

Vishay Semiconductors

High Efficiency LED in Ø 3 mm Tinted Non-Diffused Package

DESCRIPTION

The TLH.42.. series was developed for standard applications like general indicating and lighting purposes.

It is housed in a 3 mm tinted clear plastic package. The wide viewing angle of these devices provides a high on-off contrast.

Several selection types with different luminous intensities are offered. All LEDs are categorized in luminous intensity groups. The green and yellow LEDs are categorized additionally in wavelength groups.

That allows users to assemble LEDs with uniform appearance.

FEATURES

- Choice of five bright colors
- Standard T-1 package
- Small mechanical tolerances
- Suitable for DC and high peak current
- Wide viewing angle
- Luminous intensity categorized
- · Yellow and green color categorized
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Status lights
- Off / on indicator
- Background illumination
- Readout lights
- Maintenance lights
- Legend light

PRODUCT GROUP AND PACKAGE DATA

- Product group: LED
- · Package: 3 mm
- · Product series: standard
- Angle of half intensity: ± 22°

PARTS TABL	E																							
PART	COLOR		JMINOU ITENSI (mcd)		at I _F (mA)	WAVELENGTH (nm)		(nm)		I _F (nm)				a		(nm)					FORWARD VOLTAGE (V)		at I _F (mA)	TECHNOLOGY
		MIN.	TYP.	MAX.	(11174)	MIN.	TYP.	MAX.	(11174)	MIN.	TYP.	MAX.	(111,4)											
TLHR4200	Red	4	8	-	10	612	-	625	10	-	2	3	20	GaAsP on GaP										
TLHR4201	Red	6.3	10	-	10	612	-	625	10	-	2	3	20	GaAsP on GaP										
TLHR4205	Red	10	15	-	10	612	-	625	10	-	2	3	20	GaAsP on GaP										
TLHR4205-AS12Z	Red	10	15	-	10	612	-	625	10	-	2	3	20	GaAsP on GaP										
TLHO4200	Soft orange	4	10	-	10	598	-	611	10	-	2.4	3	20	GaAsP on GaP										
TLHO4201	Soft orange	10	18	-	10	598	-	611	10	-	2.4	3	20	GaAsP on GaP										
TLHY4200	Yellow	4	10	-	10	581	-	594	10	-	2.4	3	20	GaAsP on GaP										
TLHY4201	Yellow	6.3	15	-	10	581	-	594	10	-	2.4	3	20	GaAsP on GaP										
TLHY4205	Yellow	10	20	-	10	581	-	594	10	-	2.4	3	20	GaAsP on GaP										
TLHY4205-MS12	Yellow	10	20	-	10	581	-	594	10	-	2.4	3	20	GaAsP on GaP										
TLHG4200	Green	6.3	10	-	10	562	-	575	10	-	2.4	3	20	GaP on GaP										
TLHG4200-AS12Z	Green	6.3	10	-	10	562	-	575	10	-	2.4	3	20	GaP on GaP										
TLHG4201	Green	10	15	-	10	562	-	575	10	-	2.4	3	20	GaP on GaP										
TLHG4205	Green	16	20	-	10	562	-	575	10	-	2.4	3	20	GaP on GaP										

COMPLIANT HALOGEN

FREE

GREEN

(5-2008)

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified) TLHG420., TLHO420., TLHR420., TLHY420.							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Reverse voltage (1)		V _R	6	V			
DC forward current		I _F	30	mA			
Surge forward current	t _p ≤ 10 µs	I _{FSM}	1	A			
Power dissipation		Pv	100	mW			
Junction temperature		Tj	100	°C			
Operating temperature range		T _{amb}	-40 to +100	°C			
Storage temperature range		T _{stg}	-55 to +100	°C			
Soldering temperature	$t \le 5$ s, 2 mm from body	T _{sd}	260	°C			
Thermal resistance junction-to-ambient		R _{thJA}	400	K/W			

Note

⁽¹⁾ Driving the LED in reverse direction is suitable for a short term application

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) **TLHR420.**, **RED**

,							
PARAMETER	TEST CONDITION	PARTS	SYMBOL	MIN.	TYP.	MAX.	UNIT
		TLHR4200	IV	4	8	-	mcd
Luminous intensity	I _F = 10 mA	TLHR4201	IV	6.3	10	-	mcd
		TLHR4205	IV	10	15	-	mcd
Dominant wavelength	I _F = 10 mA		λ_d	612	-	625	nm
Peak wavelength	I _F = 10 mA		λρ	-	635	-	nm
Angle of half intensity	I _F = 10 mA		φ	-	± 22	-	deg
Forward voltage	I _F = 20 mA		V _F	-	2	3	V
Reverse current	V _R = 6 V		I _R	-	-	10	μA
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	50	-	pF

