

ST1480AB ST1480AC

3.3 V powered, 15 kV ESD protected, up to 12 Mbps true RS-485/RS-422 transceiver

Datasheet - production data

Features

- ESD protection
 - ±15 kV human body model
 - ±8 kV IEC 1000-4-2 contact discharge
- Operates from a single 3.3 V supply no charge pump required
- Interoperable with 5 V logic
- 1 μA low current shutdown mode max
- · Guaranteed 12 Mbps data rate
- -7 to 12 common mode input voltage range
- · Half duplex versions available
- Industry standard 75176 pinout
- Current limiting and thermal shutdown for driver overload protection
- Guaranteed high receiver output state for floating, shorted or terminated inputs with no signal present
- Allows up to 64 transceivers on the bus

Description

The ST1480Ax is ± 15 kV ESD protected, 3.3 V low power transceiver for RS-485 and RS-422 communications. The device contains one driver and one receiver in half duplex configuration.

The ST1480Ax transmits and receives at a guaranteed data rate of at least 12 Mbps.

All transmitter outputs and receiver inputs are protected to ±15 kV using Human Body Model.

Driver is short-circuit current limited and is protected against excessive power dissipation by

thermal shutdown circuitry that places the driver outputs into a high-impedance state.

The ST1480Ax input has a true fail-safe feature that guarantees a logic high output if both inputs are open circuit, shorted together or in the presence of a termination with no signal on the bus.

Table 1. Device summary

Order codes	Temperature range	erature range Package Pacl	
ST1480ACDR	0 to 70 °C	SO-8 (tape & reel)	2500 parts per reel
ST1480ABDR	- 40 to 85 °C	SO-8 (tape & reel)	2500 parts per reel

Contents

1	Pin configuration	. 3
2	Truth tables	. 4
3	Maximum ratings	. 5
4	Electrical characteristics	. 6
5	Test circuits and typical characteristics	. 9
6	Package mechanical data	17
7	Revision history	18

ST1480AB - ST1480AC Pin configuration

1 Pin configuration

Figure 1. Pin connections

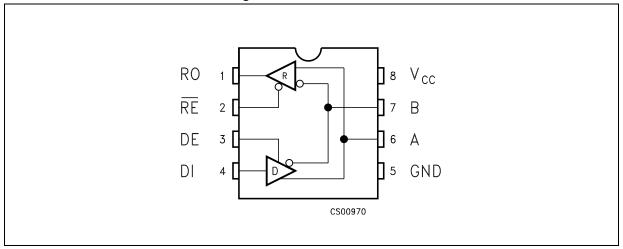


Figure 2. Pin description

Pin n°	Symbol	Name and function
1	RO	Receiver output. If A>B by 200 mV, RO is high; if A< B by 200 mV, RO is low
2	RE	Receiver Output Enable. RO is enabled when RE is low; RO is high impedance when RE is high. If RE is high and DE is low, the device enters a low power shutdown mode.
3	DE	Driver Output Enable. The driver outputs are enabled by bringing DE high. They are high impedance when DE is low. If RE is high DE is low, the device enters a low-power shutdown mode. If the driver outputs are enabled, the part functions as line driver, while they are high impedance, it functions as line receivers if RE is low.
4	DI	Driver input. A low on DI forces output A low and output B high. Similarly, a high on DI forces output A high and output B low
5	GND	Ground
6	Α	Non-inverting receiver input and non-inverting driver output
7	В	Inverting receiver input and inverting driver output
8	V _{CC}	Supply voltage: V _{CC} = 3 V to 3.6 V

2 Truth tables

Table 2. Truth table (driver)

Inputs			Out	puts	Mode
RE	DE	DI	В	Α	wode
Х	Н	Н	L	Н	Normal
Х	Н	L	Н	L	Normal
L	L	Х	Z	Z	Normal
Н	L	Х	Z	Z	Shutdown

Note: X = Don't care; Z = High impedance

Table 3. Truth table (receiver)

