1, 2 and 4-Channel Low Capacitance ESD Protection Arrays

Product Description

The CM1213A family of diode arrays has been designed to provide ESD protection for electronic components or subsystems requiring minimal capacitive loading. These devices are ideal for protecting systems with high data and clock rates or for circuits requiring low capacitive loading. Each ESD channel consists of a pair of diodes in series which steer the positive or negative ESD current pulse to either the positive (V_P) or negative (V_N) supply rail. A Zener diode is embedded between V_P and V_N , offering two advantages. First, it protects the V_{CC} rail against ESD strikes, and second, it eliminates the need for a bypass capacitor that would otherwise be needed for absorbing positive ESD strikes to ground. The CM1213A will protect against ESD pulses up to 12 kV per the IEC 61000–4–2 standard.

Features

- One, Two, and Four Channels of ESD Protection
 Note: For 6 and 8-channel Devices, See the CM1213 Datasheet
- Provides ESD Protection to IEC61000-4-2 Level 4
 - ◆ ±12 kV Contact Discharge
- Low Channel Input Capacitance of 0.85 pF Typical
- Minimal Capacitance Change with Temperature and Voltage
- Channel Input Capacitance Matching of 0.02 pF Typical is Ideal for Differential Dignals
- Each CH (I/O) Pin Can Withstand Over 1000 ESD Strikes*
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- USB2.0 Ports at 480 Mbps in Desktop PCs, Notebooks and Peripherals
- IEEE1394 Firewire® Ports at 400 Mbps/800 Mbps
- DVI Ports, HDMI Ports in Notebooks, Set Top Boxes, Digital TVs, LCD Displays
- Serial ATA Ports in Desktop PCs and Hard Disk Drives
- PCI Express Ports
- General Purpose High-Speed Data Line ESD Protection

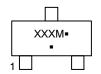
ON Semiconductor®

www.onsemi.com

SO SUFFIX CASE 318

SOT-143 SR SUFFIX CASE 318A

SC-74 SO SUFFIX CASE 318F



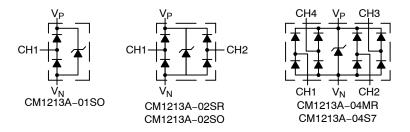
MSOP-10 MR SUFFIX CASE 846AE

MARKING DIAGRAMS

XXX = Specific Device Code
M = Date Code
Pb-Free Package

XXXX = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
Pb-Free Package


(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 2 of this data sheet.

^{*}Standard test condition is IEC61000-4-2 level 4 test circuit with each pin subjected to ±8 kV contact discharge for 1000 pulses. Discharges are timed at 1 second intervals and all 1000 strikes are completed in one continuous test run. The part is then subjected to standard production test to verify that all of the tested parameters are within spec after the 1000 strikes.

BLOCK DIAGRAM

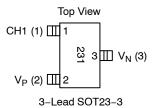
Table 1. ORDERING INFORMATION

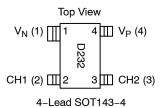
Device	Marking	Package	Shipping [†]	
CM1213A-01SO	231	==:		
SZCM1213A-01SO*		(Pb-Free)		
CM1213A-02SR	D232	SOT143-4	3,000 / Tape & Reel	
SZCM1213A-02SR*		(Pb-Free)		
CM1213A-02SO	233	SC-74 (Pb-Free)	3,000 / Tape & Reel	
CM1213A-04S7	D38	SC70-6 (Pb-Free)	3,000 / Tape & Reel	
CM1213A-04MR	D237	MSOP-10 (Pb-Free)	4,000 / Tape & Reel	

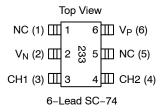
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP

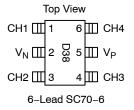
Table 2. PIN DESCRIPTIONS

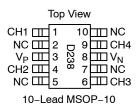
1-Channel, 3-Lead SOT23-3 Package (CM1213A-01SO)						
Pin	Name	Туре	Description			
1	CH1	I/O	ESD Channel			
2	V _P	PWR	Positive Voltage Supply Rail			
3	V _N	GND	Negative Voltage Supply Rail			


