capacitance on Crystal Pins

Table 58. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
20-pin SSOP	Pin9 = 0.0056 pF Pin11 = 0.006048 pF
28-pin SSOP	Pin13 = 0.006796 pF Pin15 = 0.006755 pF
44-pin TQFP	Pin16 = 0.009428 pF Pin18 = 0.008635 pF
48-pin QFN	Pin17 = 0.008493 pF Pin19 = 0.008742 pF
56-pin SSOP	Pin27 = 0.007916 pF Pin31 = 0.007132 pF

Solder Reflow Specifications

Table 59 shows the solder reflow temperature limits that must not be exceeded.

Table 59. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
20-pin SSOP	260 °C	30 seconds
28-pin SSOP	260 °C	30 seconds
44-pin TQFP	260 °C	30 seconds
48-pin QFN	260 °C	30 seconds
56-pin SSOP	260 °C	30 seconds

Notes

32. $T_J = T_A + POWER \times \theta_{JA}$

^{33.} To achieve the thermal impedance specified for the QFN package, refer to AN72845 - Design Guidelines For Cypress Quad Flat No-Lead (QFN) Packaged Devices for PCB requirements.

^{34.} Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Development Tool Selection

This section presents the development tools available for all current PSoC device families including the CY8C28xxx family.

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at www.cypress.com.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at www.cypress.com.

Development Kits

All development kits can be purchased from the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the content of specific memory locations. Advanced emulation features are supported in PSoC Designer. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- Pod kit for CY8C29x66 PSoC Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note The CY3207ISSP programmer needs the PSoC ISSP software. It is not compatible with the PSoC Programmer

software. The latest PSoC ISSP software for this kit can be downloaded from www.cypress.com. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

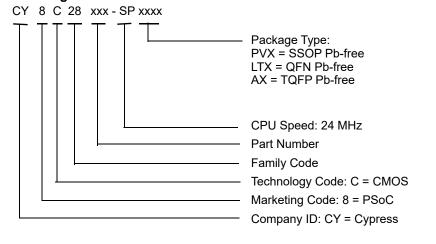
Accessories (Emulation and Programming)

Table 60. Emulation and Programming Accessories

Part #	Pin Package	Pod Kit ^[35]	Foot Kit ^[36]	Adapter ^[37]
CY8C28243-24PVXI	20-SSOP	CY3250-28XXX	CY3250-20SSOP-FK	
CY8C28403-24PVXI CY8C28413-24PVXI CY8C28433-24PVXI CY8C28445-24PVXI CY8C28452-24PVXI	28-SSOP	CY3250-28XXX	CY3250-28SSOP-FK	Adapters can be found at www.emulation.com.
CY8C28643-24LTXI CY8C28645-24LTXI	48-QFN	CY3250-28XXXQFN	CY3250-48QFN-FK	

Note

- 35. Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples.
- 36. Foot kit includes surface mount feet that can be soldered to the target PCB.
- 37. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at www.emulation.com.


Ordering Information

The following table lists the CY8C28xxx PSoC devices key package features and ordering codes.

