Bluetooth BLE 4.0 HM-10 (Trema-модуль v2.0)

Общие сведения:

<u>Trema-модуль Bluetooth BLE 4.0</u> — это модуль беспроводной связи, позволяющий передавать и принимать данные по радиоканалу на разрешённом ISM (Industry, Science and Medicine) диапазоне частот, от 2.4 ГГц до 2.5 ГГц, предназначенном для использования в индустриальных, научных и медицинских целях, используя метод AFH (Adaptive Frequency Hopping Feature) - адаптивной скачкообразной перестройки несущей частоты.

Дополнительным преимуществом данного модуля является то, что он совместим не только с оборудованием на базе OC Android, но так же с оборудованием фирмы Apple (macOS).

Спецификация:

- Напряжение питания: 3,3 ... 5 В
- Потребляемый ток при подключении: до 40 мА (поиск, сопряжение, подключение к другим Bluetooth устройствам)
- Потребляемый ток при передаче данных: от 0,2 до 8 мА
- Частотный диапазон: ISM 2,4 ... 2,48 ГГц
- Мощность передатчика: до +6 дБм
- Дальность связи: до 10 м
- Интерфейс: UART (с программируемой скоростью передачи данных)
- Максимальное напряжение на выводах ТХ и RX не должно превышать напряжение питания модуля.
- PIN-код по умолчанию: 000000;
- Настройки UART по умолчанию: Скорость 9600 бит/сек, 8 бит данных, 1 стоп бит, ведомое устройство;
- Поддерживаемые скорости UART: 1200,2400,4800,9600,19200,38400,57600,115200,230400 бит/сек.

Все модули линейки "Trema" выполнены в одном формате

Подключение:

<u>Trema-модуль Bluetooth BLE 4.0</u> подключается к <u>Arduino</u> по шине UART (можно использовать как аппаратную, так и программную шину).

- Вывод модуля ТХ подключается к аппаратному (фиксированному) или программному (назначенному) выводу RX <u>Arduino</u>. Это линия шины UART для передачи данных от модуля к <u>Arduino</u>.
- Вывод модуля RX подключается к аппаратному (фиксированному) или программному (назначенному) выводу TX <u>Arduino</u>. Это линия шины UART для передачи данных в модуль от <u>Arduino</u>.
- Вывод модуля К подключается к любому выводу <u>Arduino</u>, номер которого указывается в скетче. Это линия перевода модуля в режим AT-команд. Модуль в обычном режиме будет воспринимать AT-команды, только после того как на этот вывод кратковременно подать высокий уровень. Модуль перейдёт в режим AT-команд (на скорости 38400 бит/с и не будет соединяться с другими модулями) если на нём будет установлен высокий логический уровень при подаче питания или перезагрузке.

Модуль удобно подключать 3 способами, в зависимости от ситуации:

Способ - 1 : Используя проводной шлейф и Piranha UNO

Используя провода «Папа — Мама», подключаем напрямую к контроллеру Piranha UNO.

Выводы модуля Bluetooth	Выводы Piranha Uno	Цвет
RX	D3	Зелёный
ТХ	D2	Жёлтый

Выводы модуля Bluetooth	Выводы Piranha Uno	Цвет
G	GND	Синий
V	5V	Красный
К	D4	Серый

Способ - 2 : Используя Trema Set Shield

Модуль можно подключить к UART входу Trema Set Shield.

Способ - 3 : Используя проводной шлейф и Shield

Используя 2-х и 3-х проводные шлейфы, к Trema Shield, Trema-Power Shield, Motor Shield, Trema Shield NANO и тд.

Выводы модуля Bluetooth	Выводы Trema Shield	Цвет
RX	D3	Зелёный
TX	D2	Жёлтый
G	GND	Синий
V	VCC	Красный
К	D4	Серый

Способ - 4 : Используя проводной шлейф и адаптер USB-UART

Используя 5 1-х проводных шлейфов и <u>адаптер USB-UART</u>, подключаем модуль напрямую к ПК.

Выводы модуля Bluetooth	Выводы адаптера	Цвет
RX	ТХ	Зелёный
TX	RX	Жёлтый
G	GND	Синий
V	VCC	Красный
К	DTR	Серый

Питание:

Входное напряжение питания 3,3 или 5 В постоянного тока, подаётся на выводы Vcc и GND модуля.