2-0	2-Channel, 4-Lead SOT143-4 Package (CM1213A-02SR)					
Pin	Name	Туре	Description			
1	V _N	GND	Negative Voltage Supply Rail			
2	CH1	I/O	ESD Channel			
3	CH2	I/O	ESD Channel			
4	V _P	PWR	Positive Voltage Supply Rail			


	2-Channel, SC-74 Package (CM1213A-02SO)					
Pin	Pin Name Type Descrip		Description			
1	NC	-	No Connect			
2	VN	GND	Negative Voltage Supply Rail			
3	CH1	I/O	ESD Channel			
4	CH2	I/O	ESD Channel			
5	NC	-	No Connect			
6	VP	PWR	Positive Voltage Supply Rail			


	4-Channel, 6-Lead SC70-6 (CM1213A-04S7)					
Pin	Name	Туре	Description			
1	CH1	I/O	ESD Channel			
2	V _N	GND	Negative Voltage Supply Rail			
3	CH2	I/O	ESD Channel			
4	СНЗ	I/O	ESD Channel			
5	V _P	PWR	Positive Voltage Supply Rail			
6	CH4	I/O	ESD Channel			


4-C	4-Channel, 10-Lead MSOP-10 Package (CM1213A04MR)					
Pin	Name	Туре	Description			
1	CH1	I/O	ESD Channel			
2	NC	-	No Connect			
3	V_P	PWR	Positive Voltage Supply Rail			
4	CH2	I/O	ESD Channel			
5	NC	-	No Connect			
6	СНЗ	I/O	ESD Channel			
7	NC	-	No Connect			
8	V _N	GND	Negative Voltage Supply Rail			
9	CH4	I/O	ESD Channel			
10	NC	-	No Connect			


PACKAGE/PINOUT DIAGRAMS

SPECIFICATIONS

Table 3. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Operating Supply Voltage (V _P – V _N)	5.5	V
Operating Temperature Range	-40 to +150	°C
Storage Temperature Range	-65 to +150	°C
DC Voltage at any channel input	(V _N – 0.5) to (V _P + 0.5)	V
Package Power Rating SOT23-3, SOT143-4, SC-74, and SC70-6 Packages MSOP-10 Package	225 400	mW
ESD IEC 61000–4–2 Contact IEC 61000–4–2 Air ISO 10605 330 pF / 330 Ω Contact ISO 10605 330 pF / 2 k Ω Contact ISO 10605 150 pF / 2 k Ω Contact ISO 10605 150 pF / 2 k Ω Contact	±12 ±12 ±9 ±22 ±25	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 4. ELECTRICAL OPERATING CHARACTERISTICS (Note1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _P (V _{RWM})	Operating Supply Voltage (V _P -V _N)			3.3	5.5	V
I _P	Operating Supply Current	V_P pin to V_N pin, ($V_P = 3.3 \text{ V}, V_N = 0 \text{ V}$)			8.0	μΑ
I _{LEAK}	Channel Leakage Current	CH pin to V_N pin, $T_A = 25^{\circ}$ C; $(V_P = 5 \text{ V}, V_N = 0 \text{ V})$		0.1	1.0	μΑ
V _F	Diode Forward Voltage Top Diode Bottom Diode	I _F = 8 mA; T _A = 25°C	0.60 0.60	0.80 0.80	0.95 0.95	V
V _{BR}	Breakdown Voltage	I _T = 10 mA, CH pin to V _N pin	6.5		9.0	V
C _{IN}	Channel Input Capacitance	At 1 MHz, $V_P = 3.3 \text{ V}$, $V_N = 0 \text{ V}$, $V_{IN} = 1.65 \text{ V}$ (Note 2)		0.85	1.2	pF
ΔC _{IN}	Channel Input Capacitance Matching	At 1 MHz, $V_P = 3.3 \text{ V}$, $V_N = 0 \text{ V}$, $V_{IN} = 1.65 \text{ V}$ (Note 2)		0.02		pF
V _{CL}	Channel Clamp Voltage Positive Transients Negative Transients	T _A = 25°C, I _{PP} = 1A, t _P = 8/20 μs (Note 2)		+10 -1.7		V
R _{DYN}	Dynamic Resistance Positive Transients Negative Transients	I _{PP} = 1A, t _P = 8/20 μs Any I/O pin to Ground (Note 2)		0.9 0.5		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. All parameters specified at $T_A = 25$ °C unless otherwise noted.