Package	Ordering Code	Temperature Range	CapSense	Digital Blocks	Regular Analog Blocks	Limited Analog Blocks	HW I ² C	Decimators	10-bit SAR ADC	Digital I/O Pins	Analog Inputs	Analog Outputs	Flash (KBytes)	RAM (KBytes)	XRES Pin
28-Pin (210-Mil) SSOP	CY8C28403-24PVXI	–40 °C to 85 °C	Ν	12	0	0	2	0	Υ	24	8	0	16	1	Υ
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28403-24PVXIT	–40 °C to 85 °C	N	12	0	0	2	0	Y	24	8	0	16	1	Υ
28-Pin (210-Mil) SSOP	CY8C28413-24PVXI	–40 °C to 85 °C	Υ	12	0	4	1	2	Υ	24	24	0	16	1	Υ
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28413-24PVXIT	–40 °C to 85 °C	Y	12	0	4	1	2	Y	24	24	0	16	1	Υ
28-Pin (210-Mil) SSOP	CY8C28433-24PVXI	–40 °C to 85 °C	Υ	12	6	4	1	4	Υ	24	24	2	16	1	Υ
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28433-24PVXIT	–40 °C to 85 °C	Y	12	6	4	1	4	Y	24	24	2	16	1	Υ
20-Pin (210-Mil) SSOP	CY8C28243-24PVXI	–40 °C to 85 °C	N	12	12	0	2	4	Υ	16	16	4	16	1	Υ
20-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28243-24PVXIT	–40 °C to 85 °C	N	12	12	0	2	4	Y	16	16	4	16	1	Υ
48-Pin Sawn QFN	CY8C28643-24LTXI	–40 °C to 85 °C	N	12	12	0	2	4	Υ	44	44	4	16	1	Υ
48-Pin Sawn QFN (Tape and Reel)	CY8C28643-24LTXIT	–40 °C to 85 °C	N	12	12	0	2	4	Y	44	44	4	16	1	Υ
28-Pin (210-Mil) SSOP	CY8C28445-24PVXI	–40 °C to 85 °C	Υ	12	12	4	2	4	Υ	24	24	4	16	1	Υ
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28445-24PVXIT	–40 °C to 85 °C	Y	12	12	4	2	4	Y	24	24	4	16	1	Υ
48-Pin Sawn QFN	CY8C28645-24LTXI	–40 °C to 85 °C	Υ	12	12	4	2	4	Υ	44	44	4	16	1	Υ
48-Pin Sawn QFN (Tape and Reel)	CY8C28645-24LTXIT	–40 °C to 85 °C	Y	12	12	4	2	4	Y	44	44	4	16	1	Υ
28-Pin (210-Mil) SSOP	CY8C28452-24PVXI	–40 °C to 85 °C	Υ	8	12	4	1	4	Z	24	24	4	16	1	Υ
28-Pin (210-Mil) SSOP (Tape and Reel)	CY8C28452-24PVXIT	–40 °C to 85 °C	Υ	8	12	4	1	4	N	24	24	4	16	1	Υ

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Ordering Code Definitions

Thermal Rating: C = Commercial I = Industrial E = Extended

Acronyms

Acronyms Used

Table 61 lists the acronyms that are used in this document.

Table 61. Acronyms Used in this Datasheet

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter		on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PGA	programmable gain amplifier
CRC	cyclic redundancy check	PLL	phase-locked loop
CT	continuous time	POR	power on reset
DAC	digital-to-analog converter	PPOR	precision power on reset
DC	direct current	PRS	pseudo-random sequence
DTMF	dual-tone multi-frequency	PSoC [®]	Programmable System-on-Chip
ECO	external crystal oscillator	PWM	pulse width modulator
EEPROM	electrically erasable programmable read-only memory	QFN	quad flat no leads
GPIO	general purpose I/O	RTC	real time clock
ICE	in-circuit emulator	SAR	successive approximation
IDE	integrated development environment	SC	switched capacitor
ILO	internal low speed oscillator	SLIMO	slow IMO
IMO	internal main oscillator	SMP	switch mode pump
I/O	input/output	SOIC	small-outline integrated circuit
IrDA	infrared data association	SPI TM	serial peripheral interface
ISSP	in-system serial programming	SRAM	static random access memory
LCD	liquid crystal display	SROM	supervisory read only memory
LED	light-emitting diode	SSOP	shrink small-outline package
LPC	low power comparator	UART	universal asynchronous receiver / transmitter
LVD	low voltage detect	USB	universal serial bus
MAC	multiply-accumulate	WDT	watchdog timer
MCU	microcontroller unit	XRES	external reset

Reference Documents

CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34, CY8C21x34B, CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC® Programmable System-on-Chip (TRM) (001-14463)

AN2015 - PSoC® 1 - Getting Started with Flash & E2PROM (001-40459)

AN72845 - Design Guidelines For Cypress Quad Flat No-Lead (QFN) Packaged Devices (001-72845)

Document Number: 001-48111 Rev. *Q Page 76 of 86

Document Conventions

Units of Measure

Table 62 lists the unit sof measures.

Table 62. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kB	1024 bytes	μs	microsecond
dB	decibels	ms	millisecond
°C	degree Celsius	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolts
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nanovolts
kΩ	kilohm	V	volts
Ω	ohm	μW	microwatts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	ppm	parts per million
pA	pikoampere	%	percent
mH	millihenry		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high

6. A logic signal having the logic 1 state as the higher voltage of the two states.

The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.