		Inputs	Output	Mode
RE	DE	A-B	RO	wode
L	L	≥ +0.2 V	Н	Normal
L	L	≤ -0.2 V	L	Normal
L	L	Inputs open	Н	Normal
L	L	Inputs shorted	Н	Normal
Н	L	Х	Z	Shutdown

Note: X= Don't care; Z=High impedance

ST1480AB - ST1480AC Maximum ratings

3 Maximum ratings

Table 4. Absolute maximum ratings

Symbol	Р	arameter	Value	Unit
V_{CC}	Supply voltage		7	V
V _I	Control input voltage (RE, DE)		-0.3 to 7	V
V _{DI}	Driver input voltage (DI)		-0.3 to 7	V
V _{DO}	Driver output voltage (A, B)		± 14	V
V _{RI}	Receiver input voltage (A, B)		± 14	V
V _{RO}	Receiver output voltage (RO)		-0.3 to (V _{CC} + 0.3)	V
ESD	ESD protection voltage	Human body model	± 15	kV
LSD	ESD protection voltage IEC-1000-4-2 contact discharge		±8	N.V

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

4 Electrical characteristics

 V_{CC} = 3 V to 3.6 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C).

Table 5. Electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _{SUPPLY}	V _{CC} Power supply current	No Load, DI=0 V or V _{CC}	DE=V _{CC} , RE=0 V or V _{CC}		1.3	2.2	mA
		VCC	DE=0 V, RE=0 V		1.2	1.9	mA
I _{SHDN}	Shutdown supply current	DE=0 V, RE=V _{CC} , DI=0	V or V _{CC}		0.002	1	μΑ

Table 6. Logic input electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
V _{IL}	Input logic threshold low	DE, DI, RE				0.8	V
V _{IH}	Input logic threshold high	DE, DI, RE		2			V
I _{IN1}	Logic input current	DE, DI, RE				± 2.0	μΑ
	I I I I I I I I I I I I I I I I I I I	DE 0V V 0 2 2 0 0 V	V _{IN} =12 V			1	mA
I _{IN2} Input curre	Input current (A, B)	DE=0V, V _{CC} = 0 or 3.6V	V _{IN} =-7 V			-0.8	mA

Table 7. Transmitter electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		R _L = 100 Ω (RS-422) (<i>Figure 1</i>)	2			٧
V _{OD}	Differential drive output	R _L = 54 Ω (RS-485) (<i>Figure 1</i>)	1.5			٧
		R _L = 60 Ω (RS-485) (<i>Figure 3</i>)	1.5			V
ΔV_{OD}	Change in magnitude of driver differential output voltage for complementary output states (<i>Note: 1</i>)	R _L = 54 Ω or 100 Ω (<i>Figure 1</i>)			0.2	V
V _{OC}	Driver common mode output voltage	R _L = 54 Ω or 100 Ω (<i>Figure 1</i>)			3	V
ΔV _{OC}	Change in magnitude of driver common mode output voltage (<i>Note: 1</i>)	R _L = 54 Ω or 100 Ω (<i>Figure 1</i>)			0.2	V
I _{OSD}	Driver short circuit output current				± 250	mA

6/19 DocID9101 Rev 5

Table 8. Receiver electrical characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{TH}	Receiver differential threshold voltage	V _{CM} = -7 V to 12 V, DE = 0	-0.2		-0.015	V
ΔV_{TH}	Receiver input hysteresis	V _{CM} = 0 V		30		μV
V _{OH}	Receiver output high voltage	I _{OUT} = -4 mA, V _{ID} = 200 mV, (<i>Figure 9</i>)	2			V
V _{OL}	Receiver output low voltage	I _{OUT} = 4 mA, V _{ID} = -200 mV, (<i>Figure 4</i>)			0.4	V
I _{OZR}	3-state (high impedance) output current at receiver	V_{CC} = 3.6 V, V_{O} = 0 V to V_{CC}			± 1	μΑ
R _{RIN}	Receiver input resistance	V _{CM} = -7 V to 12 V	24			kΩ
I _{OSR}	Receiver short-circuit current	$V_{RO} = 0 V \text{ to } V_{CC}$	7		60	mA