- 2. Standard IEC 61000–4–2 with $C_{Discharge}$ = 150 pF, $R_{Discharge}$ = 330 Ω , V_P = 3.3 V, V_N grounded. 3. These measurements performed with no external capacitor on V_P (V_P floating).

PERFORMANCE INFORMATION

Input Channel Capacitance Performance Curves

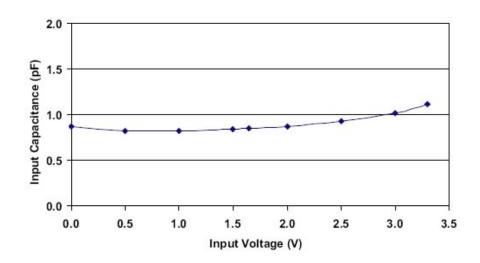


Figure 1. Typical Variation of C_{IN} vs. V_{IN} (f = 1 MHz, V_P = 3.3 V, V_N = 0 V, 0.1 μ F Chip Capacitor between V_P and V_N, 25°C)

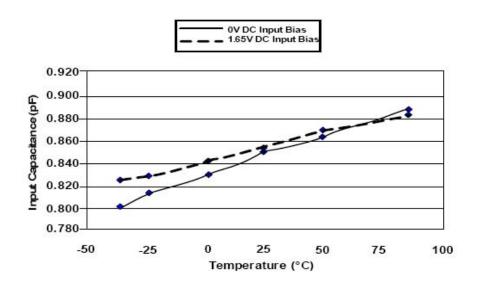


Figure 2. Typical Variation of C_{IN} vs. Temp (f = 1 MHz, V_{IN} = 30 mV, V_P = 3.3 V, V_N = 0 V, 0.1 μF Chip Capacitor between V_P and $V_N)$

PERFORMANCE INFORMATION (Cont'd)

Typical Filter Performance (nominal conditions unless specified otherwise, 50 Ohm Environment)

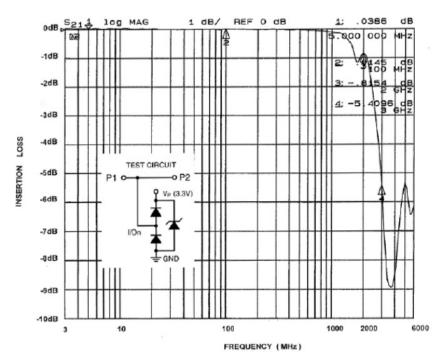


Figure 3. Insertion Loss (S21) vs. Frequency (0 V DC Bias, V_P=3.3 V)

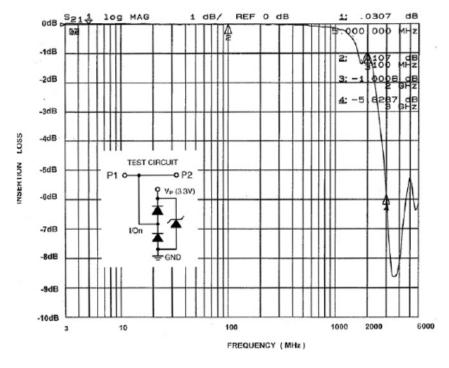


Figure 4. Insertion Loss (S21) vs. Frequency (2.5 V DC Bias, V_P=3.3 V)