Adevice that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.

API (Application

A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that

Programming Interface)

A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.

5. A logic signal having its asserted state as the logic 1 state.

Bandgap reference

A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.

2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

bias

- 1. A systematic deviation of a value from a reference value.
- 2. The amount by which the average of a set of values departs from a reference value.
- 3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

block

- 1. A functional unit that performs a single function, such as an oscillator.
- 2. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.

buffer

- 1. A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
- 2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
- 3. An amplifier used to lower the output impedance of a system.

bus

- 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
- 2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
- 3. One or more conductors that serve as a common connection for a group of related devices.

clock

The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.

comparator

An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.

compiler

A program that translates a high level language, such as C, into machine language.

configuration space

In PSoC devices, the register space accessed when the XIO bit, in the CPU F register, is set to '1'.

crystal oscillator

An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.

check (CRC)

cyclic redundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.

data bus

A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.

debugger

A hardware and software system that allows the user to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.

dead band

A period of time when neither of two or more signals are in their active state or in transition.

digital blocks

The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.

digital-to-analog (DAC)

A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.

emulator Duplicates (provides an emulation of) the functions of one system with a different system, so that the second

system appears to behave like the first system.

external reset (XRES)

An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop

and return to a pre-defined state.

flash An electrically programmable and erasable, non-volatile technology that provides users with the programmability

and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power

is off.

Flash block The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash

space that may be protected. A Flash block holds 64 bytes.

frequency The number of cycles or events per unit of time, for a periodic function.

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually

expressed in dB.

1²C A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated

Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.

ICE The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging

device activity in a software environment (PSoC Designer).

input/output (I/O) A device that introduces data into or extracts data from a system.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event external to that

process, and performed in such a way that the process can be resumed.

interrupt service routine (ISR)

A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.

1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on

serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.

low-voltage detect (LVD)

jitter

A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.

M8C An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by

interfacing to the Flash, SRAM, and register space.

master device A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices

and an external interface. The controlled device is called the slave device.

microcontroller An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a

microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for

general-purpose computation as is a microprocessor.

mixed-signal The reference to a circuit containing both analog and digital techniques and components.

modulator A device that imposes a signal on a carrier.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current, or data.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the

digits of the binary data either always even (even parity) or always odd (odd parity).

phase-locked An electronic circuit that controls an **oscillator** so that it maintains a constant phase angle relative to a reference loop (PLL) signal.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their

physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between

schematic and PCB design (both being computer generated files) and may also involve pin names.

port A group of pins, usually eight.

power on reset A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of

(POR) hardware reset.

PSoC[®] Cypress Semiconductor's PSoC[®] is a registered trademark and Programmable System-on-Chip™ is a trademark

of Cypress.

PSoC Designer™ The software for Cypress' Programmable System-on-Chip technology.

pulse width modulator (PWM)

An output in the form of duty cycle which varies as a function of the applied measurand

RAM An acronym for random access memory. A data-storage device from which data can be read out and new data

can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot

be written in.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or

channel.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one value to another.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.

slave device A device that allows another device to control the timing for data exchanges between two devices. Or when

devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master

device.

SRAM An acronym for static random access memory. A memory device allowing users to store and retrieve data at a

high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains

unchanged until it is explicitly altered or until power is removed from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate

circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code,

operating from Flash.

stop bit A signal following a character or block that prepares the receiving device to receive the next character or block.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.

2. A system whose operation is synchronized by a clock signal.

tri-state A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any

value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit,

allowing another output to drive the same net.

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower

level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming

Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal

program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during

the initialization phase of the program.

V_{DD} A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.

V_{SS} A name for a power net meaning "voltage source." The most negative power supply signal.

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Errata

This section describes the errata for CY8C28243, CY8C28403, CY8C28413, CY8C28433, CY8C28445, CY8C28452, CY8C28545, CY8C28643, CY8C28645 PSoC devices. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Device Characteristics
CY8C28403	All Variants
CY8C28243	All Variants
CY8C28413	All Variants
CY8C28433	All Variants
CY8C28445	All Variants
CY8C28513	All Variants
CY8C28545	All Variants
CY8C28643	All Variants
CY8C28645	All Variants
CY8C28452	All Variants
CY8C28623	All Variants

Qualification Status

Engineering Samples

Errata Summary

The following table defines the errata applicability to available CY8C28xxx family devices.