Table 9. Driver switching characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
D_R	Maximum data rate		12	15		Mbps
t _{DD}	Differential output delay	R_L = 60 Ω , C_L = 15 pF, (<i>Figure 5</i> and <i>Figure 6</i>)		18	30	ns
t _{TD}	Differential output transition time	R_L = 60 Ω , C_L = 15 pF, (<i>Figure 5</i> and <i>Figure 6</i>)		12	20	ns
t _{PLH} t _{PHL}	Propagation delay	R_L = 27 Ω , C_L = 15 pF, (<i>Figure 9</i> and <i>Figure 10</i>)		18	30	ns
t _{PDS}	t _{PLH -} t _{PHL} propagation delay skew (<i>Note 2</i>)	R_L = 27 Ω , C_L = 15 pF, (<i>Figure 9</i> and <i>Figure 10</i>)		2	5	ns
t _{PZL}	Output enable time	R_L = 110 Ω, (<i>Figure 11</i> and <i>Figure 12</i>)		19	35	ns
t _{PZH}	Output enable time	R _L = 110 Ω, (<i>Figure 7</i> and <i>Figure 8</i>)		30	50	ns
t _{PHZ}	Output disable time	R _L = 110 Ω, (<i>Figure 7</i> and <i>Figure 8</i>)		19	35	ns
t _{PLZ}	Output disable time	R_L = 110 Ω , (Figure 11 and Figure 12)		30	50	ns
t _{SKEW}	Differential output delay skew			1	3	ns
t _{ZH(SHDN)}	Driver enable from shutdown to output high			30	50	ns
t _{ZL(SHDN)}	Driver enable from shutdown to output low			19	35	ns

Table 10. Receiver switching characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{PLH} t _{PHL}	Propagation delay	V _{ID} = 0 V to 3 V, C _{L1} =15 pF (<i>Figure 13</i> and <i>Figure 14</i>)		30	50	ns
t _{RPDS}	t _{PLH -} t _{PHL} propagation delay skew	V _{ID} = 0 V to 3 V, C _{L1} = 15 pF (<i>Figure 13</i> and <i>Figure 14</i>)		1	3	ns
t _{PZL}	Output enable time	C _{RL} = 15 pF, (<i>Figure 15</i> and <i>Figure 19</i>)		10	20	ns
t _{PZH}	Output enable time	C _{RL} = 15 pF, (<i>Figure 15</i> and <i>Figure 19</i>)		10	20	ns
t _{PHZ}	Output disable time	C _{RL} = 15 pF, (<i>Figure 15</i> and <i>Figure 19</i>)		10	20	ns
t _{PLZ}	Output disable time	C _{RL} = 15 pF, (<i>Figure 15</i> and <i>Figure 19</i>)		10	20	ns
t _{ZH(SHDN)}	Receiver enable from shutdown to output high	C _{RL} = 15 pF, (<i>Figure 15</i> and <i>Figure 19</i>)		10	20	ns
t _{ZL(SHDN)}	Receiver enable from shutdown to output low	C _{RL} = 15 pF, (<i>Figure 15</i> and <i>Figure 19</i>)		20	40	μs

Note: 1 ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

- 2 Measured on $|t_{PLH}(A)-t_{PHL}(A)|$ and $|t_{PLH}(B)-t_{PHL}(B)|$
- 3 The transceivers are put into shutdown by bring RE high and DE low. If the input are in state for less than 80 ns, the part are guaranteed not to enter shutdown. If the inputs are in this state for at least 300 ns, the parts are guaranteed to have entered shutdown.