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25$ °C, unless otherwise specified) **TLHO420., SOFT ORANGE**

				-		-	
PARAMETER	TEST CONDITION	PARTS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity	I _F = 10 mA	TLHO4200	Ι _V	4	10	-	mcd
Luminous intensity	$I_F = 10 IIIA$	TLHO4201	I _V	10	18	-	mcd
Dominant wavelength	I _F = 10 mA		λ_d	598	-	611	nm
Peak wavelength	I _F = 10 mA		λρ	-	605	-	nm
Angle of half intensity	I _F = 10 mA		φ	-	± 22	-	deg
Forward voltage	I _F = 20 mA		V _F	-	2.4	3	V
Reverse current	V _R = 6 V		I _R	-	-	10	μA
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	50	-	pF

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) TLHY420., YELLOW							
PARAMETER	TEST CONDITION	PARTS	SYMBOL	MIN.	TYP.	MAX.	UNIT
		TLHY4200	Ι _V	4	10	-	mcd
Luminous intensity	I _F = 10 mA	TLHY4201	I _V	6.3	15	-	mcd
		TLHY4205	Ι _V	10	20	-	mcd
Dominant wavelength	I _F = 10 mA		λ_d	581	-	594	nm
Peak wavelength	l _F = 10 mA		λρ	-	585	-	nm
Angle of half intensity	I _F = 10 mA		j	-	± 22	-	deg
Forward voltage	I _F = 20 mA		V _F	-	2.4	3	V
Reverse current	V _R = 6 V		I _R	-	-	10	μA
Junction capacitance	$V_{R} = 0 V$, f = 1 MHz		Cj	-	50	-	pF

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) **TLHG420., GREEN**

PARAMETER	TEST CONDITION	PARTS	SYMBOL	MIN.	TYP.	MAX.	UNIT
		TLHG4200	I _V	6.3	10	-	mcd
Luminous intensity	I _F = 10 mA	TLHG4201	I _V	10	15	-	mcd
		TLHG4205	IV	16	20	-	mcd
Dominant wavelength	I _F = 10 mA		λ_d	562	-	575	nm
Peak wavelength	I _F = 10 mA		λρ	-	565	-	nm
Angle of half intensity	I _F = 10 mA		φ	-	± 22	-	deg
Forward voltage	I _F = 20 mA		V _F	-	2.4	3	V
Reverse current	V _R = 6 V		I _R	-	-	10	μA
Junction capacitance	$V_R = 0 V$, f = 1 MHz		Cj	-	50	-	pF

LUMINOUS INTENSITY CLASSIFICATION						
GROUP	LUMINOUS INTENSITY (mcd)					
STANDARD	MIN.	MAX.				
N	2.5	5				
Р	4	8				
Q	6.3	12.5				
R	10	20				
S	16	32				
Т	25	50				
U	40	80				
V	63	125				
W	100	200				
Х	130	260				
Y	180	360				
Z	240	480				
AA	320	640				
BB	430	860				
CC	575	1150				
DD	750	1500				

Note

Luminous intensity is tested at a current pulse duration of 25 ms. The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups in each bag). In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where wavelength groups are massured and binned binne

measured and binned, single wavelength groups will be shipped on any one bag. In order to ensure availability, single wavelength groups will not be orderable

Rev. 2.3,	26-Feb-18
-----------	-----------

Document Number: 83005

Vishay Semiconductors

COLOR CL	OLOR CLASSIFICATION								
	DOM. WAVELENGTH (nm)								
GROUP	SOFT C	RANGE	YEL	LOW	GRE	EEN			
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.			
1	598	601	581	584	-	-			
2	600	603	583	586	-	-			
3	602	605	585	588	562	565			
4	604	607	587	590	564	567			
5	606	609	589	592	566	569			
6	608	611	591	594	568	571			
7	-	-	-	-	570	573			
8	-	-	-	-	572	575			