Управление светодиодной индикацией

Модуль имеет 4 светодиода на корпусе:

- Соединён синего цвета;
- Состояние синего цвета;
- Master зелёного цвета;
- Slave зелёного цвета;

Данными светодиодами возможно управлять с помощью АТ-команд.

Пример ниже демонстрирует, каким образом можно управлять работой светодиодов, расположенных на модуле.

```
#include <SoftwareSerial.h>
                                                  // Подключаем библиотеку для работы с программным UART
                                                  // Указываем порт, к которому подключен вывод ТХ модуля BLE
uint8 t TX = 2;
uint8 t RX = 3;
                                                  // Указываем порт, к которому подключен вывод RX модуля BLE
uint8 t Key = 7;
                                                  // Указываем порт, к которому подключен вывод КЕҮ модуля BLE
                                                  // Задаём переменную для считывания значений от модуля
char
       A;
String B = "";
                                                  // Задаём переменную для хранения строки данных, которые отправил модул
SoftwareSerial BT(TX, RX);
                                                  // Создаём объект BT, указывая номера выводов TX и RX
void setup() {
 BT.begin(115200);
                                                  // Инициируем работу с последовательным портом модуля BLE на скорости 9
 Serial.begin(9600);
                                                  // Инициируем работу с монитором последовательного порта на скорости 96
 digitalWrite(Key, HIGH);
                                                  // Подаём высокий сигнал на вывод Кеу для перевода модуля в режим работ
 digitalWrite(Key, LOW);
                                                     Подаём низкий сигнал на вывод Кеу
  //-----//
 BT.write("AT+MODE0"); delay(500);
                                                 // Отправляем АТ-команду перевода модуля в режим работы MODE 0 и ждём
 while (BT.available()) {
                                                 // Если в последовательном порту модуля есть данные, то
   Serial.write(BT.read());
                                                  // считываем их и выводим в монитор последовательного порта
  }
 Serial.println();
                                                  // Следующее сообщение будет отображаться с новой строки
  //-----
```

BT.write("AT+BEFC008");	//	Отправляем АТ-команду для подачи питания на светодиод "Состояние" ср
<pre>while (BT.available()) {</pre>	//	Если в последовательном порту модуля есть данные, то
<pre>Serial.write(BT.read());</pre>	//	считываем их и выводим в монитор последовательного порта
}		
Serial.println();	//	Следующее сообщение будет отображаться с новой строки
////		
BT.write("AT+ROLE0"); delay(500);	//	Отправляем АТ-команду перевода модуля в режим работы slave(0)/master
<pre>while (BT.available()) {</pre>	//	Если в последовательном порту модуля есть данные, то
A = BT.read();	//	считываем их в переменную и
B.concat(A);	//	добавляем полученные данные в строку
}		
<pre>if (B == "OK+Set:0") {</pre>	//	Проверяем, если полученный ответ на установку роли = 0 (устройство в
BT.write("AT+AFTC204");	//	отправляем АТ-команду включить светодиод "Slave" на модуле после тог
<pre>Serial.println("Slave-mode on");</pre>	//	выводим текст в монитор последовательного порта
<pre>} else if (B == "OK+Set:1") {</pre>	//	Если же получен ответ = 1 (устройство ведущее), то
BT.write("AT+AFTC104");	//	отправляем АТ-команду включить светодиод "Master" на модуле после то
<pre>Serial.println("Master-mode on");</pre>	//	выводим текст в монитор последовательного порта
}		
////		
BT.write("AT+RESET");	//	Отправляем АТ-команду для перезагрузки модуля
}		
<pre>void loop() {</pre>		

Как видно из примера выше, после загрузки скетча в плату, на <u>Trema-модуле Bluetooth BLE 4.0</u> будет гореть синий светодиод с надписью состояние, что означает, что модуль находится в ожидании подключения. Сразу после того, как модуль будет сопряжён с любым другим устройством, в зависимости от того, в каком режиме он настроен на работу (master/slave), на модуле загорятся синий светодиод с надписью "Соединён" и зелёный светодиод с надписью режима работы модуля (master или slave).

Работа светодиодной индикации в зависимости от роли модуля

Если Вы используете для сопряжения друг с другом 2 <u>Trema-модуля Bluetooth BLE 4.0</u>, то важно помнить, что модуль, настроенный на работу в режиме master, после установления соединения с устройством, работающим в режиме slave, отключает свою светодиодную индикацию на всё время соединения.

