1 pC Charge Injection, 100 pA Leakage, CMOS, $\pm 5 \mathrm{~V} /+5 \mathrm{~V} /+3 \mathrm{~V}$ Dual SPDT Switch

FEATURES

1 pC charge injection
$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supply
+2.7 V to +5.5 V single supply
Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
100 pA (maximum at $25^{\circ} \mathrm{C}$) leakage currents
85Ω typical on resistance
Rail-to-rail operation
Fast switching times
Typical power consumption (<0.1 $\mu \mathrm{W}$)
TTL-/CMOS-compatible inputs
14-lead TSSOP package

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered instruments
Communication systems
Sample-and-hold systems
Remote-powered equipment
Audio and video signal routing
Relay replacement
Avionics

GENERAL DESCRIPTION

The ADG636 is a monolithic device, comprising two independently selectable CMOS single pole, double throw (SPDT) switches. When on, each switch conducts equally well in both directions.

The ADG636 operates from a dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ supply, or from a single supply of +2.7 V to +5.5 V .

This switch offers ultralow charge injection of $\pm 1.5 \mathrm{pC}$ over the entire signal range and leakage current of 10 pA typical at $25^{\circ} \mathrm{C}$. In addition, it offers on resistance of 85Ω typical, which is matched to within 2Ω between channels. The ADG636 also has low power dissipation yet is capable of high switching speeds.

The ADG636 exhibits break-before-make switching action and is available in a 14 -lead TSSOP package.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. Ultralow charge injection. $\mathrm{Q}_{\mathrm{in} \text { : }} \pm 1.5 \mathrm{pC}$ typical over the full signal range.
2. Leakage current $<0.25 \mathrm{nA}$ maximum at $85^{\circ} \mathrm{C}$.
3. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ or single +2.7 V to +5.5 V supply.
4. Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
5. Small 14-lead TSSOP package.

Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG636

TABLE OF CONTENTS

Features1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual Supply 3
Single Supply 5
REVISION HISTORY
9/09—Rev. A to Rev. B
Changes to Table 6 10
8/08—Rev. 0 to Rev. A
Updated Format Universal
Changes to Analog Switch Parameter 3
Changes to Analog Switch Parameter 5
Changes to Analog Switch Parameter 7
Change to IDD Parameter 8
Changes to Absolute Maximum Ratings 9
Added Table 5; Renumbered Sequentially 10
Moved Truth Table 10
Added Endnote to Table 6 10
Changes to Figure 19 13
Updated Outline Dimensions 16
Changes to Ordering Guide 16
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configuration and Function Descriptions 10
Typical Performance Characteristics 11
Test Circuits 13
Terminology 15
Outline Dimensions 16
Ordering Guide 16

1/02-Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

ADG636

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& $+25^{\circ} \mathrm{C}$ \& $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ \& $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ \& Unit \& Test Conditions/Comments

\hline C_{5} (Off) \& 5 \& \& \& pF typ \& $\mathrm{f}=1 \mathrm{MHz}$

\hline C_{D} (Off) \& 8 \& \& \& pF typ \& $\mathrm{f}=1 \mathrm{MHz}$

\hline $\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On})$ \& 8 \& \& \& pF typ \& $\mathrm{f}=1 \mathrm{MHz}$

\hline POWER REQUIREMENTS \& \multicolumn{2}{|l|}{\multirow[b]{4}{*}{0.001
0.001}} \& \multirow{4}{*}{1.0} \& \& $\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V}$

\hline \multirow{4}{*}{IDD

ISS} \& \& \& \& $\mu \mathrm{A}$ typ \& Digital inputs $=0 \mathrm{~V}$ or 5.5 V

\hline \& \& \& \& $\mu \mathrm{A}$ max \& Digital inputs $=0 \mathrm{~V}$ or 5.5 V

\hline \& \& \& \& $\mu \mathrm{A}$ typ \& Digital inputs $=0 \mathrm{~V}$ or 5.5 V

\hline \& 0.001 \& \& 1.0 \& $\mu \mathrm{A}$ max \& Digital inputs $=0 \mathrm{~V}$ or 5.5 V

\hline
\end{tabular}

${ }^{1}$ Guaranteed by design; not subject to production test.

SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
					$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
On Resistance, Ron	210			Ω typ	$\mathrm{V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{los}=-1 \mathrm{~mA}$, Figure 14
	290	350	380	Ω max	$\mathrm{V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{los}=-1 \mathrm{~mA}$, Figure 14
On Resistance Match Between Channels, \triangle Row	3			Ω typ	$\mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{l}_{\mathrm{DS}}=-1 \mathrm{~mA}$
		12	13	Ω max	$\mathrm{V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{los}=-1 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off)					$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
	± 0.01			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V},$ Figure 15
	± 0.1	± 0.25	± 2	$n A \max$	$\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V},$ Figure 15
Drain Off Leakage, lo (Off)	± 0.01			nA typ	$V_{S}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V},$ Figure 15
	± 0.1	± 0.25	± 2	$n A \max$	$V_{S}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V},$ Figure 15
Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathrm{On})$	± 0.01			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$, Figure 16
	± 0.1	± 0.25	± 6	nA max	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$, Figure 16
DIGITAL INPUTS					
Input High Voltage, V INH			2.4	\checkmark min	
Input Low Voltage, VINL Input Current, I InL or linh			0.8	V max	
	0.005			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
			± 0.1	$\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	2			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time	90			ns typ	$\begin{aligned} & \mathrm{V}_{\mathrm{SIA}}=3 \mathrm{~V}, \mathrm{~V}_{S 1 B}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Figure } 17 \end{aligned}$
	150	185	210	ns max	$\mathrm{V}_{\mathrm{S} 1 \mathrm{~A}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 1 \mathrm{~B}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega,$ $\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, Figure 17
ton Enable	135			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{s}}=3 \mathrm{~V},$ Figure 19
	180	235	275	ns max	$R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}, V_{S}=3 \mathrm{~V},$ Figure 19
toff Enable	70			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V},$ Figure 19
	105	120	135	ns max	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V},$ Figure 19
Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$	30			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V},$ Figure 18
			10	ns min	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V},$ Figure 18
Charge Injection	0.3			pC typ	$V_{S}=0 \mathrm{~V}, \mathrm{RS}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ Figure 20
Off Isolation	-60			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz},$ Figure 21
Channel-to-Channel Crosstalk	-65			dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz},$ Figure 23
Bandwidth -3 dB	530			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$, Figure 22
C_{5} (Off)	5			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	8			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	8			pF typ	$\mathrm{f}=1 \mathrm{MHz}$

ADG636

Parameter	$\mathbf{+ 2 5}{ }^{\circ} \mathbf{C}$	$\mathbf{- 4 0}{ }^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5}^{\circ} \mathbf{C}$	$\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $\mathbf{+ 1 2 5}{ }^{\circ} \mathbf{C}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS IDD	0.001		$\mu \mathrm{~A}$ typ	VD $=5.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or 5.5 V Digital inputs $=0 \mathrm{~V}$ or 5.5 V	

[^0]$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

ADG636

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS ldo	0.001		1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{VDD}=3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ & \hline \end{aligned}$

${ }^{1}$ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	13 V
Vid to GND	-0.3 V to +6.5 V
$V_{\text {ss }}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty Cycle Maximum)	20 mA
Continuous Current, S or D	10 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package	
$\theta_{\text {JA }}$ Thermal Impedance	$150^{\circ} \mathrm{C} / \mathrm{W}$
Oıc Thermal Impedance	$27^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$220^{\circ} \mathrm{C}$
Pb -Free Soldering	
Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec

[^1]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG636

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration
Table 5. Pin Function Descriptions

Pin number	Mnemonic	Description
1	AO	Digital Input (LSB).
2	EN	Active High Digital Input.
3	$V_{S S}$	Negative Power Supply. For single-supply operation, connect this pin to GND.
4	S1A	Source Terminal. Can be an input or output.
5	S1B	Source Terminal. Can be an input or output.
6	D1	Drain Terminal. Can be an input or output.
7	NC	Not Electrically Connected.
8	NC	Not Electrically Connected.
9	D2	Drain Terminal. Can be an input or output.
10	S2B	Source Terminal. Can be an input or output.
11	S2A	Source Terminal. Can be an input or output.
12	VDD	Positive Power Supply.
13	GND	Ground (OV) Power Supply.
14	A1	Digital Input (MSB).