Note

· Wavelengths are tested at a current pulse duration of 25 ms

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

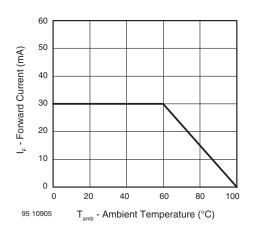


Fig. 1 - Forward Current vs. Ambient Temperature

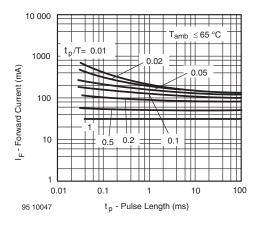


Fig. 2 - Forward Current vs. Pulse Length

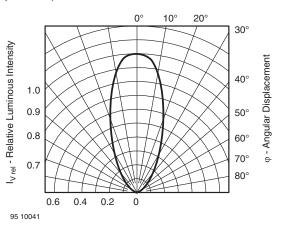


Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

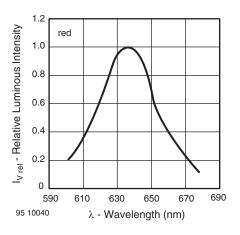


Fig. 4 - Relative Intensity vs. Wavelength

Rev. 2.3, 26-Feb-18

4 For technical questions, contact: <u>LED@vishay.com</u> Document Number: 83005

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

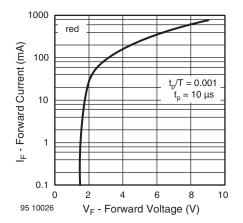


Fig. 5 - Forward Current vs. Forward Voltage

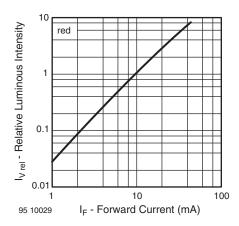


Fig. 6 - Relative Luminous Intensity vs. Forward Current

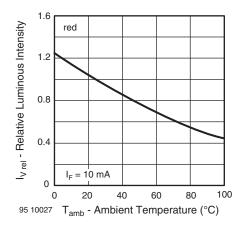


Fig. 7 - Relative Luminous Intensity vs. Ambient Temperature

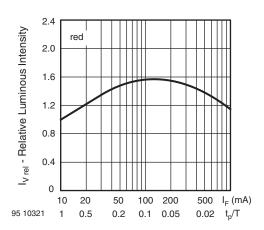


Fig. 8 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

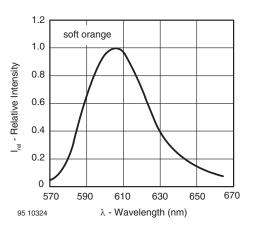


Fig. 9 - Relative Intensity vs. Wavelength

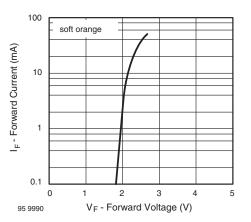


Fig. 10 - Forward Current vs. Forward Voltage

Rev. 2.3, 26-Feb-18

5 For technical questions, contact: <u>LED@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

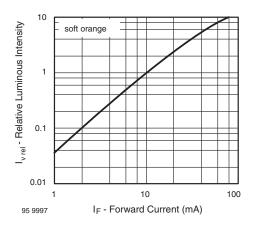


Fig. 11 - Relative Luminous Intensity vs. Forward Current

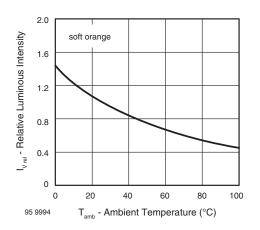
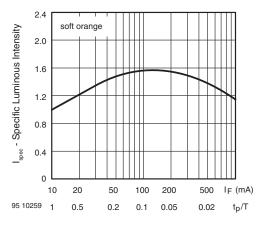
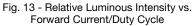




Fig. 12 - Relative Luminous Intensity vs. Ambient Temperature

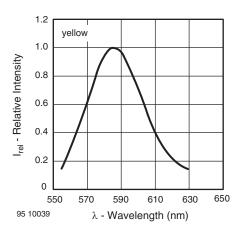


Fig. 14 - Relative Intensity vs. Wavelength

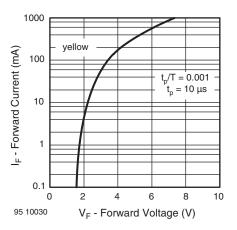


Fig. 15 - Forward Current vs. Forward Voltage

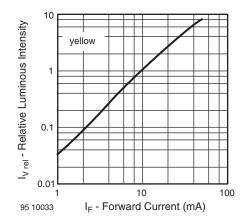


Fig. 16 - Relative Luminous Intensity vs. Forward Current

Rev. 2.3, 26-Feb-18

6 For technical questions, contact: <u>LED@vishav.com</u> Document Number: 83005

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

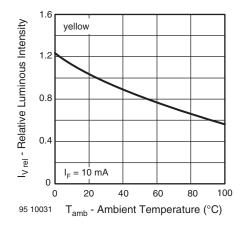
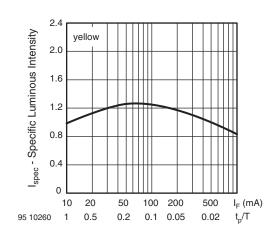
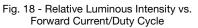