Подробнее о модуле:

В ISM диапазоне частот работают и <u>радио модули nRF24L01+</u>, но в отличии от этих модулей, которые работают на определённой частоте диапазона, <u>Trema-модуль Bluetooth BLE 4.0</u> используют метод AFH (Adaptive Frequency Hopping Feature) адаптивной скачкообразной перестройки несущей частоты (он меняет свою частоту 1600 раз в секунду). Несущая частота меняется псевдослучайным образом и заранее известна только паре «ведущий - ведомый», что обеспечивает не только устойчивость к помехам (занят канал? не беда, перейдём на другой) но и сохранение конфиденциальности передаваемых данных.

Преимуществом Bluetooth модулей перед другими модулями беспроводной передачи данных заключается в простоте работы (Вам не нужно знать протоколы, работать с регистрами, отслеживать сигналы и т.д.) и широкой распространённости данного типа передачи данных (Вы можете управлять Вашими устройствами, или получать их показания, практически с любого телефона, планшета, ноутбука).

Модуль не требует подключения антенны, т.к. она встроена (присутствует на ПП модуля).

Принцип работы BLE

Помимо модуля, в ISM диапазоне частот работают многие другие устройства, такие как Wi-Fi -роутеры или микроволновые печи. Совместная работа сразу нескольких подобных устройств может мешать работе модуля. Для того, чтобы минимизировать влияние сторонних устройств, используются **широковещательные каналы объявления** (**Advertising channels**, "рекламные каналы"). Данные каналы имеют следующие индексы: **37**, **38** и **39**.

Рис. 6. Широковещательные объявления

Их использование не случайно:

- частоты данных каналов попадают между каналами Wi-Fi (1, 6, 11 каналы), что позволяет свести к минимуму влияние Wi-Fi сигнала на модуль;

 после того, как каналы расположены максимально далеко друг от друга, а передача широковещательных объявлений идёт последовательно по 3 каналам на разной частоте, можно быть уверенным в том, что объявления дойдут до получателя.

📝Рис. 7. Полоса частот и каналы Bluetooth Low Energy

После того, как соединение между устройствами установлено, передача данных осуществляется уже по стандартным, **рабочим** каналам (с **0** по **36**).

При этом принцип работы BLE сводится к тому, что устройства работают в следующем режиме: **Проснулся** — **Передал данные** — **Уснул**, за счёт чего и достигается минимальное значение энергопотребления.

Пример:

Для того, чтобы Вы могли опробовать модуль в работе, для начала Вам необходимо скачать и установить терминал, благодаря которому возможно отправлять АТ-команды модулю для настройки его работы и получения необходимой информации.

Следующий пример представлен для телефонов с установленной ОС Android, но все эти действия аналогичны при работе на устройствах с OC Apple (macOS).

Настройка Bluetooth-модуля телефона:

	Settir	gs
Q Search	h settings	
. 1	My device	MIUI 9.6 Stable >
NETWO		
	SIM cards & mob	ile networks
() ()	WLAN	iarduino 5G >

	Bluetooth	Off >	
ത	Portable hotspot	Off >	
0	Data usage	>	
Blu	ietooth		Переведите модуль Bluetooth из состояния выключен в состояние включен.
Bluet	ooth		

Установка приложения на телефон

Play Store	Войдите в меню ма	газина приложений Google Play Market ;	
 Google Pla HOME GAMES For You Top Charts 	Ay UNIES BOOK	Обратите внимание на строку поиска в верхней части экрана, где написано Google Play ;	
← serial Bluetoo	oth X	Нажмите на строку поиска и наберите Serial Bluetooth Terminal и выберите перв появившуюся стоку с именем приложения;	ую

	Serial Bluetooth Terminal Kai Morich Tools	В окне установки приложения нажмите кнопку Установить ;			
	INSTALL In-app purchas	25			
Serial	После успо Bluet.	ешной установки иконка программы появится у вас на рабочем столе те	лефона;		
	Serial Bluetooth Terminal Kai Morich Tools	Для запуска приложения достаточно один раз нажать кнопку приложения на рабочем столе;	Открыть	или выбрать и	иконку
UNINS	STALL OPEN				

Скетч для Arduino

Загрузите следующий скетч в вашу плату.