Table 6. Truth Table

A1	A0	EN	On Switch
X^{1}	X^{1}	0	None
0	0	1	S1A, S2A
0	1	1	S1B, S2A
1	0	1	S1A, S2B
1	1	1	S1B, S2B

[^2]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{S}\right)$, Dual Supply

Figure 4. On Resistance vs. $V_{D}\left(V_{s}\right)$, Single Supply

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 6. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply

Figure 7. Leakage Currents vs. Temperatures, Dual Supply

Figure 8. Leakage Currents vs. Temperature, Single Supply

ADG636

Figure 9. Charge Injection vs. Source Voltage

Figure 10. ton/toff Enable Timing vs. Temperature

Figure 11. Off Isolation vs. Frequency

Figure 12. Crosstalk vs. Frequency

Figure 13. On Response vs. Frequency

TEST CIRCUITS

Figure 14. On Resistance

Figure 15. Off Leakage

Figure 16. On Leakage

Figure 17. Transition Time, $t_{\text {TRANSITION }}$

ADG636

Figure 20. Charge Injection

OFF ISOLATION $=20 \log \frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{v}_{\mathrm{S}}}$ 咭
Figure 21. Off Isolation

Figure 22. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{v}_{\mathrm{OUT}}}{\mathrm{v}_{\mathrm{S}}}$ 哭
Figure 23. Channel-to-Channel Crosstalk

TERMINOLOGY

$V_{\text {DD }}$
Most positive supply potential.

Vss

Most negative power supply in a dual-supply application.
In single-supply applications, this should be tied to ground at the device.
GND
Ground (0 V) reference.
$I_{\text {DD }}$
Positive supply current.
Iss
Negative supply current.
S
Source terminal. May be an input or output.
D
Drain terminal. May be an input or output.
Ron
Ohmic resistance between Terminal D and Terminal S.
Δ Ron
On resistance match between any two channels (that is, Ron max - Ron min).
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum values of on resistance as measured over the specified analog signal range.

Is (Off)

Source leakage current with the switch off.

I_{D} (Off)

Drain leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}(\mathbf{O n}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$

Channel leakage current with the switch on.
$\mathbf{V}_{\mathrm{D}}, \mathrm{V}_{\mathrm{s}}$
Analog voltage on Terminal D and Terminal S.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL(IINH) }}$
Input current of the digital input.

Cs (Off)

Channel input capacitance for the off condition.
C_{D} (Off)
Channel output capacitance for the off condition.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
On switch capacitance.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton (EN)
Delay time between the 50% and 90% points of the digital input and the switch on condition.
toff (EN)
Delay time between the 50% and 90% points of the digital input and the switch off condition.
$t_{\text {transition }}$
Delay time between the 50% and 90% points of the digital input and the switch on condition when switching from one address state to another.
$\mathbf{t}_{\text {вbм }}$
Off time or on time measured between the 80% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

The frequency response of the on switch.

Insertion Loss

Loss due to the on resistance of the switch.

ADG636

OUTLINE DIMENSIONS

Figure 24. 14-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-14$)
Dimensions shown in millimeters and (inches)
ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG636YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	RU-14
ADG636YRU-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	RU-14
ADG636YRUZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	RU-14
ADG636YRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	RU-14
ADG636YRUZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead Thin Shrink Small Outline Package $[\mathrm{TSSOP}]$	RU-14

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test

[^1]: ${ }^{1}$ Overvoltages at EN, A0, A1, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

[^2]: ${ }^{1} \mathrm{X}=$ logic state doesn't matter; it can be either 0 or 1 .