APPLICATION INFORMATION

Design Considerations

In order to realize the maximum protection against ESD pulses, care must be taken in the PCB layout to minimize parasitic series inductances on the Supply/Ground rails as well as the signal trace segment between the signal input (typically a connector) and the ESD protection device. Refer to Application of Positive ESD Pulse between Input Channel and Ground, which illustrates an example of a positive ESD pulse striking an input channel. The parasitic series inductance back to the power supply is represented by L_1 and L_2 . The voltage $V_{\rm CL}$ on the line being protected is:

V_{CL} = Fwd Voltage Drop of $D_1 + V_{SUPPLY} + L_1 \times d(I_{ESD}) / dt + L_2 \times d(I_{ESD}) / dt$

where I_{ESD} is the ESD current pulse, and V_{SUPPLY} is the positive supply voltage.

An ESD current pulse can rise from zero to its peak value in a very short time. As an example, a level 4 contact discharge per the IEC61000-4-2 standard results in a current pulse that rises from zero to 30 Amps in 1 ns. Here $d(I_{ESD})/dt$ can be approximated by $\Delta I_{ESD}/\Delta t$, or $30/(1x10^{-9})$. So just 10 nH of series inductance (L₁ and L₂ combined) will lead to a 300 V increment in V_{CL} !

Similarly for negative ESD pulses, parasitic series inductance from the V_N pin to the ground rail will lead to drastically increased negative voltage on the line being protected.

The CM1213A has an integrated Zener diode between V_P and V_N . This greatly reduces the effect of supply rail inductance L_2 on V_{CL} by clamping V_P at the breakdown voltage of the Zener diode. However, for the lowest possible V_{CL} , especially when V_P is biased at a voltage significantly below the Zener breakdown voltage, it is recommended that a 0.22 μF ceramic chip capacitor be connected between V_P and the ground plane.

As a general rule, the ESD Protection Array should be located as close as possible to the point of entry of expected electrostatic discharges. The power supply bypass capacitor mentioned above should be as close to the V_P pin of the Protection Array as possible, with minimum PCB trace lengths to the power supply, ground planes and between the signal input and the ESD device to minimize stray series inductance.

Additional Information

See also ON Semiconductor Application Note "Design Considerations for ESD Protection", in the Applications section.

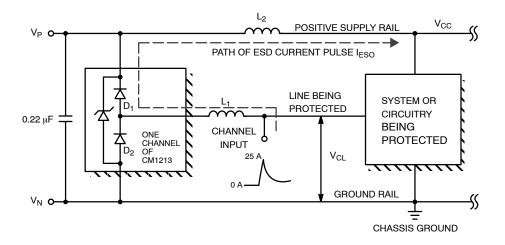
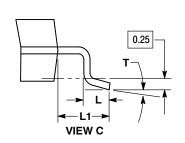
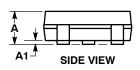
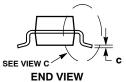


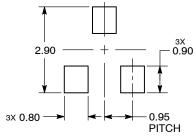
Figure 5. Application of Positive ESD Pulse between Input Channel and Ground




SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

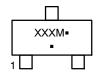

DATE 30 JAN 2018

SCALE 4:1 D - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS


3. ANODE

NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	М	ILLIMETE	RS		INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	O٥		100	O٥		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

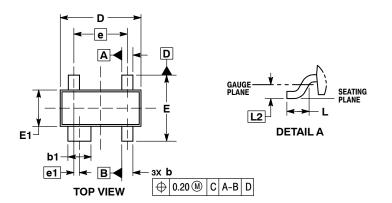
= Date Code

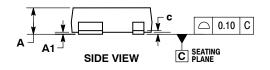
= Pb-Free Package

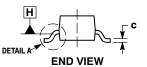
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE	ı	
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
2. ANODE	2. SOURCE	2. CATHODE	2. CATHODE	2. DRAIN	2. GATE
3. CATHODE	3. GATE	3. CATHODE-ANODE	3. ANODE	3. GATE	3. ANODE
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
2. CATHODE	2. CATHODE	2. ANODE	2. CATHODE	2. ANODE	2. ANODE
3. ANODE	3. CATHODE	3. CATHODE	3. ANODE	3. CATHODE-ANODE	3. GATE
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
2. SOURCE	2. OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3. DRAIN	3. INPUT	3. CATHODE	3. SOURCE	3. GATE	3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 1


ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


3. CATHODE

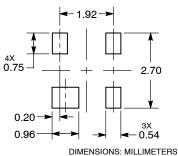


SOT-143 CASE 318A-06 **ISSUE U**

DATE 07 SEP 2011

NOTES:

- OLES.


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIM-UM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, AND GATE BURRS SHALL NOT EXCEED 0.25 PER SIDE. DI-MENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
 5. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
 6. DATUMS A AND B ARE DETERMINED AT DATUM H.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.80	1.12		
A1	0.01	0.15		
b	0.30	0.51		
b1	0.76	0.94		
С	0.08	0.20		
D	2.80	3.05		
Е	2.10	2.64		
E1	1.20	1.40		
е	1.92	1.92 BSC		
e1	0.20	0.20 BSC		
L	0.35	0.70		
L2	0.25	BSC		

RECOMMENDED SOLDERING FOOTPRINT

₹ 1.8	92-
4X 0.75	ф Т
0.75 - +	− —
	$\qquad \qquad $
0.20	
0.96	→ 3X ← 0.54
	NOIGNO MULIMETER

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

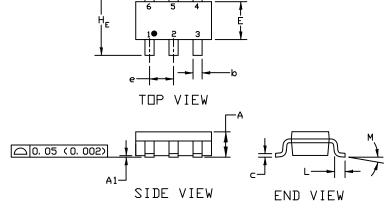
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. COLLECTOR	PIN 1. SOURCE	PIN 1. GROUND	PIN 1. OUTPUT	PIN 1. SOURCE	PIN 1. GND
2. EMITTER	2. DRAIN	2. SOURCE	GROUND	2. DRAIN	2. RF IN
3. EMITTER	3. GATE 1	3. INPUT	GROUND	GATE 1	3. VREG
4. BASE	4. GATE 2	4. OUTPUT	4. INPUT	SOURCE	4. RF OUT
STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:	
PIN 1. SOURCE	PIN 1. SOURCE	PIN 1. GND	PIN 1. DRAIN	PIN 1. SOURCE	
2. GATE	2. GATE	2. IOUT	2. N/C	2. GATE 1	
3. DRAIN	3. DRAIN	3. VCC	SOURCE	3. GATE 2	
4. SOURCE	4. N/C	4. VREF	4. GATE	4. DRAIN	

DOCUMENT NUMBER:	98ASB42227B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-143		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


SC-74 CASE 318F ISSUE P

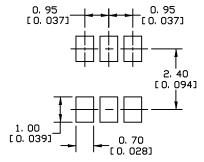
DATE 07 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
- 2. CONTROLLING DIMENSION: INCHES
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

	MILLIMETERS		INCHES			
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0. 90	1. 00	1. 10	0. 035	0. 039	0. 043
A1	0. 01	0. 06	0. 10	0. 001	0. 002	0. 004
ھ	0. 25	0. 37	0. 50	0. 010	0. 015	0. 020
С	0.10	0. 18	0. 26	0. 004	0. 007	0. 010
D	2. 90	3. 00	3. 10	0. 114	0. 118	0. 122
Ε	1. 30	1. 50	1. 70	0. 051	0. 059	0. 067
е	0. 85	0. 95	1. 05	0. 034	0. 037	0. 041
Η _E	2. 50	2. 75	3. 00	0. 099	0. 108	0. 118
L	0. 20	0. 40	0. 60	0. 008	0. 016	0. 024
М	0*		10*	0*		10*

GENERIC MARKING DIAGRAM*



XXX = Specific Device Code

M = Date Code ■ = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

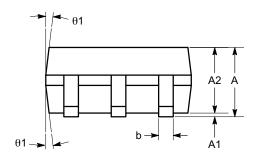
For additional information on our Pb-Free strategy and soldering details, please download the UN Seniconductor Soldering and Mounting Techniques Reference Manual, SULDERRM/D.