Fig. 17 - Relative Luminous Intensity vs. Ambient Temperature

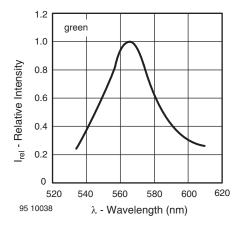


Fig. 19 - Relative Intensity vs. Wavelength

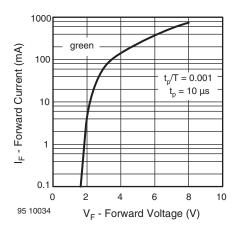


Fig. 20 - Forward Current vs. Forward Voltage

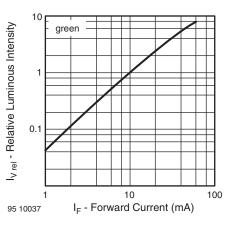


Fig. 21 - Relative Luminous Intensity vs. Forward Current

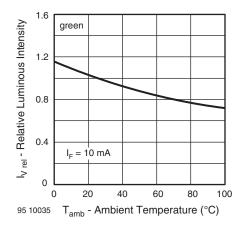


Fig. 22 - Relative Luminous Intensity vs. Ambient Temperature

Rev. 2.3, 26-Feb-18

7 For technical questions, contact: <u>LED@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

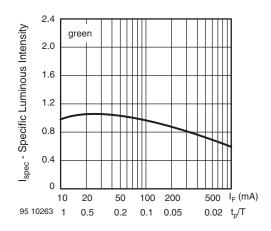
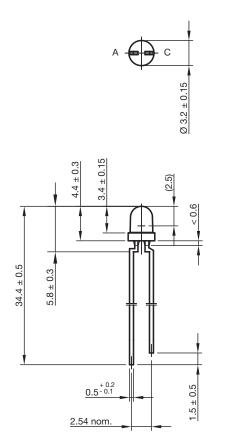
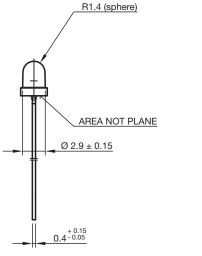




Fig. 23 - Specific Luminous Intensity vs. Forward Current

PACKAGE DIMENSIONS in millimeters

according to DIN specifications

Drawing-No.: 6.544-5255.01-4 Issue: 9; 28.07.14

8

For technical questions, contact: <u>LED@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

TAPE

Adhesive tape Identification label

Tape

 \bigcirc

Ree

Pape

Vishay Semiconductors

Diodes: anode before cathode

Code 21

Phototransistors: emitter before collector

Diodes:

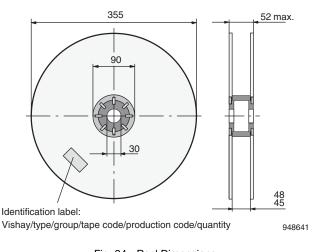
cathode before anode

collector before emitter Code 12

94 8671

Phototransistors:

REEL



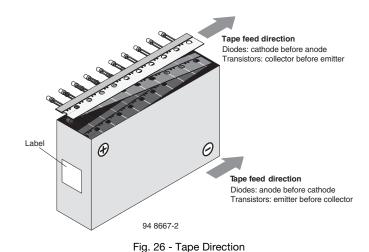

Fig. 24 - Reel Dimensions

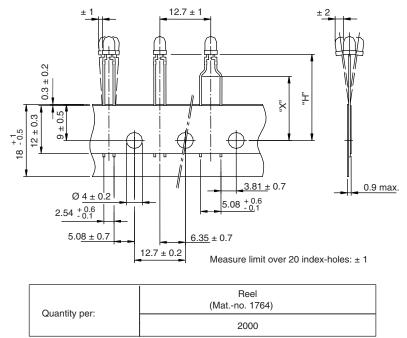
Fig. 25 - LED in Tape

AS12 = cathode leaves tape first

AS21 = anode leaves tape first

AMMOPACK

Note


The new nomenclature for ammopack is e.g. ASZ only, without suffix for the LED orientation. The carton box has to be turned to the desired . position: "+" for anode first, or "-" for cathode first. AS12Z and AS21Z are still valid for already existing types, BUT NOT FOR NEW DESIGN

9

Vishay Semiconductors

TAPE DIMENSIONS in millimeters

21885

Option	Dim. "H" ± 0.5 mm	Dim. "X" ± 0.5 mm
AS	17.3	-
MS	25.5	-

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.