5 Test circuits and typical characteristics

Figure 3. Driver and V_{OC} test load

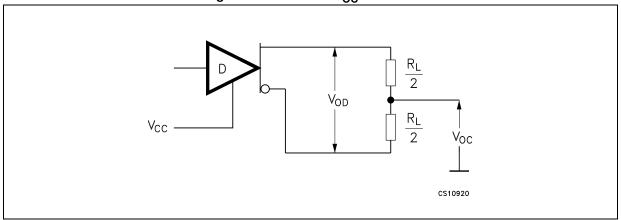


Figure 4. Driver $V_{\mbox{\scriptsize OD}}$ with varying common mode voltage test load

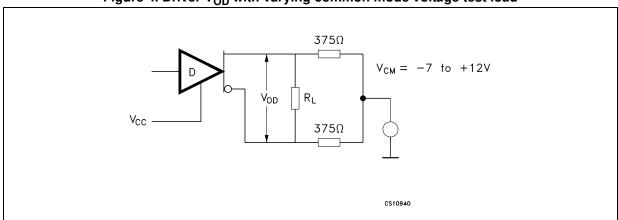
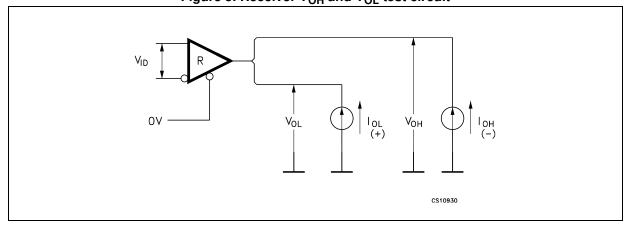
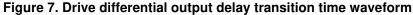




Figure 5. Receiver V_{OH} and V_{OL} test circuit

Input (NOTE 4) $C_L = 15pF$ (NOTE 5) $C_{C_1} = 15pF$ $C_{C_1} = 15pF$

Figure 6. Drive differential output delay transition time test circuit

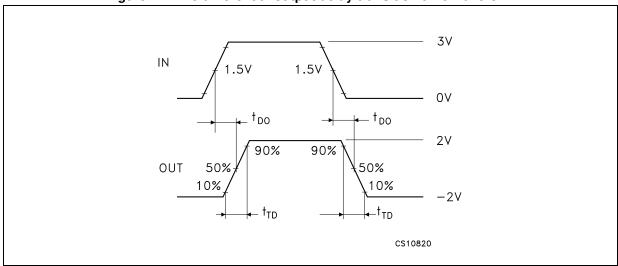
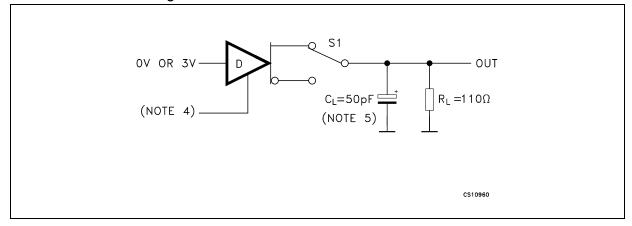
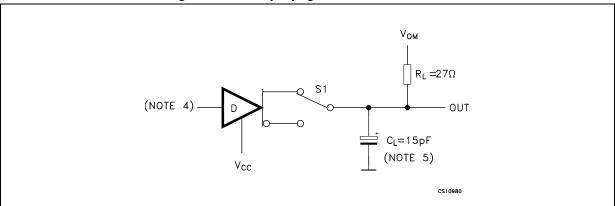
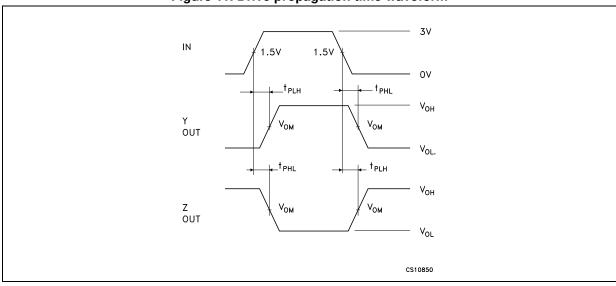