SOLDERING FOOTPRINT

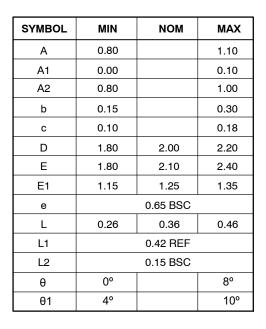
STYLE 1: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. ANODE 6. CATHODE	STYLE 2: PIN 1. NO CONNECTION 2. COLLECTOR 3. EMITTER 4. NO CONNECTION 5. COLLECTOR 6. BASE	STYLE 3: PIN 1. EMITTER 1 2. BASE 1 3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1	STYLE 4: PIN 1. COLLECTOR 2 2. EMITTER 1/EMITTER 2 3. COLLECTOR 1 4. EMITTER 3 5. BASE 1/BASE 2/COLLECTOR 3 6. BASE 3	STYLE 5: PIN 1. CHANNEL 1 2. ANODE 3. CHANNEL 2 4. CHANNEL 3 5. CATHODE 6. CHANNEL 4	STYLE 6: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 7: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 8: PIN 1. EMITTER 1 2. BASE 2 3. COLLECTOR 2 4. EMITTER 2 5. BASE 1 6. COLLECTOR 1	STYLE 9: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 10: PIN 1. ANODE/CATHODE 2. BASE 3. EMITTER 4. COLLECTOR 5. ANODE 6. CATHODE	STYLE 11: PIN 1. EMITTER 2. BASE 3. ANODE/CATHOD 4. ANODE 5. CATHODE 6. COLLECTOR	E

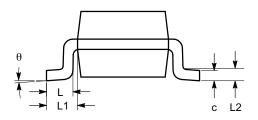
DOCUMENT NUMBER:	98ASB42973B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-74		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.



SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD-01 ISSUE A


DATE 07 JUL 2010



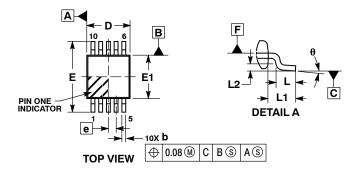
TOP VIEW

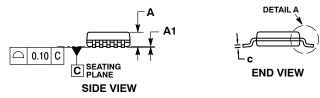
SIDE VIEW

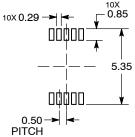
END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MO-203.


DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.3	SC-88 (SC-70 6 LEAD), 1.25X2	


ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


MSOP10, 3x3 CASE 846AE **ISSUE A**

DATE 20 JUN 2017

RECOMMENDED **SOLDERING FOOTPRINT***

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSIONS: MILLIMETERS.
 DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 MM IN
- ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.10 MM IN EXCESS OF MAXIMUM MATERIAL CONDITION.
 DIMENSION D DOES NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15
 MM PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 MM PER SIDE.
 DIMENSIONS DANDE ARE DETERMINED AT DATUME.
- DIMENSIONS D AND E ARE DETERMINED AT DATUM F. DATUMS A AND B TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α			1.10	
A1	0.00	0.05	0.15	
A2	0.75	0.85	0.95	
b	0.17		0.27	
C	0.13		0.23	
D	2.90	3.00	3.10	
E	4.75	4.90	5.05	
E1	2.90	3.00	3.10	
е	(0.50 BSC)	
L	0.40	0.70	0.80	
L1	0.95 REF			
L2	0.25 BSC			
θ	0°		8°	

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code = Assembly Location Α

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present and may be in either location. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON34098E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	MSOP10, 3X3		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

CM1213A-04MR CM1213A-02SO CM1213A-01SO CM1213A-02SR CM1213A-04S7 SZCM1213A-02SR