Note: Errata items in the following table are hyperlinked. Click on any item entry to jump to its description.

Items	Part Number	Silicon Revision	Fix Status
10-bit SAR ADC does not meet DNL/INL specification.	CY8C28403 CY8C28413 CY8C28513 CY8C28433 CY8C28243 CY8C28643 CY8C28445 CY8C28545 CY8C28645	*A	Silicon fix is not planned. The following mentioned workaround should be used.
Wrong data read from IDAC_CRx and DACx_D registers.	CY8C28413 CY8C28513 CY8C28433 CY8C28445 CY8C28545 CY8C28645 CY8C28452	*A	Silicon fix is not planned. The following mentioned workaround should be used.

Document Number: 001-48111 Rev. *Q Page 82 of 86

1. 10-bit SAR ADC does	s not meet DNL/INL specification.
Problem Definition	The 10-bit hardware SAR ADC does not meet datasheet accuracy specifications for DNL and INL under some conditions.
Parameters Affected	INLSAR10: Integral nonlinearity DNLSAR10: Differential nonlinearity
Trigger Condition(s)	The SAR ADC DNL has been measured greater than 2 LSB over temperature in all cases, as compared to the datasheet specification of 1.5 LSB. When using the VPWR (Vdd) reference configuration, the SAR ADC DNL has been measured over temperature at 2 LSB for a supply voltage of 3.3 V. With a supply voltage of 5.5 V, the DNL has been measured greater than 3.5 LSB.
Scope of Impact	Inaccurate converted data.
Workaround	Use an alternate ADC implementation (DelSig, ADCINC) available in CY8C28xxx devices. Avoid CPU operations that change the address and data buses while A-D conversion is running with internal Vpwr (Vdd) as Vref. Use un-buffered RefHi as ADC Vref. This may have a negative effect on the analog blocks in the analog array due to the noise introduced on RefHi reference.
Fix Status	Silicon fix is not planned. The mentioned workaround should be used.

2. Wrong data read from	IDAC_CRx and DACx_D registers.
Problem Definition	The CPU may read an incorrect value of bits 0, 3, 5, or 7 from the following registers: IDAC_CR0 IDAC_CR1 DAC0_D DAC1_D
Parameters Affected	F _{CPU1} and F _{CPU2} from the device data sheet.
Trigger Condition(s)	When CPU Clock is set at its highest frequency setting (24 MHz nominal).
Scope of Impact	Incorrect data read from affected registers.
Workaround	Temporarily slow down CPU Clock frequency to 12 MHz nominal (or lower) when affected registers are read.
Fix Status	Silicon fix is not planned. The mentioned workaround should be used.