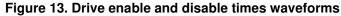
Figure 8. Drive enable and disable times test circuit

10/19 DocID9101 Rev 5

Figure 9. Drive enable and disable times waveforms

Figure 10. Drive propagation time test circuit


Figure 11. Drive propagation time waveform

 $\begin{array}{c} V_{CC} \\ \hline \\ R_L = 110\Omega \\ \hline \\ (NOTE 4) \\ \hline \end{array}$

Figure 12. Drive enable and disable times test circuit

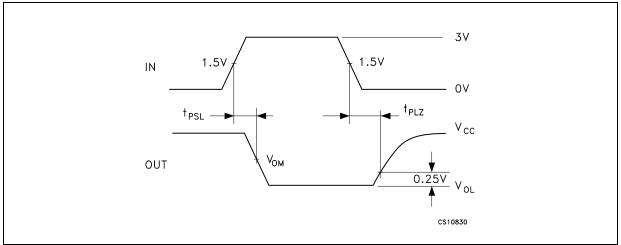
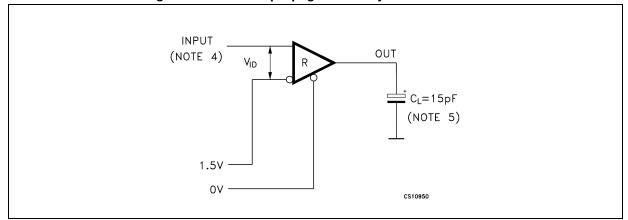



Figure 14. Receiver propagation delay time test circuit

3.0V

1.5V

1.5V

1.5V

0V

VCC

VOM

0V

CS10840

Figure 15. Receiver propagation delay time waveforms

Figure 16. Receiver enable and disable times test circuit

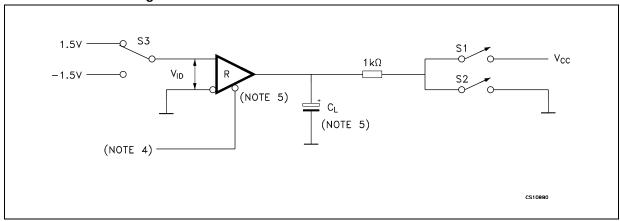
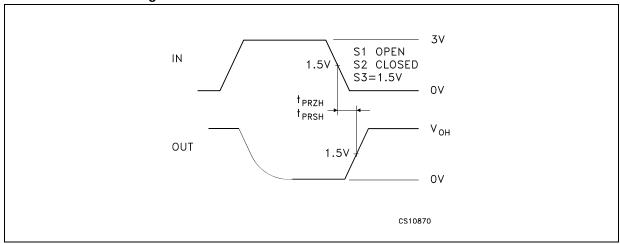



Figure 17. Receiver enable and disable times waveform

OUT

1.5V

S1 CLOSED

S2 OPEN

S3=-1.5V

OV

VCC

VCC

VOL

Figure 18. Receiver enable and disable times waveform

Figure 19. Receiver enable and disable times waveform

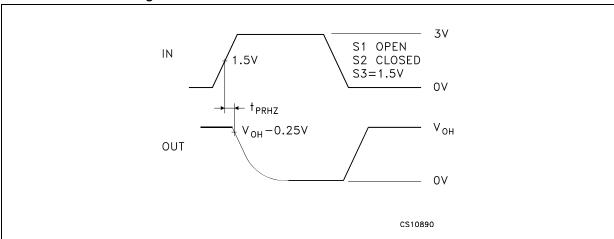


Figure 20. Receiver enable and disable times waveform

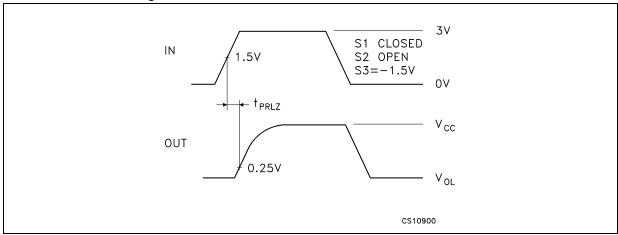


Figure 21. Receiver output current vs output low voltage

CS11370 loL(mA) 2.5 2.0 1.5 $V_{CC}=3.3V$ 1.0 $T_a=25^{\circ}C$ 0.5 0 3.5 V_{OL}(V) 1.5 2 2.5 3 1