<pre>#include <softwareserial.h></softwareserial.h></pre>	//	Подключаем библиотеку для работы с программным UART
uint8_t TX = 2;	//	Указываем порт, к которому подключен вывод ТХ модуля BLE
uint8_t RX = 3;	//	Указываем порт, к которому подключен вывод RX модуля BLE
uint8_t KEY = 7;	//	Указываем порт, к которому подключен вывод КЕҮ модуля BLE
char A;	//	Задаём переменную для считывания значения, отправленных с телефона

uint8 t LED13 = 13;SoftwareSerial BT(TX, RX); void setup() { BT.begin(9600); BT.write("AT+NAMETest"); delay(100); void loop() { if (BT.available()) { A = BT.read(); **if** (A == '1') { digitalWrite(LED13, HIGH); BT.write("Светодиод включен"); } else if (A == '0') { digitalWrite(LED13, LOW); BT.write("Светодиод выключен");

[′] Задаём переменную для вывода, к которому подключен светодиод на плате

// Создаём объект BT, указывая номера выводов TX и RX

// Инициируем работу с последовательным портом модуля BLE на скорости 9600 бод // С помощью АТ-команды задаём имя устройства, которое будет видно в эфире

// Задержка в 100мс

// Если в последовательном порте модуля появились данные, то

// считываем их в переменную А

// Проверяем, если значение A = 1, то // включает светодиод // отправляем уведомление на телефон // если же значение A = 0, то // гасим светодиод и // отправляем уведомление на телефон

Настройка приложения Serial Bluetooth Terminal на телефоне:

При запуске приложения вы попадёте на главный экран.

Для поиска устройств нажмите на изображение трёх горизонтальных линий в левом верхнем углу.

После нажатия на кнопку в появившемся меню Вам необходимо нажать на строку Devices ;

В появившемся окне будет представлен список всех Bluetooth-устройств в радиусе действия Bluetooth-адаптера смартфона. Для начала работы нажмите на строку с название SCAN в верхнем правом углу и дождитесь окончания поиска.

≡	Scanning	STO	р 🏟	Пос Test
BLUE	OOTH CLASSIC	BLUETOOTH	LE	прило
- ur 09:9	n amed - 7:79:B6:4A:44			
- ur 0A:F	named - A:44:9C:59:A2			
- ur 3C:5	inamed - 56:CA:87:92:E4			
- ur 10:4	named - 2:2E:01:63:14			
- ur 36:6	n amed - 9:19:FC:A2:40			
Tes 58:7	o t A:62:02:32:09			
- ur 09:2	named - 8:52:D1:1F:2D			
≡	Terminal		:	На гла удачно

После того, как сканирование будет завершено, найдите в списке устройство с именем Test и нажмите на него. Произойдёт сопряжение устройств и Вас вернёт на главный экран риложения.

На главном экране будет написано Connected, что означает, что сопряжение произошло удачно и соединение установлено. Теперь, для того, чтобы отправить в модуль команду на включение светодиода, нажмите на строку в нижней части экрана, введите 1 и отправьте в модуль, нажав на кнопку в правом нижнем углу.

 Terminal
 -П :

 17:29:01.266 Connecting to Test ...
 :

 17:29:02.096 Connected
 :

 17:29:09.584 1
 :

 17:29:09.669 Светодиод включен
 :

 М1
 М2
 М3
 М4
 М5
 М6

После того, как команда будет отправлена, вам на телефон придёт ответное сообщение о том, что светодиод включен. Отправляя любые другие символы, кроме 0 и 1, модуль ни как не будет реагировать на них. Отправив 0, вы выключите светодиод.

Таким образом, отправляя команды модулю, Вы можете управлять устройствами, подключенными к Arduino.

=\<	*	н	r	:	;	!	?	$\langle \times \rangle$
ABC	,	12 34		Eng	glish			Ð

АТ-команды

Для предварительной или более детальной настройки модуля, используются АТ-команды. Список команд Вы найдёте <u>тут</u> или в <u>DataSheet</u>'е к модулю.

Применение:

- Создание связи между двумя Arduino.
- Создание связи между Arduino и другими ведущими Bluetooth устройствами: телефонами, планшетами, компьютерами и т.д.
- Создание связи между Arduino и другими ведомыми Bluetooth устройствами: гарнитурами, клавиатурами, мышками и т.д.
- Дистанционное управление роботами, устройствами, проектами и т.д.
- Дистанционное получение данных от датчиков, детекторов, сигнализаций и т.д.
- Создание Bluetooth ретрансляторов для увеличения дальности беспроводной связи.

Ссылки:

- DataSheet;
- Wiki Установка библиотек в Arduino IDE.
- Wiki АТ-команды Bluetooth BLE