Document Number: 001-48111 Rev. *Q Page 83 of 86

Document History Page

Revision	: Number: 0	Submission	Description of Change
**		Date	·
*A	2593460 2652217	10/20/08 02/02/09	New document (Revision **).
"A	2002217	02/02/09	Extensive updates to content. Added registers maps. Updated Getting Started section Updated Development Tools section Added some SAR10 ADC specifications. Added more analog system figures
*B	2675937	03/18/09	Updated DC Analog Reference Specifications tables Minor content updates
*C	2679015	03/26/2009	Post to external web.
*D	2750217	08/10/09	Updates to Electrical Specifications section Minor content updates
*E	2768143	09/23/09	Updated DC Operational Amplifier, DC Analog Reference, DC SAR10ADC, and DC POF specifications; Added Figure 15 and Figure 16; Updated AC TypeE-Operational and AC SAR10ADC specifications
*F	2805324	11/11/09	Added Contents page. Updated Electrical Specifications.
*G	2902396	03/30/2010	Updated Cypress website links. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings. Updated DC SAR10 ADC Specifications. Modified Note 23. Removed AC Analog Mux Bus Specifications, Third Party Tools and Build a PSoC Emulatorinto your Board. Updated Packaging Information and Ordering Code Definitions. Updated links in Sales, Solutions, and Legal Information.
*H	3063584	10/20/10	Added PSoC Device Characteristics table. Added DC I2C Specifications table. Added F32K_U max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Analog reference tables. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I2C Timing Diagram. They were updated for clearer understanding. Updated Figure 13 since the labelling for y-axis was incorrect. Template and styles update.
*	3148779	01/20/11	Added Footnote # 34 to Thermal Impedances section. Table 7. 56-Pin Part Pinout (SSOP) (page 15) - Pin#28 - Pin Name changed to " V_{SS} ". Table 5. 44-Pin Part Pinout (TQFP) (page 13) - Pin#17 - Pin Type changed to "Power". Under DC SAR10 ADC Specifications table, for parameter $V_{VREFSAR10}$, Max value change from 4.95 V to V_{DD} – 0.3 V. Updated Table 59, "Solder Reflow Specifications," on page 72 as per spec 25-00090.
*J	3598237	04/24/2012	Changed the PWM description string from "8- to 32-bit" to "8- and 16-bit".
*K	3758002	10/01/2012	Updated Packaging Information (spec 001-45616 (Changed revision from *B to *D), spe 51-85062 (Changed revision from *D to *F)).
*L	3993399	05/08/2013	Updated Reference Documents (Removed 001-17397 spec, 001-14503 spec related infomation). Added Errata.
*M	4138595	09/27/2013	Updated to new template. Completing Sunset Review.

Document History Page (continued)

Revision	ECN	Submission Date	Description of Change
*N	4476160	09/04/2014	Replaced references of "Application Notes for Surface Mount Assembly of Amkor's Micro LeadFrame (MLF) Packages" with "Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845" in all instances across the document. Added PSoC Functional Overview. Added PSoC Designer. Updated PSoC Device Characteristics: Updated Table 2: Added a column "Analog Mux Buses" at the end. Removed "Getting Started". Updated Electrical Specifications: Updated DC Electrical Characteristics: Updated DC I2C Specifications: Updated Table 42: Added V _{OLI2C} parameter and its details. Updated Packaging Information: spec 51-85064 – Changed revision from *E to *F. Completing Sunset Review.
*O	4914758	09/10/2015	Updated Document Title to read as "CY8C28243/CY8C28403/CY8C28413/ CY8C28433/CY8C28445/CY8C2845/CY8C28513/CY8C28545/ CY8C28643/CY8C28645, Programmable System-on-Chip". Removed CY8C28533 related information in all instances across the document. Updated Electrical Specifications: Updated DC Electrical Characteristics: Updated DC SAR10 ADC Specifications: Updated Table 38: Updated details in "Description" column of DNL _{SAR10} parameter. Updated Packaging Information: Updated Packaging Dimensions: spec 51-85077 - Changed revision from *E to *F. spec 51-85079 - Changed revision from *E to *F. spec 001-45616 - Changed revision from *D to *E. Updated Development Tool Selection: Updated Accessories (Emulation and Programming): Updated Table 60: Updated details in "Part #" column corresponding to 44-pin TQFP package. Updated Ordering Information: Updated Part Numbers. Updated Part Numbers Affected: Updated Part Numbers Affected: Updated table. Updated table and also details below the table. Updated to new template. Completing Sunset Review.
*P	5723667	05/02/2017	Updated the Packaging Information. Updated Cypress Logo and Copyright.
*Q	6737899	12/23/2020	Updated Title. Updated to the template. Removed "Specifications for devices running at greater than 12 MHz are valid for –40 °C \leq $T_A \leq 70$ °C and $T_J \leq 82$ °C" in the Electrical Specifications section. Removed Obsolete part numbers CY8C28513-24AXI, CY8C28623-24LTXI, and CY8C28545-24AXI in Table 60. Removed EOL Obsolete part numbers CY8C28513-24AXI, CY8C28513-24AXIT, CY8C28623-24LTXI, CY8C28623-24LTXIT, CY8C28545-24AXIT, CY8C28000-24PVXI in Ordering Information. spec 51-85079 – Changed revision from *F to *G in Packaging Information.

Wireless Connectivity

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Memory

Cortex® Microcontrollers

cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

cypress.com/mcu

PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INICLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach in addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk D

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-48111 Rev. *Q Revised December 23, 2020 Page 86 of 86