Figure 22. Receiver output current vs output high voltage

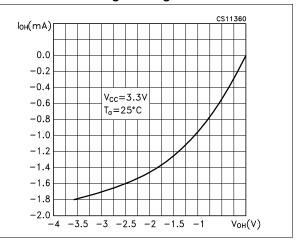


Figure 23. Low level driver output capability

V_{OD}(V) -2.520 -2.525 -2.530 -2.535 -2.540 -2.545 -2.550 -2.555 -2.560 -2.565 -7 -3 1 5 9 V_{OC}(V)

Figure 24. High level driver output capability

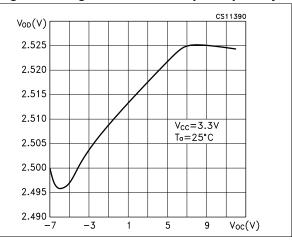


Figure 25. Receiver input characteristics

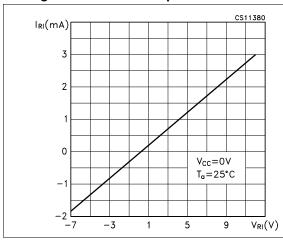
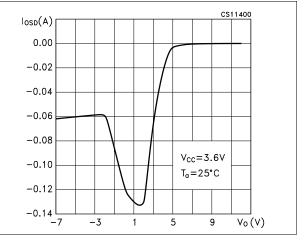
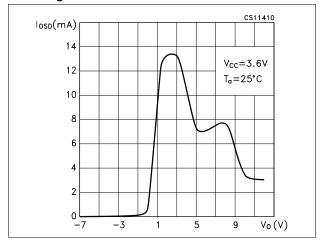
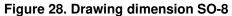
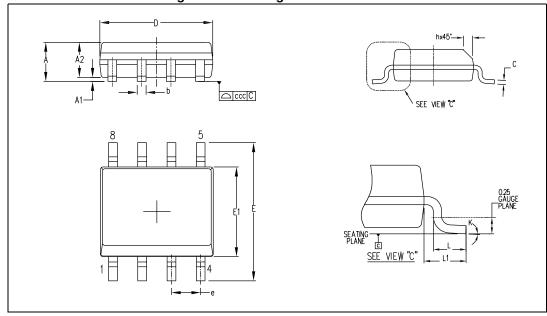




Figure 26. Driver short circuit current

0.10


6 Package mechanical data


CCC

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

mm Dim. Min. Тур. Max. 1.75 Α Α1 0.10 0.25 A2 1.25 b 0.28 0.48 С 0.17 0.23 D 4.80 4.90 5.00 Ε 5.80 6.00 6.20 3.90 4.00 E1 3.80 1.27 е h 0.25 0.50 L 0.40 1.27 L1 1.04 0° 8°

Table 11. SO-8 mechanical data

Revision history ST1480AB - ST1480AC

7 Revision history

Table 12. Document revision history

Date	Revision	Changes
02-May-2006	2	Order codes updated.
19-Nov-2007	3	Added Table 2.
24-Jul-2013	4	Updated: ECOPACK section in Chapter 6. Corrected: unit of measurement in Table 9 (Receiver input hysteresis from V to μ V). Minor text changes.
18-Mar-2020	5	Updated <i>Table 1</i> , <i>Table 3</i> and V _{IL} parameter in <i>Table 6</i> . Removed DIP-8 package.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DocID9101 Rev 5 19/19

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

ST1480ACDR ST1480ABDR